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Abstract

The creation of a highly detailed three-dimensional model from an urban terrain can establish a good

basis for planning a military operation. It is possible to obtain additional spatial information about the

scenery in question, which in numerous cases constitutes a remote location with difficult accessibility

conditions. The use of UAVs can mitigate this problem, their ability to perform low-altitude flights allows

the operator to obtain images in a more economical way without having to worry about problems related

to the management and safety of human resources and the available means.

In this dissertation, three datasets of images captured by a UAV in military operational contexts,

provided by Guarda National Republicana, are used. The main goal is to develop three-dimensional

reconstructions of the respective covered areas based on a technique called Structure from Motion. In

this work, a comprehensive study of different feature extraction algorithms, SIFT, HAHOG, ORB, and

AKAZE, is also performed. A FLANN search is used for feature matching, and for the outlier rejection,

RANSAC is used. The results are presented both quantitatively and quantitatively by the number of

features extracted and matched and their respective times, the incremental reconstruction time, and the

algorithm’s total time on each dataset. SIFT and HAHOG algorithms obtained the best results, while

ORB was the least efficient method quantitatively and quantitively concerning the model’s reconstruc-

tions.
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Resumo

A criação de um modelo tridimensional altamente detalhado a partir de um terreno urbano pode

estabelecer uma boa base para o planeamento de uma operação militar. A partir dela é possı́vel obter

informação espacial adicionada sobre o espaço em questão, que, em inúmeros casos, constitui um

local remoto com difı́ceis condições de acessibilidade. A utilização UAVs pode mitigar este problema, a

sua capacidade de realizar voos de baixa altitude permite para o operador obter imagens de forma mais

económica sem a necessidade de se preocupar problemas relacionados com a gestão e a segurança

dos recursos humanos e dos meios disponı́veis.

Na presente dissertação, três datasets de imagens captadas por um UAV em contexto operacional,

fornecidos pela Guarda Nacional Republicada, serão usados. O principal objetivo será desenvolver as

reconstruções tridimensionais das respetivas áreas cobertas baseando numa técnica chamada Struc-

ture from Motion. Neste artigo também será realizado um estudo exaustivo de diferentes algoritmos de

extração de features, SIFT, HAHOG, ORB e AKAZE. Para a correspondência entre features é usado

uma procura FLANN e para a rejeição de outliers é usado RANSAC. Os resultados, serão apresenta-

dos tanto quantitativamente, através de quantidade procura e correspondência de features e os seus

tempos respetivos, tempo das reconstruções incrementais e tempo total do algoritmo de reconstrução

em cada dataset. Os algoritmos SIFT e HAHOG foram os que obtiveram os melhores resultados, en-

quanto ORB foi o método menos eficiente quanto quantitativamente como na qualidade das respetivas

reconstruções.

Palavras Chave

Modelo tridimensional, UAV, Structure from motion, Extração de features, Correspondência de features.
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Chapter 1

Introduction

1.1 Motivation

Being the author of this report, a military of�cer from the Portuguese Army, one must recognize the

importance of Unnamed Aerial Vehicles (UAVs) and the Three Dimensional (3D) modeling generated

from images. A military operation's success depends to a vast extent on the Information that assumes

a crucial role in the knowledge about the operational environment, the enemy, the terrain characteris-

tics, and civil considerations (areas, structures, capabilities, organizations, people, and events) that are

fundamental for the command and control of the operations and the ef�cient use of the available means.

1.2 Problem Framework

The technologies behind UAVs have suffered a prodigious growth in the last decade, from simply

being remotely piloted to the most recent updates of autonomous control and the ability to follow a pre-

de�ned route. Although the equipment responsible for image capturing in UAVs is not as technical as

Terrestrial Laser Scanners (TLSs), or LiDARs laser sensors for 3D modeling, they still bring numerous

advantages to real-world applications. From its feasible size, relatively cheap, and easy to use, UAVs

main advantage is the ability to acquire data from an aerial multi-view perspective.

The reconstruction of 3D models from aerial images has been one of the crucial topics of research

in Computer Vision and Digital Photogrammetry since it can offer a detailed spatial distribution related

to the area or object of interest. The reconstruction of 3D models is used in many areas, such as

construction, tourism, transportation, and the military. Even though signi�cant progress has been made

in this area, no autonomous 3D building algorithm is still covering all scene domains at once.

Many techniques have been proposed in the literature to automatically generate 3D model. Some

aims to pull off the highest accuracy possible, with the use of LiDARs, laser scanners, or a combination

of other sensors, but do not take into account the price of computation ef�ciency. Other studies use

the Inertial Navigation System and Global Positioning System as auxiliary instruments to achieve better

precision. Although the computation time may reduce signi�cantly, it is very expensive.

Structure from Motion (SfM) is a computer vision technique that aims to recover a 3D scene structure.

The 3D reconstruction is based on a set of input 2D images with a high degree of overlap. It involves

several steps that must be followed, including feature detection, feature matching, camera motion, and

3



pose estimation. In theory, it is required for the feature detection process to be robust and consistently be

able to detect the same features inside the set of multiple images regardless of image rotation, scaling,

or illumination. The extracted features are then matched over the images, allowing for the estimation of

the calibration matrix of the camera, the fundamental matrix, and the prediction of camera motion.

As the �rst step to SfM is the detection of features, is it important that the detector-descriptor is

well chosen based on the set of photos and the circumstances taken, as each technique of feature

extraction in literature has its own advantages and drawbacks. Four algorithms, Scale-Invariant Feature

Transform (SIFT) [8], Accelerated-KAZE (AKAZE) [9], Oriented Fast and Rotated BRIEF (ORB) [10],

and Hessian Af�ne Histogram of Oriented Gradients (HAHOG), will be compared along three datasets.

The results will are shared in a quantitive and qualitative matter.

1.3 Dissertation Outline

The presented work is structured as follows:

• Chapter 2 : Provides the theoretical concepts of the technique used for the reconstruction, Struc-

ture from Motion. Other works related to techniques of reconstruction are also presented.

• Chapter 3 : The algorithm implementation and its details are explained.

• Chapter 4 : The result obtained from the implementation are presented.

• Chapter 5 : A conclusion of the work done, where the achievements of listed.
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Chapter 2

Background and Related Work

This chapter addresses theoretical concepts related to the 3D reconstruction problem. The whole

section is directly related to SfM. First, each module in the SfM pipeline is explained and reviewed.

Secondly, auxiliary concepts that may lead to a better 3D reconstruction are presented, such as the

computing of Digital Terrain Model (DTM) and Digital Surface Model (DSM), the identi�cation of veg-

etation, building segmentation estimation and its respective regularization that allows more realistic

results. Finally, some studies in the literature are reviewed based on 3D reconstruction from aerial

multi-perspective images using various commercial softwares that implement a SfM algorithm.

2.1 Structure from Motion

SfM is a low-cost photogrammetric metric for high-resolution topographic reconstruction. Its ef�-

ciency increases for research in remote areas with a low budget. SfM follows the same principle as

stereoscopic photogrammetry, namely that 3D structure construction can be done using multiple images

overlapping each other taken in different perceptive views [2] [1].

There is a variety of SfM strategies proposed in the literature, including incremental, hierarchical, and

global approaches. Although the incremental SfM has the most widespread use, the ultimate goal of a

general-purpose method has not yet been found due to critical problems such as robustness, accuracy,

completeness, and scalability [2].

According to the literature, SfM �rst principle is to determine the 3D location of a point within a scene.

In traditional methods of soft-copy photogrammetric, the camera parameters and the site location must

be known a priori. On the other hand, when talking about SfM, there is no need for this beforehand

knowledge to reconstruct the 3D model. The images are taken at multiple angles overlapping among

them. Afterward, the camera pose and scene geometry are computed using an automatic identi�cation

of matching features. Such features are registered for each image, allowing an iterative self-correcting

camera position and object coordinates that depend on a least-squares minimization [1].

7



Figure 2.1: Capture of the set of images to be used in SfM. Obtained from [1].

Since the camera position is calculated based on the images, it shortfalls on the scale and orientation

parameters given by the ground-control coordinates. The 3D pointclouds computed are in an image-

space perceptive, whereas they should be aligned according to an object-space coordinate system.

The solution to this problem requires a transformation of SfM image-space coordinates to an absolute

coordinate system using a 3D similarity transform featured on a small number of known checkpoints with

known object-space coordinates. Ground-control point selection is based on and done after recognizing

candidate features visible in the generated point cloud and �eld, obtaining the respective coordinates by

ground survey. In practice, placing a physical target de�ned as a centroid in a scene with high contrast

before acquiring the set of images simpli�es having unambiguous co-location of the image and object

space target. It ensures a trusty and well-distributed network of targets across the area of interest,

allowing an estimation of non-linear structural irregularities in the 3D reconstruction [1].

Figure 2.2 shows an example of a pipeline used for a SfM algorithm. This sub-chapter will explain

the two middle modules, the Component Search and the Incremental Reconstruction.

In very few words, after the image acquisition, feature extraction is made, then the matching of

features is done, followed by a geometric veri�cation. The output of this last section is sent as input to the

�rst stage of the module Image Reconstruction, the initialization of a selected two-view reconstruction.

Afterward, there is an incremental image registration, the triangulation of the scene points, outliers

removal, and bundle adjustment.

Figure 2.2: Structure from Motion pipeline. Obtained from [2]

8



2.1.1 Correspondence Search

The correspondence search module has the role of identifying the overlapping and the corresponding

projection points in a set of images. It has three sequential steps: feature extraction, matching, and

geometric veri�cation.

The feature extraction stage computes a set of local features for each image. A feature represents

a piece of information used to solve a computational task. There are a variety of algorithms for such,

Harris Corner Detection [11], SURF [12], Kanade-Lucas-Tomasi [13], and SIFT. According to [2] [14],

a feature itself can be simple as a point or an edge of a structure, or complex like an object, but its

selection should follow the properties mentioned below:

• Repeatability : Considered the most important, given a pair of images taken from different per-

spectives of the same scene, a high percentage of correspondence features should be detected.

There are two ways to achieve good compatibility: invariance or robustness.

• Distinctiveness : A high variation in intensity patterns underlying the features must be considered

so that they can be found and matched.

• Locality : Used to reduce the chances of obstruction and allow for a simpler model approximation

of the geometric and photometric deformations between two images.

• Quantity : The optimal number of features varies from application to application, but the density of

features should re�ect the information inside an image to provide a compact representation. The

number of detected features should be considered, such that they can be seen even on objects

with less limited dimensions.

• Accuracy : Accuracy of its location in both images, based on scale and shape.

• Ef�ciency : The time/duration of detection of features in new images should be taken into account

depending on the application

In the matching stage, pairs of images are matched based on several feature appearances. In a set

of N images, 1=2 � N (N � 1) pairs can exist. This process can be exhaustive and expensive if a naive

approach of matching all features between all images is made. The complexity is equivalent to O(N 2F 2),

being F the maximum number of features in all images [2] [14]. One solution to this scalability problem

is optimization by an approximation nearest neighbor kd-tree search.

In the third stage, the geometric veri�cation, and con�rmation of the pairs of images are done. In the

matching stage, the pairs of images are computed based on appearance, hence, there is no guarantee

that the image features represent the same scene points. Numerous methods can be used to describe

the geometric relationship between images. A homography may be used to reveal the transformation

9



between two images. If the camera's intrinsic parameters are known, an epipolar geometry approach

allows for describing the movement of a camera through the essential matrix. In order to remove the out-

liers found by geometric veri�cation, it is traditionally used a robust estimation technique called RANSAC

algorithm [2].

2.1.2 Incremental Reconstruction

Initialization is the step of choosing the �rst matching images. The initial pair must be wisely selected

since there is a chance that the reconstruction may not recover from a lousy initialization. Ideally, the

model should have a starting point in a dense location of the image graph given as input, where there

is the most percentage of overlapping images. This process improves the reconstruction robustness,

accuracy, and performance due to increased redundancy. In case of a bad initialization, the bundle

adjustment process will not have enough data to re�ne the position of the reconstructed camera poses

and points.

In image registration, new images are added to the reconstruction and identi�ed as registered im-

ages. For each registered image, a pose of the camera, P, must be computed. P must be de�ned in

a 3D way related to the world coordinates system and the rotation, pitch, roll, and yaw. A Perspective-

n-Point problem is used to �nd a solution, registering new images and estimating a pose P according

to the current model using feature correspondences to triangulated points. A Random Sample Consen-

sus (RANSAC) algorithm is also used in this stage since the 2D-3D correspondences are likely to have

a presence of outliers [2] [15].

A triangulation illustration is found in Figure 2.3. It is an essential step in SfM, it consists of estimating

a point's 3D location when observed in multiple angles. The stability of the model is increased through

redundancy by expanding the scene coverage de�ned as a set of points X. When a new scene point

appears in different views in two or more images, the corresponding new set of points, X k , are registered,

and added to X. One solution to �nding the best point of intersection is to compute the point that lies

closest to all back-projected rays by minimizing the distances between the estimated 3D point and the

rays [3].

10



Figure 2.3: 3D point triangulation by �nding the point P. Obtained from [3]

The bundle adjustment is the process of optimizing and re�ning the 3D model, and the estimated

camera poses by minimizing the reprojection error between the camera's pose, P, and the parameters

of the point, X k . This problem can be solved by using a non-linear least-squares algorithm [15]. The

Levenberg-Marquardt algorithm is most widely used, which consists of an optimization method that

interpolates between the gradient descent method and the Gauss-Newton method [16].

2.2 Convolutional Neural Networks

When the idea of arti�cial intelligence comes to mind, it is reasonable to assume that it has a huge

amount of reasons for people to talk about, especially when referring to a speci�c �eld called Deep

Learning (DL). DL has gained a lot of attention since the success of the AlexNet, an architecture based

on Convolutional Neural Network (CNN), in the ImageNet Large Scale Visual Recognition Challenge in

September 2012. Since then, it has been widely used in many �eld areas, including computer vision.

Before talking about CNN, it is important to �rst mention Arti�cial Neural Networks (ANN), a concept

of Machine Learning. ANN are computing systems that were designed to function similarly to a biological

nervous system. Its basic component is a neuron, also known as a node. Having multiple neurons

functioning in a distributed way, it is possible to collectively learn from the inputs to obtain an output that

is optimized.
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Figure 2.4: Representation of a simpli�ed neural network designed only with one hidden layer.

Following the diagram from Figure 2.4, let X = f x1; :::; xD g be the set containing D inputs, H =

f h1; :::; hK g be the set containing K hidden units, W (1) 2 RK � D be the set containing the weights

associated to the hidden layer, b(1) 2 RK the set of bias also associated to the hidden layer and g(x) :

RK ! RK be the activation function which is applied component-wise. The hidden layer activation is

de�ned as

H = g(W (1) X + b(1) ): (2.1)

Finally, let W (2) 2 RK be the set containing the weights associated to the output layer and o(x) :

R ! R the output activation function. The output layer activation is de�ned as

y = o(W (2) � H + b(2) ): (2.2)

It is possible to observe that each neuron depends on the sum multiplication of each input with

its corresponding weight, for every value obtained, it is applied an activation function. The training of

the neural network aims to interactively update the weights and biases within the network in order to

minimize the loss function.

2.2.1 CNN architecture

Convolutional neural networks are somewhat a variation of ANN. According to Goodfellow et al. [4],

while the second architecture stretches the input values into an array and then applies the matrix of

weights into each cell, the �rst one maintains the original version, convolving a reduced size �lter through

the image which can be seen in Figure 2.5.
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Figure 2.5: Example of a 2-D convolution. Obtained from [4]
.

The two main properties using convolutions are space connectivity and parameter tying. Space

connectivity allows fewer parameters needed to be stored, reducing the memory requirements and im-

proving the statistical ef�ciency of the model. It is logical to say that the computing of the output will

require fewer operations. Having an input with m inputs and n outputs, there will be m � n parameters

in the weight matrix, the traditional neural network model will have a complexity of O(m � n). By limiting

the number of connections of each output is reduced to k, then the sparsely connected approach will

have k � n parameters and complexity of O(k � n).

By parameter tying, the weights that are applied to a certain input are tied to the value of weight

applied elsewhere. The way CNN uses this property is by applying the whole kernel into every input

position. Depending on the complexity of the kernel, it allows recognition of a speci�c characteristic

inside the input image, causing the effect of equivariance to translation.

2.2.2 Pooling

According to Goodfellow et al. [4], most CNN are built upon three levels. The �rst one is responsible

to carry out the convolutions in need to generate the set of linear activations. The second one aims

to apply nonlinear activation functions on the output of the �rst layer. Finally the last stage, a pooling

function is used to modify the output of the layer further.

A pooling layer is applied through the feature maps to create a new set based on operations that

perform a summary statistic of the nearby outputs. By pooling, it is possible to recognize representations

invariant to small translations of the input, meaning that if a feature has a minor spacial translation, the
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output of the pooling layer will not change at all. Another major factor of using pooling is its capability of

sub-sampling to reduce temporal and spatial computation. This is possible since pooling condenses a

speci�c region into a smaller map, and it is able to use fewer polling units than detector units, as can be

seen in Figure 2.6.

Figure 2.6: Appliance of a max pooling layer. As can be seen, there is a down-sampling associated, reducing the
representational size by a factor of two.

2.3 Building Detection

3D Building's reconstruction from multi-view images or photogrammetric point clouds DSMs can be

sorted into two approaches: data and model-driven methods. Data-driven strategies use image segmen-

tation, edge detection, and planar patches detection to extract information about the object contained in

the pictures or DSMs, such as roof vertexes, eave lines, or piece-wise planes. The properties extracted

from the model are handled to obtain the �nal 3D shapes. In theory, this strategy should be able to

compute every form of geometry present in the set of input images. In reality, the information is often

associated with noise due to the sample properties, such as low quality or incompatibility between the

input data complexity and the primitive detection method used [5] [17] [18].

In model-driven methods, there is a library of models associated. For the input data, it tries to �nd

the best-�tted model. The main advantages of this approach are the maintenance of uniformity in every

building model and its faster implementation. A problem with model-driven methods occurs when the

library is limited, which leads to input data being modeled incorrectly.

In a general way, the building detection stage consists of three steps: computation of Normalized

DSM (nDSM), vegetation's discard, and removal of outliers to label building regions. Objects above

ground are identi�ed by using nDSM, the difference between DSM and DTM generates its values. The

high values present in an nDSM are either considered buildings or vegetation [17].

2.3.1 Computing of DSM and DTM

A DSM is a 2D grid achieved from rasterizing a 3D point cloud. Rasterization is the technique often

used in computer vision that creates a raster that is �lled with values from an attribute of a feature class.

This is done by converting an image which is currently represented in a vector graphics format, into an

14



image composed of a series of elements, dots, pixels, or lines, representing an alternative view of the

original image [19].

In a practical matter, given the information extracted from the point cloud, the cells that shape the

raster, have their own elevation values. Considering that the elevation map can be described as an

image, each of its own cells represents a pixel.

One major problem associated with rasterization is the process of assigning values to the cells as-

sociated with boundary regions of an object. The approach proposed by Gross et al. [18] is by solving a

Modi�ed Neumann Partial Differential Equation (PDE). Some conventional methods leave the boundary

pixels empty, bene�ting cases of vertical aerial high-resolution images. The elevation computed from

the corresponding depth map can already be considered a surrogate for a DSM since it has an analo-

gous structure, namely, rows and columns in pixels and elevation in real-world distances. Although this

method does not rely upon a PDE, which can be untrustworthy in the presence of outliers, the building

outlines are computed with less precision. Bulatov et al. [17] proposed that a heavy presence of outliers

can be solved using a median value of the neighbors' cells and applying a Gaussian �lter afterward. Al-

though small objects or features may be lost, the building's boundaries are better de�ned. This process

is done with a 2.5D cubic spline surface computed by minimization of a function as in L1-norm that pre-

vents non-Gaussian noise, eliminating a high percentage of outliers and is robust against a heavy-tailed

distribution.

The computation of DTM [18] is based on the premise that in objects' boundaries, height jumps

happen, therefore the corresponding values of its pixels can be done by computing a gradient magnitude

image. The result expected is a height variance map. The values that exceed a prede�ned threshold

are de�ned as essential points and replaced by a minimum value in a speci�ed neighborhood. Between

two essential points, the height is linearly interpolated. The �rst step to calculate the DTM is by �rst

identifying points associated with the ground by assigning a square �lter around all pixels in the 2D grid

with a speci�cally �xed side length. Inside the squared region created for each pixel, the lowest point

is de�ned as a ground point. The �lter size should take into consideration the tallest element inside its

area. If the side length is too small, building features can be mistakenly appended to the ground points

list, and if it is too large, smaller elevated regions in the DTM may not be included.

The work done by Yu et al. [5] proposes a different way of generating the DSM view by using a

concept of convolutions neural networks. The respective architecture is presented in Figure 2.7. This

method uses a three-stage pyramid matching Multi-Scale RedNet (MS-REDNet), allowing a much faster

depth range search within the end-to-end deep learning model. A 2D N-way Siamese network is used

to extract multi-scale features consisting of three convolutional layers, and three up-convolutional layers

that generate three scale features a map with different spatial resolutions. Instead of aligning the images

by epipolar resampling, the images are already objected space-oriented using the depth map. The input
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images that have a view angle associated can be projected to an optical view of the reference image.

Figure 2.7: The network architecture proposed the MS-REDNet. Obtained from [5]

Liu et al. proposed a regularization of the cost map based on Recurrent Encoder-decoder (RED)

structure which is illustrated in Figure 2.8. It is possible to observe that in each sequential cost map,

the respective depth-wise registering contextual information is being updated in four individual Gated

Recurrent Units (GRUs) in different spatial scales.

Figure 2.8: Recurrent Encoder-Decoder Regularization structure. Obtained from [6]

2.3.2 Building's labelling

The identi�cation of multiple structured buildings is an important issue when labeling. Gross et al. [18]

proposed a splitting in the map's regions that is obtained from the smothering gradient images into jump

heights, as already explained. On the one hand, having buildings based on multiple �at roofs allows
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a precise model due to the low risk of over-segmentation due to parallelism while clustering normal

vectors to extract the dominant plane. On the other hand, choosing a non-optimal jump value threshold

may result in unnecessary outliers in the output if it is too small or a building with multiple rooftops being

modeled as having only one rooftop if it is too large.

Bulatov et al. [17] proposed a subdivision of rooftops by performing a robust morphological erosion

pursued by a new labeling of the terrain that yields more regions. In this process, border pixels are lost.

To label the lost pixels, it was proposed a Random Walk algorithm that considers elevation points, which

has good results in noise in both elevation maps and regions' boundaries.

Yu et al. [5], proposed the use of deep learning and empirical designing to obtain the building foot-

prints. The procedure is divided into three and is found in Figure 2.9: generation of the initial segmenta-

tion map, an assisted segmentation map, and �nally, a merging between the two maps.

• Initial segmentation map : Created by using an object detection method and a terrain classi�-

cation from the DSM in the boundaries of each detected building. The buildings' bounding boxes

are extracted using a Mask R-CNN. By doing so, it is then possible to differentiate structures from

vegetation and to identify building boundaries with reasonable precision when trained with optical

images. In the end, the data is complemented with the information provided about terrain classi�-

cation to obtain a more precise map.

• Assisted segmentation map : Is the product of a Multi-scale Aggregation Fully Convolutional

Network (MS-FCN) that uses Digital Orthophoto Map (DOM) as the primary input and DSM in

an extra input channel. The repeated use of DSM is justi�ed by its improvements in providing

topographic information. The MS-FCN uses a feature pyramid network, four convolutional layers

in distinct scales are used to obtain the features maps to �nally be concatenated and applied in a

1 � 1 convolution and a softmax function to predict the categories of all pixels at one shot.

• Fused segmentation map : On the one hand, the initial map provides a reliable reading of the

building regions, but the respective boundaries may come fade. On the other hand, the assisted

map gives more valid building information but comes with minor errors correlated to segmentation.

The merging process starts by removing false building boundary pixels on the initial map, then

polygons building contours from the initial and the assisted map are created. The two sets of

polygons are compared to determine which buildings are merged, split, or added.
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Figure 2.9: Building extraction strategy. Obtained from [5]

2.4 Polygon Regularization

Neural networks have been improving over time in assigning pixels to the belonging buildings, how-

ever, they lack in consideration of shapes geometry. As a result, the segmentation process described

in the previous section may come with curved edges and irregular segments. In order to obtain more

realistic shapes, a polygon regularization must be applied.

Wei et al. [20] computed the contours by handling a Marching Cubes algorithm and a Douglas-

Peucker algorithm. The adjustment phase aims to remove polygons, edges, and over-sharp or over-

smooth angles that do not match their respective thresholds. By doing so, the signi�cant directions of a

building are identi�ed. Finally, the adjusted contour lines are all attached, forming the �nishing polygon.

Yu et al. [5] used the algorithm proposed by [20], but the contours vectors are previously run in

a classic Chan-Vese level-set. By this means, each boundary will be adjusted and determined, and

the buildings' pixels will turn more homogeneous. After some interactions, the mistyped pixels are

eliminated.

Zorzi et al. [7], uses a CNN for corner detection. A corner proposal probability map is generated

based on the regularized mask received as input. The pixels with a higher value than an established

threshold in the probability map are considered valid corners and sorted clockwise in the footprint

perimeter to set the polygon's coordinates. Finally, redundant points that were placed close to an edge

are removed.

18



Figure 2.10: Polygon regularization process. Obtained from [7]

2.5 Identi�cation of vegetation

The existence of vegetation often interferes with the process of 3D modeling, especially when it

overlaps with relevant objects hiding its structures, making it dif�cult to obtain an entire surface to provide

a reliable diagnostic. Bulatov et al. [17] proposed two possible approaches, with the presence of a

near-infrared channel and without it, both in order to compute the Normalized Difference Vegetation

Index (nDVI). The �rst approach, nDVI, expressed in 2.3, must be greater than � > 1, where r nir , g and

b are respectively the near-infrared, green, and blue channels.

nDV I = r nir =max(g; b) > � (2.3)

The second method offers a solution when only Reg Green Blue (RGB) images are available. The

pixels of isolated trees must be extracted and used as training data to propagate color information. In

order to do so, it is required to identify a lineness measure corresponding to a speci�c region.

Let R be an speci�c elevated region, l 2 �R be the set containing lines lying entirely in a morphological

dilation of R and thrown into the DSM, the lineness is de�ne as

lm(R) =
X

l2 �R

(length(l))2=area(R): (2.4)

Since the training data only offers information about the current characteristic of the isolated trees,

if the test data set is represented in a different season, the vegetation identi�cation was found to be

inconsistent due to different colors in the vegetation. Therefore handling isolated tree modeling should

be consisted of extraction of the trunks' positions, the overall high, the diameter from nDVI - image,

elevation map, and the DTM.
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2.6 3D modeling of aerial images in commercial software

Many studies were conducted on the evaluation of commercial 3D modeling softwares. The majority

compares the point cloud obtained from TLS and the point cloud generated with images acquired by

methods that have appeared in recent years, such as UAVs, non-surveying digital cameras, and many

others.

Koutsoudis et al [21], studies the idea of replacing a 3D range scanner with a digital camera and

commercial software that uses SfM and dense multi-view 3D reconstruction algorithms, in this case,

Agisoft PhotoScan. CloudCompare was used to estimate the surface deviation between the PhotoScan

generated mesh and the TLS data. In the end, the standard deviation between the two methods was

1.4cm.

The work done by Grenzd et al. [22] also used Agisoft PhotoScan, the 3D reconstruction model was

done on cultural heritage, the Cathedral of St. Nicholas. A TLS was used to obtain ground data of the

heritage and an UAV to acquire oblique and vertical images. PhotoScan was mainly used to perform

aerial triangulation. Similar to [21], the pointcloud generated, and the TLS data were compared. The

standard deviation ranged 2.5-8.8 cm, suggesting that UAVs can be used as an alternative to areas

where TLSs are hard to operate.

Agisoft PhotoScan, Pix4Dmapper, 3Df Zephyr, MinMac, SURE, ContextCapture, and VisualSFM

were the softwares compared by Aicardi et al. [23] using S. Maria's Chapel Piedmont, Italy. Aerial

triangulation showed an accuracy of checkpoint lesser than 1cm in all softwares. The number of points

generated was 3:5 � 106, 4:4 � 106, 1 � 106, 4 � 106, 7:5 � 106, 19 � 106, and 1 � 106 respectively in

the order above. The standard deviation of these points compared to the TLS data was 1.6, 1.7, 2.2,

2.1, 3.9, 1.7, and 1.9 cm, respectively, concluding that the commercial softwares Agisoft PhotoScan,

Pix4Dmapper and ContextCapture were the ones with the best accuracy in the pointclouds.

Jeon et al. [24], evaluated the quality of 3D modelling based on images of ContextCapture, Photo-

Scan and Pix4Dmapper. Naked eyes analysed the number of points generated and the interval between

them, Cultural Properties 3D Scan Data Standard Production Manual was also used to evaluate the

number of points in some areas. The aerial triangulation in ContextCapture had the worst results aver-

aging 284 tie points, while PhotoScan and Pix4Dmapper had respectively 1,745 and 17,085 tie points.

The Root Mean Squared Error (RMSE) of 3D residuals of Ground Control Points and Checkpoints was

smaller in PhotoScan and Pix4Dmapper. Related to the point cloud area ContextCapture, PhotoScan,

and Pix4Dmapper generated 607,304,446 points, 52,298,933 points, and 212,996,183 points, respec-

tively. Although being the software with the most generated points, it was concluded that it had the worst

performances due to the small number of conjugate points and larger RMSE.
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Chapter 3

Methodology of Research

In this section, the methodology is presented. The implementation has three main modules, the

respective schematic is illustrated in Figure 3.1.

Figure 3.1: Proposal work�ow

The diagram is represented in three main modules:

• Matching Process: This block is responsible for dealing with the input images �rsthand. It handles

all the processes related to feature treatment, including extraction, matching, relocalization, and

outliers removal. The output will be a set of pairs of features in the group input images.

• Incremental Reconstruction: In this step, the camera's poses taken on each image are esti-

mated. As each pose is veri�ed, they are incrementally added to the reconstruction set. The

output will be a set of image's poses and a sparse pointcloud, meaning that only the best pair of

features found are used for its reconstruction, leading to more ef�cient computation of the camera's

pose since the lower quality features were rejected.

• Point Cloud handing: As a sparse point cloud and the image's poses were determined in the

previous stage, there is a need to create the �nal 3D reconstruction. First, a denser point cloud
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is computed using a multi-view stereo. Secondly, triangle meshes are generated using a Poisson

Reconstruction approach, and �nally, a texturization of the meshes is made, resulting in the �nal

3D reconstruction.

3.1 Structure From Motion

SfM is based on two modules, as represented in Figure 3.1, the matching process handles the

features and incremental reconstruction by starting with the �rst pair of images and then iteratively

adding new samples once at a time.

3.1.1 Matching Process

The �rst stage starts by extracting feature points for each image. The four methods of extraction

tested are described in the following sub-sections.

The second step is the matching of features. It runs a Fast Library Approximation Nearest Neighbors

(FLANN) [25] algorithm for each pair of images on its features descriptors, except for ORB method,

which uses a brute force method since FLANN does not operate well when descriptors are represented

in binary. To avoid false matches using a distance threshold, it is used a ratio test, having images X and

Y, a feature descriptor in X is satis�ed with the two nearest neighbors in Y, with distance d1 and d2, if
d1
d2

< 0:6, then the match is accepted.

The last steps are the geometric veri�cation and the outlier's removal. In this stage, a RANSAC

algorithm with a threshold of 0.6% of the maximum image dimension is used to estimate a fundamental

matrix for the pair robustly. The eight-point algorithm is used for each iteration to compute a normalized

candidate fundamental matrix. The matrix returned by the RANSAC is re�ned by using the Levenberg-

Marquardt algorithm on the respective eight parameters. The recovered matrix removes those that do

not follow the de�ned threshold.

3.1.1.A SIFT

The method takes each image in the input set and transforms them into a collection of feature vectors

invariant to image translation, scaling, and rotation, partially invariant to illumination changes, and robust

to local geometric distortion. Each keypoint is obtained by doing a Difference of Gaussians (DoG)

search, which is done in three steps. Firstly, a convolved image, L (x; y; k� ), is obtained by convolving

the original image, I (x; y), with Gaussian blur at different scales, G(x; y; k� ), where k� is the respective

scale.
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L(x; y; k� ) = I (x; y) � G(x; y; k� ) (3.1)

where:

G(x; y; k� ) =
1

p
2��

e� x 2 + y 2

2 � 2 (3.2)

Having the convolved image, the second step is to obtain the DoG image G(x; y; � ). This is done by

computing the difference of successive Gaussian-blurred images.

G(x; y; � ) = L(x; y; k i � ) � L (x; y; k j � ) (3.3)

After obtaining DoG images, local minima and maxima search of the DoG images across scales is

done so that keypoints are identi�ed. The search takes place by comparing the surrounding eight neigh-

bors of each pixel and nine of the corresponding pixels in each of the neighboring scales. Finally, if the

respective pixel is either a maximum or a minimum between all the compared pixels is then considered

a keypoint. The description method for the keypoints consists of extracting a 16x16 neighborhood map

for each feature and further segments the region into 4x4 sub-blocks, rendering a total of 128 bin values.

3.1.1.B AKAZE

A feature detector that is based on a non-linear diffusion �ltering, its non-linear scale-spaces are

built using a framework called Fast Explicit Diffusion. AKAZE applies a determinant of Hessian Matrix

blob-detector to its images at increasing scale sizes as the sub-levels also increase.

The features are obtained using a surrounding window of 3x3 to be compared to the pixels in the

Diffence of Hessians (DoH) image. If the pixel corresponds to a maxima inside the 3x3 window, it is then

compared spatially with keypoints within the same sub-level to �lter repeated keypoints inside a certain

radius.

For non-linear descriptions, AKAZE use non-linear LDB that applies gradients and exploits intensity

information from the non-linear scale space. An LDB uses various grids of �ner steps, 2x2, 3x3, and

so on. On those grids, binary tests between the average of areas are made to achieve additional

robustness. Beyond computing these intensity values, a comparison of the mean horizontal and vertical

derivatives is also compared. AKAZE is also invariant to rotation, this is achieved by computing the

primary orientation of the keypoint and rotating the LDB grid accordingly.
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3.1.1.C ORB

As the name indicates, it combines a Features from Accelerated and Segments Test (FAST) keypoint

detector with a BRIEF descriptor. The main of FAST is to identify keypoints by comparing the brightness

of pixels. Giving a pixel p, 16 surrounding pixels are selected in a circle around p. From those 16 pixels,

if half of them are either darker or brighter than the main pixel, then p is selected as a keypoint.

Since FAST does not achieve invariance to scale, the ORB algorithm uses a multiscale pyramid

representing different resolutions for each image. As the pyramid escalates, the original image is down-

sampled from the previous level. Then the FAST algorithm is applied at all levels, locating multiple

keypoints in different scales and obtaining a partial scale invariance.

Binary robust independent elementary feature (BRIEF) descriptor, takes the keypoint given by FAST

and converts them into binary feature vectors ranging from 128 to 512 bits. The �rst step to being

done by BRIEF is smoother the image with a Gaussian kernel. Secondly, a random pair of pixels in the

neighborhood, also known as a patch, of a keypoint is selected. This selection of the �rst pixel is drawn

by a gaussian distribution centered on the respective keypoint with a spread of sigma, while the second

pixel is drawn with a spread of sigma by two. If the �rst pixel selected is brighter than the second one,

it is given a value of 1 to the respective bit, else it is de�ned as 0. For an X-bit vector, this procedure is

repeated X times. In the end, each keypoint found by fast will have a corresponding vector.

3.1.1.D HAHOG

HAHOG uses a combination of a Hessian-Af�ne detector with a Histogram of Oriented Gradients

(HOG) descriptor, that aims to compute feature points and the characteristic region of an image. The

detector is an af�ne and scale invariant. The Hessian-Laplace detector is responsible for estimating the

localization and the scale, while an af�ne adaptation process estimates the af�ne neighborhood.

The HOG descriptor is a compilation of histograms of gradient directions. The image itself is divided

into patches, and inside them, the distribution of intensity gradients or edge directions is computed.

Since the descriptor works on paths, it is invariant to geometric transformations.

The second step is the matching of features. It runs a FLANN algorithm for each pair of images on

its features descriptors, except for ORB method, which uses a brute force method since FLANN does

not operate well when descriptors are represented in binary. To avoid false matches using a distance

threshold, it is used a ratio test, having images X and Y, a feature descriptor in X is satis�ed with the

two nearest neighbors in Y, with distance d1 and d2, if d1
d2

< 0:6, then the match is accepted.

The last steps are the geometric veri�cation and the outlier's removal. In this stage, a RANSAC

algorithm with a threshold of 0.6% of the maximum image dimension is used to estimate a fundamental

matrix for the pair robustly. The eight-point algorithm is used for each iteration to compute a normalized

candidate fundamental matrix. The matrix returned by the RANSAC is re�ned by using the Levenberg-
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Marquardt algorithm on the respective eight parameters. The recovered matrix removes those that do

not follow the de�ned threshold.

3.1.2 Incremental Reconstruction

Of the numerous types of SfM, the one implemented is an incremental algorithm, as it offers higher

accuracy, completeness, and robustness. The incremental reconstruction stage takes three steps:

• Initialization : It aims to �nd the �rst two images to be registered. The respective pair must have

a signi�cant parallax, meaning that when the camera is placed between the two shots, the dis-

placements have to be large enough relatively with the distance to the scene. To �nd the parallax,

a �tting of the rotational camera model is made. Only the pairs that the rotational model cannot

explain the correspondences are considered, that is if the number of outliers is higher than 30%.

The pairs of shots that follow the rule are then listed and ordered accordingly to the degree of

outliers.

• Registration of the �rst pair of images : The �rst pair from the list created will be the one tested.

If the initialization fails, it is passed to the next one in line. If the couple is accepted, it is registered,

and the process of growing the reconstruction with more images is started. The reconstruction of

the �rst pair is based on a �ve-point algorithm. If the pair has enough inliners, they are triangulated

and bundle-adjusted.

• Single image registration : The �nal process is to add more images to the reconstruction. It

starts by �nding the photos with the most already added points. Pose estimation is made to add

the image to the reconstruction since it needs to be aligned with the model. The features in the new

image are then triangulated with the ones already reconstructed. If necessary, the whole model is

bundle adjusted and re-triangulated. The last step is the integration of the GPS positions from the

metadata extraction so that it suffers a �nal touch in the alignment.

3.2 Point Cloud Handling

As the sparse point cloud has been created in the previous stage, the main goal in this block is to

add texture to the reconstruction. An open-source library called OpenMVS provided by Dan et al. [26]

is used in order to create the �nal textured model. The point cloud handling block is built by three

main components, Multi-view Stereo, aiming to build a more accurate pointcloud by �nding depth maps,

Meshing, which estimates a mesh for the respective pointcloud and �nally, the texturing phase with the

role of applying the triangle meshes to create the textured reconstruction.
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The Multi-view Stereo module is based on Patch-Match Algorithm provided by Barnes et al. [27].

Generally, the algorithm is used to compute a quick approximation of nearest-neighbor matches between

image patches, this means it is possible to generate depth maps to reconstruct a more complete point

cloud.

Having the dense point cloud built, the next step to be done is to place it under the meshing phase

so that meshes can be computed. Two sub-modules constitute this speci�c phase. Mesh reconstruction

calculates a reasonable mesh surface according to the point cloud. Mesh re�nement tries to optimize the

accuracy of the meshes obtained in the previous stage. Finally, having the meshes and the dense point

cloud, one can merge them into a textured reconstruction, which is the output of the whole algorithm.

28



4
Simulation and Results

Contents

4.1 First dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Second dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Third dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

29



30



Chapter 4

Simulation and results

Chapter 4 aims to show the implementation results described in the chapter 3. Three datasets pro-

vided by Guarda Nacional Republicana (GNR) were used, corresponding to different operational scenar-

ios. The datasets were captured using a drone DJI FC300SE digital camera. The main characteristics

of each dataset consist of the following:

1. The �rst dataset contains 108 images. It is characterized as an urban place, with a main road

in the middle and some properties alongside it. The drone trajectory was made in a rectangular

shape complemented with a ”zig-zag” shape in the middle. This dataset can be viewed as a �rst

test of the implementation with no added constraints.

2. A dataset with similar conditions to the �rst one in terms of the scene and the trajectory. The main

difference is the appearance of a truck in the middle of the road, characterizing a region where

an accident took place. In this dataset, only 46 shots were taken. It is purposed to compare the

performance when there are not as many images available, which can be the case in many real-life

scenarios due to many constraints present in a military operation.

3. The �nal dataset has 72 images. It represents a rural place where more objects are considered,

mainly a road, more vegetation, cars, and people. The trajectory has an additional circular com-

ponent added to the previous shapes used. This dataset aims to see its performance when more

perspectives of views are incorporated.

It is essential to say that besides the trajectory, the camera did not follow a speci�c orientation or

direction, as the main objective of GNR, when taking the shots, was to retain the operation's points of

interest. In each dataset, different feature extraction methods are also compared, SIFT, AKAZE, ORB,

and HAHOG, as already explained in the previous chapter. This is intended to observe which one is

more ef�cient, in a matter of the number and the quality of features, under different conditions.

4.1 First dataset

The environment within the �rst dataset is located in Vila Real, Portugal. The camera's shooting

settings were focal length: 3,61 mm, F-number: f/2,8, and exposure time: 1/661. For visualization

purposes, the orthophoto of the scene and the trajectory taken is found in Figure 4.1 and Figure 4.2

respectively. As can be seen, the scenery does not have much into it, with few houses along the main
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