
SureRepute:
User Reputation in Location Certification Systems

Rafael Alexandre Roberto Figueiredo

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor(s): Prof. Dr. Miguel Filipe Leitão Pardal
Dr. Samih Eisa Suliman Abdalla

Examination Committee

Chairperson: Prof. Maria Luísa Torres Ribeiro Marques da Silva Coheur
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. Kevin Christopher Gallagher

November 2022

ii

I would like to dedicate this work to my dad.

For the endless support, love and encouragement throughout all my life.

For the opportunity to achieve a higher education in the field that I love.

iii

iv

Acknowledgments

First and foremost, I have to thank my family, for all the constant love and support they gave

me throughout my entire life. Thank you so much for giving me strength to reach for the stars

and chase my dreams.

I want to give a special thanks to Miguel Pardal and Samih Eisa, my advisors, for the chance

to work on the SureThing project and for all their guidance and support during the making of

this thesis as well as their constant belief in my capabilities.

Additionally, I also want to express my appreciation to Ricardo Grade and Lucas Vicente,

my colleagues that were also working with me in the SureThing project, they always supported

me and gave me really good suggestions.

Lastly, I would also want to express my gratitude to my friends for their unwavering encour-

agement and support.

This work was supported by national funds through Fundação para a Ciência e a Tecnologia

(FCT) with reference UID/CEC/50021/2019 (INESC-ID) and through the project with reference

PTDC/CCI-COM/31440/2017 (SureThing).

v

vi

Resumo

A localização é importante para muitas aplicações móveis, no entanto, para garantir que está

correta, precisa de ser validada. Caso contrário, por exemplo, um utilizador de uma aplicação

de turismo que dá recompensas, pode falsificar a sua localização para fingir que realizou visitas

e assim receber benef́ıcios sem os merecer. Para combater estes ataques, o sistema pede aos uti-

lizadores para provarem a sua localização através de testemunhas, i.e., outros dispositivos que

estão no local ao mesmo tempo e que podem ser parcialmente confiáveis. O projeto SureThing

segue essa abordagem, permitindo que dispositivos obtenham provas da sua localização ao co-

municar com infraestrutura existente nos locais ou com outros dispositivos. Para garantir que

esta abordagem é eficaz, é importante acompanhar o comportamento das testemunhas. Muitas

aplicações que recebem dados fornecidos por utilizadores, como o Waze, validam informação

recorrendo a dados redundantes fornecidos por vários utilizadores na mesma localização e pon-

deram a confiabilidade tendo em conta a reputação dos utilizadores.

Neste projeto, apresentamos SureRepute, um sistema de reputação capaz de resistir a ataques,

manter a privacidade dos utilizadores e que pode ser integrado no SureThing ou noutros sis-

temas. Os resultados mostram que o sistema é capaz de se proteger contra ataques, mas que

a configuração é flex́ıvel, permitindo diferentes compromissos entre segurança e usabilidade que

são exigidos em aplicações reais. Com a integração do sistema num domı́nio aplicacional es-

pećıfico do SureThing, conseguimos mostrar que um sistema de reputação pode ser facilmente

integrado em aplicações sem produzir uma grande sobrecarga no tempo de resposta.

Palavras-chave: Sistema de Reputação, Sistemas de Certificação de Localização, Pri-

vacidade, Ataques de Reputação, Defesa Contra Ataques de Reputação, Reputação

vii

viii

Abstract

Location is an important attribute for many mobile applications but it needs to be verified.

For example, a user of a tourism application that gives out rewards can falsify his location

to pretend that he has visited many attractions and thus receive benefits without deserving

them. To counter these attacks, the system asks users to prove their location through witnesses,

i.e., other devices that happen to be at the location at the same time and that can be partially

trusted. The SureThing framework follows this approach, allowing constrained devices to obtain

proof of their location through interaction with existing infrastructure on the location or with

other devices. However, for this approach to be effective, it is important to keep track of the

witness behavior over time. Many crowdsourcing applications, like Waze, build up reputations

for their users and rely on user co-location and redundant inputs for data verification.

In this work, we present SureRepute, a reputation system capable of withstanding reputation

attacks while still maintaining user privacy and that can be integrated into the SureThing

framework or other systems.

The results show that the system is able to protect itself from reputation attacks, and the

configuration is flexible, allowing different trade-offs between security and usability that are

always required in real-world applications. With the integration of the system into a specific

domain application, we showed how a reputation system can be easily integrated into existing

applications without producing a significant overhead in the response time.

Keywords: Reputation System, Location Certification Systems, Privacy, Reputation

Attacks, Defense Against Reputation Attacks, Reputation Score

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xiii

List of Figures . xv

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 3

2 Background & Related Work 5

2.1 Reputation Systems . 5

2.1.1 Building Steps . 6

2.1.2 Score Calculation . 7

2.2 Reputation Attack and Defense Techniques . 9

2.2.1 Reputation Attacks . 9

2.2.2 Defense Techniques . 11

2.3 Privacy-Preservation Techniques . 13

2.4 Location Certification Systems . 15

2.4.1 SureThing Applications . 16

2.5 Location Certificate transparency (LCT) . 18

2.6 Summary . 19

3 SureRepute 21

3.1 Design . 21

3.1.1 Attack Model . 21

3.1.2 Assumptions and Requirements . 22

xi

3.1.3 General Architecture . 23

3.1.4 Privacy Protection . 25

3.1.5 Score Calculation Technique . 25

3.2 Implementation . 27

3.2.1 Detailed Architecture . 27

3.2.2 Deployment . 31

3.3 Use Case: CROSS . 34

3.3.1 CROSS-Server v2.0 . 34

3.3.2 Location Certificate Transparency v2.0 integration 36

3.3.3 SureRepute Integration . 38

3.4 Summary . 40

4 Evaluation 41

4.1 Qualitative Evaluation . 41

4.1.1 Score Calculation . 42

4.1.2 Shared Reputation Evaluation . 48

4.1.3 Privacy Evaluation . 50

4.2 Quantitative evaluation . 51

4.2.1 CROSS Visit Submission . 51

4.2.2 SureRepute Overhead in CROSS . 52

4.2.3 SureRepute Benefits to CROSS . 55

4.3 Campus Tour: A real scenario . 57

5 Conclusion 63

5.1 Achievements . 64

5.2 Future Work . 65

Bibliography 67

xii

List of Tables

2.1 Notions related with reputation systems . 7

2.2 Attacks and defenses mechanisms . 20

3.1 Privacy . 25

4.1 Share Test Sequentially . 49

4.2 Share Test with Threads . 49

4.3 Acceptance Rate CROSS . 56

4.4 Campus Tour details with 7 users . 59

4.5 Campus Tour details with 3 users . 60

4.6 Campus Tour behavior reports with 7 users . 61

4.7 Campus Tour behavior reports with 3 users . 61

xiii

xiv

List of Figures

2.1 Reputation attacks . 19

3.1 SureRepute integration with SureThing . 24

3.2 SureRepute main flow . 29

3.3 Pseudonym registration without leader . 29

3.4 Pseudonym registration with leader . 30

3.5 Behavior Report of a user received by a leader 30

3.6 Behavior Report of a user received by a follower 30

3.7 Request Score of a user . 31

3.8 SureRepute deployment in Google Cloud . 33

3.9 CROSS interaction with LCT, when a trip is completed 37

3.10 Confidence threshold adjustment . 39

3.11 CROSS integrated with LCT and SureRepute . 40

4.1 5 and 100 reports submitted with different score details 43

4.2 100 reports submitted with different forgetting weights 46

4.3 50 and 100 reports submitted with different types of malicious reports 47

4.4 CROSS visit validation time . 54

4.5 CROSS visit validation time simultaneous . 55

4.6 Campus Tour Map . 58

xv

xvi

Acronyms

API Application Program Interface. 27, 34, 64

CA Certificate Authority. 23–25, 31, 32

DNS Domain Name System. 31, 32

IoT Internet of Things. 65

LBS Location-Based Services. 1

LCT Location Certificate Transparency. 2, 3, 36, 37, 40, 64, 65

MITMA Man-in-the-middle attack. 11, 12

POM Project Object Model. 27

RESTful REpresentational State Transfer. 27, 28, 34

SLCT Signed Location Certificate Timestamp. 37

TLS Transport Layer Security. 25, 31

xvii

xviii

Chapter 1

Introduction

Nowadays, information systems are depending more on location, which led to the emergence

of Location-Based Services (LBS), i.e., services that are based on the geographical location of

a mobile user as determined by the mobile device [KK11]. The most common use case of a

LBS involves a user sharing their location with a server, and in turn the server performs a

computation that takes the location as input and returns data/services to the user. It may be

important to be sure that the user was in fact in that physical location at that specific time,

otherwise a user could just lie about its location and get undeserved benefits. For example, in

a scenario where users receive rewards for going to visit certain locations, without any kind of

location proofs, a user could just say that he was at any location to get rewards without really

needing to be there. The verification of the location can be achieved with a location certification

system.

Location certification systems are able to verify if a user location claim is valid or not through

the use additional location evidence, usually collected by other devices, called witnesses. For

example, using the previous scenario where users receive rewards for going to visit certain

locations, a user instead of just submitting its location it could also interact with other users

in that location in order to complement the location with location proofs given by other users

(witnesses), if the location proofs were provided by trustworthy user, it would allow to prove

that the user is in fact in that location. For this approach to be effective, many and diverse

witnesses are necessary. One of the ways to have witnesses without a big investment is to use

crowdsourcing, i.e., allow other user devices to act as witnesses.

Crowdsourcing is the use of an Internet-scale community of people to outsource a task [YAA08],

which can be employed by leveraging the help of a community of users that use a system to do

part of the tasks needed. Even when we have a community and many witnesses, the verification

of location still needs to be performed, because there is always the possibility of users performing

1

tasks incorrectly either intentionally or by mistake. To identify and prevent this problem, it is

important to have some way of knowing if a user is trustworthy, i.e., if it behaves correctly. This

can be achieved by keeping track of the history of the users’ activities, which can be done by

maintaining a reputation for each user, that reflects their behavior.

The SureThing project addresses the need for creating and validating location certificates

so that devices can make proof of their location. The project provides a framework with data

formats and utility libraries that can be leveraged by multiple applications, such as shopping mall

advertising [FP18], smart tourism [MCP20], smart vehicle inspections [SCRP20] and presence

verification in medical appointments [Fra21]. It also has additional components that are intended

to provide Location Certificate Transparency (LCT) and third party verifiability [CERP21]. A

reputation system [RKZF00] can further help these systems by allowing the additional use of a

reputation value when deciding if a location claim is valid or not.

Reputation systems gather feedback that reflects user previous behavior, aggregate that feed-

back and map it into a reputation score, i.e., a score that reflects the user behavior, and allow

remote inquiries about the reputation score. According to Resnick et al. [RKZF00] reputation

mechanisms can encourage trustworthy behavior and discourage participation by those who are

unskilled and dishonest. Despite their potential, reputation systems have their own intrinsic

problems that need to be addressed. They have problems related to user privacy, as a repu-

tation system only works if the reputation is linked to the users’ identity in order to provide

accountability, and it has to defend against reputation attacks, where users can for example

have inconsistent behavior by creating a false impression of themselves in order to be able to

misbehave later.

1.1 Objectives

The goal of this work was to create a reputation system called SureRepute that can be integrated

into applications that make use of the SureThing framework and others, to provide reputation

to its users. The reputation of witnesses can then help when deciding if a location claim is valid

or not by using the score of witnesses as the level of trust we can give to witness endorsements

or even to the specific user that is submitting the claim.

The specific objectives for this work can be summarized as follows:

• Develop a reputation system into the SureThing framework that can be used by multiple

domains;

• Implement the reputation calculation;

2

• Implement protections against privacy and reputation attacks;

• Automate the deployment of SureRepute to the cloud;

• Integrate SureRepute with a specific use case: CROSS, a smart tourism application [MCP20];

• Integrate CROSS with components that provide location certificate transparency and third

party verifiability [CERP21], that could contribute with behavior reports about the user;

• Evaluate SureRepute using a demo entity built for testing purposes and using a real ap-

plication domain: CROSS.

1.2 Contributions

Given the objectives, the main contributions of this work are:

• Design of the SureRepute conceptual architecture, having in mind the privacy of the users

and that is capable of protect against reputation attacks;

• Introduce a score calculation technique for reputation system that was created based on

the binomial Bayesian model;

• Implement SureRepute, including entities such as SureRepute-Server, Identity-Provider

and SureRepute-Client, as well as their configurations for automatic deployment in the

cloud;

• Improve the security of CROSS, by incorporating user reputation, where a user needs

to submit proofs in specific locations during a trip, with the integration with both the

LCT [CERP21], which offers third-party-verifiable location certificates and with SureRe-

pute;

• Validation of SureRepute through a detailed evaluation of the score calculation technique,

the interactions between the SureRepute entities as well as through concrete tests of Sur-

eRepute in the context of the smart tourism use case with a real deployment.

Overall, our work shows that Reputation Systems can be really useful in Location Certifica-

tion Systems, especially when using witnesses.

1.3 Dissertation Outline

The remainder of the document is structured as follows. In Chapter 2 we present the background

and related work, which includes reputation systems, privacy protection, reputation attacks

3

and location certification systems. Chapter 3 presents SureRepute, its design, which includes

the attack model, the requirements and assumptions, privacy techniques and score calculation

technique, the implementation, which includes both the architecture and the deployment, and

finally a use case. Chapter 4 presents an evaluation of the work done, divided into qualitative

and quantitative evaluation. Finally, Chapter 5 presents the conclusion and the future work.

4

Chapter 2

Background & Related Work

To develop a reputation system, it is important to first understand their key characteristics and

how to build them, which are covered in Section 2.1. A reputation system is susceptible to a

variety of attacks, so it is important to build a system with protections in mind which are exam-

ined in Section 2.2. In Section 2.3 we discuss how to build a reputation system that preserves

privacy and talk about what are the trade-offs between trust and privacy. In Section 2.4, we

talk about location certification systems, with an emphasis on SureThing. In Section 2.5 we

discuss location certificate transparency. Finally in Section 2.6 we provide a summary of what

was discussed.

2.1 Reputation Systems

According to Mousa et al. [MMH+15], reputation is the collective assessment of how much an

individual or an entity can be trusted. It is possible to compute reputation scores using feedback

that members provide of each other, resulting in a reputation system that allows members to

be accounted for their actions. Hoffman et al. [HZNR09] further explains that reputation can

be a source to build trust in the participants, by allowing parties to decide how much they

trust a participant in a given context and encouraging trustworthy behavior while discouraging

dishonest participation.

Trust and reputation are often referred as the same term in the literature, but there is

a slight difference between them. According to Putra et al. [DDKJ21] trust is a subjective

belief of an entity’s behavior that grows as more interactions occur, whereas reputation is the

aggregated opinion or trust degree of an entity that comes from other entities that it had

previously interacted. Hendrikx et al. [HBC15], affirms that “reputation is not what character

someone has, but rather what character others think someone has” and it defines a reference

5

model for reputation systems, that has three parties: Trustor, Trustee and Recommender. The

Trustor wants to trust and interact with a target entity which is the Trustee. For a Trustor to

make a trust decision about a Trustee, it will evaluate its own interactions with the Trustee, as

well as feedback given by Recommenders about interactions they had with the Trustee.

2.1.1 Building Steps

Mousa et al. [MMH+15], identifies four main phases for building a reputation system:

• Information Collection: in this phase, the information needed to create a reputation is

collected. It can be done through: watchdog module, where sensing reports that are related

to the same task are combined to assess the quality of a participant’s input; users’ feedback,

where reports are done by other entities; community trust, where a trust server can query

its neighbors about their trust on a specific participant; and history stored, for example in

databases;

• Information Mapping to Trust Score: in this phase, the information that is continuously

gathered needs to be transformed into a reputation score. A participant can start with a

default score, and based on the received feedback it updates the score. It may be done in a

centralized or distributed manner. The default score for newcomers as well as the updates

on the scores, need to take into account the attacks that will be discussed in Section 2.3;

• Dissemination: in this phase the participant score is spread across other entities. En-

tities can request the updated score of users when needed or the updated score can be

automatically sent to entities at a fixed rate or according to some threshold;

• Decision Making : in this final phase, a decision based on the trust score assigned to each

participant needs to be made. The specific decision depends on the use case but can be

used for example to decide if a contribution is accepted or not.

Hoffman et al. [HZNR09], identifies three main phases when building a reputation system:

Formulation, Calculation and Dissemination. In the Formulation phase, a mathematical scheme

is developed to transform collected information into scores. In the Calculation phase, the For-

mulation phase is implemented within the constraints of a particular reputation system. These

two phases represent a subdivision of the phase Information Mapping to Trust Score. The

Dissemination phase is equivalent to the phase with the same name presented by Mousa et

al. [MMH+15].

Hoffman et al. [HZNR09] also discusses important aspects related with reputation systems,

which are summarized in Table 2.1. The information source can be: manual, which comes

6

Table 2.1: Important notions about reputation systems.
Notion Type

Information Source Manual Sources, Automatic Sources

Information Type Positive, Negative, Both

Reputation Metric Binary, Discrete, Continuous

Reputation Type Symmetric Reputation, Asymmetric Reputation

Distribution Centralized, Distributed

from human feedback or automatic, which are obtained automatically. The type of information

provided can be positive, negative or both. The type of score that is given can be a binary,

discrete or continuous value. The type of reputation, can be: symmetric, where each node has

a global reputation, or asymmetric, where each node has an individual view of each node of the

system. The location of reputation can be in a centralized entity or distributed between entities.

2.1.2 Score Calculation

According to Garcin et al. [GFJ09], a reputation can be calculated based on n ratings r, given

by entities through specific aggregating methods such as:

• Arithmetic mean: Mean = 1
n

∑n
i=1 ri;

• Weighted mean: WeightedMean =
∑n

i=1 w(i)ri∑n
i=1 .w(i)

, where w(i) is the weight function;

• Median: Smallest value, rd such that half the values are ≥ rd and half the values are ≤ rd;

• Mode: Smallest value r0 which occurs most frequently as a rating;

Abdel [AH16] and Mousa et al. [MMH+15] present some methods used in reputation models.

We will discuss in detail the two methods we deemed more relevant for building reputation scores:

the Bayesian model [MMH+15][AH16][JI02] and the Gompertz function [MMH+15].

Bayesian Model

Jøsang and Ismail [JI02] presented a system called beta reputation system, which combines

feedback by using beta distributions to allow for the derivation of reputation ratings. A beta

distribution is a family of continuous probability density functions defined on the interval [0,

1], and indexed by two parameters α and β. The probability expectation value of the beta

distribution is given by:

E(α, β) =
α

(α+ β)
(2.1)

In the beta reputation model α = r + 1 and β = s + 1, where r is the collective amount

of positive rating and s is the collective amount of negative rating, allowing to represent the

7

reputation score of a user. The reputation score can then be calculated based on Equation 2.1.

and is expressed as:

ReputationScore(i) = E(ri, si) =
ri + 1

ri + si + 2
(2.2)

where the reputation is in the range of [0,1] and the value 0.5 represents a neutral rating. A

range such as [-1, +1] can be more intuitive:

ReputationScore(i) = (E(ri, si)− 0.5) ∗ 2 =
ri − si

ri + si + 2
(2.3)

where the value 2 makes the range between [-1, 1]. If it was 200 the range would be [-100, 100].

The reputation score reflects the type of behavior of the considered participant. For example,

if r = 19 and s = 4, it has a reputation score of 19−4
19+4+2 = 15/25 = 0.6 which is considered good.

If α = 1 and β = 9, it has a reputation score of 1−9
1+9+2 = −8/12 = −0.67 which is considered

bad.

Old feedback may not always be relevant to the reputation score, because the agent may

change its behavior over time. It is important to have a model where old feedback is given less

weight than more recent one. This can be achieved by introducing a forgetting weight, λ, to r

and s:

r =

n∑
i=1

ri ∗ λn−i and s =

n∑
i=1

si ∗ λn−i (2.4)

where 0 ≤ λ ≤ 1. If λ = 1, there is no forgetting factor, if λ = 0, only the last feedback matters.

The problem with Equation 2.4 is that the feedback needs to be kept forever and recalculated

from the beginning every time. This can be avoided by using a recursive algorithm for computing

the (r,s) parameters:

r = ri−1 ∗ λ+ ri and s = si−1 ∗ λ+ si (2.5)

This statistical distribution could be used as the score calculation technique, by having

entities report good or bad behavior of a user to our reputation system, which will allow for the

calculation of r and s. Adding a forgetting weight can be used to increase the importance of

recent behavior.

Gompertz function

Mousa et al. [MMH+15] presents a way of calculating a reputation score through a sigmoid

function, which is defined according to:

ReputationScore = a ∗ e−b∗e−c∗t
(2.6)

8

where a is the upper asymptote, b controls the displacement of the output along the x axis, e

is the Euler number, c adjusts the growth rate of the function and t can represent a evaluator

parameter.

The reputation score reflects the type of behavior of the considered participant. For example,

if a = 1, b = 10, c = 1.5, and we have t = 1, then the reputation score will be 0.11, and the

participant has bad behavior and if we have t = 3 it will have 0.89, which is good behavior.

The evaluator parameter can be calculated through:

t =
k∑

k′=1

λk−k′ ∗ ti−1 (2.7)

where k is the total number of tasks that the participant joined, and the summation is used

to aggregate historical information. The impact of old data is reduced through λ(k−k′) with

0 ≤ λ ≤ 1. The λ can be used as a reward/penalty mechanism by replacing λ with two different

values λp and λs. λp is used with participants who have been witnessed to misbehave, such that

λp > λs. This makes a reputation of a participant with λs increase more rapidly than one with

λp.

Incorporating both aging and reward/penalty mechanisms gives the Gompertz function good

capabilities to reflect the immediate behavior of participants. This function can be used for score

calculation in our reputation system by having k as the total number of reports received of good

and bad behavior of a user, and changing the λ based on the action: If the user misbehaved

than the λ must be high, otherwise λ must be low.

2.2 Reputation Attack and Defense Techniques

Entities can bias the credibility of a reputation system in diverse ways. It can be done deliber-

ately or not and isolated or in collusion with others. It depends on the specific application and

social setting of the reputation system.

2.2.1 Reputation Attacks

Koutrouli and Tsalgatidou [KT12], divide reputation attacks into three main categories: Unfair

Recommendations, Inconsistent Behavior and Identity Management attacks.

Unfair Recommendations

Unfair recommendations are recommendations that do not share honest feedback, which are

subdivided into:

9

• Individual : Attacks done by individual users, which can be:

– Bad mouth: Happens when a malicious user ‘bad-mouth’ others in order to unfairly

reduce their reputation;

– Random opinion: Selfish users send random opinions because it reduces costs in time

and resources;

– Unfair praise: Malicious users give higher recommendations because of fear of reprisals

or reciprocity expectation.

• Collusion: Group(s) of malicious users that try to destabilize the system, which can be:

– Collusive reduction of recommendation: Badmouthing a subset of users, creating

conflicting opinions about the behavior of the victims and the recommendations of

the honest recommenders;

– Collusive deceit : Inside a group of malicious users, the users can provide positive

feedback to each other, to reduce the effects of their malicious behavior on their

reputation.

Inconsistent Behavior

Deliberate use of inconsistent behavior to create a false impression of a user reputation, which

allows them to misbehave while maintaining a good reputation. It has the following categories:

• Traitor : Users that behave properly for a length of time, in order to establish a strong

positive reputation, and be highly trusted, and then deceive others;

• Discriminator : Behave properly with most of entities and misbehave towards one of them

or a small subset of them.

Identity Management Attacks

These attacks exploit the type of identity management used and the anonymity level provided

by the system, and they can be divided into two groups:

• Registration policy attacks: Each user, must be registered to the reputation system with a

form of identity. The following attacks may occur when pseudonymity is being employed

and there is no associated cost with the production of new identities:

– Sybil Attack : A malicious user that can create multiple identities, which allows it to

provide large amounts of false feedback about other users without repercussion;

10

– Whitewashing/Pseudospoofing : A malicious user is able to discard its identity and

enter the system with a new one, escaping its bad reputations. This attack is only

valuable, if the reputation assigned to a new user is greater that it’s own reputation.

• Authentication policy attacks: Occurs when there is no way to ensure that users are who

they claim they are and if they have the permissions to perform functions in the system.

The attacks are:

– Impersonation: Malicious user that portrays itself as another user;

– Man-in-the-middle attack (MITMA): Malicious user is able to tamper with messages,

by listening, changing or dropping messages.

2.2.2 Defense Techniques

Koutrouli and Tsalgatidou [KT12] present defenses techniques that can be deployed to reduce

or prevent the reputation attacks:

• Similarity-based filtering techniques: Exclude out recommenders, whose feedback has low

similarity with the others, which can identify unreliable recommenders. Can reduce the

effect of unfair recommendations done by individuals and discriminators;

• Estimating reputation of the recommender : Use the reputation of the recommender to

decide if the recommendation is trustworthy. Can reduce the effect of unfair recommen-

dations done by individuals;

• Incentive-based : Incentivize users by rewarding fair recommendations, and punishing un-

fair recommendations. Can reduce the effect of unfair recommendations done by individ-

uals;

• Collaborative filtering techniques: Clustering techniques that can be used to identify and

filter out a group of misbehaving users working together. Can reduce the effect of collusive

reduction of recommendation;

• Incorporating time in reputation estimation: Give more weight to recent recommenda-

tions, making recent behavior matter more than old behavior. Can reduce the effect of

inconsistent behavior done by a traitor;

• Context-based : Context can be used to assign weights to recommendations. For example

use the importance of a transaction to define the amount of increase or decrease in the

reputation score. Can reduce the effect of inconsistent behavior done by a Traitor;

11

• Penalize oscillatory behavior : Penalizes sudden changes in behavior by making negative

ratings have more weight than positive ones in the score. Can reduce the effect of incon-

sistent behavior done by a Traitor;

• Controlled anonymity : Conceal the identities between users, while only the administrator

knows the true identities. Can reduce the effect of personal unfair recommendations,

collusive reduction of recommendations and discriminators;

• Cryptographic mechanisms and unique digital identities: Use digital signatures which is a

mathematical technique used to validate the authenticity and integrity of messages, and

use cryptographic mechanisms to ensure confidentiality and freshness of the messages.

Reduces the effect of collusive reduction of recommendation, impersonation and MITMA;

• Difficulty to change/create identities: Methods to discourage Collusive deceit, Sybil attacks

and Whitewashing such as:

– Restrict identity creation using proof of work, having entry fees, or having a certificate

authority that can ensure that each user can only create one identity;

– Do not allow a reputation of a misbehaving user to fall behind of a newcomer;

– Assigning a low reputation value to newcomers;

– Make in every recommendation an amount of the reputation of the recommender to be

transferred to the recommended entity. Users with multiple identities can no longer

artificially increase the reputation of one of their identities as the total reputation

of a user is shared between the identities it possesses. One issue with this approach

is that it may be unfair for a recommender to lose an amount of its trustworthiness

when recommending another entity.

The defenses presented often clash with each other, as making use of one defense may increase

the possibility of another attack. For that reason, Koutrouli and Tsalgatidou [KT12] also analyse

the trade-offs between attacks and its defenses:

• Negative feedback sensitivity versus collusive badmouthing attacks: When the reputation

of a user is significantly decreased with negative recommendations, the reputation system

is vulnerable to bad mouthing, and collusive attacks. A trade-off mechanism can be used

to check the recommender’s credibility, by using filtering techniques to filter out dishonest

recommenders or using incentive mechanisms for honest recommendations;

12

• Encouraging newcomers vs Preventing Whitewashing : Initial trustworthiness value as-

signed to a newcomer should be high enough to encourage new users, but at the same time

discourage malicious users to get new identities to escape bad reputation;

• Resiliency to oscillatory behavior vs Helping reputation repair : Taking into account the

users history and the changes in its behavior mitigates oscillatory behavior but it has as

a result that a misbehaving user cannot easily restore its reputation. This may be unfair

for honest users which may unintentionally misbehave sometimes.

2.3 Privacy-Preservation Techniques

According to Koutrouli and Tsalgatidou [KT12], the privacy of a user has to do with their

ability of being anonymous and not let other users record its transactions and recommendations.

However, a reputation system only works if the reputation is linked in some way to the identity

of the user. The more information is linked to the user the less anonymity and privacy there

is, but it also means there is an higher level of accountability, increasing the credibility of the

reputation estimation.

According to Christina et al. [CRKH11], the use of pseudonyms is a common mechanism

used to protect the anonymity and privacy of the participants. Instead of transmitting a real

identifier of the user, all interaction with the application is performed under an alias. Seigneur

and Jensen [SJ04] also consider that pseudonyms are a good trade off between trust and privacy,

which allow correlating a pseudonym with different transactions, while still maintaining the

user’s real identity hidden.

Calado and Pardal [CP18] present This4That, a reward system based on points where you can

create tasks for other users to do in exchange for points. A user starts with one thousand points,

spends one hundred points every time it creates a task and gains fifty points for answering a

task. To assign points to the users, the system uses pseudonyms as a privacy mechanism which

allows for the replacement of real names to identifiers with non-related values. Pseudonyms

alone still allow correlation between the data and the user by the IP address that comes with

the request. Mix Networks are formed by a chain of proxy servers between participants and can

be used to prevent the correlation with the IP address, where they make it extremely hard to

discover who was the original sender. A rotation of MAC and IP addresses can also decrease the

possibility of associating a MAC address to a device. Group signatures can also be used in order

to provide a form of authentication through signatures that are made by a group allowing the

system to authenticate a member of the group without needing to know which specific member

13

did the signature.

Ma et al. [MPQ+19] propose a decentralized privacy-preserving reputation management

system for mobile crowd-sensing, in which edge nodes are deployed regionally and are responsible

for collecting data as well as maintaining a consortium blockchain1. Homomorphic encryption,

which is a cryptographic technique that allows for performing computations on encrypted data

without decryption, is used to update and maintain its reputation values. The system starts with

a trustor requesting sensing data to an edge node, which will request multiple targets to answer.

The targets are responsible for collecting the data and then send back the data encrypted to

the edge node. The edge node makes calculations without decrypting the data, which will allow

sending back the sensing data without losing privacy as well as update the targets reputation

in the blockchain.

Differential privacy is a strategy based on quantifying and limiting an attacker’s greatest

possible information gain to lessen the risk of privacy breach. It consists on evaluating and shar-

ing data while maintaining individual privacy protection in accordance with existing policies

or legal criteria for disclosure limitation or de-identification [WAB+18]. This approach ensures

that anyone looking at a collection of differential private analyses will draw the same conclu-

sion about any private information of an individual. The private information is limited and

quantified by a privacy loss parameter, which quantifies the maximum possible information gain

by the attacker and determines how much noise needs to be introduced during the computa-

tion. Costa [dC20] further elaborates on this concept and applies it to geographic location data

through Geo-Indistinguishability, which secures the location of users reporting their location

and assures that any two locations within a specific radius are statistically indistinguishable.

Marti and Garcia-Molina [MGM03] analyse the trade-offs between anonymity and reputation

by comparing two distinct types of identity infrastructures for reputation systems: One type

uses a central server to tie real world identities of users to pseudo-identities, and the second

is completely decentralized, with each user creating and managing its own identity. The first

approach is resistant to attacks related to identity management, but the privacy of users may

be infringed because they must provide information at a level that they may not feel acceptable.

The second approach, is able to protect the privacy and anonymity of users, but is vulnerable to

identity management attacks. The authors show that even simple reputation systems can work

well in either of the identity infrastructures and that the best approach depends on the specific

concerns of the system that is being developed.

1https://www.analyticssteps.com/blogs/what-consortium-blockchain

14

2.4 Location Certification Systems

Location certification systems provide ways to attest and verify that a user is where he is saying

he is. These systems are mainly categorized into two groups: centralized, where a trusted wireless

infrastructure is employed to generate location proofs to mobile users; and decentralized, where

the users act as witnesses and generate location proofs for each other. They usually have three

types of entities: Prover, who needs to prove its location and makes a location claim; Witness,

that may endorse location claims; Verifier, who verifies evidence and issues a location certificate.

Nosoushi et al. [NSY+20] presents a distributed location proof scheme called PASPORT

(Privacy-Aware and Secure Proof Of pRoximiTy), where mobile users can act as provers or

witnesses, allowing for the generation of location proofs for each other. PASPORT integrates a

form of reputation that is used for witness selection, where the prover calculates entropy-based

trust score for the witnesses based on its location proof generation history. The score is high

when a witness provided a few location proofs to that prover, and it is low when it has issued

many location proofs to that same prover. Only users that have a score above a specific threshold

can be selected as witness.

LINK [TCB10] is another location authentication protocol, that follows a distributed location

proof scheme. When a prover wants its location to be certified, it sends a location claim to a

certification authority, that acts as the verifier. After that, it requests endorsements of its

location from other users (witnesses). These witnesses, will then send a reply to the verifier,

which will then decide if the claim is accepted or not based on: spatio-temporal correlation,

where it rejects a claim if it is not possible to physically move from the prover’s previous

claimed location to the current location in the time frame between them; and a reputation score

that is maintained for each user, and is used to discard witnesses’ claims, if their score is not

above a threshold. The witnesses that remain are divided into two sets, one that agree with

the claim versus those who do not agree, if the difference of the sum of scores between the

sets is high, then the decision of whether the claim is accepted or not is done based on the set

that won. Otherwise it will further analyse the witnesses, by looking into its score trends and

location, to remove malicious witnesses. The new sets can then allow for making a decision on

the claim. If the difference is still not high enough then the claim is ignored and the prover will

need to restart the process. The reputation score of a prover additively increases when its claim

is accepted, and multiplicative decreases when it is rejected to discourage bad behavior, making

bad behavior much more influential to the score than good behavior.

SureThing project developed a framework for location certification that can be used when de-

veloping different applications and with internet of things devices [IFMM10]. SureThing started

15

with the work of Ferreira and and Pardal [FP18] where they developed a location certification

system based on witnesses, for a shopping mall advertising application. This system provided

three techniques for location certification: geographic location, that verifies if the witness and

the prover are close to each other and in an acceptable area; wi-fi fingerprinting, which verifies

if the prover and witness share a minimum number of common access points; bluetooth beacons,

that verifies if the beacon values provided by the prover and witness are the same and the bea-

con exists. It also presented two mechanisms against collusion: witness decay, where proofs of

the same witness gradually lose their value and witness redundancy, where proofs have to be

gathered from multiple witnesses.

2.4.1 SureThing Applications

The SureThing [FP18] motivated the development of a framework that provides data formats

and utility libraries as well as the development of application domains that apply location

certification. We are going to present these domains as well as discuss how a reputation system

could be incorporated into them.

STOP: Vehicle Inspection

Santos et al. [SCRP20] presented STOP, a road transportation vehicle inspection support system

with tamper-proof records to prevent location spoofing attacks. STOP main components are:

Central Ledger, which is a central server that receives transportation and inspection records;

Transport mobile applications, which runs in the vehicles transporting the reported goods. In-

spect mobile application, used by the inspector at an inspection location. Each transporter

periodically reports its location to the central ledger as a chain of locations. To perform an

inspection, the inspector chooses a range where to find a car nearby and notifies the respec-

tive transporter. When the transporter arrives at the inspection site, it sends a proof request

over Bluetooth using a pseudonym and a nonce given by the central ledger. Finally, when the

inspection is over it sends a proof to the transporter as well as the central ledger.

A reputation system can be incorporated by making the central ledger send participant re-

ports based on the records it receives to a reputation entity that keeps updating the participants

reputation score. The reputation could be used, as a way to identify potentially malicious par-

ticipants, and give them a higher priority to choose to inspect these transporters first, as they

could have something to hide.

16

CROSS: Tourist Itinerary Verification

Maia et al. [MCP20] presented CROSS, a system that conducts location verification using An-

droid smartphones. It takes a centralized approach, to eliminate the need to be surrounded by

sufficient users of the system. The main components of CROSS are CROSS-Client application,

CROSS-Server, Wi-Fi access point and Kiosk. The system flow starts when the tourist down-

loads the app. During its use, the application logs Wi-Fi scans during visits to locations. At the

end of the trip, the logging stops, and the application sends the collected data to the server. If

the Wi-Fi evidence is accepted, then rewards will be given.

There are three strategies that can be employed during a trip for proving that the user is

actually attending the locations on the itinerary:

• Capturing which access points are available in specific locations during the itinerary;

• Having an access point in specific locations in the itinerary that dynamically changes name

during the day, which allows for a capture of the access points only during a specific period

of time, which allows stronger evidence;

• Interacting with the Kiosk by scanning a pair of QR codes. This strategy was implemented

in later work.

A new strategy was also added by Grade et al. [GPE22] in a new version of CROSS, that

allows for certification based on witnesses, where a prover requests nearby witnesses to endorse

its location in specific stops in the itinerary, which provides a decentralized approach to the

system.

A reputation system can be incorporated by making the server send participant reports, to a

reputation entity based on the current rejection and acceptance of the collected data. The user

reputation, could then be used by the server, as an additional parameter to decide the level of

trust the user has on the compliance with the tourism itinerary, working along with the strategy

used to help decide when rewards should be given. We could also use the accumulated score of

the witnesses to decide whether to accept the itinerary or not.

SurePresence: Wearable and Kiosk Devices

Francisco et. al. [Fra21] presented SurePresence, an application that allows a user to prove

his location when interacting with a kiosk through the use of location proofs. It has three

components: The client which represents the prover that makes location claims; The kiosk,

which represents a witness of the system that endorses the prover claims; The server, that acts

17

as the verifier and is responsible for storing verified location certificates. This client-server model

with a single witness presents three location proof techniques: Kiosk-Only technique, which

allows a user to prove his location only by using his citizen card and the kiosk; Kiosk-Wearable

technique, which generates a location certificate through the interaction of a wearable device

with the kiosk; Kiosk-Smartphone technique, which generates a location certificate through the

interaction of a smartphone device with the kiosk.

A reputation system can be incorporated by making the server sends participants reports,

to a reputation entity. The user reputation could be used as an additional factor to decide if

the location proof provided by the kiosk is acceptable.

2.5 Location Certificate transparency (LCT)

Location certificates, allow for any party to independently verify a location claim and digital

signatures. However, by themselves, they do not provide trusted storage and verification at a

later date. Carvalho et al. [CERP21] proposed a location certificate transparency solution that

provides accountability to all entities, by having a tamper-proof ledger based on Merkle trees

that provide APIs for storage, retrieval and verification of Location Certificates.

This work is intended to complement CROSS [MCP20], by requiring the verifier to submit

the location certificates to a tamper-proof append-only verifiable public log, allowing for the

location certificates to be rechecked later when needed. It has three entities:

• Log Server : An append-only public log server (ledger) that stores logs of the location

certificates so that everyone can audit them when needed;

• Monitor : Service that continuously scans for suspicious location certificates and keeps

copies of the entire log, to ensure the versions of the log are consistent. It can also be used

as a search engine to find location certificates;

• Auditor : Service that verifies if the log is consistent and behaves correctly. It sends two

Merkle tree hashes (one for an older version of the Merkle tree and another for a newer

version, which are given by the monitor) to the log server, which calculates a consistency

proof that verifies if two versions of a log are consistent, i.e., if the later version includes

everything in the earlier version, in the same order, and all new entries come after the

entries in the older version. The result is sent back to the auditor, for verification. It can

also determine whether or not a specific certificate is included in the log by asking for a

Merkle audit proof, which is a list of missing nodes needed to compute the nodes leading

18

from a leaf to a root of the three. If the root computed from the audit path and the true

root are the same, then the audit path is proof that the leaf exists in the tree.

2.6 Summary

To build a reputation system we need to collect and aggregate behavior data, transform the

behavior data into a score, disseminate the score and make decisions based on the score. There

are multiple methods that can be used for transforming the behavior data into a score, the most

relevant was the Bayesian model. The model calculates the reputation score of a user using

Equation 2.2, where r and s represents the cumulative amount of positive and negative ratings

respectively.

Reputation systems are susceptible to reputation attacks. These attacks and the defense

techniques are respectively summarized in Figure 2.1 and in Table 2.2.

Reputation Attacks

Unfair Recommendations Inconsistent Behavior Identity Management

Individual Collusion

Bad
Mouth

Unfair

Praises

Random
Opinions

Collusive
Reduction

Collusive
Deceit

Whitewashing /

Pseudospoofing

Sybil
Attack

Traitor

Discriminator

Registration
Policy

Authentication
Policy

Impersonation MITMA

Figure 2.1: Summary of reputation attacks.

Privacy and anonymity are concerns in reputation systems, but it is mandatory to have a

way of identifying a user to save its reputation and make changes to it. There are trade-offs,

the more privacy and anonymity it has, more difficult it is to build a reputation to an identity.

The use of pseudonyms is a promising solution, that may provide a good level of privacy while

still permitting the assignment of reputation to users.

The SureThing framework has been implemented in different application domains such as

STOP [SCRP20], CROSS [MCP20] and SurePresence [Fra21], which could all be enhanced by

a reputation system. A reputation system could be introduced by having entities inside each

19

Table 2.2: Summary of attacks and defense mechanisms.
Attacks Defenses

Individual unfair recommendations

Similarity-based filtering techniques
Estimating reputation of the recommender
Incentive-based
Controlled anonymity

Collusive reduction of recommendation
Collaborative filtering techniques
Controlled anonymity
Cryptographic mechanisms and unique digital identities

Collusive deceit Difficulty to change/create identities

Traitors
Incorporating time in reputation estimation
Context
Penalize oscillatory behavior

Discriminators
Similarity-based filtering techniques
Controlled anonymity

Sybil Attack and Whitewashing Difficulty to change/create identities

Impersonation
MITMA

Cryptographic mechanisms and unique digital identities

domain, that send reports of users behaviors to a reputation entity, that is able to generate and

update a reputation score for each user. The reputation value could then be used to support a

system when making decisions such as when deciding if a location claim is valid or not by using

the score of witnesses as the level of trust we can give to witness endorsements or even to the

specific user that is submitting the claim.

20

Chapter 3

SureRepute

We developed SureRepute, a reputation system that allows application domains of the SureThing

framework to maintain a reputation score for each user that reflects their behavior. This is done

by allowing separate application domains to submit behavior reports as well as requesting user

scores from SureRepute. In Section 3.1 we detail all aspects of the design of the SureRepute

system. In Section 3.2 we show the implementation of our solution. Finally in Section 3.3 we

detail a specific use case where SureRepute was integrated, which was CROSS [MCP20] for

smart tourism.

3.1 Design

In this Section, we explain all aspects regarding the design of SureRepute. We first discuss the

attack model in Section 3.1.1, then the assumptions and requirements identified in Section 3.1.2.

We present an overview of the architecture of the system in Section 3.1.3. We analyse in detail

the privacy protections in Section 3.1.4 and finally we explain the score calculation technique

for the reputation score in Section 3.1.5

3.1.1 Attack Model

We created an attack model that describes what attacks are a problem in our solution and how

they will be dealt with based on what was presented in Section 2.2 (Reputation attacks).

SureRepute assumes that the recommendations, i.e., the user behavior reports, are always

submitted by a trusted entity, that belongs to the infrastructure of the system. For example,

in CROSS [MCP20], the CROSS-Server is a trusted entity that can send recommendations to

SureRepute based respectively on the rejection and acceptance of the collected data of the trip

and suspicious behavior.

21

The recommenders are always trusted, so unfair recommendations are not considered a

threat as the recommendations are never considered malicious. The attack model will focus on

inconsistent behavior and identity management related attacks.

The reputation attacks on SureRepute and the strategies that are going to be employed by

the system to prevent or reduce their impact are the following (Attack:Defense):

• Traitor : Penalize oscillatory behavior by having a malicious action affect much more the

score than a good one. Incorporate time when updating a user score, making recent

behavior matter more then old behavior;

• Discriminator : Controlled anonymity through the use of pseudonyms, i.e., when a user

uses different domains it is given the same pseudonym, which leads to a global reputation

that is shared among different domains, making bad behavior in a specific domain affect

the reputation score in general;

• Sybil Attack and Whitewashing : Reduce the motivation for creating or changing identities

by giving the smallest score possible to newcomers and have a slow build-up of reputation;

• Impersonation and Man-in-the-middle-attack : All messages will ensure Confidentiality, In-

tegrity, Authenticity and Freshness by using cryptographic mechanisms and public-private

keys that ensure unique digital identities.

3.1.2 Assumptions and Requirements

The system operators of SureRepute are the organizations that are providing the SureThing

applications and that would benefit from having reputation scores of its users. Next, we define

the assumptions and the requirements for the reputation system.

Assumptions:

• SureRepute-Server always updates the score of pseudonyms based on the behavior reports

received;

• Entities that make recommendations of user behavior always submit accurate reports;

• Accounts with the same email in different application domains are always the same person;

• All entities can always communicate with other entities and no entity ever permanently

fails;

• All messages that pass the Confidentiality, Integrity, Authenticity and Freshness tests are

considered secure;

22

• Only trusted entities can communicate with the Certificate Authority (CA).

Functional Requirements:

• R1 - Provides scores that reflect the users behavior;

• R2 - Capable of being resilient to inconsistent behavior and identity management attacks;

• R3 - The same user in different domains maintains a shared reputation that reflects the

user general behavior;

• R4 - Use pseudonyms to ensure privacy to the users.

Non-Functional Requirements:

• Adaptability - The system needs to be easily integrated with new domains;

• Extensibility - The system must be flexible for future modifications and extensions;

• Security - The system must be able to resist inconsistent behavior and identity manage-

ment attacks;

• Privacy - The system must protect sensitive and private information about the users,

such as their behavior.

3.1.3 General Architecture

The solution was implemented using a client-server model that can be incorporated into each of

the SureThing application domains as represented in Figure 3.1, namely, CROSS, SurePresence,

and STOP. The client is called SureRepute-Client, and it will serve as a way for an application

domain to communicate with its own server, which is called SureRepute-Server. There is one

instance of the SureRepute-Server for each application domain. Servers will communicate with

each other to maintain a shared reputation of users that are present in different application

domains. The clients also interact with an identity provider that is responsible for making the

identity-pseudonym translations and with the CA whenever it needs a new valid certificate.

Our architecture was designed based on the usage of the SureRepute by the SureThing appli-

cation domains, but the entities that use SureRepute through the SureRepute-Client can be from

different systems. We allow the SureRepute-Server to be deployed by a different organization

than the one that is using it, and so to ensure anonymization to the users we use pseudonyms.

The entities that constitute the reputation system are:

23

CROSS

SureRepute-Client

SureRepute-Server

(STOP)

CROSS-Server

SurePresence

SureRepute-Client

Central-Server

STOP

SureRepute-Client

Central-Server

SureRepute-Server

(SurePresence)

SureRepute-Server

(CROSS)Identity Provider

CA
SureRepute-Servers

Application Domains

Figure 3.1: SureRepute integration with SureThing Framework.

• SureRepute-Client : This entity serves as a client that handles the identity-pseudonym

translation and interacts with the SureRepute Server. It provides two actions to the

domain servers: report user behavior and get user score. The report submitted must

contains a rating value that reflects how the user behaved;

• SureRepute-Server : This entity is responsible for handling user scores and keeping the

accumulated values of good and bad behavior, which makes a reputation score, for each

pseudonym of its users. The server handles requests made from the client. A SureRepute-

Server talks with other SureRepute-Servers whenever a new pseudonym appears, as we

need to check if they are already handling them. This step allows the system to maintain

a shared reputation for the same pseudonym;

• Identity Provider : This entity is in charge of doing the identity-pseudonym translations.

It registers identities by storing a piece of identity of the user and generating a pseudonym

that becomes associated to it. When SureRepute-Client requests the pseudonym of the

user, the identity provider will send back the pseudonym encrypted using the public key

of the respective SureRepute-Server, in order to make the pseudonym only known to the

SureRepute-Server;

• Certificate Authority (CA): This entity is trusted by all other entities and it is responsible

for validating the ownership of their public keys.

24

3.1.4 Privacy Protection

To ensure confidentiality, all communication between SureRepute entities must use TLS1 with

client authentication enabled (except with CA), which demands that both entities are trusted.

The privacy of the users about their identity and their behavior is ensured by separating

which information each entity has. The identity provider is used as a highly trusted entity that

stores the relationship between real identities and pseudonyms and only responds to requests

from trusted application domains. It returns the pseudonym encrypted with the appropriate

SureRepute-Server public key to ensure that a client cannot associate the pseudonyms with the

user’s real identity. The SureRepute-Server also has no access to the real identity of the user as

it only uses pseudonyms not the real identity of the users. Furthermore, it also does not store

the history of all reported behaviors individually, instead, it keeps two variables that represent

the cumulative value of good and bad behavior. Table 3.1. presents which information related

to the pseudonyms each entity has access to and shows how the user’s anonymity is ensured

in SureRepute. To evaluate what an attacker is able to access, in Section 4.1.3 we will create

attack scenarios where a user can have access to the databases of the different entities.

Table 3.1: Entities access rights. X=Has access and Nothing=No access.
Domain
Entity

Identity
Provider

SureRepute-
Server

Real Identities X X

Encrypted Pseudonyms X X X

Pseudonyms X X

Behavior Details X

Scores X X

3.1.5 Score Calculation Technique

Our reputation score calculation will follow mainly the binomial Bayesian model presented in

Section 2.1.2, with some modifications. We will use Equation 2.2 to calculate the reputation

score, and use a modified version of Equation 2.5 to calculate r and s, which are respectively the

collective amount of positive and negative rating, to introduce different levels of behavior reports

and different forgetting weights for the positive and negative behavior (λr and λs). SureRepute-

Server can receive four types of behavior reports, and each will make a different change to r and

s. The four types are:

• Accidentally Malicious: where the user behaved maliciously, but could be due to factors

1https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/

25

outside of the user’s control. In this case s and r will be updated with:

s = si−1 ∗ λs + 0.5 and r = ri−1 ∗ λr (3.1)

• Intentionally Malicious: where the user purposely behaved maliciously. In this case s and

r will be updated with:

s = si−1 ∗ λs + 1 and r = ri−1 ∗ λr (3.2)

• Critically Malicious: where the user purposely behaved maliciously in a critical situation,

which depends on the specific domain we are inserting SureRepute. In this case s and r

will be updated with:

s = si−1 ∗ λs + 2 and r = ri−1 ∗ λr (3.3)

• Well Behaved : where the user behaved as intended. In this case r and s will be updated

with:

s = si−1 ∗ λs and r = ri−1 ∗ λr + 1 (3.4)

The value of the forgetting weighs for r and s will be different, making good reports be

forgotten much quicker than bad reports, which can make bad behavior affect more the score

while also making recent behavior matter more than old behavior. For that reason they provide

a crucial defense against the traitor attack. This idea was obtained when learning about how

to calculate the reputation score using the Gompertz function in Section 2.1.2.

The score of a user will be calculated using Equation 2.2, which is defined as:

ReputationScore =
s+ 1

(r + s+ 2)
(3.5)

where 0 ≤ ReputationScore ≤ 1.

The initial values given to s and r, will not only give the initial score given to the user, but

they will also provide the initial setback before the user interactions with the system start to

reflect its behavior. The higher the initial s, the more a newcomer needs to interact with the

system before starting to be trusted, and thus it better defends against Sybil and Whitewashing

attacks. However, it also discourages newcomers, reducing usability.

The values for λs, λr and the initial values for r and s are further evaluated in Section 4.1.

26

3.2 Implementation

In this Section, we will explain how SureRepute was implemented. In Section 3.2.1, we will

detail what each entity of SureRepute does. In Section 3.2.2 we will explain how the automatic

deployment of SureRepute was done. Finally, in Section 3.3 we will integrate SureRepute with

one specific application domain, to test SureRepute in a real use case and show how easy the

integration is.

3.2.1 Detailed Architecture

All entities of SureRepute were developed in Java2, which allows to run in most operating

systems and hardware platforms. We also used Apache Maven3 as the tool to build, test and

execute the code from a central piece of information (POM).

SureRepute follows a client-server model, and each server use GlassFish4, which is an open-

source Jakarta platform application server5, that provides a set of software components, for

developing Java applications. Grizzly6 is also used, as the HTTP server framework, which has

been designed to help build scalable and robust servers, and is utilized as the added web server

component for the GlassFish application server.

For communication between entities we need to define an Application Program Interface

(API). Upon careful thought we decided to use the REpresentational State Transfer (RESTful)

software architectural style for web services, which defines a set of constraints restricting the

protocol used in Client-Server architectures with regards to the possible requests and responses.

As for the concrete implementation of each entity, we used the Jersey 3.0 reference implemen-

tation7 to support the Jakarta RESTful Web Services 4.0 specification8 (JAX-RS) which eases

and standardizes the development of web services according to the REST architectural pattern

with additional Java annotations. Additionally, Jersey helps to expose data in a variety of

representation media types and abstracts away the low-level details of the client-server commu-

nication. For the interface description language and canonical data format we decided to use

protocol buffer9, a data representation language and platform neutral, extensible mechanism for

serializing structured data, proposed originally by Google, but currently open-source.

To assure data persistence and avoid data corruption, we decided to use PostgreSQL10 as

2https://www.oracle.com/java/
3https://maven.apache.org/
4https://javaee.github.io/glassfish/
5https://eclipse-ee4j.github.io/jakartaee-firstcup/jakarta-ee002.html
6https://javaee.github.io/grizzly/httpserverframework.html
7https://eclipse-ee4j.github.io/jersey/
8https://jakarta.ee/specifications/restful-ws/4.0/
9https://developers.google.com/protocol-buffers

10https://www.postgresql.org

27

the database language for Identity Provider and SureRepute-Server.

We also used OpenAPI11, which is a language-agnostic interface for RESTful APIs that

allows users to discover and understand the capabilities of the services without access to the

source code by allowing to create human-readable documentation about both the data and API

specification.

Let us now look into each SureRepute entity in more detail.

SureRepute-Client

SureRepute-Client is a library that allows application domains to make remote calls to Sur-

eRepute, abstracting away of specific details about communication with the different entities of

SureRepute when integrating with new domains. SureRepute-Client makes available two main

actions:

• Get Score: Which gets the score from SureRepute of one or more users. The score is a

value in the range [0, 1].

• Report Behavior: Which allows application domains to easily submit behavior reports for

a given user. The behavior reports can be: Well Behaved Report, Accidentally Malicious

Report, Intentionally Malicious Report and Critically Malicious Report as explained in

Section 3.1.5.

The diagram of Figure 3.2 represents how SureRepute-Client does each of these actions. The

first thing it does is to request to the Identity Provider (1) the associated pseudonym encrypted

using the public key of the SureRepute-Server (2). The SureRepute-Client stores in a cache the

recent translations of user identity - encrypted pseudonym, and so, if the encrypted pseudonym

is already in the cache the interaction with the Identity provider does not happen.

After having the encrypted pseudonym, it will then send the action to the associated

SureRepute-Server of that domain (3). The server will return back the score of the user (4).

SureRepute-Server

Each application domain has its own SureRepute-Server instance, and each SureRepute-Server

is responsible for maintaining a reputation score for the pseudonyms that are interacting in

their domain. This is done based on reports received from SureRepute-Clients that are used by

each application domain. Furthermore, if the same user is interacting with multiple application

11https://swagger.io/specification/

28

SureRepute-Client Identity Provider

SureRepute-Server

(1) Register/Login

(2) Encrypted Pseudonym

(3) Get Score/
Report Behavior (4) Score

Figure 3.2: Main interaction of SureRepute.

domains, we maintain a shared reputation, i.e a reputation that reflects the behavior of the user

in all domains.

In order to maintain a shared reputation for a pseudonym and avoiding inconsistencies, we

ensure that only one server is maintaining updates on the reputation of a user, which is called

the leader of that pseudonym, other servers that also receive requests for that pseudonym are

considered as its followers.

The diagrams of Figure 3.3 and Figure 3.4 shows respectively how a server becomes a leader

or a follower to a pseudonym, which happens in the pseudonym registration phase. When an

unknown pseudonym is received in a request (1), the server broadcasts the pseudonym to verify

if another server is already the leader for that pseudonym (2), then there are two cases that can

happen:

• Case 1: No leader exists yet (3, 4), and so this server becomes the leader for this pseudonym

and stores the pseudonym along with the initial Score Details (5).

• Case 2: A leader already exists (3, 4), and so this server becomes a follower for this

pseudonym and stores the pseudonym along with the Score Details sent by the leader (5).

SureRepute-Server: CROSS

SureRepute-Server: STOP

SureRepute-Server: SurePresence
(5) Leader of the pseudony
 Sets pseudonym with default

Score Details

(1) Get Score

(1) Report
Behavior

(2) is leader

(4) Not Found

(4) Not Found

(3) Pseudonym not
Found

(3) Pseudonym not
Found

Figure 3.3: Case 1: No leader exists yet for that pseudonym.

29

SureRepute-Server: CROSS

SureRepute-Server: STOP

SureRepute-Server: SurePresence
(5) Follower of the pseudony
 Sets pseudonym with the

received Score Details

(1) Get Score

(1) Report
Behavior

(2) is leader

(4) Score
Details

(4) Not Found

(3) Pseudonym found.
 Add SureRepute-

Server as follower of
the pseudonym

(3) Pseudonym not
Found

Figure 3.4: Case 2: Leader already exists for that pseudonym - SureRepute-Server: STOP

The diagram in Figure 3.5 and Figure 3.6 shows what happens when a behavior report is

received by a follower or a leader of that pseudonym respectively and the pseudonym is already

known (1):

• Case 1: If the server is a leader, then it will update the Score Details for that pseudonym

(2) and send back to all followers the updated score (3). Each follower will then update

the Score Details for that pseudonym (4).

• Case 2: If the server is a follower then it will forward the behavior report to the leader of

that pseudonym (2), the leader will then update the Score Details (3) and send back to

all followers the updated score (4). Each follower will then update the Score Details for

that pseudonym (5).

(2) Is leader of the pseudony
 Updates Score Details based

on repor
 Forwards Score Details to all

other followers

(4) Is follower of
the pseudony
 Updates Score

Details of the
pseudonym

(1) Report
Behavior

SureRepute-Server: CROSS

(3) Score

Details

SureRepute-Server: STOP

SureRepute-Server: SurePresence

Figure 3.5: Case 1: Report Behavior received by a leader. Leader - SureRepute-Server: CROSS

(1) Report
Behavior

SureRepute-Server: CROSS

(2) Report
Behavior

(2) Forwards the report to the
leader of the pseudonym

(5) Updates Score Details of
the pseudonym

SureRepute-Server: STOP

(4) Score
Details

(3) Is leader of the
pseudony
 Updates Score Details

based on repor
 Forwards Score Details

to all other followers

Figure 3.6: Case 2: Report Behavior received by a follower. Leader - SureRepute-Server: STOP.

30

The diagram in figure 3.7, shows what happens when a client requests the score of a

pseudonym that is already known to either the leader or the follower of that pseudonym (1), the

server just needs to return the current stored value for that pseudonym (2).

(1) Get Score

Is Follower or Leader of the Pseudonym

SureRepute-Server: CROSS

(2) Gets pseudonym
associated score

Figure 3.7: Handle of Get Score request received by SureRepute-Server when the pseudonym is
already known.

Identity Provider

The identity provider is a highly trusted entity that is responsible for maintaining the trans-

lations between the user identity and the respective pseudonym. It initially interacts with all

SureRepute-Servers in order to get their public keys.

When a SureRepute-Client requests an encrypted pseudonym for a new user, the identity

provider generates a new pseudonym for them and stores this relation in the database, if the

pseudonym is already known then it just gets it from the database, in both cases the pseudonym

will then be encrypted using the public key of the SureRepute-Server associated with that

application domain and returned back to the SureRepute-Client.

Certificate Authority

The CA is responsible for validating the identity of all other entities of SureRepute and provide

them a public key that is necessary to establish TLS connections with all other entities. For

that, an entity must provide a certificate signing request as well as the type of entity it is, which

is then validated. If valid, it creates a certificate that requires that the identities use specific

DNS names of our solution for communication.

3.2.2 Deployment

A key aspect of the project was to also allow SureRepute to be deployed in the cloud, in order

to make it very easy to be released if needed. To do that, we decided to deploy the project into

Google Cloud12.

12https://cloud.google.com/

31

To make the deployment we first used Docker to build images for each entity. An image

works like a template, which contains the application and all the code dependencies required

to run that application. These images can then be pushed to Google Cloud to be used when

creating an instance, allowing to deploy the specific entity. We also setup a way of creating and

deleting a Kubernetes13 cluster in Google Cloud, which will contain SureRepute.

To ensure that SureRepute-Servers, the Identity Provider and the CA are isolated from each

other we also used logical isolation by using namespaces inside the cluster, where SureRepute-

Servers are in ‘sure-repute-namespace”, IdentityProvider is in ‘identity-provider-namespace”

and the CA is in ‘ca-namespace”. This isolation is very important, as in a real scenario the

deployment of the SureRepute-Servers and the IdentityProvider needs to be handled by different

system operators, responsible for the deployment and management of the system, due to the

privacy protections detailed in Section 3.1.4.

A technology that helps you define, install, and upgrade Kubernetes applications is Helm

Charts14. We used this technology to automatically deploy each entity and its database, as well

as ingresses, which is an API object that manages external access to each entity in a cluster

and a load balancer. We also used DNS-Kubernetes to automatically create a DNS record with

the IP given to that entity by Google Cloud and a DNS name that belongs to the SureRepute

domain in GoDaddy15.

In Figure 3.8, we show a example of a deployment in Google Cloud, with two servers

(SureRepute-Server CROSS and SureRepute-Server STOP) an Identity Provider and a CA.

The SureRepute-Client is outside of the cluster, as it must be deployed by the system operators

of the application domain. This figure is an example of the deployment, the number of servers

that are deployed can change, as they are dependent on how many application domains we are

working with. All remote calls to entities of the cluster pass through the load balancer, which

is responsible of forwarding those calls to the appropriate entity inside the cluster based on the

set of rules provided by the ingress. This set of rules allow to forward the request based on the

predefined dns names used for the remote call and that are present in the arrows of the figure.

These dns names are:

• client-{domain}.server.surething-surerepute.com: Used by a SureRepute-Client to interact

with its SureRepute-Server. The {domain} in the dns name is replaced by which domain

it is interacting, in the case of the diagram it can either be CROSS or the STOP domain;

• ip.surething-surerepute.com: Used by a SureRepute-Client to interact with the Identi-

13https://kubernetes.io/
14https://helm.sh/docs/topics/charts/
15https://www.godaddy.com/pt-pt

32

tyProvider;

• ca.surething-surerepute.com: Used by all the entities to interact with the CA;

• sip-{domain}.server.surething-surerepute.com: Used by the IdentityProvider to inteact

with each of the SureRepute-Servers;

• ss-{domain}.server.surething-surerepute.com: Used by SureRepute-Servers, for interac-

tions between each other.

client-cross.server.surething-surerepute.com is used by a CROSS client to interact with SureRe-

pute Server of CROSS.

SureRepute-
Client: CROSS

SureRepute Server: REST API
CROSS

PostgreSQL

SureRepute Server: REST API
STOP

PostgreSQL

NGINX
Load

Balancer

GoDaddy
DNS

Identity Provider: REST API PostgreSQL

SureRepute-
Client: STOP

client-stop.server.surething-surerepute.com

ip.surething-surerepute.com

ca.surething-surerepute.com

client-cross.server.surething-surerepute.com

sip-cross.server.surething-surerepute.com

sip-stop.server.surething-surerepute.com

ca.surething-surerepute.com

Identity Provider Namespace

SureRepute Server namespace

Hosts

Ingress

ss-stop.server.surething-surerepute.com

ca.surething-surerepute.com

ss-cross.server.surething-surerepute.com

ca.surething-surerepute.com

CA: REST API

CA Namespace

SureRepute Cluster

Figure 3.8: Example of deployment of SureRepute in Google Cloud Platform for two domains.

33

3.3 Use Case: CROSS

In order to attest how SureRepute can be easily added to different application domains of the

SureThing project, as well as to be able to evaluate the solution in terms of overhead and if

it helps make better decisions, we decided to use CROSS[MCP20]. We decided to use CROSS

because of the new strategy created by Grade et al. [GPE22] that uses witnesses, and thus,

a reputation score of the users could be really helpful, when calculating if a proof should be

accepted or not.

3.3.1 CROSS-Server v2.0

Due to maintainability reasons, specifically as a means to address the evolvability and docu-

mentation of the code base, the CROSS API Server component has been reimplemented from

Golang16 to Java17 with Maven18 as the software project management tool. The interface still

follows the RESTful software architectural style for web services. As for the implementation

of this server, we used the same technologies as SureRepute, which are GlassFish19 application

server as well as Grizzly20 for the additional webserver component. For communication we used

Jakarta RESTful Web Services 4.0 specification21.

The redevelopment was used as an opportunity to ensure that the API server is compliant

and uniform with other existing SureThing projects with regards to the interface description

language and canonical data format. Originally JSON was being used as the data specification,

but the SureThing projects use protocol buffers22, as they are a language-neutral, platform-

neutral, extensible mechanism for serializing structured data, it provides binary encoding for

typed data across multiple programming languages. We also used OpenAPI23, which allows to

create human-readable documentation about both the data and API specification.

There were some changes made to the actual behavior of CROSS:

• Allow visits to be submitted individually if there is an available Internet connection instead

of in the end. This allows users to get more timely feedback about whether the visit was

accepted or not;

• Removed the need for completing a trip in a specific order. Now a user can go to a specific

16https://go.dev/
17https://www.oracle.com/java/
18https://maven.apache.org/
19https://javaee.github.io/glassfish/
20https://javaee.github.io/grizzly/httpserverframework.html
21https://jakarta.ee/specifications/restful-ws/4.0/
22https://developers.google.com/protocol-buffers
23https://swagger.io/specification/%7D

34

point of interest in the route, as he may be closer to that position. This gives users more

flexibility to complete a trip;

• Authentication is now done with JSON Web Token (JWT) sent in the header of every

request after login. This is an efficient and widely used authorization method.

A new location proof strategy was added by Grade et al. [GPE22] to further help prove if the

traveler is actually attending the location on the itinerary, by using other travellers as witnesses.

Now, when a traveler submits a visit, the confidence is calculated based on:

• displacementConfidenceMultiplier : Calculates a confidence level of the time it took to

go from the previous visit to this visit based on the distance between them. First, the

travel speed is calculated using the Haversine formula24, using the distance between the

coordinates of the current visit and the last validated visit and the time the user had to

travel that distance (travelSpeed). Then two configurable constants maxExpectedSpeed

and maxAdmissibleSpeed are defined, with the default values off 100 and 200 km/h re-

spectively, but can be adjusted. Based on these values the concrete value assigned to the

displacementConfidenceMultiplier is:

– If travelSpeed ≤ maxExpectedSpeed: 100% displacement confidence is assigned

– If travelSpeed ≥ maxAdmissibleSpeed: 0% displacement confidence is assigned

– Otherwise, the displacement confidence is calculated according to:

1−
(

travelerSpeed−maxExpectedSpeed

maxAdmissibleSpeed−maxExpectedSpeed

)
(3.6)

which essentially means that the closer the travel speed is to maxExpectedSpeed, the

higher is the displacement confidence, and the closer to the maxAdmissibleSpeed, the

lower is the displacement confidence.

• wiFiAPsConfidence: Percentage of networks found by the client for this visit, compared

to the total number of access point registered in the server for that location.

• peerEndorsementsConfidence: A visit can now provide endorsements to its location (wit-

nesses), which are then validated. The weight of every valid endorsement is calculated

as:

endorsementWeight(p, wi) =
Rwi

Npwi + 1
(3.7)

24https://en.wikipedia.org/wiki/Haversine formula

35

where p is the prover, wi is the specific witness, Rwi is the reputation of the witness, which

is in range [0, 1], which can be provided by SureRepute, and Npwi is the number of visits

in different trips that where completed in the past by the prover, which the witness w has

already testified to. The confidence is then calculated using:

min

(∑n
i=0 endorsementWeight(p, wi)

endorsementWeightTarget
, 1

)
(3.8)

where the endorsementWeightTarget is the weights sum value of all witnesses weight that

it is intended to be achieved so that the strategy confidence is 100%, which is further

defined in Grade et al. [GPE22] work.

Based on these values, the confidence assigned to each visit is calculated as follows:

min(displacementConfidenceMultiplier × (wiFiAPsConfidence+

peerEndorsementsConfidence), 1)
(3.9)

making the confidence of a visit to be the sum of the confidence gathered by the strategies

the user used (capture of Wi-Fi access points and/or witness endorsements), multiplied by the

confidence multiplier. The minimum is used because a traveller can use more than one strategy,

and each strategy can reach 100% of confidence.

The visit confidence is then compared with the confidence threshold which is a predefined

percentage that need to be met by a specific visit. If confidence ≥ confidenceThreshold, then

the visit is accepted otherwise it is rejected. If all visits of a route are accepted then the trip is

considered completed and a reward can be given by the CROSS application.

3.3.2 Location Certificate Transparency v2.0 integration

Location certificate transparency provides accountability to all entities through a tamper-proof

ledger based on Merkle trees that provide APIs for storage, retrieval and verification of Location

Certificates at a later date. One of the objectives of this work was to complete previous work

by Carvalho et al. [CERP21]. LCT was integrated into CROSS, so that the emitted location

certificates could be made persistent in a tamper-proof. To complete the work we did:

• A re-factorization of the code and remove some problems found that made LCT not work.

• A refactor on the Data Specification (Contract), due to some inconsistency problems and

created an OpenAPI specification in order to help new developers into the project and to

have a clear documentation about the LCT architecture described in Section 2.5.

36

• The integration of LCT into CROSS v2.0.

• A Full specification on how to run each module of the LCT, which is very important to

allow for the project to be continued by others.

The integration of the LCT into CROSS is represented in Figure 3.9, where we allowed the

possibility of a complete trip to be submitted to the LCT by the CROSS-Server. When a trip

is completed, we asynchronously submit a location certificate for each visit inside of that trip

to the Log Server (1, 2), which returns back a Signed Location Certificate Timestamp (SLCT)

(3, 4), that acts as a promise that this specific certificate will be stored in the log within a fixed

interval of time. The CROSS-Server will then wait for each timestamp to pass by (5), and then

it will also interact with the Auditor by requesting an audit proof using the SLCT (6). In order

for the auditor to verify if the log is behaving correctly and is consistent, it interacts with both

the Monitor and Log Server (7), as specified in Carvalho et al. work [CERP21]. The auditor

will then return an audit result (8), which is verified by making sure that the certificates for

every visit are present.

CROSS-Server

Log Server
1: Submit location certificates for

every visit in the completed trip

2: Location Certificate

4: SLCT

Auditor
6: SLCT

5: Wait for SLCT’s

8: Audit Result

7: Verifies if log is behaving
correctly and is consistent,
by interacting with the
Monitor and Log Server

3: Location Certificate will be
stored in the log within a
fixed interval of time

Figure 3.9: CROSS interaction with LCT whenever a complete trip was submitted.

Our initial idea was to also use the Monitor in LCT to submit reports based on suspicious

behavior found to SureRepute, and thus provide additional reports for the solution, but as we

analysed what the monitor was doing we found that the monitor did not detect problems related

with the content of the proof, i.e., related to the endorsements and the location and did not had

access to who the user is. Instead currently, the LCT only detects problems related with the

consistency of the log. For that reason although we integrated the LCT with CROSS, LCT will

not interact with SureRepute for report submission.

37

3.3.3 SureRepute Integration

To attest how well SureRepute can be integrated with application domains of SureThing, we

decided to integrate it with the new version of CROSS. As explained in Section 3.3.1, the goal

of CROSS is to visit a set of locations and earn a reward. A visit is considered accepted based

on the confidence calculated with Equation 3.9, where the confidence needs to be higher then

the confidenceThreshold.

To use SureRepute, CROSS-Server now has to submit reports that allows to create scores

that reflects users behavior and that can be used by CROSS-Server when verifying if a visit is

accepted or not. The scores of both the witnesses and the traveller are requested to SureRepute

synchronously using the SureRepute-Client, when a visit is submitted, as we are dependent on

their values. On the other hand report submission is done asynchronously, as we do not need

the result of the report submission in order to return back to the client. Let us now analyse how

the scores are used and when reports are submitted.

Score of Witnesses

The scores of the witnesses can be really helpful for calculating the endorsement weight that

each witness provides, as detailed in Equation 3.7. This endorsement weight is then used to

calculate the peerEndorsementsConfidence, which is done using the Equation 3.8. Using the

reputation of SureRepute can be really helpful as the weight that each endorsement has will be

based on the past behavior of the witness, which is represented by the reputation value.

Score of Traveller

After calculating the visit confidence, we need to compare it to the confidence threshold. The

confidence threshold is the confidence level that needs to be achieved by the traveller on that

location, which as a default value that is assigned when the location is created. But the score can

increase the level of confidence that needs to be achieved based on the traveller score, making

users that have a reputation ≤ 0.5, to need to achieve a higher confidence level, as they have

have not proven themselves as good users yet. If proverReputation ≥ 0.5, then the prover has

a well-behaved track record and the confidence threshold is not adjusted; otherwise, we use a

linear function to calculate the confidence threshold

1− 1− confidenceThreshold

0.5
∗ travelerReputation (3.10)

38

If the default confidence threshold is 75% then Figure 3.10 shows what is the confidence threshold

based on the reputation of the traveller.

Figure 3.10: Confidence Threshold adjustment according to the traveler reputation.

Report Submission

As explained in Section 3.1.5, there are four types of reports we can submit, and here we adapted

the conditions in which each report is submitted to this specific CROSS application:

• Critically Malicious: We submit a report for critically malicious behavior for the traveler

when the trip is not coherent, i.e., if the trip does not exist associated with the route given

or if a visit that is being submitted does not belong to that trip.

• Intentionally Malicious: We submit a report for intentionally malicious for the traveller

whenever we are certain that the traveller acted malicious, i.e, if one of the endorsers is

the traveller, if the endorsement is not for that specific visit, if the time of the claim is not

correct, or if the claim signature is invalid. As these are always validated in the client side

of the application.

• Accidentally Malicious: We submit accidentally malicious behavior for the traveller, when

the confidence does not reach the confidence threshold, as we cannot have the complete

certainty that the user acted maliciously.

• Well Behaved: We submit reports of good behavior, whenever the confidence threshold is

39

reached. The reports are sent for the traveller and all for all witnesses that made good

endorsements.

3.4 Summary

In this Chapter we presented SureRepute, its design aspects, including the attack model, the

requirements and assumptions, its general architecture, a privacy assessment of the whole system

and finally the score calculation technique. We then detailed the implementation of the solution,

including a detailed explanation of the architecture of all entities as well as its deployment.

Finally we also integrated SureRepute in the tourism itinerary use case, which is CROSS, which

included a complete re-write of CROSS-Server, the integration with LCT for long-term storage

of certificates and finally the integration with SureRepute. Figure 3.11 represents the whole

system to support the CROSS application including both LCT and SureRepute.

SureRepute-
Client

SureRepute-
Server

CROSS-Server Identity Provider

Auditor Monitor
Log

Server

CROSS
Location Certificate Transparency

SureReputeCROSS

CA

Figure 3.11: CROSS integrated with LCT and SureRepute.

40

Chapter 4

Evaluation

In this Chapter, we describe how we evaluated our system, and present the obtained results.

In Section 4.1, we describe the qualitative evaluation, which helped determine whether the

requirements have been fulfilled. In Section 4.2 we discuss the quantitative evaluation, which

will focus primarily on the performance of the system in a specific use case. Finally, in Section 4.3,

we present a real scenario where our system integrated with CROSS was used to do a campus

tour.

4.1 Qualitative Evaluation

The fulfillment of the functional requirements described in Section 3.1.2 was evaluated in different

ways, the evaluation of R1 “Provides scores that reflect the user’s behavior” as well as the traitor

attack and Sybil/Whitewashing attack from R2 “Capable of being resilient to inconsistent

behavior and identity management attacks” is presented in Section 4.1.1. R3 “The same user

in different domains maintains a shared reputation that reflects the user general behavior” and

the discriminator attack from R2 are evaluated in Section 4.1.2. The evaluation of R4 “Use

pseudonyms to ensure privacy to the users” as well as the impersonation and man-in-the-middle

attacks from R2 are presented in Section 4.1.3.

To perform the qualitative evaluation we created a demo entity, to perform tests directly with

SureRepute. This entity can interact with the entities of SureRepute by using the SureRepute-

Client and it allows to perform qualitative tests needed in an easy and re-playable way without

using a real domain.

Regarding the non-functional requirements, we ensure the Adaptability, and Extensibility

requirements, by having the SureRepute-Client which works as a library that provides easy

interaction with the other SureRepute entities, allowing the application code to abstract away

41

of specific details about the communication, granting easy integration with new systems while

also allowing the system to be flexible for future modifications and extensions. Both Security

and Privacy requirements are ensured when fulfilling the functional requirements R2 and R4.

4.1.1 Score Calculation

In this Section, we want to show that the reputation system is capable of creating scores that

reflects the behavior of users while also maintaining resistance against Traitor attacks as well as

the Sybil/Whitewashing attacks. Although the score must reflect on the behavior of the reports

submitted, there are still some parameters that need to be further studied to understand what

their impact is on the score given, namely:

• The initial score details, i.e., the initial values for s and r, which represent the cumulative

amount of bad and good behavior respectively, and that we are representing as: Details(s,

r).

• The forgetting weights, i.e., λs, λr, which are represented as Forgetting(λs, λr).

The initial score details can be used to choose what score to give to a newcomer when no

reports were submitted yet, for example with Details(10, 5) score =
5 + 1

10 + 5 + 2
= 0.35, and it

can also give the initial setback before starting to trust the behavior submitted for the user. The

forgetting weights serves as a way to make recent behavior matter more than old behavior and

can also be used to make malicious behavior to be forgotten much slower than good behavior.

Score Details

To demonstrate how the initial score details serve as the initial setback for the amount of reports

that need to be sent before starting to have a reputation that reflects the behavior of the user in

the system, we provide some tests where we submitted 5 and 100 reports to the same user, and

we also change the number of malicious behavior reports and good behavior reports submitted.

For example, when submitting 5 reports we test what the score is when 1, 2, 3, 4 and 5 of the

reports submitted are of intentionally malicious behavior. These tests are done using forgetting

weights as both 1, i.e., Forgetting(1, 1), to make the behavior of a user to never be forgotten

and thus, making order of the report submission to not matter. For these tests we used different

initial score details: Details(1, 0), Details(5, 0), Details(10, 0), Details(100, 0), and, Details(10,

5). The first four initial score details were chosen to show how these initial score details can

represent the initial setback before starting to have a good reputation and the last was chosen

to show how the initial score given to a newcomer can be set using these initial values.

42

The results are presented in Figure 4.1. In the graph there is a black line in 0.5, this is

because it is the middle value between scores as their range is between [0, 1], which is the point

of when we consider that the users start to have good behavior. Looking carefully at the first

graph, i.e., when submitting 5 reports, for Details(1, 0) and Details(5, 0) we can see that if the

user submits 5 new reports of only good behavior it already gathers a positive rating, however

looking at the Details(10, 0) or Details(100, 0), we can see that even with 5 good behaved reports

submitted it still has a score below 0.5, this is because of the initial number of malicious behavior

reports we give to a newcomers which serves as the initial setback before starting to trust the

user real interaction with the system. If we look into the second graph, i.e., where 100 reports

were submitted, we can see that with Details(1,0) and Details(10,0) it already provides a score

above 0.5, in the case of all reports where of good behavior, because it already surpassed the

initial setback for these cases. After surpassing the initial setback, for example for Details(10,

0) with 100 reports submitted, it is possible to verify that the user score reflects the behavior of

the user, i.e., if more than 50% of reports submitted are of malicious behavior, then the score

of the user is below 0.5.

Figure 4.1: 5 and 100 reports submitted using different initial score details Details(s, r) and
changing the number of intentionally malicious reports submitted.

43

Looking into Details(10,0) and Details(10,5), the major difference is that we can modify with

the default score given to a newcomer, i.e, when no report was submitted yet. For example for

Details(10,0) we have score =
0 + 1

10 + 0 + 2
= 0.09 and with Details(10,5) we have score = 0.35,

this is important when we want to provide an initial setback for the user but we still want them

to have a default value further from 0.

This initial setback and the default score given to newcomers is really important in order

to defend against Sybil/Whitewashing attacks, because it allows to remove the motivation for

a user to get new identities by giving a low initial score to the new identity and it provides a

slow build of reputation. The specific score details to use depends on the system and how much

we want to prevent these attacks. In a scenario where the user needs to be highly trusted, we

need to use a high value for s in the initial score details, which can be chosen based on the

average amount of report submissions that are made for the user whenever it uses the system,

but of course this is a trade-off between security and usability as by increasing this defense, a

newcomer is more penalized by not being trusted for a long time, which can demotivate all new

users, on the other hand if we want to prioritize usability we can use a lower value of s, which

will make the system more susceptible to these attacks but make it easier for newcomer to be

trusted.

As mentioned before, the initial score details given to a user depend on the system that

is being used. To attest how the score reflects the user behavior, lets set a specific scenario:

“Considering a system for tourism trips, where for each trip a user does, an average 3 reports

are made and there is a limit of 3 trips per day. The intention is that a new user has a slow build

of reputation and the system is capable of defending against reputation attacks, but the initial

score cannot be too low, as it would made impossible for the trip to be accepted to newcomers.”.

As on average at most 9 reports are submitted a day, using score details as Details(10, 0)

or Details(10, 5) seems like a reasonable initial setback, as it needs at least a day of interaction

before starting to trust the reports that are being submitted. The default value should not be too

low, choosing Details(10,5) for the next tests based on this scenario seems the most appropriate,

as it will provide an initial score of 0.35 instead of 0.09.

Forgetting Weights

After setting the initial scores details as Details(10,5), we still need to choose the forgetting

weights for s and r. By introducing forgetting weights we make the order of when malicious

behavior is submitted matter, for this reason, we defined tests where a lot of reports were

already submitted, i.e., 100 reports are submitted, and did a similar test as before, but now

44

besides changing the number of malicious reports that are submitted we also change the order

that they are submitted, which can be at the start or at the end. For example, if we want to

submit 100 Reports and have 10 of them be of malicious behavior then if the order is at the

start then we submit first 10 reports of malicious behavior and then 90 of good behavior, if it

is at the end then we first submit 90 reports of good behavior and then 10 reports of malicious

behavior.

We did these tests using different forgetting weights: Forgetting(1,1), Forgetting(0.98, 0.95),

Forgetting(0.98, 0.92), Forgetting(0.98, 0.90), Forgetting(0.95, 0.92). We tested using all ranges

of values for the forgetting weights however adding them all would overload the graph, we

choose instead to choose the most meaningful values. The Forgetting(1,1) serves as the control

test because when the forgotten weights are 1 it means that no report is ever forgotten, and so

submitting malicious behavior at the beginning or at the end is the same, the other values always

have λs bigger than λr, because we want to make malicious behavior to be forgotten slower then

good behavior, allowing for a slower rebuild of reputation whenever a user acts maliciously, which

helps to penalize oscillatory behavior which defends against the traitor attack. The values we

tried are all between 0.9 and 1, as lower values excessively prioritize the recent behavior, making

old behavior to be forgotten too quickly, which is not our intention, as we want the score to

reflect the user’s past behavior.

The results are presented in Figure 4.2 and by looking at the graph we can see that whenever

λs is below 0.98, the malicious behavior starts to be forgotten too fast, as it produces a score

with a value higher than 0.5 even if 80% of the behavior is malicious. On the other hand using

λr below 0.92 is also a bad idea as introduces a drastic difference of when malicious reports

are submitted at the end versus at the start. Using Forgetting(0.98, 0.90) as the forgetting

weights, the submission of 10 malicious reports already makes the score of the user to be 0.28,

in comparison with 0.74 when submitted at the start, decreasing these value would increase the

difference between them. Using Forgetting(0.98, 0.95) still maintains the score above 0.5 with

10 malicious reports submitted at the end, which is not desirable as we want malicious behavior

to drastically impact the score. The forgetting weights that do not forget malicious behavior

too quickly but still ensure the desirable penalization on the score is Forgetting(0.98, 0.92), and

so these are the values we would choose for this scenario.

Types of Malicious Behavior

Now that we looked into the most appropriate values for the parameters, Details(10,5) and For-

getting(0.98, 0.92), we can now analyse if the score is able to reflect the behavior submitted.

45

Figure 4.2: 100 Reports submitted with Details(10,5), using different forgetting weights
Forgetting(λs, λr) and changing the number of intentionally malicious reports submitted and
its order, which can be at the start or at the end.

For that we did some tests similar as the previous ones, where we submitted 50 and 100 reports

for a single user, and once again repeated the tests where we change the number of malicious

reports submitted and their order, but now instead of only submitting intentional malicious

behavior, we repeat the tests submitting with different types of malicious behavior, i.e., acci-

dentally malicious, intentionally malicious (the previous) and critically malicious. With these

tests our intention is to evaluate the difference on the score when submitting the different types

of malicious behavior and also analyse the score to see if it reflects the behavior of the user.

The results are shown in Figure 4.3, looking at both graphs we can see that just as in the

previous tests there is a clear distinction of when the score is submitted at the end versus at the

start, which shows that the score is able to prioritize recent behavior and thus fight against the

traitor attack even with accidentally malicious reports and critically malicious reports. However

critical malicious reports impact more drastically in the score, for example with 50 reports

submitted and 15 (30%) malicious reports submitted at the start, the user already has a score

that is below 0.5 when the reports are critical, on the other hand when submitting 50 reports

and 5 of them are accidentally malicious and done at the end, the user still maintains a score

above 0.5. As more reports are submitted, the more trust we tend to have on the user and so the

less malicious behavior will affect the score, but as you can see even with 100 reports submitted,

when the user behaves maliciously the score decreases drastically when submitted at the end,

making bad behavior be drastically punished, even when it may be accidentally. For example,

with 100 reports submitted and 10 (10%) of them malicious at the end, we still have a score

below 0.5 even when all malicious reports submitted are accidental. It is also possible to see

46

Figure 4.3: 50 and 100 reports submitted using Details(10,5) and Forgetting(0.98,.92), and
changing the number of malicious reports submitted, its type (Accidental, Intentional and Crit-
ical) and its order, which can be at the start or at the end.

that the score will directly reflect the behavior submitted for the user, i.e, as more reports of

malicious behavior are submitted the more the score decreases, and when a malicious action is

done the user has a slow rebuild of the reputation.

Summary

We defined a clear scenario to evaluate R1 (“Provides scores that reflect the users behavior”)

as well as defenses against the traitor attack and the Sybil/Whitewashing attack as the specific

parameters for forgetting weights and initial score details depend on what defenses the system

needs to achieve. If a system needs to be highly protected against reputation attacks, then the

initial value for s must be high in order to provide an initial setback to newcomers before starting

to trust their good behavior and the forgetting weights must be: λs >> λr, to make positive

behavior to be forgotten more quickly then negative behavior and making recent behavior affect

47

more the score. If a system wants to protect against these attacks, but still allow users to commit

more mistakes and build a reputation more quickly then the initial value of s can be lower and

the difference between λs and λr can also be lower. In any case it is possible to verify that the

score can reflect these preferences and reflect the intended value for the user score based on its

behavior.

4.1.2 Shared Reputation Evaluation

To verify that whenever a user is present in multiple application domains and is using the same

identification that the system is capable of maintaining a shared reputation, which reflects its

general behavior, we setup 4 SureRepute-Servers, and created an automatic testing client that

allows to submit multiple reports for the same user to different SureRepute-Servers. Maintaining

this general reputation allows the behavior on situations that happened on one domain to be

transferred to the others, which defends against the discriminator attack.

Sequential Submission

To accurately test this requirement, we created a scenario where a client submits 80 reports

sequentially for the same user, 40 of intentionally malicious behavior and 40 of good behavior,

first all to a single server and then dividing the report submission between two servers and then

four servers. The number of of reports serves as an example of high number of reports to be

submitted, the specific value is indifferent. The number of shared servers tested, where:

• One to attest the normal values of the reputation when all is sent to one serve;

• Two to show that when using multiple servers a shared reputation is still maintained;

• Four because even with more than the amount of application domains that currently

exist (CROSS, SurePresence and STOP) SureRepute is still able to maintain a shared

reputation. This is due to the communication protocol established between servers detailed

in Section 3.2.1, which allow all servers to always maintain a shared reputation for the

same user.

The results are shown in Table 4.1, and it is possible to see that if all the reports are submitted

sequentially all servers contain the same score at the end, which validates the requirement as well

as prevents a discriminator attack where a user behaves differently in each application domains,

and a shared reputation is created between them.

48

Table 4.1: Score Results of sending 80 reports sequentially for the same user using 1, 2 and 4
servers, where the first 50% are reports of malicious behavior.

Server Id Malicious Behavior Good Behavior Score

1 SureRepute-Server Server 1 40 40 0.46

2 SureRepute-Servers
Server 1 20 20 0.46
Server 2 20 20 0.46

4 SureRepute-Servers

Server 1 10 10 0.46
Server 2 10 10 0.46
Server 3 10 10 0.46
Server 4 10 10 0.46

Parallel Submission

We also did another scenario were we submit 40 reports using threads of always good behavior.

This was also done first with a single server and then we divided the report submission to two

servers and finally to four servers. The reason why we are only submitting one type of reports

is because by using threads the order of the report submission can change each time we run the

tests, which makes the possibility of the score change each time we run the test (as the order

matters due to the forgetting weights), but this does not invalidate our requirement because our

requirement is that all servers maintain a shared reputation between them.

The results are shown in Table.4.2, where it is possible to see that even when reports are

submitted using concurrent threads they still maintain a shared reputation.

Table 4.2: Score Results of sending 40 reports simultaneously, using threads, for the same user
using 1, 2 and 4 servers.

Server Id Good Behavior Score

1 SureRepute-Server Server 1 40 0.71

2 SureRepute-Servers
Server 1 20 0.71
Server 2 20 0.71

4 SureRepute-Servers

Server 1 10 0.71
Server 2 10 0.71
Server 3 10 0.71
Server 4 10 0.71

Summary

Based on the tests executed we show that a user in different domains is able to maintain a shared

reputation that reflects their general behavior, and that there are no inconsistencies between

servers, preventing the discriminator attack.

49

4.1.3 Privacy Evaluation

One of the requirements for our reputation system was to ensure privacy of the score to its users,

i.e., the score of a specific user can only be accessed by authorized entities and so no attacker

should be able to correlate a score to the real identity of a user. Our solution ensures this with

two main features.

The first is that we ensure that all entities communicate with each other using TLS with

client authentication enabled, which makes the need for both entities to be trusted. In order for

an application domain to talk with the SureRepute-Server or with the identity provider it already

has to have a certificate signed by our trusted CA. Assuming that the private keys of the entities

are not discovered, this ensures that communication with the reputation system can only be

done using trusted entities and the communication always guarantees Confidentiality, Integrity,

Authenticity and Freshness which prevents man-in-the-middle attack and impersonation attacks.

The second is that we also use pseudonyms to ensure that the SureRepute-Servers have no

access to the real identities of the users, this is done by using the identity provider as a highly

trusted entity that saves the relation between the real identities and the pseudonyms and only

responds to requests made by trusted application domains, where it returns the pseudonym

encrypted with the respective SureRepute-Server public key to ensure that the client does not

know the relation between the pseudonyms and the real identity of the user.

Let us now evaluate four scenarios where some of the information can be leaked due to a

specific attack to verify if the privacy of the users can still being maintained, In the following,

we consider that we are only working with one application domain, i.e. one SureRepute-Server.

“An attacker is not a user of the system but was able to have access to the information inside

the database of the SureRepute-Server”. As the information of the database does not have any

information about the real identities of the users the attacker cannot correlate the score with

the real identities of the users.

“An attacker is a user of the system and has been tracking its own behavior and was able

to have access to the information inside the database of the SureRepute-Server”. The attacker

at most is able to figure out its own pseudonym, in the case where it is tracking its own be-

havior using the same techniques as the reputation system to calculate the score, i.e., using the

same forgetting weights and initial score details. This situation is not problematic as it cannot

correlate with others.

“Consider the system with only one application domain, where an attacker was able to get

access to the information of the database of the application domain which contains the real

identities of the users and also the database of the SureRepute-Server”. The attacker cannot

50

correlate the real identities of all users to the score associated with the pseudonyms as they do

not have anything in common (excluding the trivial case where there is only one user in using

the system).

“Consider the system with only one application domain, where an attacker got access to the

information of the database of the SureRepute-Server and the database of the Identity-Provider”.

This is the only case where an attacker can have access to the score associated with the real

identity of the user, as it can correlate the relation between pseudonym and real identity with

the score details associated with a pseudonym. Even in these case, the attacker only has access

to the score not the entire behavior that was done by the users as SureRepute-Server does not

store the history of all reported behaviors individually.

Summary

All communication is done using TLS with client authentication enabled, which prevents man-

in-the-middle attack and impersonation attacks. We were also able to attest that when assuming

that it is not possible to access the database of the identity provider, the pseudonyms ensure that

only trusted entities can correlate the score of the users with the real identity of the user, and

even without this assumption it is not possible to get back the history of all reported behaviors

individually.

4.2 Quantitative evaluation

The quantitative evaluation of SureRepute focuses on the performance of the solution with two

main questions:

• What is the overhead introduced by the reputation system when integrated with an ap-

plication domain?

• Does the user score help an application domain to make better decisions?

To answer each of these questions, we used the CROSS application. The summary of how

CROSS uses SureRepute when deciding if a visit is accepted is present in Section 4.2.1. In

Section 4.2.2 we present the evaluation of question 1. Finally in Section 4.2.3 we present the

evaluation of question 2.

4.2.1 CROSS Visit Submission

To answer these two questions, we did several tests using the CROSS smart tourism application

domain. As mentioned before, CROSS users, which are called travelers must follow an itinerary

51

which is made of specific locations that the traveler must go to, which are called visits. In each

of these visits the traveler uses an app, which is called CROSS-Client. The app is responsible for

capturing the access points available and acquires/issues endorsements from/for other witnesses

to support their location. After a visit is done, the location proof is sent back to the server,

where it analyses the access points received as well as the witness endorsements in order to build

a confidence level based on it (the confidence calculation is detailed in Section 3.3).

Each visit has a default threshold of confidence that needs to be met which is defined when

creating a itinerary. The score of the traveler is used to increase the threshold needed when the

score of the user is below 0.5, which is done using a linear function detailed in Equation 3.10.

The score of the witnesses are used to calculate the confidence of the witness strategy, which is

calculated using Equation 3.8, where the endorsement weight is calculated using Equation 3.7, p

is the prover, wi is the specific witness, Rwi is the reputation of the witness and the endorsemen-

tWeightTarget is the target value that needs to be met by the sum of the endorsementWeights

to get 100% confidence.

CROSS submits user reports whenever a user submits a visit based on the decision made.

If a visit does not meet the confidence threshold established then it submits an accidentally

malicious behavior report for the traveller as we cannot be sure that the user acted maliciously

on purpose. If we are certain that user is acting malicious we submit an intentionally malicious

behavior report (which happens for example when the traveller submits an endorsement for

himself). When the user is able to meet the threshold, CROSS submits a report of good

behavior for the traveller as well as fpr witnesses that accurately endorsed the user location.

4.2.2 SureRepute Overhead in CROSS

Let us now evaluate the overhead introduced by SureRepute to CROSS when submitting visits.

For these tests we defined two environments:

• Local environment, where the CROSS-client, CROSS-Server, SureRepute-Server and Identity-

Provider were running in the same computer with an Intel® Core™ i7-8750H CPU 2.20GHz

2.21 GHz, with 16.0 GB;

• Deployed environment, where the CROSS-client is running on a local computer with the

same specification as before and CROSS-Server, SureRepute-Server and Identity-Provider

are deployed in the cloud in the same cluster with logical isolation. This cluster is de-

fined to be deployed in the region=europe-west1, with machine-type=e2-standard-4, disk-

size=20GB and nodes=2. These were the settings used for testing, but can be adjusted

for different configurations.

52

Normally, CROSS-Client is a mobile application that captures endorsements and/or Wi-Fi

access points and submit visits to CROSS-Server during a trip. However, in these case we used a

testing client made in Java that makes the requests needed for the tests, in an easy and replayable

way. The time we are measuring starts when we submit a request using CROSS-Client, and

ends when the response is received. To evaluate the overhead introduced by SureRepute to

the visit submission request in CROSS, we first evaluated the overhead introduced by a single

visit submission and then the overhead that appears when simultaneous submissions by multiple

travellers are being done.

Single Submission

To attest the overhead introduced in a single visit, we first setup a scenario where a traveler

submits a visit with N witnesses endorsing the visit, where N is in the range [1,30]. We are

assuming that the user at most crosses paths with 1 witness every 30 seconds in a 15-minute visit,

which is a number that could be plausibly be achieved in a busy tourist location. We calculated

the time taken to answer to the request when using SureRepute versus without using it. In this

latter case the score of the users to always be 0.5, as it is the default score. We also tested

this scenario in both the local and deployed environment. When we are not using SureRepute,

CROSS is still being deployed in the Cloud, and thus will always have a overhead against when

using locally, due to the delay of making the requests from a local computer to a remote cloud.

The results are present in Figure 4.4, where we can see that when submitting a single visit in any

of the environments with a different number of witnesses, SureRepute introduces a low overhead,

which is at most 150ms and is barely noticeable to a user, when using the app (CROSS-Client).

The reason why the overhead increases linearly with the number of witnesses is because CROSS

requests the score of each witness. The Cloud deployment has more overhead overall due to the

delays introduced on the communication between the CROSS-Client and the cloud as it is no

longer running on the same computer, but it represents a more realistic scenario.

Simultaneous Submissions

To attest the overhead introduced when multiple travellers are submitting visits, we setup a

scenario where we increase the number of simultaneous submissions to verify the overhead intro-

duced, where each submission is using 15 witnesses, because it is the average number considered

in the previous experiment. Assuming that 10000 users use our app daily and an average visit

has a duration of 15 minutes, the likelihood of more than 15 users submitting the visit within

the same validation interval is very low: 0.0013%, which is calculated following the binomial dis-

53

Figure 4.4: CROSS visit validation time with and without SureRepute in a local and deployed
environment, varying the number of witnesses

tribution1, with a success probability of p = 390ms
15min = 0.04%, where 390ms comes for the highest

time gathered in the previous experiment with 15 witnesses, which was CROSS with SureRepute

in the deployed environment. For that reason we decided to do at most 15 submissions at the

same time as the probability of it happening is already very low.

The results are presented in Figure 4.5. We can see that when submitting multiple visits at

the same time in any of the environments with 15 witnesses, SureRepute introduces a higher

overhead than with a single visit, which is normal and can be explained by the fact that multiple

threads of CROSS-Server are making requests to SureRepute. But at most the introduced

overhead by SureRepute is of 250ms in any of the environments. This value is low when compared

with the overall times that are being done by CROSS without SureRepute. The high delay

introduced when we change from the local environment to the cloud environment is unrelated

with SureRepute, as the delay is much higher than the overhead introduced by SureRepute. If

the delay is considered too high for a given user when submitting a trip, we can upgrade the

cloud environment by changing the nodes type to process more rapidly the requests or make

visit submission on the client app of the users to submit the visits asynchronously.

Both these tests helped understand that SureRepute introduces a low overhead to CROSS

even in the cloud and in a unlikely scenario where a high number of submissions are being made

1https://www.cuemath.com/binomial-distribution-formula/

54

Figure 4.5: CROSS visit validation time with and without SureRepute in a local and deployed
environment, varying the number of simultaneous visit submissions

exactly at the same time each with a lot of witnesses, which is what we intended.

4.2.3 SureRepute Benefits to CROSS

To attest the benefits that SureRepute introduces to CROSS, we developed some tests, where

we calculated the confidence using only the peer endorsement strategy, i.e. without capturing

Wi-Fi access points, as we want to attest the confidence created using only the scores of the

users. The traveler score can be used to calculate the confidence threshold that needs to be

reached and the score of the witnesses can be used to calculate the weight of the endorsements

in the witness strategy.

Let us consider for the tests a scenario where a visit has a default confidence threshold of

75%, and travelers submit visits with at most 15 witnesses (average of previous tests), that never

endorsed the traveller before as for the NpW to not change. In these scenario, we created tests

where we change the travelers score in order to change the confidence threshold that needs to

be reached, if the traveler has a score of 0, then it needs 100% (1 − 1−0.75
0.5 ∗ 0 = 1) confidence,

with 0.35 it needs 82.5% confidence (1− 1−0.75
0.5 ∗ 0.35 = 0.825) and finally with 0.5, the traveller

needs 75% confidence. If a traveler has a score higher than 0.5, that does not change the default

threshold as it is already considered a positive score and thus, it does not increase the threshold

that needs to be achieved.

55

We also vary the Witness score from 0, 0.25, 0.35, 0.5, 0.75, 1. We increase scores by 0.25,

starting with score of 0, the only exception is the score value of 0.35, as this is an additional

value we test because it is the default score given to a new user, based on the values we setup

for the score details and forgetting weights with the results given by the previous tests.

We consider that using score of 0.5 for both the prover and witness is what simulates a

scenario where SureRepute is not used, i.e., where all users always have a middle score of 0.5,

because there is no reputation being maintained based on the behavior of the user.

Table 4.3: CROSS acceptance rate of visits based on: prover score, number of witnesses and
witness score.

The results are shown in Table 4.3, and as you can see in this table, maintaining the users

behavior, makes the need for visits to be submitted by travellers with more or less endorsements

in order to be accepted. The number of endorsements needed depend on the score of both the

witnesses and the traveller, when we have travellers that properly behave, i.e., with good score,

communicate with other users that properly communicate, removes the need for the users to

have a lot of witnesses. On the other hand having a traveller and witnesses that misbehave

makes the need for more witnesses. If the scores are very low, it is impossible to get a visit

accepted with just the witness strategy. Looking carefully into the table, we can see that that

the traveller/prover score makes the need of having at least two more witnesses, based on the

default threshold given, which is really important is the score of the witnesses, as they are crucial

56

for the calculation of the confidence. If all witnesses have a score of 0, then not even with 15

witnesses the visit submission is accepted. If all witnesses have a score of 1, then at least 3

witnesses are needed. It is important to note that the score calculation technique makes that

as the score increases, the more difficult it becomes to continue to increase, as more reports of

good behavior need to be given, and any malicious behavior would significantly decrease the

score. Reaching a score of 1 needs thousands of good behavior reports submitted without a

single report of malicious behavior.

We can also see that if SureRepute was not being used, then the users would only need at

least 4 endorsements, which would benefit malicious users because they could take advantage of

the system more easily when comparing with the tracking of users behavior. This is due to the

fact that only four endorsements would be needed, whereas with a reputation system it would

need more. Good users would also not have any advantage at all when compared with malicious

users, which would remove the encouragement of endorsing other users, which is to increase

their own score.

4.3 Campus Tour: A real scenario

To complete the evaluation of the system, we attested SureRepute in a real scenario, where we

used a real deployment of the smart tourism application CROSS integrated with SureRepute,

as explained in Section 3.3.1. CROSS can be used by users during tourism itineraries in order

to prove its location in specific points of interest, and get in return some reward for completing

the trip. The scenario we created for real users to do was a campus tour in Instituto Superior

Técnico on the Alameda campus in Lisbon, Portugal. We created 3 points of interest that the

users needed to visit during the trip. To prepare for the tour we captured the Wi-Fi access points

that could be seen in each of these points beforehand, which will allow the calculation of the

wifiAPsConfidence, detailed in Section 3.3.1. The map of the campus is present in Figure 4.6,

the 3 points of interest are represented in the figure as letters and are called: (A) Pavilhão de

Informática III, (B) Pavilhão Central and (C) Pavilhão de Civil.

Two experiments were made, where the default confidence threshold for each visit was 75%,

and used Equation 3.10 to calculate the confidence threshold. The difference between these

experiences was the number of real users that were doing the trip in order to be able to attest

the EndorsementsConfidence that uses Equation 3.8 and its value depends on the numbers of

witnesses a proof has. The first experience was done with 7 users and the second with 3 users.

The users followed the same path in the trip and so they were at the same point of interests at

the same time.

57

Figure 4.6: Map of the Campus Tour: (A) Pavilhão de Informática III, (B) Pavilhão Central,
(C) Pavilhão de Civil

The results of the experience done with 7 users is present in Table 4.4. From this table we

are able to take a few conclusions:

• In almost every visit, every user is able to be a witness to one another. When this does

not happen, it can be explained by the users not being close enough to exchange bluetooth

messages or because the mobile phone of the user is to slow when making the messages

exchanges with other travellers which results in its timeout;

• In the first visit, only User1 has the initial score of 0.35, this is because the users do not

submit reports exactly at the same time and so the witnesses that endorsed a location

that was accepted, already received a report of good behavior. The users are put in the

table according to the order of the first visit submission, and thus the scores are increasing,

except for User5, as it only endorsed User1 yet;

• In the second and the third visit the endorsements confidence reduces because of the NpW,

i.e., the number of times a witness already endorsed a traveller in different trips. NpW

58

Table 4.4: Campus tour details related with the confidence calculated during the experience
with 7 users

POI Traveler
Traveler
Score

Nr. of
Endor-
sements

Witnesses
Avg Score

Conf-
idence

Threshold

WifiAPs
Conf-
idence

Endor-
sements

Confidence

Conf-
idence

User1 0.35 6 0.35 82.5% 95.5% 100.0% 100.0%
User2 0.38 5 0.38 81.0% 100.0% 90.5% 100.0%
User3 0.40 5 0.40 80.0% 81.8% 95.2% 100.0%
User4 0.42 4 0.42 79.0% 86.4% 80.0% 100.0%
User5 0.38 6 0.44 81.0% 72.7% 100.0% 100.0%
User6 0.44 6 0.45 78.0% 100.0% 100.0% 100.0%

Pavilhão
de

Informática
III

User7 0.48 6 0.47 76.0% 90.9% 100.0% 100.0%

User1 0.49 5 0.49 75.5% 76.7% 58.1% 100.0%
User2 0.55 6 0.54 75.0% 60.0% 88.6% 100.0%
User3 0.56 6 0.55 75.0% 56.7% 90.2% 100.0%
User4 0.50 5 0.50 75.0% 63.3% 71.0% 100.0%
User5 0.44 6 0.52 78.0% 50.0% 73.8% 100.0%
User6 0.53 6 0.53 75.0% 80.0% 75.7% 100.0%

Pavilhão
de

Civil

User7 0.53 6 0.52 75.0% 56.7% 73.8% 100.0%

User1 0.60 6 0.60 75.0% 35.0% 85.0% 100.0%
User2 0.60 6 0.59 75.0% 82.4% 83.8% 100.0%
User3 0.59 5 0.59 75.0% 56.9% 70.0% 100.0%
User4 0.60 2 0.60 75.0% 54.9% 28.6% 83.5%
User5 0.52 6 0.57 75.0% 52.9% 81.2% 100.0%
User6 0.58 5 0.58 75.0% 84.3% 69.0% 100.0%

Pavilhão
Central

User7 0.58 5 0.58 75.0% 58.8% 68.8% 100.0%

is apart of the endorsements confidence calculation, serving as a parameter of the witness

decay mechanism provided by Grade et. al. [GPE22] work and its purpose is to reduce

colluding attacks between users, making new witnesses be more trustworthy than the same

ones. This means that a witness that already endorsed a traveller in previous visits will

have a NpW of 1. In this scenario, the NpW will be at most 1 as it accounts endorsements

in different trips, and only this trip was done by this users;

• All visits are being accepted, due to using both the endorsements confidence and the

WifiAPsConfidence;

• Looking at the first visit, we can see that with 5 or more witnesses having the initial score,

we can always reach the confidence threshold with only the endorsements confidence. With

4 endorsements we were able to reach the confidence threshold because the users already

had increased their scores, if they were to have the initial score, it would not be possible

to reach the confidence threshold with only the endorsement confidence;

• Looking at the second visit, we can see that the endorsements confidence reduced signif-

icantly due to the NpW. With the scores that they currently have and due to the NpW,

only some users are able to reach the confidence Threshold using only the endorsements

confidence, they have to have 6 witnesses and the their score much be high;

59

• Looking at the final visit, we can see the scores of witnesses are increasing, and because

of that, all travellers with 6 endorsements can already reach the confidence threshold with

only the endorsements confidence. The travelers with 5 endorsements have also increased

their confidence.

The results of the experience with 3 users are present in the Table 4.5. From this table we

can take that:

• All users are able to endorsed each other;

• The score of the users does not increase as much, as the users only endorse two other users

in each visit;

• The endorsements confidence is never enough with only two witnesses to reach the confi-

dence threshold alone, but all users are able to reach the confidence threshold due to the

wifiAPs confidence, which is the percentage of the Wi-Fi APs that the users captured that

where saved beforehand for that visit in the server;

• The confidence reduces in the second and third visit due to NpW;

• If the users continued to use the system their score would increase, which could make it

easier to reach the confidence threshold with only the endorsements confidence.

Table 4.5: Campus tour details related with the confidence calculated during the experience
with 3 users

POI Traveler
Traveler
Score

Nr. of
Endor-
sements

Witnesses
Avg Score

Conf-
idence

Threshold

WifiAPs
Conf-
idence

Endor-
sements

Confidence

Conf-
idence

User1 0.35 2 0.35 82.5% 77.3% 33.3% 100.0%
User2 0.38 2 0.38 81.0% 81.8% 36.2% 100.0%

Pavilhão
de

Informática
III

User3 0.40 2 0.40 80.0% 86.4% 38.1% 100.0%

User1 0.46 2 0.46 77.0% 76.5% 21.9% 98.4%
User2 0.42 2 0.42 79.0% 80.4% 20.0% 100.0%

Pavilhão
de

Civil User3 0.44 2 0.44 78.0% 64.7% 21.0% 85.7%

User1 0.48 2 0.48 76.0% 73.3% 22.9% 96.2%
User2 0.49 2 0.49 75.5% 70.0% 23.3% 93.3%

Pavilhão
Central

User3 0.50 2 0.50 75.0% 56.7% 23.8% 80.5%

To analyse how the scores got so high lets look into how many reports were submitted for

each visit in both experiences. The results are present in Figure 4.6 and 4.7 for the experience

with 7 and 3 users respectively.

In both experiences, the confidence gathered was always able to reach the confidence thresh-

old, and so only good behavior reports where submitted. At the end of each visit a report of

good behavior was always sent and every time a user helped another user by endorsing its visits

60

Table 4.6: Number of behavior reports submitted in the trip with 7 users

Traveler
Nr. of Reports by
submitting a visit

Nr. of Reports
made as a Witness

Nr. of Reports of
Good Behavior

Traveler
Score

User1 3 17 20 0.61

User2 3 18 21 0.62

User3 3 17 20 0.61

User4 3 18 21 0.62

User5 3 9 12 0.55

User6 3 16 19 0.60

User7 3 18 21 0.62

and the visit was accepted (which always happened) a good behavior report was also submitted.

For the experience with 7 users the number of reports submitted due to being a witness varies a

little as there are mobile phones that are not as capable as other to endorse visits, this of course

affects their score. User5 submits 12 reports and has a score of 0.55 and User4 submits 21 re-

ports and has a score of 0.62. It is also important to note that as the score increases, it becomes

more difficult to continue to increase the score, as we want to prevent reputation attacks. For

the experience with 3 users, the users always submitted for each other 2 endorsements and so

in total each user did 9 reports, which made each user to end with the same score of 0.52.

Table 4.7: Number of behavior reports submitted in the trip with 3 users

Traveler
Nr. of Reports by
submitting a visit

Nr. of Reports
made as a Witness

Nr. of Reports of
Good Behavior

Traveler
Score

User1 3 6 9 0.52

User2 3 6 9 0.52

User3 3 6 9 0.52

In conclusion, with these experiences we were able to see that SureRepute can work in a

real scenario as it is able to create a score that can reflect the behavior of its users. The

experiences also showed that the system either demands the need for more witnesses or demands

the additional use the WifiAPs strategy in order for a visit to be accepted, whenever the score

of the witnesses/travellers are low or when most of the witnesses already endorsed the traveller

before. The motivation for endorsing other users was also made clear as a user that submits 3

visits and does not make any endorsements would only receive 3 good behavior reports, but if

they would endorse 2 other users in each visit, they would be able to have 6 additional reports,

which would help the users achieve a higher score which increases their chances of a visit to be

accepted and thus makes the completion of trips easier which means more rewards to the users.

61

62

Chapter 5

Conclusion

In this document we presented SureRepute, a reputation system that can be integrated into the

SureThing framework, and allows easy integration between its different application domains.

One of the application domains of the SureThing is CROSS, a smart tourism application that

allows users to get rewards for visiting specific locations.

SureRepute provides privacy protection to its users, by using pseudonyms to segregate what

information each entity has access to. The score calculation technique used is based on the bino-

mial Bayesian model, where we made possible that different types of behavior can be submitted.

We also added the use of forgetting weights and the change of the initial values of good and bad

behavior, in order to ensure protections against reputation attacks.

The reputation system allows entities inside each application domain to submit reports of

user behavior to build a reputation of the users and also to get the user reputation that can help

each domain make better decisions.

Each domain can make requests to SureRepute by using the methods provided by SureRepute-

Client. There is one instance of the SureRepute-Server inside each application domain, allowing

that each server only handles requests for the users of that application, reducing the number

of requests when integrated with multiple application domains. Servers will communicate with

each other to maintain a shared reputation of users that are present in different application

domains.

We deployed SureRepute using Docker Containers orchestrated by Kubernetes, that allow

easy deployment to the cloud.

To evaluate the requirements of our solution as well as the defenses against the reputation

attacks, we created a demo entity that uses SureRepute-Client and can make requests to one or

more SureRepute-Servers. To evaluate specific details related with the integration with a real

application domain, we used the tourism itinerary use case (CROSS).

63

To make all this work possible, first we had to reimplement the existing code base for

CROSS. We did a complete refactorization of the code, changing the language from Go to

Java. We also integrated CROSS with the Location Certificate Transparency (LCT) so that the

emitted location certificates could be made persistent in a tamper-proof way and verifiable by

third parties at a later date, as it was one of the requirements of this work. After this step we

integrated SureRepute with CROSS, where the scores were used to provided weights to witness

endorsements and also the traveler score was used to increase the level of confidence that needed

to be achieved, which helps CROSS make better decisions when deciding if a location claim is

valid or not.

We were able to assess, that the system is capable of meeting the defined requirements and

also understand that the system is capable of being highly protected against reputation attacks,

which reduces usability to the users, but also allows the system to relax these defenses, in favor

of usability.

The performance evaluation done using CROSS also helped understand that SureRepute

does not produce a significant performance overhead to the requests, and it is also helping

making better decisions when deciding if a location claim should be accepted or not.

5.1 Achievements

We developed reputation system capable of creating a score for its users based on the reports

received, having in mind the privacy of the users and that is capable of protect against reputation

attacks.

We also developed a new score calculation technique for reputation systems that was based

on the binomial Bayesian model, but it also introduces new features, by allowing different types

of reports to be submitted and using different forgetting weights for good and bad behavior,

which helps defend against reputation attacks.

We integrated SureRepute into tourism itinerary use case (CROSS), where a traveller needs

to submit proofs that the user is in specific locations during a trip (either by interacting with

other users or with deployed infrastructure), in order to earn rewards, and used SureRepute to

help making better decisions.

We also contributed to other projects in SureThing by re-writing LCT and CROSS, including

its data specification, API specification and documentation.

We validated SureRepute through a qualitative and quantitative evaluation based on the

score calculation technique and interactions between the SureRepute entities as well as through

concrete tests of SureRepute in the context of a specific domain: CROSS.

64

Finally, we did a campus tour in order to attest our system in a real scenario.

5.2 Future Work

Some of our assumptions are matters for future work. We assume that accounts with the same

email in different application domains are always the same person, but even with different emails

it could be the same person, we could have a better way of identifying if the user is the same when

using different application domains. We also assume that only trusted entities can interact with

the CA, which is better than assuming pre-distributed keys, as even if the certificate becomes

invalid it can always request another, but it is not the ideal solution, although in our case only

our entities can interact with the CA, a better solution is using some kind of authentication

in order to communicate with the CA, allowing the CA to only create certificates for trusted

entities (SureRepute-Clients, SureRepute-Servers and Identity Provider). We also assume that

all entities of SureRepute never permanently fails, but we could also introduce fault tolerance

techniques to our system.

In terms of advancements outside of the assumptions, the LCT, could be further explored to

make the monitor also analyse the contents of the proofs and thus also submit reports based on

suspicious behavior to SureRepute. Rotating pseudonyms could be incorporated into SureRepute

in order to further improve the privacy of the users with a more advanced technique. SureRepute

could be integrated with the other application domains that currently exist or will exist of the

SureThing project.

Finally, we leave the possibility of integrating SureRepute outside of SureThing framework

possibly outside of the specifics of location certifications, as we believe SureRepute could also

be valuable for many crowd-based mobile and Internet of Things (IoT) applications.

65

66

Bibliography

[AH16] Ahmad J Abdel-Hafez. Reputation model based on rating data and application in

recommender systems. PhD thesis, Queensland University of Technology, 2016.

[CERP21] Pedro Carvalho, Samih Eisa, Leonardo S Rocha, and Miguel L Pardal. Location

certificate transparency for third-party-verifiable location proofs. Master’s thesis,

Instituto Superior Técnico, Universidade de Lisboa, 2021.

[CP18] Diogo Calado and Miguel L Pardal. Tamper-proof incentive scheme for mobile

crowdsensing systems. In IEEE 17th International Symposium on Network Com-

puting and Applications (NCA), pages 1–8. IEEE, 2018.

[CRKH11] Delphine Christin, Andreas Reinhardt, Salil S Kanhere, and Matthias Hollick. A

survey on privacy in mobile participatory sensing applications. Journal of systems

and software, 84(11):1928–1946, 2011.

[dC20] João Paulo Nunes da Costa. A witness protection program for a privacy-preserving

location proof system. Master’s thesis, Instituto Superior Técnico, Universidade de

Lisboa, 2020.

[DDKJ21] Guntur Dharma Putra, Volkan Dedeoglu, Salil S Kanhere, and Raja Jurdak.

Blockchain for Trust and Reputation Management in Cyber-physical Systems. arXiv

e-prints, page arXiv:2109.07721, September 2021.

[FP18] Joao Ferreira and Miguel L Pardal. Witness-based location proofs for mobile devices.

In IEEE 17th International Symposium on Network Computing and Applications

(NCA), pages 1–4. IEEE, 2018.

[Fra21] Miguel Cordeiro Francisco. Surepresence: Location proofs for wearable and kiosk

devices. Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa, 2021.

[GFJ09] Florent Garcin, Boi Faltings, and Radu Jurca. Aggregating reputation feedback.

67

In Proceedings of the First International Conference on Reputation: Theory and

Technology, volume 1, pages 62–74, 2009.

[GPE22] Ricardo Grade, Miguel Pardal, and Samih Eisa. Cross city mobile application: Gam-

ified peer-based location certification strategy. Master’s thesis, Instituto Superior

Técnico, Universidade de Lisboa, Portugal, 2022. Currently in progress.

[HBC15] Ferry Hendrikx, Kris Bubendorfer, and Ryan Chard. Reputation systems: A survey

and taxonomy. Journal of Parallel and Distributed Computing, 75:184–197, 2015.

[HZNR09] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and de-

fense techniques for reputation systems. ACM Computing Surveys (CSUR), 42(1):1–

31, 2009.

[IFMM10] Antonio Iera, Christian Floerkemeier, Jin Mitsugi, and Giacomo Morabito. The

internet of things [guest editorial]. IEEE Wireless Communications, 17(6):8–9, 2010.

[JI02] Audun Josang and Roslan Ismail. The beta reputation system. In Proceedings of

the 15th BLED Electronic Commerce Conference, volume 5, pages 2502–2511, 2002.

[KK11] Amit Kushwaha and Vineet Kushwaha. Location based services using android mo-

bile operating system. International Journal of Advances in Engineering & Tech-

nology, 1(1):14, 2011.

[KT12] Eleni Koutrouli and Aphrodite Tsalgatidou. Taxonomy of attacks and defense mech-

anisms in p2p reputation systems—lessons for reputation system designers. Com-

puter Science Review, 6(2-3):47–70, 2012.

[MCP20] Gabriel A Maia, Rui L Claro, and Miguel L Pardal. Cross city: Wi-fi location proofs

for smart tourism. In International Conference on Ad-Hoc Networks and Wireless,

pages 241–253. Springer, 2020.

[MGM03] Sergio Marti and Hector Garcia-Molina. Identity crisis: anonymity vs reputation

in p2p systems. In Proceedings Third International Conference on Peer-to-Peer

Computing (P2P2003), pages 134–141. IEEE, 2003.

[MMH+15] Hayam Mousa, Sonia Ben Mokhtar, Omar Hasan, Osama Younes, Mohiy Hadhoud,

and Lionel Brunie. Trust management and reputation systems in mobile participa-

tory sensing applications: A survey. Computer Networks, 90:49–73, 2015.

68

[MPQ+19] Lichuan Ma, Qingqi Pei, Youyang Qu, Kefeng Fan, and Xin Lai. Decentralized

privacy-preserving reputation management for mobile crowdsensing. In Interna-

tional Conference on Security and Privacy in Communication Systems, pages 532–

548. Springer International Publishing, 2019.

[NSY+20] Mohammad Reza Nosouhi, Keshav Sood, Shui Yu, Marthie Grobler, and Jingwen

Zhang. Pasport: A secure and private location proof generation and verification

framework. IEEE Transactions on Computational Social Systems, 7(2):293–307,

2020.

[RKZF00] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputation

systems. Communications of the ACM, 43(12):45–48, 2000.

[SCRP20] Henrique F Santos, Rui L Claro, Leonardo S Rocha, and Miguel L Pardal. Stop: A

location spoofing resistant vehicle inspection system. In International Conference

on Ad-Hoc Networks and Wireless, pages 100–113. Springer, 2020.

[SJ04] Jean-Marc Seigneur and Christian Damsgaard Jensen. Trading privacy for trust. In

International Conference on Trust Management, pages 93–107. Springer, 2004.

[TCB10] Manoop Talasila, Reza Curtmola, and Cristian Borcea. Link: Location verifica-

tion through immediate neighbors knowledge. In International Conference on Mo-

bile and Ubiquitous Systems: Computing, Networking, and Services, pages 210–223.

Springer, 2010.

[WAB+18] Alexandra Wood, Micah Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi,

James Honaker, Kobbi Nissim, David R O’Brien, Thomas Steinke, and Salil Vadhan.

Differential privacy: A primer for a non-technical audience. Vanderbilt Journal of

Entertainment and Technology Law, 21:209, 2018.

[YAA08] Jiang Yang, Lada A Adamic, and Mark S Ackerman. Crowdsourcing and knowledge

sharing: strategic user behavior on taskcn. In Proceedings of the 9th ACM conference

on Electronic commerce, pages 246–255, 2008.

69

70

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Objectives
	1.2 Contributions
	1.3 Dissertation Outline

	2 Background & Related Work
	2.1 Reputation Systems
	2.1.1 Building Steps
	2.1.2 Score Calculation

	2.2 Reputation Attack and Defense Techniques
	2.2.1 Reputation Attacks
	2.2.2 Defense Techniques

	2.3 Privacy-Preservation Techniques
	2.4 Location Certification Systems
	2.4.1 SureThing Applications

	2.5 Location Certificate transparency (LCT)
	2.6 Summary

	3 SureRepute
	3.1 Design
	3.1.1 Attack Model
	3.1.2 Assumptions and Requirements
	3.1.3 General Architecture
	3.1.4 Privacy Protection
	3.1.5 Score Calculation Technique

	3.2 Implementation
	3.2.1 Detailed Architecture
	3.2.2 Deployment

	3.3 Use Case: CROSS
	3.3.1 CROSS-Server v2.0
	3.3.2 Location Certificate Transparency v2.0 integration
	3.3.3 SureRepute Integration

	3.4 Summary

	4 Evaluation
	4.1 Qualitative Evaluation
	4.1.1 Score Calculation
	4.1.2 Shared Reputation Evaluation
	4.1.3 Privacy Evaluation

	4.2 Quantitative evaluation
	4.2.1 CROSS Visit Submission
	4.2.2 SureRepute Overhead in CROSS
	4.2.3 SureRepute Benefits to CROSS

	4.3 Campus Tour: A real scenario

	5 Conclusion
	5.1 Achievements
	5.2 Future Work

	Bibliography

