
Decentralized trajectory optimization for a fleet of industrial
mobile robots

Inês Sofia Baptista Silva

Dissertation to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Prof. Alberto Manuel Vale
Prof. Rodrigo Martins de Matos Ventura

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva
Supervisor: Prof. Alberto Manuel Vale

Member of the Committee: Prof. Maria Isabel Lobato de Faria Ribeiro

November 2022

ii

Dedicated to my family and friends.

iii

iv

Acknowledgments

My first word of appreciation goes to my supervisors, Professor Rodrigo Ventura and Professor Alberto

Vale, for their insightful suggestions and encouragement. Without them, the conclusion and success of

this work would not be possible.

Thanks to my colleague and co-worker, João Tavares, for the teamwork and companionship. I would

also want to thank João Mendes for providing an amazing working place at Imeguisa.

On a more personal level, a very special note goes to my brother, Luı́s, my mother, Fernanda and my

father, Luı́s. Thank you for all the opportunities, unconditional love, and support you have provided me

over the past 23 years.

I owe a big thanks to Carolina, Constança, Diogo and Vitória for teaching me the meaning of true

friendship.

To Beatriz, Iara, Inês Carriço, Inês Fernandes, Rita Fardilha and Rita Santos goes all my gratitude for

contributing to my success in IST.

Last but not least, a special thanks to João, for all his patience and love.

v

vi

Resumo

O planeamento de trajectórias de vários robôs é uma tarefa complexa, dada a necessidade de evitar co-

lisões com obstáculos estáticos e dinâmicos, tais como outros robôs em movimento. Esta dissertação

apresenta uma nova abordagem para gerar sequencialmente trajectórias optimizadas e sem colisões.

O método proposto está divido em duas fases. Na primeira, é gerada uma trajetória com base num

algoritmo aleatório. De seguida, é definido um problema de otimização que suaviza a trajetória obtida

anteriormente. Como principal contribuição desta dissertação, foram utilizados campos de signed dis-

tance para descrever os obstáculos dinâmicos ao longo do tempo. Assim, o problema de optimização

formulado apresenta apenas uma restrição relativamente ao desvio de obstáculos. Deste modo, a

complexidade do método desenvolvido é independente do número de agentes.

O principal objectivo desta dissertação é gerar descentralizadamente trajectórias optimizadas para uma

frota de robôs móveis autónomos, que irão operar num ambiente industrial de fábrica. Deste modo,

requisitos adicionais foram tidos em consideração. Primeiramente, o problema de optimização foi re-

formulado, para que a deslocação dos robôs seja realizada, preferencialmente, do lado direito dos

corredores da fábrica. Além disso, será apresentado um algoritmo que garante que todos os veı́culos

tenham um mapa actualizado do ambiente da fábrica. Esta atualizção é necessária sempre que outros

detectem o aparecimento ou desaparecimento de obstáculos significativos. Foram efectuados vários

testes em simulação, assim como testes experimentais num cenário real. No geral, o método proposto

providenciou uma solução satisfatória de planeamento de trajectórias de vários robôs.

Palavras-chave: Sistemas com Múltiplos Robôs, Planemento de Movimento, Optimização de

Trajetória, Desvio de Obstáculos, Atualização de Mapa Dinânimco

vii

viii

Abstract

Multi-robot trajectory planning is a complex task given the need to avoid collisions with both static and

dynamic obstacles, such as other moving robots. This dissertation presents a novel approach to sequen-

tially generating collision-free optimized trajectories for multiple mobile robots. The proposed method

first uses a sampling-based kinodynamic trajectory planner to obtain a collision-free trajectory. Then, a

non-linear direct collocation method refines the previous trajectory into a smoother and optimized one.

As the main novelty of this dissertation, a set of signed distance fields were used to describe the envi-

ronment and the dynamic obstacles through time. Thus, this formulation presents only one restriction

in the optimization problem regarding static and moving obstacles avoidance. This renders the solver’s

performance independent of the number of agents.

This dissertation’s main purpose is to implement a decentralized trajectory optimization solution for a

fleet of autonomous mobile robots, that will operate in an industrial manufacturing unit. Some additional

requirements had to be considered for this application. A novel reformulation of the optimization prob-

lem was designed in order to ensure that the robots drive on the right side of the factory’s corridors.

Additionally, an algorithm will be reported that allows all vehicles to have an up-to-date map of their sur-

roundings, whenever other robots detect changes in it. Several simulation tests, as well as experimental

ones in a real-world scenario, were carried out. Overall, the proposed framework provided a satisfactory

solution to the multi-robot planning problem.

Keywords: Multi-Robot Systems, Motion planning, Trajectory Optimization, Collision Avoidance,

Dynamic Map Update

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xxi

Glossary . xxiii

1 Introduction 1

1.1 Industrial Context . 1

1.2 Aerospace Motivation . 2

1.3 Project Outline . 3

1.3.1 Sequential Description . 4

1.3.2 Functional Architecture . 6

1.4 Problem Statement . 7

1.5 Objectives . 8

1.6 Contributions . 8

1.7 Dissertation Outline . 8

2 Background 10

2.1 Motion Planning . 10

2.1.1 Configuration Space . 10

2.1.2 Motion Planning Methods . 11

2.2 Trajectory Optimization . 17

xi

2.2.1 Linear Programming . 18

2.2.2 Optimal Control . 18

2.3 Multi-Robot Trajectory Planning . 20

2.4 Dynamic Map Update . 21

2.4.1 Map Merging . 21

2.4.2 Map sharing . 22

3 Proposed Approach 24

3.1 Differential Constraints . 24

3.2 Problem Formulation . 25

3.3 Kinematic Model of the Vehicle . 26

3.3.1 Reachable states of the vehicle . 27

3.4 Methodology . 28

4 Single-Robot Trajectory Planning 30

4.1 Kinodynamic RRT . 30

4.2 Trajectory Planning with a Differential Drive Robot . 32

5 Single-Robot Trajectory Optimization 35

5.1 Optimization Problem . 35

5.2 Trajectory Optimization with a Differential Drive Robot . 39

5.2.1 Optimization Solver Integration . 40

5.2.2 Single-Robot Results . 41

6 Multi-Robot Trajectory Optimization 43

6.1 Optimization Problem Reformulation . 43

6.1.1 Architecture of Motion Planning and Optimization 45

6.2 Trajectory Optimization with Two Robots . 46

6.2.1 Two Robots with Identical Maximum Velocities . 47

6.2.2 Two Robots with Different Maximum Velocities . 48

6.3 Trajectory Optimization with Six Robots . 51

6.3.1 Without Inter-Robot Avoidance . 51

xii

6.3.2 With Inter-Robot Avoidance . 52

6.4 Scalability Study . 56

6.5 Trajectory Optimization with Fifty Robots . 57

7 Real Environment Requirements 60

7.1 Objective Function Reformulation . 60

7.2 Dynamic Map Update . 62

8 Real Environment Results 65

8.1 Experimental Setup . 65

8.2 Experimental Tests . 66

8.2.1 Scenario I . 68

8.2.2 Scenario II . 69

8.2.3 Scenario III . 71

8.2.4 Final Remarks . 73

9 Conclusions and Future Work 75

Bibliography 76

xiii

xiv

List of Tables

2.1 Path planning algorithms characteristics. 17

8.1 Vehicle parameters used in the experimental tests. 66

xv

xvi

List of Figures

1.1 AGVs operating in the Volkswagen Autoeuropa facilities. 2

1.2 Interaction between K peripherals and N robots. 3

1.3 Sequence Diagram for task assignment. 4

1.4 Sequence Diagram for map updates. 5

1.5 Functional Architecture of a single AMR. 6

2.1 Motion Planning Algorithms. 11

2.2 Example of decomposition graph-based method that uses vertical cell decomposition [9]. 11

2.3 Sampling based roadmap. 12

2.4 RRT expanding operation [15]. 13

2.5 A Comparison between the RRT and RRT*. 14

2.6 Example of path generated using FMM. 15

2.7 Example of path generated using FM2. 16

2.8 Trajectory optimization methods. 18

2.9 Function approximation using collocation methods. 20

2.10 Results obtained with the Distributed Dynamic Map Algorithm [44]. 23

3.1 Motion planning problem for a fleet of three AMRs. 25

3.2 Vehicle representation. 26

3.3 Reachable states of the robot. 28

3.4 Motion query. 29

3.5 Architecture of the motion planning approach of robot Ri. 29

4.1 Construction of Kinodynamic RRT tree. 31

xvii

4.2 Kinodynamic RRT trajectory generation. 33

4.3 Results of generating fifty different trajectories using the Kinodynamic RRT for the same

motion problem. 34

5.1 Example of occupancy gridmap and its respective EDTs and SDF. 37

5.2 Comparison between two solvers: Sequential Least Squares Programming (SLSQP) and

Interior Point Optimizer (IPOPT). 41

5.3 Initial guess trajectory and post optimized trajectory. 41

5.4 Data obtained with fifty trajectories generated for the same optimization problem. 42

6.1 Set of SDFs illustrating the position of a robot Ri through time. 44

6.2 Architecture of approach A to generate an optimized trajectory of robot Ri. 45

6.3 Architecture of approach B to generate an optimized trajectory of robot Ri. 46

6.4 Architecture of approach C to generate an optimized trajectory of robot Ri. 46

6.5 Trajectories of robots R1 and R2 obtained with approach A. 47

6.6 Trajectories of R1 and R2 at different time instants with approach A. 47

6.7 Failed trajectories generation after enlarging the safe distance to obstacles with approach

A. 48

6.8 Trajectories of robots R1 and R2 obtained with approach A. 48

6.9 Trajectories of robots R1 and R2 obtained with approach B. 49

6.10 Trajectories of R1 and R2 at different time instants with approach B. 49

6.11 Trajectories of robots R1 and R2 with different maximum velocities. 49

6.12 Trajectories of R1 and R2 at different time instants with different maximum velocities. . . . 49

6.13 Right and left wheel velocity at every collocation point of vehicles R1 and R2 with different

maximum velocities. 50

6.14 Trajectories of robots R1 and R2 with different maximum velocities. 50

6.15 Trajectories of R1 and R2 at different time instants with different maximum velocities. . . . 50

6.16 Right and left wheel velocity at every collocation point of vehicles R1 and R2 with different

maximum velocities. 50

6.17 Trajectories of six vehicles without inter-vehicle avoidance. 51

6.18 Generation of six trajectories. 53

6.19 Trajectories of six vehicles with inter-vehicle avoidance, at different time instants. 54

xviii

6.20 Fifty optimized trajectories overlapped for the motion planning problem of each vehicle. . 54

6.21 Violin plots regarding computational time (a) and trajectory duration (b) for the TP and TO

algorithms of each vehicle. Frequency of failure for both approaches (c). 55

6.22 Histogram with frequency of maximum number of agents that can be added to the studied

scenario. 57

6.23 Example of scenarios for different maximum number of agents allowed in the environment. 57

6.24 Solution for the fifty-multi agent problem. 58

6.25 Data collected regarding the Trajectory Optimization of each vehicle, generated fifty times. 59

7.1 Representation of where the virtual obstacle should be placed to ensure that the vehicle

drives on its right-hand for the set of vehicle’s orientation Θ = {−π,−π/2, 0, π/2, π}rad.

SDFs generated by the right side obstacle when the vehicle has an orientation from set Θ. 61

7.2 Solution using the previously proposed method, where the objective function only mini-

mizes the trajectory duration. 62

7.3 Solution using the reformulated method, in which the vehicles drive preferably on the right

side on the corridors. 62

7.4 Original map of Imeguisa’s installations and corresponding binary static map created. . . 63

7.5 Public Map computed by the average of all robot’s Local Maps and corresponding Binary

Public Map. The Updated Public Map is generated by merging the Static Map with the

Binary Public Map. 64

8.1 Navigable areas in Imeguisa’s installations. 65

8.2 Representation and real autonomous mobile robot used in the experimental tests. 66

8.3 Location of starting and ending points of existing tasks and idle zone. 67

8.4 Sequential actions performed in Scenario I. 68

8.5 Scenario at Imeguisa’s installations with a set of two robots to execute task s1. 68

8.6 Sequential actions performed in Scenario II. 69

8.7 Scenario at Imeguisa’s installations with a set of two robots to execute tasks s2 and s3. . . 69

8.8 Scenario at Imeguisa’s installations with a set of two robots to execute tasks s2 and s3

(cont.). 70

8.9 Sequential actions performed in Scenario III. 71

8.10 Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and s4. 71

xix

8.11 Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and

s4 (cont.). 72

8.12 Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and

s4 (cont.). 73

8.13 Computational time for generating optimal collision-free and feasible trajectories in a real-

world scenario. 74

xx

Nomenclature

β angular range of the vehicle sensor

T Rapidly-exploring Random Tree tree

f system dynamics

p pose of a robot, p(t)inx(t)

u input control of the vehicle, u ∈ U

x state of the vehicle, x ∈ X

C configuration space

Cfeas feasible configuration space

Cfree free configuration space

Cobst obstacle configuration space

O set notation for obstacles

P set of all robots trajectories

R set notation for robots

U allowable control input space

W set notation for world space where the robot moves

X state space

ω angular velocity of the vehicle

π trajectory

θr vehicle orientation with respect to the x-axis

xxi

aR, aL right and left wheel accelerations of the vehicle

C number of collocation points

dsafe safe margin between robot and obstacles

h time interval between consecutive collocation points

hr vehicle’s height

K number of peripherals

L distance between both actuated wheels of the vehicle

N number of vehicles

O number of obstacles

q configuration of the vehicle/robot

R robot

T duration of trajectory

t time when each state is reached

v average linear velocity of the vehicle

vR, vL right and left wheel velocities of the vehicle

wr vehicle’s width

xr, yr cartesian coordinates of the vehicle

Subscripts

goal goal

init initial

k index of collocation point, k ∈ {0, ..., C − 1}

max maximum

min minimum

Superscripts

i robot index, i = {0, ..., N}

m obstacle index

xxii

Glossary

2-D Two Dimensional. 25, 26

AGV Automated Guided Vehicle. 1, 2

AMR Autonomous Mobile Robots. 2–6, 21, 25, 60, 63, 65–67, 73, 75, 76

APF Artificial Potential Field. 14, 17

BLP Binary Linear Programming. 18

BPM Binary Public Map. 63

DDM Dynamic Distributed Map. 22, 23

DMPC Distributed Model Predictive Control. 21

DPM Dynamic Public Map. 22, 23

EDT Euclidean Distance Transform. 37, 38

FB Flatness-Based. 18

FM2 Fast Marching Square. 15–17

FMM Fast Marching Method. 15, 17

IPOPT Interior Point Optimizer. xviii, 40–42, 48, 52

IST Instituto Superior Técnico. 1, 65

LDM Local Dynamic Map. 22, 23

LM Local Map. 63

MILP Mixed Integer Linear Program. 18

MIQP Mixed Integer Quadratic Programming. 21

xxiii

PM Public Map. 63

PRM Probabilistic Roadmaps. 12, 17

ROS Robot Operating System. 66

RRT Rapidly-exploring Random Tree. 13, 17, 30–33, 35, 39–42, 45, 52, 75, 76

RRT* Rapidly-exploring Random Tree Star. 13, 17

SDF Signed Distance Field. 37, 38, 43, 44, 52, 60, 61

SLSQP Sequential Least Squares Programming. xviii, 40, 41

SM Static Map. 62, 63, 65

SQP Sequential Convex Programming. 21

TEB Timed Elastic Band. 66, 76

TO Trajectory Optimization. 41, 42, 45–47, 49, 50, 52, 57

TP Trajectory Plannign. 41, 42, 45–50, 52

UAV Unmanned Aerial Vehicles. 2, 3

UPM Updated Public Map. 63

VO Velocity Obstacle. 21

xxiv

Chapter 1

Introduction

1.1 Industrial Context

The massive technological development of the last century and the need to increase the scale of pro-

duction have spawned a desire to automate the production process more and more. The advancements

made in engineering fields have contributed to the increasing need to produce things more affordably

and in less time, as well as to improve worker comfort by addressing ergonomics and workplace safety.

Although this automation is nowadays applied in direct production tasks, it has not yet reached its full

potential in the logistic flows that supply these production lines.

Logistic flows consider all processes, or sequences of processes, necessary to attain a goal in the

shortest time possible, at the lowest cost and with the highest quality [1]. Intralogistics, which refers to

the management, optimization, and distribution of products within the same warehouse or manufacturing

unit, can be included in this context. Intralogistics focuses on reducing the manipulation and transport of

materials in the factory’s logistics flow, in order to make its process faster, more agile, cost-effective and

have a significant impact on production outcomes [2].

The AGiLE project is a partnership between Instituto Superior Técnico (IST), Imeguisa and Volkswagen

Autoeuropa, that focuses on developing a technological system to enable end-to-end automation of

intralogistics flow in the Volkswagen Autoeuropa car factory. Nowadays, materials are transported inside

the factory using Automated Guided Vehicles (AGVs) that follow a magnetic stripe on the factory floor.

However, the AGVs solutions lack intelligence and communication capacities with the intralogistics flow

in which they are included. In addition, AGVs use a “push” strategy when transporting materials in

logistic facilities, i.e., the transport is always performed and the material is “pushed” to the assembly line

regardless of its demand. This can lead to excessive and unnecessary transit, space occupation issues

and the transport of material that are not immediately required. In addition, AGVs always execute a

fixed trajectory and have no freedom of additional movement; they are unable to change their route to

avoid obstacles or satisfy more than one path. Figure 1.1 illustrates a real situation in the Volkswagen

1

Autoeuropa facilities where AGVs operate.

Figure 1.1: AGVs operating in the Volkswagen Autoeuropa facilities (left side). Example of an AGV
transporting a rack and following a magnetic stripe of the floor (right side).

To overcome these limitations, the AGiLE project will integrate Autonomous Mobile Robots (AMRs) into

the Volkswagen Autoeuropa manufacturing environment. These agents provide a more advanced so-

lution, as they are able to communicate with one other, navigate freely and, consequently, adapt to

dynamic scenarios. This multi-robot system will follow a non-centralized architecture, providing a scal-

able and resilient solution.

Without the need for human intervention, this solution will be able to manage and control an end-to-end

intralogistics flow. This system should assign tasks to each AMR autonomously, considering factors

such as availability, and collision avoidance. In conclusion, integrating these agents will enable the

optimization of resources, taking into account the real-time requirements of an assembly line, always

ensuring that it is accurately supplied and never interrupted.

1.2 Aerospace Motivation

Unmanned Aerial Vehicles (UAVs) have been one of the most challenging and promising technologies in

the aerospace field in recent years. This progress has been directly affected by the exponential growth

of both military and civilian UAVs applications in search and rescue, reconnaissance, area mapping,

transportation, geological surveying, etc. [3–6]. The monitoring of any of these activities can be chal-

lenging, requiring UAVs to autonomously and cooperatively searching and tracking targets of interest

[4, 5]. Consequently, effective decentralized strategies need to be implemented for UAVs to complete

tasks cooperatively and time efficiently.

Regarding transportation, UAVs can be an alternative to existing logistics systems. They can operate

above the production systems, thus extending the materials flow in a third dimension. Furthermore, a

transportation system based on UAVs is highly flexible and allows fast transportation. Several other car

manufactures have evaluated the viability of transporting components using drones within the factory 1.

Kendoul [3] identifies three functional technology areas as the core components of UAVs: guidance,

navigation, and control. Among these functional areas, this dissertation mainly focuses on the guidance

1Audi. Logistics, Nov 2016. URL https://www.audi-mediacenter.com/de/audi-techday-smart-factory-7076/die-logistik-7082.

2

system, more specifically, it addresses the motion planning of a vehicle. The primary goal of an UAV

optimized motion planning is to design a collision-free flight path to a target and, while also meeting the

UAV performance requirements [6]. Therefore, the work developed in this dissertation can be extended

for use in scenarios such as the generation of trajectories for a UAVs formation.

1.3 Project Outline

In this section, the system architecture that will be develop in the course of the AGiLE project is de-

picted. As illustrated in Figure 1.2, K peripherals scattered through different locations of the warehouse

communicate with N robots that share information from a cloud.

Robot 1 Robot 2 Robot N

...

...

Blackboard

Peripheral 1 Peripheral 2 Peripheral K

Figure 1.2: Interaction between K peripherals and N robots. These agents communicate and share
information through a could, or Blackboard.

First, some terms must be defined:

• Peripheral - Agent responsible of recognizing when it is necessary to restock some component in

the production line. When a task is to be executed, the peripheral should send a task request to

all robots.

• Robot - Agent responsible for transporting components from an initial to a goal position. All N

robots will receive a task request and they will decide in a decentralized manner which one will

perform it.

• Blackboard - Each robot’s system contains a copy of the updated blackboard, which stores infor-

mation shared by all AMRs, such as:

– updated map of the environment;

– tasks requested by the peripherals to be auctioned;

– tasks and respective trajectories that are already assigned to be executed.

3

• Auction - Deciding process. When a task is requested, each robot computes its bid and, then,

shares it with the other robots. Each robot holds an auction with all the shared bids and decides

which robot will performed the requested task.

• Bid - Each robot calculates one bid for each task. The bid considers the robot’s autonomy and the

time that it will take to start executing the task in auction.

The architecture of the system will be decentralized, i.e., the decision-making authority will not be con-

centrated on a single machine or agent. Thus, each robot makes its own decisions based on local

information. This architecture decomposes the multi-robot system problem into a set of single-agent

ones. For instance, each robot plans its own route, while aiming at a globally optimal and safe solution.

Additionally, this approach is robust, since the system will not fail even if communication with one robot

fails. The decentralized method is considered to be an adequate approach for this dissertation problem

because it is scalable, robust, and reduces the system’s complexity.

1.3.1 Sequential Description

The sequence diagram presented in Figure 1.3 depicts the interactions between a peripheral and a

single robot over time, to assign a specific task. The robot system is composed of five elements: four

function blocks, namely the Task Manager, Map Manager, Task Executer and Trajectory Optimizer; and

the fifth element, the Blackboard, which is a copy of the data shared by all robots, as mentioned previ-

ously.

Robot

Blackboard

result
(time, robot, task)

Task manager

trajectory,
schedule

decision

Trajectory
optimizer Task executer Map managerPeripheral

task

request
request

trajectory

biding parameters

execute command

time

Figure 1.3: Sequence Diagram for task assignment. A peripheral requests a task and an auction process
is held to decide on the winning robot that will execute the assigned task.

The four function blocks presented above can be defined as:

• Task manager - Performs an auction to decide which AMR will execute the requested task.

• Map Manager - Updates a map whenever there is a significant change in the environment and

checks if the AMR trajectory needs to be recalculated.

4

• Task Executer - Executes the guidance of the AMR.

• Trajectory Optimizer - Creates an optimized trajectory to complete the task.

Firstly, the peripheral requests a new task. The request is sent to the Blackboard, which stores the

task request before forwarding it to the Task Manager. This element will solicit an optimized trajectory

from the Trajectory Optimizer. With this trajectory, the Task Manager will hold an auction that, taking

into consideration the biding parameters of all robots, decides which one will perform the specific task.

When a decision is made, the Task Manager of the winning robot sends the chosen trajectory and its

respective schedule to the Blackboard. Then, when the task needs to be performed, a command is sent

to the Task Executer, so that the AMR can begin following the trajectory.

Nevertheless, facility logistics environments are not static, due to factory operations that can create new

obstacles. A static reference map that contains static features of the environment, such as corridors and

fixed machinery, will be available beforehand. This reference map of the factory should be updated with

changes that arise in the environment. Therefore, it is possible to improve the robots’ path planning and

the coordination of the multi-robot system. Figure 1.4 presents the sequence diagram for dealing with a

map update in a decentralized manner.

Robot

Blackboard Task manager Trajectory
optimizer

Updated map with new obstacle

Task executer Map managerPeripheral

updated trajectory,
schedule

request new trajectory

updated trajectory,
schedule

request new trajectory

updated map

static obstacle

time

Figure 1.4: Sequence Diagram for map updates. Two distinct scenarios are considered: another robot
updates the shared map; or the considered robot detects a significant change in the environment.

The above diagram depicts two distinct situations. In the first, a map that has been updated by another

robot is uploaded to the AMR’s Blackboard. In the second scenario, the robot can detect a significant

change in the environment while performing a task. Then, the Map Manager will generate an updated

map to be saved in the Blackboard and shared with the other AMRs. In both situations, the Map Manager

should decide whether or not rerouting is required. In the affirmative case, the Trajectory Optimizer

receives a request for planning a new trajectory.

5

1.3.2 Functional Architecture

In Figure 1.5 the functional architecture implemented in each AMR is presented. As previously de-

scribed, this system can be divided into one data storage (Blackboard) and four function blocks (Task

Manager, Map Manager, Task Executer and Trajectory Optimizer).

updated map

Blackboard

updated map

task in auction
and bids

scheduled tasks and
robots trajectories

request

command

scheduled trajectory,
bid

Task Manager

trajectory

new trajectory

Trajectory
Optimizer

request

Map Manager

Task Executer

request

updated map,
 robots trajectories

updated map with changes,
new trajectory

Figure 1.5: Functional Architecture of a single AMR. The data storage (Blackboard) and four function
blocks (Task Manager, Map Manager, Task Executer and Trajectory Optimizer) are represented, as well
as the inputs and outputs of each module.

The Task Manager takes as an input a request for a new task. To compute the bid for the auctioned task,

this function block uses the trajectory calculated in the Trajectory Optimizer. The Trajectory Optimizer

takes as input a requested task and provides as an output an optimized trajectory to complete it. The

bid of each AMR is shared between all robots and the Task Manager determines which robot wins the

auction. A command is sent to the Task Executer of the winning AMR to initialize the guidance and carry

out the task. While this AMR is following the defined trajectory, two different scenarios can arise: the

AMR detects a new static obstacle; or another robot discovers a new obstacle. In the first scenario, as

explained before, the Map Manager will take as inputs the static obstacle coordinates detected by the

respective AMR and creates an updated map for all robots to share. For the second scenario, the Map

Manager will receive an updated map from the other robots. In both situations, the local map of the AMR

is updated and it is determined whether, given the newly updated map, any trajectories of the AMR must

be redefined.

This dissertation focuses primarily on the decentralized trajectory optimization problem. Therefore, all

AMRs integrated in the industrial fleet should communicate with each other, in order to contribute to

updating the factory’s static map and generating optimized trajectories. Consequently, the Trajectory

Optimizer and Map Manager are the function blocks that will be further analysed and developed in this

dissertation. On the other hand, the Task Manager and Task Executed will be implemented by J. Tavares

[7].

6

1.4 Problem Statement

The problem of interest is the general optimization of a multi-vehicle system, with a particular emphasis

on trajectory planning. Each agent in a fleet of N vehicles is assumed to be autonomous and capable

of either moving or standing still. The velocity and position of adjacent agents as well as the locations of

several obstacles can be determined using equipped sensors. Additionally, each agent is aware of the

known static map of the environment, the trajectories being executed by the other agents and the tasks

and trajectories already assigned to all of them. The tasks will be requested asynchronously. Therefore,

these trajectories will be generated in a decentralized and sequential manner.

To perform a requested task, the Trajectory Optimizer function block of each agent should take an initial

and final pose and plan a trajectory to complete it. The planning must consider the agent’s availability,

as it may already be scheduled to perform other tasks. To generate a collision-free trajectory, each

agent must be aware of the locations of all other agents at every instant. Each trajectory should be an

optimized solution that minimizes a cost function that depends on parameters to define in the course of

this work.

An autonomous robot must perceive and act accordingly with its environment, as this is the foundation

for optimizing its trajectory. Since the environment under study is subject to change, it is necessary to

distinguish between static and dynamic obstacles. Static obstacles are fixed objects from the agent’s

perspective. On the other hand, the location of dynamic obstacles changes in the agent’s field of view.

In the Map Manager function block this distinction between the two types of obstacles must be made

and the static obstacles must be taken into account when representing the current environment. Let us

define the following terminology:

• Static Map - Map built initially. It contains static features of the environment like walls or fixed

objects.

• Temporary Map - Map built by an agent upon detecting significant changes in the environment.

• Updated Map - Map updated by merging temporary maps with the static map.

Initially, all vehicles will own a static map. When an agent detects a significant change, i.e., appearance

or disappearance of a static obstacle, the Map Manager function block must generate a temporary map.

This temporary map should be sent to the Blackboard and distributed to the other agents. Then, an

updated map must be created by merging all maps, so that robots can plan their trajectories using

all of the shared information. By considering static obstacles and updating the known initial map of

the environment, the agent’s trajectory planning and the coordination of the multi-robot system can be

improved.

7

1.5 Objectives

The main goal of this dissertation is to develop an optimized trajectory planning algorithm, that is capa-

ble of generating feasible and safe trajectories for a fleet of industrial mobile robots performing factory

logistics tasks. In order to accomplish this, the following objectives must be met:

• Study the concepts and assess past research regarding motion planning, multi-robot trajectory

planning, trajectory optimization and dynamic map update.

• Define a motion planning algorithm that generates optimized trajectories.

• Outline a map updating technique to be implemented.

• Integrate the developed solution on the software architecture of a real robot fleet.

• Finally, throughout the stage of implementation, test and validate iteratively the developed solution.

1.6 Contributions

This dissertation presents the following contributions:

• Implementation of a kinodynamic trajectory planning algorithm.

• Novel formulation for multi-robot trajectory optimization with only one constraint regarding obstacle

avoidance, which includes both static and dynamic obstacles.

• Simulation and evaluation of the algorithm performance.

• Novel reformulation of the objective function to obtain trajectories that imposes vehicles to drive on

the right side of the corridors.

• An authored work entitled of “Sequential Multi-Agent Trajectory Optimization Using Signed Dis-

tance Fields”, which is presented in the extended abstract, was recently submitted for presentation

on the 2023 IEEE International Conference on Robotics and Automation (ICRA) to be held in

London, England, on 29th May to 2nd June 2023. An accompanying video was also submitted

illustrating the results obtained 2.

1.7 Dissertation Outline

The dissertation is structured as follows:

• Chapter 2 - Reviews the relevant literature for the work to be developed in the dissertation. An

overview of path planning algorithms is given. The trajectory optimization problem is examined.

Methods proposed for multi-robot trajectory planning are presented. Finally, map merging tech-

niques are analysed, followed by examples of map sharing techniques.

2youtube video URL: https://youtu.be/uno3QLNpO9Y

8

https://youtu.be/uno3QLNpO9Y

• Chapter 3 - Introduces the proposed algorithm to solve a single-robot trajectory optimization prob-

lem. Additionally, the model of the vehicle under study is defined.

• Chapter 4 - Presents the trajectory planning method proposed to search for feasible and collision-

free routes.

• Chapter 5 - Formulates the single-robot optimization problem.

• Chapter 6 - Formulates the multi-robot optimization problem and evaluates the algorithm’s perfor-

mance.

• Chapter 7 - Presents adjustments done to the proposed algorithm to satisfy the real-industrial

environment.

• Chapter 8 - The proposed trajectory planning algorithm is tested in a real-industrial environment.

• Chapter 9 - Gives a summary of the work developed, main conclusions and outlines the future

work.

9

Chapter 2

Background

In this chapter, a literature review is conducted for the work that is developed in the dissertation. In Sec-

tion 2.1, the fundamental concepts of motion planning and an overview of path planning algorithms are

presented. Next, in Section 2.2 the trajectory optimization problem is defined and several approaches to

solve it are analysed. In Section 2.3 methods for multi-robot trajectory planning are proposed. Finally, in

Section 2.4 a preliminary analysis on map merging methods is presented, followed by examples of map

sharing techniques.

2.1 Motion Planning

Motion planning is a topic widely researched and many algorithms have been developed to fulfil the goal

of finding the optimal motion plan. Firstly, path planning must be distinguished from trajectory planning

[8]. Informally, a path is a spatial construct with no notion of time that describes how to go from an initial

to a goal point. In contrast, a trajectory provides a notion of time by assigning a time constraint to a

geometric path. Trajectory planning assumes that the output is continuous in time and must be able to

ensure control limitation of the vehicle, thereby affecting robot kinematics and dynamics.

This section begins by introducing the configuration space used to formulate the motion planning prob-

lem. Afterwards, an overview of the major contributions to solving it is provided.

2.1.1 Configuration Space

As it is presented in [9], the motion planning problem can be mathematically formalized. Let define

the space of all configurations as the configuration space, C. Consider an agent, R, moving in an

environmentW ∈ R2, populated by a set of M obstacles O = {O1, ..., OM}.

The configuration of R inW that specifies completely its position and orientation in the system is defined

as q ∈ C. The obstacle configuration space Cobst ⊂ C is defined as the set of configurations q at which the

robot intersects any obstacle in the set O. Contrarily, the obstacle-free configuration space is denoted

10

by Cfree = C\Cobst. Finally, a path planning problem can be defined as finding a continuous and collision-

free path π : [0, 1]→ Cfree between the initial, qinit = π(0), and goal configurations, qgoal = π(1).

2.1.2 Motion Planning Methods

In this section, advantages and disadvantages of several motion planning methods are discussed. The

methods addressed are the following: Decomposition Graph-based Methods, Sampling-based Methods,

Artificial Potential Field and Fast Marching Method. Figure 2.1 depicts the motion planning method

families addressed.

Figure 2.1: Motion planning algorithms.

Decomposition Graph-based Methods

Decomposition graph-based methods [10] divide or decompose Cfree into a finite number of regions,

cells. Then, it is defined a connectivity graph G = (N,E), which represents the adjacency relations

between cells. That is, the robot configurations from the free space are represented by the nodes, N ,

of the graph, and there is an edge or arc, E, joining two nodes if and only if the corresponding cells of

the nodes are adjacent. In Figure 2.2 is illustrated as example of a decomposition graph-based method,

in which vertical cell decomposition is used. The path planning problem can be solved using graph

planning techniques. Some of the most used examples of these techniques are: Dijkstra, A* and D*

(a) Polygonal obstacle region. (b) Vetical cell decomposition. (c) Derived roadmap with
nodes connected by edges.

(d) An example solution path.

Figure 2.2: Example of decomposition graph-based method that uses vertical cell decomposition [9].

Developed by Edsger W. Dijkstra [11], the Dijkstra algorithm tries to find the shortest path in a graph.

This algorithm is classified as complete, i.e., finds a solution if one exists. Nonetheless, the compu-

tational cost grows quadratically as the problem complexity increases. Hart’s A* algorithm [12] is also

complete. Contrary to Dijkstra, this algorithm employs a heuristic estimation of the cost to the goal node

and, consequently, does not go through the entire graph when searching for a solution. Hence, A* con-

verges faster in larger environments. Introduced by Stentz [13], D* algorithm is a dynamic variant of A*,

11

since the weights of the edges can change as the robot goes through the path and new information is

found. Nevertheless, decomposition graph-based methods can only guarantee optimality in discretized

spaces.

Sampling-based Methods

Sampling-based algorithms are a successful approach to robotic motion planning problems. These

methods sample random configurations to map the environment, i.e., create a set of paths searched

in Cfree. The sampling-based algorithms can be classified between multiple-query and simple-query

approaches. For multiple-query algorithms a graph is created, or roadmap, that can be used to obtain

efficient solutions for many pairs (qinit, qgoal). Therefore, once the roadmap has been generated with

all the possible paths in the environment, it can be reused for all agents in the system. On the other

hand, for single-query algorithms, a single pair (qinit, qgoal) is given and a solution is searched until one

is found, or returns failure. Next, the Probabilistic Roadmaps and the Rapidly Exploring Random Trees

which are, respectively, included in the multiple-query and single-query families, are presented.

The Probabilistic Roadmaps (PRM) algorithm [14], starts by generating a roadmap, from an initial

empty graph G = (N,E). The pseudocode for generating a roadmap is outlined in Algorithm 1. A new

random free configuration qrand is sampled and added to the set of configurations N (lines 4 and 5). As

illustrated in Figure 2.3, the nearest nodes to qrand are chosen (line 6). In case of a collision-free edge

between a near configuration and the random configuration, an edge is added to E (line 9). This process

is repeated until a maximum number of configurations are generated or until a time limit is reached. In

order to determine a path between the starting and goal configurations, a graph search algorithm is

applied, such as Dijkstra or A*.

Algorithm 1 PRM - roadmap construction
Input: configuration space C

Output: PRM graph G = (N,E)

1: N ← ∅

2: E ← ∅

3: for iter < max iter do

4: qrand ← RandomNode(C)

5: N ← N ∪ qrand

6: Nnear ← a set of candidate neighbours of qrand

chosen from N

7: for all qnear ∈ Nnear do

8: if CollisionFree(qnear, qrand) then

9: E ← E ∪ {(qnear, qrand)})

10: end if

11: end for

12: end for

Figure 2.3: Roadmap built incrementally, by attempting to
connect each new sample, qrand, to nearby nodes in the
roadmap [9].

One of the advantages of PRM is the fact that it allows to explore large environments with a low com-

putational cost. However, this method is probabilistically complete, i.e., the completeness of the method

depends on the number of samples, meaning that the probability of finding a solution converges to 1

12

when is given an infinite amount of time.

Introduced by LaValle in [9], Rapidly-exploring Random Tree (RRT) is an efficient single-query algo-

rithm. It constructs a single tree T = (N,E) starting from an initial configuration, qinit. The basic RRT

construction is given in Algorithm 2. A random sample, qrand from C is taken (line 3) and an attempt is

made to connect it to the nearest state of the tree, qnear (line 4). The function NewConfig makes a mo-

tion towards qrand with some fixed incremental distance ϵ and creates qnew. If it is ensure a collision-free

connection between qnew and qnear, qnew is added to the tree (lines 6 to 8). This process is repeated until

a maximum number of iterations is reached. Figure 2.4 depicts the RRT expanding operation described.

Algorithm 2 Simple RRT
Input: initial configuration qinit, configuration space C

Output: RRT tree T = (N,E)

1: N ← {qinit}

2: for iter < max iter do

3: qrand ← RandomNode(C)

4: qnear ← NearestNeighbor(qrand, T)

5: qnew ← NewConfig(qnear, qrand)

6: if CollisionFree(qnear, qrand) then

7: N ← N ∪ {qnew}

8: E ← E ∪ {(qnear, qnew)}

9: end if

10: end for

11: return T

Figure 2.4: RRT expanding operation [15].

Nevertheless, this algorithm is also probabilistically complete. To tackle this limitation, a variant of the

RRT algorithm, the Bidirectional RRT, was developed. This algorithm grows two trees, one rooted at the

initial state and another at the goal state, in order to connect them and increase the probability of finding

a solution.

Another drawback of the RRT is that this solution is not optimal, meaning that the generated path does

not minimize the distance between the start and goal positions, as illustrated in Figure 2.5a. To overcome

this challenge, Karaman and Frazzoli popularized an extension named Rapidly-exploring Random

Tree Star (RRT*) [16]. The pseudocode for the RRT* is presented in Algorithm 3. Similarly to the RRT,

in each iteration, the robot configurations are sampled from the entire configuration space. A random

node is connected to the nearest node of the tree, as described previously. Then, it is made an attempt

to find a new parent node of qnew, qmin, that holds a minimum cost (lines 8 and 9). In the affirmative

case, the new parent node is then connected to qnew (line 11). Additionally, it is performed a rewiring

process, in which it is verified if qnew holds a smaller cost as a parent rather than as a child for any

neighbouring node (line 13). If this is true, the tree can be rebuilt for a minimum cost. Finally, the

algorithm continues with a new iteration.

In fact, the RRT* is more difficult to construct, compared to the simple RRT. Nevertheless, the RRT*

algorithm provides an asymptotic optimal path solution, i.e., it converges to the optimal solution with an

infinite number of iterations, as depicted in Figure 2.5b.

13

Algorithm 3 RRT*
Input: initial configuration qinit, configuration space C
Output: RRT* tree T = (N,E)

1: N ← {qinit}
2: for iter < max iter do
3: qrand ← RandomNode(C)
4: qnear ← NearestNeighbor(qrand, T)
5: qnew ← NewConfig(qnear, qrand)
6: if CollisionFree(qnear, qrand) then
7: N ← N ∪ {qnew}
8: Qnear ← Near(qnew)
9: qmin ← argmin{q ∈ Qnear : cost(q)+ c(q, qnew)}

10: if CollisionFree(qmin, qnew) then
11: E ← E ∪ {(qmin, qnew)}

12: end if
13: qchild ← argmin{q ∈ Qnear : cost(qnew)+ c(qnew,

q)}
14: if CollisionFree(qnew, qchild) then
15: E ← (E\{(parent(qchild), qchild)}) ∪
{(qnew, qchild)}

16: end if
17: end if
18: end for
19: return T

(a) Rapidly-exploring Random Tree (b) Rapidly-exploring Random Tree Star

Figure 2.5: A Comparison between the (a) RRT and (b) RRT*. Both algorithms were run with a maximum
iteration of 3000 samples.

Artificial Potential Field

Introduced by Khatib [17], the Artificial Potential Field (APF) approach is one of the most popular

techniques for path planning. The goal configuration is typically modeled as an attractive potential,

whereas obstacles generate repulsive forces to prevent agents from colliding with them. Consequently,

the sum of these forces, the total potential, causes the agent to move along the optimal local trajectory.

One major drawback of the APF approach is that this algorithm is incomplete: a local minima can

compromise the attainment of the goal. However, this problem can be overcome by using navigation

functions, such as harmonic potential functions [18, 19].

14

Fast Marching Method

Wavefront propagation methods, such as the Fast Marching Method (FMM), can be an alternative

approach to the path planning problem. The FMM is a particular case of Level Set Methods, created

by Osher and Sethian [20]. Intuitively, FMM exploits a wavefront technique derived from a source point.

In path planning, a binary gridmap is considered, in which the Cobst is valued as zero, while Cfree is

valued as one. If a wave is expanded from the goal configuration qgoal to the initial one qinit, then at the

obstacles, the wave expansion speed is zero, as it can not go through the obstacles. On the other hand,

in free space, the wave expansion speed is constant and equal to one. Hence, the wave originates a

field that has only one global minima at the source. By following the minimum gradient direction from

the initial point to the source, goal point, a solution can be obtained. This algorithm is complete, since

a solution is always reached whenever there is a valid path. As mentioned in [21], FMM achieves the

shortest path in length. Nevertheless, as depicted in Figures 2.6a-b, this solution might not be safe

because of its proximity to obstacles.

0

2

4

6

8

10

12

14

(a) Fast marching method wave expansion. (b) Path obtained with fast marching method.

Figure 2.6: Example of path generated using FMM. The wave expansion sourced at the goal location
has a constant speed equal to one (black is the closest to the source and light grey is the furthest).

To tackle this, a new variant was introduced: Fast Marching Square (FM2) [22]. The pseudocode

to generate a path using FM2 is presented in Algorithm 4. This method starts by taking the gridmap,

labelled as mentioned above, and applying to it the FMM considering the obstacles as sources. The

result is a slowness map, which represents the potential field of the environment. This map can also be

seen as the maximum allowed speed of the robot at each cell. Thus, the path can be determined using

once again the FMM, but instead of tacking a constant expansion speed as before, the speed is given

by the slowness map. The FM2 assumes that the robot moves at the maximum allowed speed at every

point. Nevertheless, this algorithm is not optimal since it tries to keep the computed path as far away

from the obstacles as possible, as illustrated in Figures 2.7a-b.

15

Algorithm 4 FM2
Input: gridmap G, goal configuration qgoal, obstacle grid point obstacles

Output: gridmap G with time value set for all cells

1: slowness map← FMM(G, obstacles)

2: fm2 map← FMM(slowness map, qgoal)

3: path← MinimumGradientDirection(fm2 map, qinitial, qgoal)

4: return path

0

2

4

6

8

10

12

14

(a) Fast marching square wave expansion. (b) Path obtained with fast marching square.

Figure 2.7: Example of path generated using FM2. The wave expansion sourced at the goal location
has variable speed given by the slowness map (black is the closest to the source and light grey is the
furthest).

Table 2.1 depicts the comparison of the methods analysed in this section. The characteristics considered

are:

• Completenes - It is guaranteed that the algorithm finds a solution if exists at least one.

• Optimality - The solution found optimizes performance in some specified manner.

• Computational cost - The number of resources required to run the algorithm, such as time and

memory resources.

• Searching Approach - A deterministic algorithm, given a specific input, always produces the same

output. A heuristic algorithm can solve a problem faster and more efficiently by sacrificing optimal-

ity, accuracy, precision, or completeness for speed. A randomized algorithm, given a specific input,

does not produce the same output.

16

Table 2.1: Path planning algorithms characteristics.

Algorithm Completeness Optimality
Computational

Cost Approach

Decomposition

graph-based
complete optimal1 high

deterministic or

heuristic

PRM complete2 non-optimal low randomized

RRT complete2 non-optimal low randomized

RRT* complete2 asymptotic optimal low randomized

APF incomplete optimal low deterministic

FMM complete non-optimal high deterministic

FM2 complete non-optimal high deterministic

1 For discretized space.
2 For infinite iterations.

2.2 Trajectory Optimization

In the previous section, the time dimension in motion planning problems was not considered. Never-

theless, it is not only important to consider global constraints, which are imposed by obstacles. In fact,

robots often have local constraints, which can be considered as limits in velocities or accelerations at

every point due to kinematic and dynamic restrictions. Thus, the present section addresses trajectory

optimization, which is an established method in robotics that generates a high-quality motion from an

initial trajectory that may be in-collision or dynamically infeasible. These techniques represent mathe-

matically a robot with motion equations. Trajectory optimization determines the dynamical system that

optimize a specified performance while satisfying a set of constraints. According to [23] the optimization

problem can be laid out as:

Minimize J(t0, tf ,x(t0),x(tf)) +

∫ tf

t0

w(t,x(t),u(t)) dt (2.1)

w.r.t. t0, tf ,x(t),u(t) ,

subject to ẋ(t) = f(t,x(t),u(t)) system dynamics

h(t,x(t),u(t)) ≤ 0 path constraint

g(t0, tf ,x(t0),x(tf)) ≤ 0 boundary constraints

xmin ≤ x(t) ≤ xmax path bound on state

umin ≤ u(t) ≤ umax path bound on control

17

In general the cost function of the optimization problem presented in Equation (2.1) includes two terms:

a boundary objective J(.) and a integral objective w(.), taking as decisions variables the initial and final

time (t0, tf) and the state and control trajectories (x(t), u(t)). The optimization is subject to a variety

of limits and constraints. The first constraint presented bellow is the system dynamics which is usually

non-linear and describes how the system changes in time. The path constraint, h(.), is formulated to

avoid obstacles. Additionally, the boundary constraint, g(.), limits the robot to the initial and final states.

Finally, the two last constraints represent the physical limits of the system applied throughout the entire

trajectory, such as limits on torque and speed. The limits in the state and control trajectories can be

expressed as (xmin, xmax) and (umin, umax), respectively.

The taxonomy that classifies the trajectory optimization techniques addressed in this section is illustrated

in Figure 2.8. These techniques can be divided into Linear Programming and Optimal Control. In the

following subsections, an overview of both approaches is made.

Figure 2.8: Trajectory optimization methods.

2.2.1 Linear Programming

Linear algorithms describe the environment, given kinematic and dynamic constraints. In linear pro-

gramming, the cost function and its constraints are all linear equations. Proposed by Chamseddine et

al. [24], the Flatness-Based (FB) linearizes the non-linear kinodynamic constraints of the system to

form a simpler formulation. Mixed Integer Linear Program (MILP) [25] has a strong modelling capa-

bility to describe almost all the information. Although its high computation complexity is a significant

drawback. Binary Linear Programming (BLP) [26] is a special case of linear programming where the

variables are only 0 or 1.

2.2.2 Optimal Control

According to [27], the optimal control framework might be more suitable for formulating a problem with

both global and local constraints. The solution in this framework is a trajectory encoded as a sequence

of states and controls that optimizes a given objective function. As per [23], the techniques for solving

optimal control problems can be divided into three categories: Dynamic Programming, Indirect and

Direct Methods.

18

Dynamic programming solve Hamilton-Jacobi-Bellman equations over the entire state space. This is

an effective method for solving optimal control problems in unconstrained low-dimensional systems, but

not for high-dimensional ones.

An indirect method analytically constructs the necessary and sufficient conditions for optimality. These

conditions are then discretized and numerically solved. Indirect methods can achieve more accurate

solutions, at the expense of being more difficult to construct and solve.

On the other hand, a direct method discretizes the trajectory optimization problem and converts it into

a non-linear programming problem. Thus, since direct optimization methods usually do not require an

analytical analysis of the problem, they are the most used methods for trajectory optimization problems.

In this subsection, a brief description of direct trajectory optimization methods, such as direct shooting

and direct collocation, is provided.

Direct Shooting methods

Single shooting is the simplest method to solve a trajectory optimization problem and can be used with

either direct or indirect formulations. This method approximates the trajectory using a simulation. A set

of parameters for the trajectory is chosen and then it is simulated and checked if the target is reached.

The route is represented as a single segment with a single constraint, in which the final configuration

of the trajectory must be the goal configuration. This approach is applicable when the control is simple

and there are few path constraints, such as space flight [28]. A disadvantage of single shooting methods

is that the relationship between decision variables, objective function and constraints is often highly

non-linear and cannot be well approximated by the model [23].

Additionally, multiple shooting is an extension of single shooting that tends to be more robust and

adequate to solve more challenging trajectory optimization problems. Instead of representing the entire

trajectory as a single simulation, in multiple shooting the trajectory is divided into many shorter segments

and employs single shooting for each segment. As the segments get shorter, the relation between

decision variables, objective function and constraints become more linear.

Direct Collocation methods

Direct collocation methods try to discretize a continuous trajectory optimization problem by approxi-

mating the state and control trajectories using polynomial splines (function that is defined piecewise by

polynomials). Two commonly used collocation techniques are the trapezoidal collocation and Hermite-

Simpson collocation. According to Betts [27], the trapezoidal collocation approximates the objective

function and system dynamics as piecewise linear functions, using trapezoidal quadrature. On the other

hand, Hermite-Simpson collocation approximates the objective function and system dynamics as piece-

wise quadratic functions. As an advantage, the state trajectory with the Hermite-Simpson collocation

method is a cubic Hermite spline, which has a continuous first derivative [23]. Figure 2.9 shows a

comparison of trapezoidal and Hermite-Simpson collocation methods.

19

(a) Trapezoidal collocation approximates the function with piecewise linear functions.

(b) Hermite-Simpson collocation approximates the function with piecewise quadratic functions.

Figure 2.9: Function approximation using collocation methods [23].

Orthogonal collocation is a subset of direct collocation. It typically uses high-order splines, and each

segment of the trajectory can be represented by a spline of a different order. The name comes from the

use of orthogonal polynomials in the state and control splines.

To conclude, collocation methods create a large sparse non-linear problem, which tends to be easier to

solve than the small dense programs produced by shooting methods. Shooting techniques are suitable

for applications with simple control and few path constraints [28]. Multiple shooting approaches are often

preferred over single shooting ones, unless the control is extremely simple or the initial guess is quite

good. In contrast, collocation methods are more appropriate for applications where the dynamics and

control must be computed accurately and the structure of the control trajectory is not known a priori [23].

2.3 Multi-Robot Trajectory Planning

Many multi-robot systems require the coordination of mobile agents when navigating complex environ-

ments. Thus, it is required to compute collision-free trajectories from an initial to a final position for every

autonomous mobile robot in the fleet. Motion planning in multi-robot systems can be rather challenging

since each robot must avoid both static and moving obstacles, in which the latter might be other vehicles

in the fleet. Additionally, this becomes even more demanding when differential constraints are imposed

by the physical dynamics and limited control inputs are considered. Also, it can be difficult to efficiently

compute optimal collision-free routes, where the trajectory quality is determined by a cost function that,

for example, minimizes the control effort or the trajectory duration. Many methods have been proposed

for multi-robot trajectory planning. They can be divided into centralized, decentralized, and decoupled

approaches.

20

In [29, 30], centralized techniques were used, where the optimal trajectory generation problem was

formulated as Mixed Integer Quadratic Programming (MIQP) or Sequential Convex Programming (SQP)

problems. The solutions generated with centralized methods are complete and optimal. Nevertheless,

they are not scalable or robust.

To overcome these limitations, decentralized planning methods have been proposed. In this category

are included the reactive methods such as Velocity Obstacle (VO) [31, 32] and buffered Voronoi cells

[33]. Besides, in [34], was proposed a Distributed Model Predictive Control (DMPC). Distributed planning

methods are computationally efficient, but these approaches do not support higher order dynamics and

are relatively poor in certain scenarios, such as handling deadlocks.

Additionally, motion planning in multi-robot systems can be solved using decoupled techniques, such as

sequential planning methods [35–37]. In sequential planning, the trajectory of each robot is decoupled

and it is generated by avoiding the previously planned ones. This method is relatively fast, however, it

can only find locally optimal solutions, not global ones.

In the context of this dissertation’s motivation, it is crucial that the solution presented is robust to failures.

In fact, one of the most important requirements of this project, which takes place in an industrial setting,

is to ensure that the production line is correctly supplied and never interrupted. Therefore, since robots

trajectories must be generated when asynchronous tasks are requested, this project follows a sequential

planning approach.

2.4 Dynamic Map Update

A correct representation of the operating environment is essential for successful navigation of AMRs.

Thus, it is necessary to guarantee that changes in the environment are detected and, posteriorly, shared

between all vehicles. In multi-agent systems, this detection and updating must be done with cooperative

perception, which is the principle of vehicles cooperating to extend their field of vision. This section

starts by giving an overview on Map Merging techniques. Then, two relevant Map Sharing algorithms

are presented.

2.4.1 Map Merging

A survey on map merging techniques can be found at [38]. Several significant types of maps, including

occupancy gridmaps, feature-based maps, and topological maps, are examined in terms of their merging

techniques.

Each cell in an occupancy gridmap represents the probability of occupation in that particular cell. Four

methods for merging occupancy gridmaps are presented: Probabilistic, Optimization, Feature-based

and Hough transform. The probabilistic approach was introduced in [39] and assumes that the robots

know each other’s initial pose. The optimization method designs an objective function that is depen-

dent on the rigid transformation (rotation and translation) and maximizes the extent of coincidence be-

21

tween two maps. Nonetheless, both the probabilistic and the optimization approaches incur a significant

computing cost. The feature-based technique extracts map features and merges occupancy gridmaps

based on the larger number of common features. However, a significant shortcoming of this final strategy

is the possibility of feature mismatching, when two identical features on distinct maps are misidentified

as the same feature. Finally, Carpin [40] presented a transformation between maps based on the Hough

transform. This algorithm is fast and robust, and, therefore, is suitable for real-time map merging.

Feature-based maps can reflect the environment more effectively than occupancy gridmaps. These

maps focus on extracting features from the environment, and they can be classified into different types

such as plane, line, point, etc. Identifying if numerous characteristics from distinct sources belong to the

same structure is the primary downside of merging features. Merging plane feature maps offers a more

robust option, since these features are less susceptible to noise. However, the computational cost on

feature extraction is higher.

Finally, topological maps are less intuitive in terms of environment representation. Hence, there are

less relevant works in the existing literature compared to those stated above. In topological maps,

nodes are used to represent a set of features, while connecting edges represent possible paths between

those features. Huang and Beevers [41] proposed a method that uses both map structure and map

geometry to determine the best correspondence between maps with multiple overlapping regions. This

approach proved to have a smaller computational cost. However, it can not be used to merge dynamic

environments with moving obstacles.

2.4.2 Map sharing

In [42] is proposed a map updating technique for multi-robot applications. Each robot owns an initial

occupancy gridmap of the environment. The robots detect changes in the environment using a weighted

recency averaging technique, creating a temporary map. Then, temporary maps are merged into the

initial map by using Hough transform. Finally, the updated map is dispatched to the other robots, and

each robot updates its own map based on the new information. Additionally, [43] uses an occupancy

gridmap combined with a hidden Markov model that represents the belief about the occupancy and

occupancy change probabilities for each cell in the grid, to compute an optimal roadmap.

In [44] a distributed fusion algorithm is used. Each vehicle detects a Local Dynamic Map (LDM) con-

taining static and dynamic information about its immediate surroundings. Also, every vehicle has a

confidence level m in the detected object’s existence. A Dynamic Distributed Map (DDM) is a LDM

that has been updated with maps received from other robots. By merging a DDM with a LDM of the

robot, the Dynamic Public Map (DPM) is created, which is then sent to the network and shared with

others.

In Algorithm 5 the receiver gets the sender’s DPMs. The confidence m in DPMs is reduced due to

a discounting process, α. Additionally, the sender’s position S is added to its map (line 2). Then, the

DPMs of the sender and the DDMr of the receiver are predicted for some specific time, to obtain a

22

temporal alignment (lines 3 and 4). The DDMr is calculated by combining the predicted D̂PMs and

D̂DMr with the confidence m of both maps (line 5). As a result of a similar merging process, the DPMr

is generated by combining the DDMr and LDMr, in which the latest map is built by the receiver robot

sensors. The DPMr is finally shared with the other robots.

Algorithm 5 Distributed Dynamic Map Algorithm
Input: message from sender DPMs

Output: DPMr, DDMr

1: Update DDMr with message
2: DPMs ←α DPMs + S
3: D̂PMs ← prediction(DPMs)
4: D̂DMr ← prediction(DDMr)
5: DDMr ← FusionCautious(D̂PMs, D̂DMr)
6: Compute DPMr with Local Map
7: LDMr ← local map acquisition()
8: DPMr ← FusionDempster(DDMr, LDMr)
9: Send DPMr

(a) Vehicles V0, V1, V2 can exchange information. The goal

is to detect V3. Each vehicle’s field of view is highlighted in

red.

(b) Dynamic Local Map of each vehicle (left column) and Dynamic

Public Map of each vehicle (right column). Each vehicle’s field of

view is highlighted in red.

Figure 2.10: Results obtained with the Distributed Dynamic Map Algorithm [44].

Figures 2.10a-b depict the results of the Distributed Dynamic Map Algorithm presented above. Vehicles

V0, V1 and V2 can communicate with each other, while V3 is the obstacle to be detected. Each vehicle’s

field of view is highlighted in red. The LDMs built with each vehicle sensors are shown in the first

column of Figure 2.10b. Vehicle V0 can detect V1 and V3. Vehicles V1 and V2 cannot detect anything

inside their fields of view. Nevertheless, by sharing all this information, each vehicle can compute its

own DPM . Therefore, all vehicles can have an updated map of the environment and be aware of the

whereabouts of all robots and obstacle.

23

Chapter 3

Proposed Approach

The current chapter addresses the proposed methodology to generate each robot’s optimized trajectory.

Firstly, in Section 3.1, terms from the literature on motion planning are defined. Next, in Section 3.2 and

Section 3.3, the mathematical problem formulation and the kinematic model of the vehicle under study

are described, respectively. Finally, in Section 3.4, the proposed method for generating each robot’s

optimized trajectory are introduced.

3.1 Differential Constraints

In the previous chapter, the concepts of global and local constraints were introduced, which are imposed

by obstacles and kinematic and dynamic considerations, respectively. Local constraints can also be de-

nominated as differential constraints since they are modelled using differential equations. Consequently,

the motion planning problem that considers both constraints should not only search for a trajectory in

Cfree, but in a feasible configuration space, Cfeas. Nevertheless, it is important to define some terms

from planning literature [9]:

• Holonomic planning - Refers to constraints that usually lead to a loss of the system’s Degrees of

Freedom (DoF). They can also be referred to as configuration constraints since they constraint the

position of the agent.

• Nonholonomic planning - Refers to constraints modeled with differential equations. These con-

straints limit the space of possible velocities and can also be referred to as velocity or kinematic

constraints.

• Kinodynamic planning - Refers to motion planning problems that satisfy velocity and acceleration

bounds. More recently, the term has been applied to motion planning problems that take into

account the agent’s dynamics. Thus, kinodynamic planning can be considered as any problem

that involves second-order (or higher) differential constraints.

24

3.2 Problem Formulation

Consider a multi-robot system consisting of N robots, R = {R1, ..., RN}, that move in an Two Dimen-

sional (2-D) environment, W ∈ R2 populated by a set of M obstacles O = {O1, ..., OM}. The set of all

possible states of agent i = 1, ..., N are defined by the state space X i, while the set of the allowable

control input space is represented by U i.

The set of states that satisfies the global constraints are defined as Xfree. The dynamic constraints, that

should be considered in this planning problem, are expressed in a differential state model or transition

equation:

ẋ(t) = f(t,x(t),u(t)), (3.1)

defined for every state x ∈ X and input u ∈ U .

For each robot Ri, a task s is assigned at time tiinit. Every task should guarantee that the respective

robot generates a feasible trajectory from its initial state, xi
init ∈ X i, to a goal state, xi

goal ∈ X i. Hence,

the trajectory of robot Ri can be written as πi : [tiinit, t
i
goal] → Xfree. Each trajectory is defined by: its

duration, T i; the control input along the trajectory, ui : [tiinit, t
i
goal] → U i; and the corresponding states,

xi : [tiinitt
i
goal]→ X i.

In a multi-robot system, given the workspace W and the tasks S = {s1, ..., sK} for the robot set R, it

is necessary to find a set of trajectories P = {π1, ..., πK} that execute the K tasks. Note that, any pair

{πi, πj} of every two different robots {Ri, Rj} must be conflict free. Additionally, the tasks are assigned

sequentially, i.e., the trajectory πi is planned by avoiding the already defined ones: π1, ..., πi−1.

This formulation is represented in Figure 3.1. Three different motion query problems are illustrated, as

well as three arbitrary paths that connect the initial to the goal states of each agent.

Figure 3.1: Motion planning problem for a fleet of three AMRs. For each vehicle Ri, i = {1, 2, 3}, an
initial xi

init and final xi
goal configurations are assign to generate a trajectory πi.

25

3.3 Kinematic Model of the Vehicle

Without loss of generality, the proposed framework will be experimented on a fleet of differential drive

robots. Notwithstanding, this method can be applied to any vehicle with kinodynamic constraints ex-

pressed as a differential state, as defined in Equation (3.1). Figure 3.2a depicts the kinematic model of

a differential drive vehicle with two controllable wheels. This planar representation is appropriate since

the modelling process is carried out according to a 2-D perspective of the vehicle’s motion. The robot is

equipped with sensors with an angular range β, as represented in Figure 3.2b. The vehicle’s length and

width are represented by hr and wr, respectively.

A differential drive vehicle has two independently actuated wheels on a common axis that are separated

by a distance L. The vehicle’s state vector can be expressed as x = [xr, yr, θr, t, vR, vL]
T ∈ X , where

xr and yr are the robot’s cartesian coordinates, θ is the robot’s orientation with respect to the x-axis, t

denotes the time when each state is reached and, finally, vR and vL are the linear velocities of the right

and left wheels, respectively.

o
(a) Vehicle parameters (b) Sensor angular range

Figure 3.2: Vehicle representation.

The kinematic model of the system is given by the following equations of motion:

ẋr = v cos θ,

ẏr = v sin θ,

θ̇r = w,

ṫ = 1,

v̇R = aR,

v̇L = aL,

(3.2)

where v is the linear average velocity of the robot, given by:

v =
vR + vL

2
; (3.3)

26

ω the angular velocity of the agent given by:

ω =
vR − vL

L
; (3.4)

and aR and aL represent the linear acceleration of the right and left wheels, respectively. Thus, the

control vector can be defined as u = [v, ω, aR, aL]
T .

3.3.1 Reachable states of the vehicle

To obtain the reachable states of the vehicle, it is necessary to consider the limitations of the system.

Note that both right and left wheels are subject to limits in acceleration and velocity. As mentioned

previously, the robot is equipped with sensors with an angular range β. It should be guaranteed that

the vehicle only moves within this range, otherwise, there is a high risk of colliding with obstacles.

Therefore, some constraints on the vehicle’s linear and angular velocities must be taken into account

when generating the feasible states of the agent:

• Both wheels velocities and accelerations are bounded:

|aR|< amax,

|aL|< amax,

|vR|< vmax,

|vL|< vmax.

(3.5)

• The linear velocity of the robot cannot be a negative value, since the robot cannot perform a reverse

maneuver:

v > 0. (3.6)

• The angular variation of the vehicle in each time step, dt, should insure that the robot only moves

within the angular range of the sensor:

|w|< β/2

dt
. (3.7)

In fact, the bounded right and left wheel accelerations of the robot are both discretized to obtain the

respective wheel velocities. With all the combinations between both wheel velocities, the average linear

and angular velocities are mapped and used to generate all the possible attainable states after one

time step. Figures 3.3a-c depict the attainable states of the robot for different numbers of discretized

control actions, when the vehicle is initially at rest. Figures 3.3d-f show the respective colormap of the

discretized accelerations. Each color represents a pair of right and left wheel velocities, that corresponds

to the same color trajectory for the respective figure illustrating the reachable states. As an example,

if on the left wheel is the maximum and the acceleration on the right wheel is the minimum (upper left

values of the colormap), the vehicle will turn to the left. When the accelerations of both wheels are equal

(diagonal values of the colormap), their velocities are also identical and the vehicle moves in a straight

27

line.

(a) Reachable states of the vehicle
when both wheels acceleration is dis-
cretized 5 times.

(b) Reachable states of the vehicle
when both wheels acceleration is dis-
cretized 11 times.

(c) Reachable states of the vehicle
when both wheels acceleration is dis-
cretized 5 times.

(d) Right and left wheels accelaration dis-
cretized 5 times. Each color represents a
pair of right and left wheel accelerations,
that corresponds to the same color trajec-
tory shown in (a).

(e) Right and left wheels accelaration dis-
cretized 11 times. Each color represents
a pair of right and left wheel accelera-
tions, that corresponds to the same color
trajectory shown in (b).

(f) Right and left wheels accelaration dis-
cretized 21 times. Each color represents
a pair of right and left wheel accelera-
tions, that corresponds to the same color
trajectory shown in (c).

Figure 3.3: Reachable states of the robot after one time step, when the vehicle starts at rest. Right
wheel acceleration and left wheel acceleration are discretized 5 (a) and (d), 11 (b) and (e) and 21 (c)
and (f) times.

3.4 Methodology

Most path planning algorithms described in Subsection 2.1, are applicable to holonomic systems, since

they rely on the ability to connect any pair of states, not taking into account local (differential) constraints.

For kinodynamic systems, straight-line connections between pairs of states are usually not valid trajec-

tories. Thus, in this framework is necessary to find a feasible path, executable for the robot, and not only

a collision-free one.

One common approach to solve the kinodynamic trajectory planning problem is to divide it into three

sequential steps: path planning, trajectory optimization, and velocity planning [9]. The first step consists

of computing a collision-free geometrical path from an initial to final configurations. Then, the path

previously generated is processed and smoothed, having into consideration the kinematic limitations.

In the last step is designed a velocity profile to execute the smoothed trajectory. Nevertheless, as

illustrated in Figure 3.4, the use of a classical motion planning strategy has shown to be problematic

for vehicles with differential constraints. Zhang et al. [45], acknowledge the importance of generating a

good initial trajectory, to further be optimized and smoothed. An initialization that generates a path that

does not acknowledge the system kinematics is, in general, infeasible and potentially not continuously

28

transformable into a feasible solution. If the initial guess is an infeasible path, it is very often impossible

for a solver to converge to a solution.

Figure 3.4: In dashed yellow is represented a solution from a path planner that disregards the system’s
dynamics completely. Therefore, in this situation is impossible for a solver to find a feasible trajectory. In
comparison, the dash blue line represents a path generated by a path planning method that considers
the system model, enabling to reach an optimal solution, represented by the blue line, when optimizing
the initial trajectory [46].

The overall architecture of the proposed multi-robot motion planning approach is shown in Figure 3.5. To

generate robot’s Ri optimized trajectory is necessary to have information regarding the updated map of

the environmentW, the already assigned trajectories of all vehicles P and the task si that is going to be

assigned. This framework is divided into two modules: Trajectory Planning and Trajectory Optimization.

In the first one, a sampling-based method is used to generate an initial trajectory that satisfies the task

assigned to Ri. This module is discussed in Chapter 4. Then, in the Trajectory Optimization module,

the trajectory computed previously is refined into a smoother and shorter one by solving an optimization

problem. This is discussed in Chapters 5 and 6. Both modules directly consider the non-linear motion

model of the robot, to guarantee the feasibility of the trajectories.

 Motion planning of Ri

Trajectory
planning

Trajectory
optimization

Environment (W)

Task (si)

Trajectory (πi)Trajectories (P)

Figure 3.5: Architecture of the motion planning approach of robot Ri. This framework takes as input the
updated map of the environment W, the already assigned trajectories of all vehicles P and the task si

that is going to be assigned. To generate an optimized trajectory πi, two stages are considered: the
Trajectory Planning and Trajectory Optimization.

29

Chapter 4

Single-Robot Trajectory Planning

In the present chapter, both global and local constraints are considered when searching for a feasible

initial trajectory. The randomized method, which was conceptually described in Subsection 2.1, can be

applied to the kinodynamic planning problem. In order to solve it, an extension of the RRT algorithm, the

Kinodynamic RRT, assessed by La Valle [47], is explored, implemented and analyzed. In Section 4.1

the algorithm is presented and in 4.2 the Kinodynamic RRT is tested for a differential drive vehicle.

4.1 Kinodynamic RRT

When selecting a motion planner to use in this dissertation, the chosen algorithm must be complete and

have a low complexity. The optimality of the method was not a big deciding factor since the trajectory is

posteriorly optimized considering a cost function that depends on parameters to be defined. Additionally,

since the RRT method, presented in Algorithm 2, can be extended to a kinodynamic system, it was

suitable to be implemented in this framework. The Kinodynamic RRT computes not only a path, but a

trajectory that considers the vehicle’s kinematics and dynamics.

The Kinodynamic RRT begins by constructing a tree of trajectories T = (N,E) rooted in the initial state

and searches for the goal region Xgoal, which is centered on the goal state. Again, the free space robot

configurations are represented by the tree’s nodes, N . Edges, E, can join two nodes if and only if the

corresponding nodes can be connected by a feasible trajectory. The Kinodynamic RRT pseudocode is

depicted in Algorithm 6. The creation and expansion of the T is illustrated in Figures 4.1a-g.

The algorithm starts by adding xinit to the tree T (line 1, Figure 4.1a).The Steer function computes a

set Xreach (line 2). Xreach can be defined as the set of all states that can be reached from the Steer

function input, xinit, within some defined time step (Figure 4.1b). In order to do that, all the possible input

controls are used, taking into consideration the limits on the discretized accelerations and velocities of

the vehicle. A collision avoidance module is also required to determine whether or not configurations

from set Xreach are collision-free (line 4). The states that do not collide with any obstacles can then be

30

added to T (lines 5 and 6).

Each iteration of the Kinodynamic RRT samples a new random state from the entire state space X . As

discussed in [15], by returning occasionally the center of Xgoal in the BiasRandomState function (line

10), with a probability defined by a goal bias value, allows the tree to converge to the goal region much

faster. This goal-biased RRT was implemented in this project, bearing in mind the fact that by over

considering the bias, the algorithm might get trapped in a local minima.

The node in T that minimizes the euclidean distance to xrand is defined as xnear (line 11). Figure 4.1c

illustrates nodes xrand and xnear. Then, the Steer function is used once again to generate a set of

possible reachable states rooted in xnear (line 12). The collision-free configurations from this new set

Xnear are added to T (lines 15 and 16, Figure 4.1d).

Finally, in function ReachGoalRegion is inspected if any node in T has reached the goal region (line 19).

In that case, the search is completed and the algorithm returns the final tree T . Otherwise, the algorithm

continues with a new iteration. If the number of iterations exceeds a predefined maximum value, the

search is terminated and the algorithm fails to generate a trajectory. Figures 4.1f-g illustrate T reaching

the goal region, Xgoal, and the final trajectory computed, respectively.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.1: Construction of a Kinodynamic RRT tree, T . First, the initial state xinit (dark blue) is added
to T (a). Then the collision-free states, Xreach (light grey), that can be reached from xinit are included
in T (b). A random state, xrand (light blue), is sampled (c). xnear (black) is defined as the closest node
in T to xrand (c). Then, the set of reachable states rooted in xnear are added to T (d). The tree T grows
(e) until the goal region Xgoal (green dashed circle) is reached (f). Finally, the node that reached Xgoal

is connected to xinit generating a trajectory (g).

31

Algorithm 6 Kinodynamic RRT
Input: initial state xinit

Output: kinodynamic RRT tree T = (N,E)

1: N ← {xinit}

2: Xreach ← Steer(xinit)

3: for x ∈ Xreach do

4: if CollisionFree(xinit,x) then

5: N ← N ∪ {x}

6: E ← E ∪ {(xinit,x)}

7: end if

8: end for

9: for i < max iter do

10: xrand ← BiasRandomState(X)

11: xnear ← NearestNode(xrand, T)

12: Xreach ← Steer(xnear)

13: for x ∈ Xnear do

14: if CollisionFree(xnear,x) then

15: N ← N ∪ {x}

16: E ← E ∪ {(xnear,x)}

17: end if

18: end for

19: if ReachGoalRegion(T) then

20: return T

21: end if

22: end for

23: return Failure

4.2 Trajectory Planning with a Differential Drive Robot

The following results are depicted in a 25m × 20m environment with 5 obstacles. The differential drive

vehicle has dimensions hr = 1.2m and wr = 0.72m. The distance between both wheels of the robot is

L = 0.63m and the sensor has an angular range of β = 180◦ . The results were obtained considering a

maximum velocity and acceleration for each wheel of vmax = 1ms−1 and amax = 0.5m2s−1, respectively.

Figures 4.2a-c illustrate the construction process of a single tree using the proposed algorithm. The

Kinodynamic RRT quickly expands towards the goal region. Figure 4.2d depicts the final trajectory

obtained after 55 iterations. It can be verified that the trajectory connects the initial state and to the goal

region.

Finally, to show the random property of the Kinodynamic RRT, the algorithm was run fifty times and,

as expected, fifty different trajectories were generated for the same motion planning problem. Figure

4.3a reports the trajectories obtained. The data collected is depicted in Figure 4.3b, using violin repre-

sentation. Violin plots combine a box plot with a kernel density estimate. In this example the vertical

axis reflects the data being analysed, while the horizontal axis indicates the kernel density plot. This

representation describes the entire data range as well as the mean, minimum, and maximum values of

the data. The kernel density plot provides the probability density function of the studied variable.

The violin plots in Figure 4.3b depict the time required to execute the generated trajectory, i.e., the

trajectory cost, as well as the algorithm’s computational time 1. Lastly, the third plot illustrates the

1The simulations were performed on a desktop with an Intel Core i7 U-Processor Processor 1.80GHz, 16GB of RAM and
Intel(R) UHD Graphics. The operative system used was Microsoft Windows 11 Pro.

32

(a) Initial state (light blue) and reachable states of
the vehicle (grey) after 1 iteration of the Kinody-
namic RRT algorithm.

(b) Reachable states of the vehicle (grey) after 20
iterations.

(c) Reachable states of the vehicle (grey) after 40
iterations.

RRT star

(d) Reachable states of the vehicle (grey) after 55
iterations. The goal region (light blue circle) is
reached and a trajectory (light blue arrows) is com-
puted.

Figure 4.2: Single tree construction after 1 (a), 20 (b), 40 (c) and 55 (d) iterations.

amount of iterations required to generate one trajectory.

The results reveal that the algorithm implemented can create a collision-free and feasible trajectory in the

given environment. It fully explores the differential drive vehicle manoeuvring ability while considering its

kinematics. Nevertheless, some drawbacks should be highlighted. The low quality trajectory is a direct

result of the algorithm’s inherent randomness. In fact, the solution does not follow a smooth trajectory

and may contain unnecessary manoeuvrers to achieve the goal region. As expected, the randomized-

based approach was insufficient to guarantee the generation of optimized trajectories that the vehicle

can execute. The provided techniques are good at delivering an initial solution, but they must be coupled

with more sophisticated methods in order to provide higher quality routes. In the following chapter, a

trajectory optimization method is developed to shorten and smooth out the obtained Kinodynamic RRT

trajectories.

33

RRT_10traj

(a) Different trajectories generated for the same motion problem with
the Kinodynamic RRT trajectory planner. Each arrow represents a ve-
hicle’s pose. These results depict the inherent randomness of the algo-
rithm.

cost

38

40

42

44

46

48

50

52

se
co

nd
s[

s]

runtime
0

2

4

6

8

10

se
co

nd
s[

s]

iterations
0

50

100

150

200

nu
m

be
r

of
 it

er
at

io
ns

(b) Data distribution regarding trajectory duration, com-
putational time and number of iterations to generate one
trajectory with the Kinodynamic RRT planner. The violin
plots depicts the probability density function of the stud-
ied variable. Additionally, the lines visually represent the
mean value of the data, while the whiskers delimit the
minimum and maximum data points.

Figure 4.3: Fifty different trajectories generated using the Kinodynamic RRT for the same motion problem
(a). The violin plots display the data distribution regarding trajectory duration, computational time and
number of iterations to generate one trajectory (b).

34

Chapter 5

Single-Robot Trajectory Optimization

This chapter formulates an optimization problem that can be used to smooth and enhance, according to

some cost function, the trajectory provided by the Kinodynamic RRT. Section 5.1 focuses on describing

the constrained trajectory optimization problem through differential equations and algebraic equalities

and inequalities. In Section 5.2 the optimization problem is validated for a differential drive vehicle.

5.1 Optimization Problem

When deciding on a trajectory optimization technique, it is important to find a compromise between

the computation complexity of the method and its solution’s accuracy. In an industrial environment

is not crucial that the computed routes are not time-continuously defined. One the other hand, high

computational times can be harmful to the multi-system coordination. Therefore, discrete approaches

were taken into account, such as direct methods, since they are less difficult to construct and solve.

Direct methods discretize the trajectory optimization problem and convert it into a non-linear one. Also,

the Kinodynamic RRT trajectory is already represented in a discrete-time system, since each discrete

node contains information regarding the vehicle’s pose at that specific time instant. Therefore, the initial

guess solution provided by the Kinodynamic RRT is already prepared to be used by this approach.

Inside the family of direct methods, direct collocation techniques can deal with more complex dynamics

and control systems. In this dissertation, the trajectory optimization problem will be formulated using the

trapezoidal collocation method.

With trapezoidal quadrature, the discrete problem is represented by a set of collocation constraints

[27]. This is accomplished by representing the continuous state x(t), control u(t) and system dynamics

f(t,x(t),u(t)) as their values at specific time points known as collocation points. For reference, the main

symbols used throughout the following chapters can be defined as follows:

• tk: time at knot point k ∈ {0, ..., C − 1};

• C: number of collocation points;

35

• h = tk+1 − tk: time interval between consecutive collocation points;

• xk = x(tk): state at knot point k ∈ {0, ..., C − 1};

• uk = u(tk): control at knot point k ∈ {0, ..., C − 1}; and

• fk = f(tk,xk,uk): systems dynamics at knot point k ∈ {0, ..., C − 1}.

In this section, the dynamic constraints are presented, along with the state and control bounds, the

boundary constraints and the collision avoidance constraints. Lastly, an overall framework for the formu-

lated optimization problem is provided.

Dynamic Function

In direct collocation methods, the differential state model can be considered as a constraint on the

dynamics of the vehicle. By integrating both sides of the differential state defined in Equation (3.1), it is

possible to get the change in state between two consecutive collocation points:

∫ tk+1

tk

ẋ(t)dt =

∫ tk+1

tk

f(t,x(t),u(t))dt. (5.1)

This integral can be approximated using trapezoidal quadrature:

xk+1 − xk ≈
1

2
h (fk + fk+1) , (5.2)

with k ∈ {0, ..., C−1}. This approximation is then applied between every pair of collocation points, where

the discrete time nodes along the trajectory are defined as tk = kh.

State and Control bounds

The physical limits of the system must be considered when defining the optimization problem. These

constraints are applied throughout the entire trajectory to the state and control variables. They are given

by:

xmin ≤ xk ≤ xmax, (5.3)

umin ≤ uk ≤ umax, (5.4)

with k ∈ {0, ..., C − 1}.

Boundary Constraints

Boundary constraints satisfy the requirements of the initial and final states. They are given by some

function:

g(tinit, tgoal,x0,xC−1) ≤ 0. (5.5)

36

Collision Avoidance Constraint

Let p(t) ∈ x(t) be the cartesian coordinates of a robot R for all t ∈ [tinit, tgoal]. A trajectory is considered

collision-free if the distance between each vehicle position along the trajectory and the nearest obstacle,

p(t), is greater than a safe margin, dsafe > 0.

When dealing with static obstacles, it is preferable to precompute a Signed Distance Field (SDF) that

stores the signed distance from any point p(t) to the nearest obstacle’s boundary. Values for the signed

distance are negative inside obstacles, positive outside and zero at the boundary [48]. For a collision-

free trajectory, it is necessary to ensure at every position of R:

sd(p(t), Om) ≥ dsafe, ∀m ∈ {1, ...,M}. (5.6)

The pseudocode for computing a SDF from a binary occupancy grid map is depicted in Algorithm 7.

Fig 5.1a illustrates an example of an occupancy gridmap, where black represents the obstacles and

white represents unoccupied areas. The EDT for both the occupancy gridmap and its complement is

computed, as presented in lines 1-2 and Figures 5.1b-c, respectively. The SDF is then given by the

(a) Occupancy gridmap (G). Black represents the
obstacles and white the unoccupied areas.

(b) Euclidean distance transform of the occupancy gridmap
(EDTG). Depicts the distance to the nearest obstacle.

(c) Euclidean distance transform of the occupancy gridmap
logical complement (EDTG). Depicts the distance to the
nearest unnocupied area.

(d) Signed distance field (SDF). Green and yellow represent
areas outside the obstacles, and blue are areas inside the
object.

Figure 5.1: Example of occupancy gridmap and its respective Euclidean Distance Transform (EDT)s and
SDF.

37

difference between the two EDT values (line 3). Figure 5.1d presents the SDF computed from the

known map, where the darker blue represents the obstacle boundaries, the light blue the area inside

the objects, and green and yellow the areas outside the obstacles (yellow being the furthest from an

obstacle).

Algorithm 7 Computation of a Signed Distance Field
Input: binary occupancy gridmap G
Output: signed distance field SDF

1: EDTG ← EuclideanDistanceTransform(G)
2: EDTG ← EuclideanDistanceTransform(G)
3: SDF ← EDTG − EDTG

4: return SDF

Note that a SDF is described by a discrete grid system. For it to be applicable to the optimization

problem, the SDF is interpolated to obtain a differentiable function. This function takes a robot’s pose

p(t) as an input and returns the signed distance from p(t) to the nearest static obstacle. This function

can be defined as:

d(p(t)). (5.7)

Cost Function

A common used cost function is the integral of control effort squared. This cost function is desirable

because it computes smooth solution trajectories [23]. This objective function can be approximated

using trapezoidal quadrature, converting it into a sum over each segment, using the control error at

every collocation point:

J(h,xk,uk) = h
1

2

C−1∑
k=0

(u2
k + u2

k+1). (5.8)

Without loss of generality, in this dissertation, a cost function was chosen to minimize the total duration

of the vehicle’s trajectory. By using direct collocation, this can be achieved by minimizing the time step,

i.e:

J(h,xk,uk) = h. (5.9)

Additionally, in Chapter 7, a reformulated cost function that attracts the vehicles to drive on the right side

of the factory’s corridors is presented .

Proposed Formulation

Finally, the overall trajectory optimization problem of robot Ri can be defined as follow:

38

Minimize J(h,xk,uk) = h (5.10)

w.r.t. h,xk,uk, ∀k ∈ {0, ...C − 1}

subject to xk+1 − xk =
1

2
h(fk + fk+1), ∀k (5.11)

d(p(hk)) ≥ dsafe, ∀k (5.12)

g(tinit, tgoal,x0,xC−1) ≤ 0 (5.13)

xmin ≤ xk ≤ xmax, ∀k (5.14)

umin ≤ uk ≤ umax, ∀k (5.15)

Initial Guess

It is critical to have a good initial guess when solving a trajectory optimization problem, as this allows

the solver to quickly arrive at the optimal solution. In this dissertation, the trajectory generated by the

Kinodynamic RRT, as specified in Section 4, serves as the initial guess.

5.2 Trajectory Optimization with a Differential Drive Robot

The results presented in this section were obtained using the differential drive model described in Chap-

ter 3. Using the non-linear equations of motion presented in (3.2) and the trapezoidal quadrature ap-

proximation in (5.2), the expanded collocation constraints for the kinematic model can be defined as:

xr,k+1 − xr,k =
1

2
h (vkcos(θk) + vk+1cos(θk+1)) ,

yr,k+1 − yr,k =
1

2
h (vksin(θk) + vk+1sin(θk+1)) ,

θr,k+1 − θr,k =
1

2
h (ωk + wk+1) ,

vR,k+1 − vR,k =
1

2
h (aR,k + aR,k+1) ,

vL,k+1 − vL,k =
1

2
h (aL,k + aL,k+1) ,

(5.16)

with k ∈ {0, ..., C − 1}.

The state and control bounds of the vehicle under study, such as velocity and acceleration bounds, and

angular variation, are presented in (3.5) - (3.7). These continuous inequalities are discretized into a set

of constraints applicable to all collocation points:

39

|vR,k|≤ vmax ∧ |vL,k|≤ vmax,

|aR,k|≤ amax ∧ |aL,k|≤ amax,

vk ≥ 0,

|ωk| ≥
β/2

h
,

(5.17)

for all k ∈ {0, ..., C − 1}.

The generalized boundary constraints in (5.5) can be modified for the specific case in which the vehicle

initiates and finishes an assigned task at rest:

x0 =
[
xr,init, yr,init, θr,init, 0, 0

]T
,

xC−1 =
[
xr,goal, yr,goal, θr,goal, 0, 0

]T
.

(5.18)

5.2.1 Optimization Solver Integration

Two different optimizers were tested to solve the proposed optimization problem. The Sequential Least

Squares Programming (SLSQP) [49, 50] approaches the problem as a sequence of constrained least-

squares problems. The algorithm optimizes successive second-order approximations of the objective

function with first-order approximations of the constraints. On the other hand, the Interior Point Optimizer

(IPOPT) [51] uses an interior-point method to find local optimum solutions to large-scale non-linear

optimization problems. Interior-point methods are also called barrier methods since they use barrier

functions, which are continuous functions whose values go to infinity as the point gets closer to the edge

of the feasible region.

The SLSQP was implemented using the open-source Python library SciPy [52] and the IPOPT solver

using Python’s symbolic framework CasADi [53]. The same motion planning problem was solved fifty

times using both SLSQP and IPOPT, having for each iteration a different initial guess trajectory provided

by the Kinodynamic RRT. The solution of an optimized trajectory that connects an initial to a goal pose

is illustrated in Figure 5.2a. These tests on both optimizers were made in an obstacle-free scenario.

In Figure 5.2b is depicted the gathered data regarding the cost function and the computational time.

The value of the cost function corresponds to the time that takes the vehicle to execute the optimized

trajectory. The computational time corresponds to the time that the solver takes to optimize the trajectory.

Both solvers optimized trajectories have approximately similar durations. Regarding the computational

time, it can be verified that the IPOPT optimizer outperforms the SLSQP. With IPOPT it is possible

to locally optimize this specific trajectory in less than 0.66 seconds. Further experiments were also

conducted in an environment populated with obstacles and the IPOPT yield better computational results

compared to the SLSQP. Therefore, the following tests presented in this dissertation will be implemented

using as solver the IPOPT.

40

start

goal

50traj_ipopt

(a) Solution of optimized trajectory.

cost
27.8

28.0

28.2

28.4

28.6

28.8

29.0

29.2

29.4

se
co

nd
s

[s
]

IPOPT
SLSQP

runtime

0

10

20

30

40

se
co

nd
s

[s
]

(b) Data distribution regarding trajectory dura-
tion and computational time for the IPOPT and
SLSQP optimizers. The violin plot symbolism
used is described in Figure 4.3b.

Figure 5.2: Comparison between two optimizers: SLSQP and IPOPT.

5.2.2 Single-Robot Results

The trajectory generated by the motion planning method described previously, the Kinodynamic RRT,

is depicted in Figures 5.3a. Its generation is described in Chapter 4 and presented in Figures 4.2a-d.

The Trajectory Planning (TP) provides an initial guess to solve the previously described optimization

problem. As depicted in Figure 5.3b, it is possible to obtain an optimized trajectory.
RRT star

(a) Trajectory Planning

robot41_path_avoidance

(b) Trajectory Optimization

Figure 5.3: Initial guess trajectory (a) and post optimized trajectory (b).

The motion query presented in Figure 5.3 was solved, over fifty times, using the method presented in

this chapter. Figure 5.4a illustrates all the computed trajectories overlaid. It is possible to distinguish

between two distinct sets of paths. In reality, the IPOPT algorithm can only generate locally optimal

solutions, which are highly dependent on the Kinodynamic RRT algorithm. Figure 5.4b displays the

cost, or total trajectory duration, for the TP and Trajectory Optimization (TO) modules. As expected,

the cost of the Kinodynamic RRT trajectory is always higher than the optimized one. Additionally, the

41

computational time of the TP and TO modules are also depicted in Figure 5.4b. The TP module is

predominantly slower compared to the TO one.
trajectories

(a) Overlaid optimized trajectories. Two sets of paths can be distnguished.
The IPOPT generate locally optimal solutions, which are highly dependent on
the Kinodynamic RRT algorithm.

cost

30

35

40

45

50

55

60

se
co

nd
s[

s]

runtime
0

2

4

6

8

se
co

nd
s[

s]

TP (RRT)
TO (IPOPT)

(b) Data distribution regarding trajectory dura-
tion and computational time for the Trajectory
Planning and Trajectory Optimization modules.
The violin plot symbolism used is described in
Figure 4.3b.

Figure 5.4: Data obtained with fifty trajectories generated for the same optimization problem. Overlaid
fifty optimized trajectories (a) and data distribution regarding trajectory duration and computational time
(b) for the Trajectory Planning and Trajectory Optimization modules.

42

Chapter 6

Multi-Robot Trajectory Optimization

When generating an optimized trajectory in a multi-robot system, it is necessary to ensure that each

robot does not collide with any of the static or dynamic obstacles in the environment. In the present

chapter, a novel constraint regarding obstacle avoidance is design to address not only static but dynamic

obstacles as well. The proposed optimization problem is examined for two, six and fifty-robot problems.

6.1 Optimization Problem Reformulation

In multi-robot systems it is not only necessary to ensure a safe distance from static obstacles. In this

chapter, dynamic obstacle are considered. From now, the dynamic obstacles are expressed as other

moving robots. However, any dynamic object, such as people, can also be avoided with this method, if

provided with a predictive movement model.

Consequently, for a vehicle Ri it is necessary to ensure that the distance between every position pi(t)

and all static obstacles and moving robots must respect the safe margin:

sd(pi(t),pj(t), Om) ≥ dsafe, ∀i, j ∈ {1, ..., N}, (6.1)

∀m ∈ {1, ...,M}.

Let sdf(t) be a function that represents the SDF of the environment at a time instant t, where static

obstacles and positions of vehicles with already defined trajectories are considered. To do that, for

a specific time instant, a quadrangular shape centred in pi(t) is represented as an obstacle in the

occupancy gridmap. Figures 6.1a-d illustrate a set of SDFs representing static obstacles and a moving

vehicle in the environment at various time instants.

A set of sdf(t) is generated with a defined time interval, tq ∈ {tinit, ..., tfinal}, where tfinal = max(tigoal),∀i ∈

43

(a) sdf(t = 0s) (b) sdf(t = 5s) (c) sdf(t = 15s) (d) sdf(t = 25s)

Figure 6.1: Set of SDFs illustrating the position of a robot Ri through time. The robot is considered as a
moving obstacle in the environment1.

{1, ..., N}. Let define a tuple that attaches the time step to the respective generated sdf(tq):

{(tq, sdf(tq))},∀q. (6.2)

The set of all generated tuples is given by:

SD =
⋃

tq∈{tinit,...,tfinal}

{(tq, sdf(tq)}. (6.3)

By interpolating SD, a function that provides as an output the signed distance from Ri to the nearest

obstacle or vehicle, given a time t and the respective robot pose pi(t), is obtained. This function can be

defined as:

d(t,pi(t)). (6.4)

This function differs from the one described in (5.7) due to the fact that the environment now changes

over time. Thus, it is crucial that in (6.4) the time instant is given as an input. Thus, it is necessary to

revise the optimization problem described in Chapter 5. The only constraint to be modified is the one

regarding collision avoidance, more specifically the inequality (5.12). Finally, the multi-robot optimization

problem is given by:

Minimize J(h,xk,uk) (6.5)

w.r.t. h,xk,uk, ∀k ∈ {0, ..., C − 1}

subject to xk+1 − xk =
1

2
h(fk + fk+1), ∀k (6.6)

d(hk,p(hk)) ≥ dsafe, ∀k (6.7)

g(tinit, tgoal,x0,xC−1) ≤ 0 (6.8)

xmin ≤ xk ≤ xmax, ∀k (6.9)

umin ≤ uk ≤ umax, ∀k (6.10)
1youtube video URL: https://youtu.be/D9FBw7APRAg

44

https://youtu.be/D9FBw7APRAg

The novelty of this method is that the optimization problem described above presents a single constraint

regarding obstacle avoidance, which includes both static and dynamic obstacles. In classic multi-robot

trajectory optimization approaches, there is a restriction for each pair of robots that limits the distance

between them. In those cases, the computational complexity scales with the number of agents. This

novel approach makes a tradeoff between computational effort and allocated memory since it is nec-

essary to precompute and store a set of signed distance fields that describe the dynamic environment.

Nevertheless, with this implementation, the number of restrictions does not increase with the number of

robots and, consequently, it is possible to reduce the problem’s time complexity.

6.1.1 Architecture of Motion Planning and Optimization

Approach A

Typically, the TP with the Kinodynamic RRT presented in Section 4, does not take moving obstacles

into account, i.e., when the tree expands, the other agent positions are ignored. When a new node is

added to the tree, there is a collision avoidance module that only verifies whether the node collides or

not with a static obstacle of the initial map of the environment. Figure 6.2 illustrates the architecture for

generating each optimal trajectory of a multi-robot system, in which the inputs are: the updated map of

the environmentW, the already assigned trajectories of all vehicles P and the task si that is going to be

assigned. In this approach, only the TO module considers other vehicles trajectories and, consequently,

is the only responsible for the moving obstacle avoidance. The TP takes as inputs the environment

static obstacles and the task assigned to vehicle Ri, i.e., the start and goal poses to plan the initial

guess trajectory.

 Motion planning of Ri

initial guess
 trajectory

Trajectory
planning

without inter
collision avoidance

Trajectory
optimization

Environment (W)

Trajectories (P)

Trajectory (πi)
Task (si)

Figure 6.2: Architecture of approach A to generate an optimized trajectory of robot Ri. This framework
takes as input the updated map of the environmentW, the already defined trajectories of all vehicles P
and the task si that is going to be assigned. In this case, the Trajectory Planning only considers static
obstacles and does not avoid moving ones. In contrast, the Trajectory Optimization module considers
both static and moving obstacles.

Approach B

However, the Kinodynamic RRT collision-avoidance module can be modified to take moving obstacles

into account as well. Essentially, before adding a new node to the tree, the distance from that node

to the nearest obstacle, static or not, can be determined using d(t,pi(t)). The time instant and the

correspondent cartesian coordinates of the vehicle are defined as t and p(t), respectively. With this

approach, both the TP and TO modules have information regarding other vehicles trajectories. Figure

6.3 represents the architecture of approach B.

45

 Motion planning of Ri

initial guess
 trajectory

Trajectory
planning

with inter collision
avoidance

Trajectory
optimization

Environment (W)
Trajectories (P) Trajectory (πi)

Task (si)

Figure 6.3: Architecture of approach B to generate an optimized trajectory of robot Ri. This framework
takes as input the updated map of the environmentW, the already defined trajectories of all vehicles P
and the task si that is going to be assigned. In this approach, both modules, the Trajectory Planning and
Trajectory Optimization, consider static and moving obstacles.

Approach C

As will be analysed in the subsequent sections, there are disadvantages to using only approach A or B.

Firstly, approach A’s TP is computationally faster. However, often the TO cannot optimize the trajectory

given by the TP, since it can be infeasible when considering moving obstacles. Regarding approach B,

the altered TP is computationally slower, but leads to fewer fails on the TO. Thus, a third method was

design, represented in Figure 6.4, that contemplates both approaches.

 Motion planning of Ri

Environment (W)

Trajectories (P) Trajectory (πi)

Task (si)

Trajectory
planning

with inter collision
avoidance

Trajectory
planning

without inter
collision avoidance Trajectory

optimization fail?

Yes

No

Figure 6.4: Architecture of approach C to generate an optimized trajectory of robot Ri. This framework
takes as input the updated map of the environment W, the already defined trajectories of all vehicles
P and the task si that is going to be assigned. Initially, the Trajectory Planning only considers static
obstacles. If the Trajectory Optimization cannot find a feasible solution, the Trajectory Planning is ran
again, considering now both static and moving obstacles.

Firstly, when generating Ri’s trajectory, an initial solution using the TP without inter-collision avoidance

is calculated. This initial guess is provided to the TO. If the solver cannot achieve an optimal solution, a

new initial trajectory is calculated using the TP with inter-collision avoidance and, subsequently, sent to

the TO.

6.2 Trajectory Optimization with Two Robots

For a set of two vehicles R = {R1, R2}, tasks are assigned sequentially to each robot. Firstly, it will be

generated π1 and then π2. The tasks are assigned at similar time instants, t1,2init = 0s. To each vehicle

i = 1, 2 is assigned an initial pose xi
init and a goal region Xi

goal.

First, a problem is presented in which both vehicles have identical maximum wheel speeds. This issue is

46

solved using approaches A and B. Lastly, two vehicles with distinct maximum wheel speeds are studied.

6.2.1 Two Robots with Identical Maximum Velocities

In this first scenario both vehicles have similar maximum wheels velocities, i.e., v1,2max = 1ms−1. Initially,

this motion problem is solved with approach A and, posteriorly, with approach B.

Solution with Approach A

The trajectory of vehicle R1, illustrated in Figure 6.5a, was the first one to be calculated and, conse-

quently, was treated as a single-agent problem with only static obstacles of the environment to consider.

Secondly, Figure 6.5b depicts R2’s trajectory. As formerly explained, with approach A, the TP does

not consider moving obstacles when generating the initial guess trajectory (represented in dark green).

Nevertheless, the TO takes into account π1, already defined, and manage to create a trajectory π2 (rep-

resented in light green) that can avoid the previous one. Figures 6.6a-f illustrate the moving agents at

different time instants, confirming that they do not collide with each other.

(a) TP (dark green) and TO (light green) to generate π1 with
approach A.

(b) TP (dark green) and TO (light green) to generate π2 with
approach A.

Figure 6.5: Trajectories of robots R1 and R2 obtained with approach A.

(a) t = 0s: Initial poses of both vehicles.
R1 on the right and R2 on the left.

(b) t = 7.5s (c) t = 15s

(d) t = 20s: Vehicles avoid each other. (e) t = 27.5s (f) t = 37.5s

Figure 6.6: Trajectories of R1 and R2 at different time instants with approach A. Since there is enough
space for both agents to drive through the corridor, the two vehicles swerve from each other.

This motion problem was solved successfully, since both vehicles have enough space to drive through

the corridor and pass side by side. Notwithstanding, let us enlarge the safe distance from the agent

to the obstacles, so that only one vehicle can fit into the corridor. Figure 6.7a depicts a trajectory π1

generated as a single agent problem, similar to the previous example. On the other hand, for trajectory

47

π2, the TP’s first initial guess did not take π1 into account. As a consequence, the solver was not able

to find a feasible local optimal trajectory. In such cases, the IPOPT reaches a maximum number of

iterations and returns failure. Figure 6.7b depicts the failed trajectory π2, while Figures 6.8a-f depict the

colliding vehicles’ frames.
robot00_path_avoidance

(a) TP (dark green) and TO (light green) to generate π1 with
approach A.

robot01_path_avoidance

(b) TP (dark green) and TO (light green) to generate π2 with
approach A.

Figure 6.7: Failed trajectories generation after enlarging the safe distance to obstacles with approach A.

(a) t = 0s: Initial poses of both vehicles.
R1 on the right and R2 on the left.

(b) t = 7.5s (c) t = 15s

(d) t = 20s: Vehicles collide. (e) t = 27.5s (f) t = 37.5s

Figure 6.8: Colliding trajectories of robots R1 and R2 obtained after enlarging the safe distance to
obstacles with approach A. The TO solver could not find a feasible solution for R2 and returns failure.

Solution with Approach B

Approach B was implemented to prevent the previously described scenario in which the IPOPT is in-

capable of determining a feasible trajectory. With this architecture, the TP has information regarding

static and moving obstacles, such as other vehicles. Figures 6.9a and b show trajectories π1 and π2,

respectively. In this scenario, the safe distance to the obstacles was also increased. Thus, robot R2’s TP

could not create an initial guess trajectory that would have enough space to pass through the corridor.

Therefore, a feasible initial trajectory (represented in dark blue) that goes around the central obstacle

was obtained. In this case, the solver was able to find a local optimal solution (represented in light blue).

Figures 6.10a-c depict the approach B’s solution to solve the previously stated problem.

6.2.2 Two Robots with Different Maximum Velocities

Now, consider an environment with only one corridor and no obstacles. In this next scenario, both

vehicles have different maximum wheel velocities, i.e., v1max = 1ms−1 and v2max = 2ms−1. The following

motion planning problems is solved using approach B.

48

robot00_path_avoidance

(a) TP (dark blue) and TO (light blue) to generate π1 with ap-
proach B.

robot01_path_avoidance

(b) TP (dark blue) and TO (light blue) to generate π2 with ap-
proach B.

Figure 6.9: Trajectories of robots R1 and R2 obtained with approach B.

(a) t = 0s: Initial poses of both vehicles.
R1 on the right and R2 on the left.

(b) t = 25s (c) t = 60s

Figure 6.10: Trajectories of R1 and R2 at different time instants with approach B. Even with not enough
space for both agents to pass through the same corridor, both vehicles find feasible routes.

First, assume that the corridor is wide enough for both vehicles to fit side by side. The algorithm was

able to find a solution in which the faster vehicle could pass the slower one, as it is verified in Figures

6.11 and 6.12. In Figure 6.13 the velocity of both right and left wheels is presented for every collocation

point. As it can be verified, both vehicles try to make use of the maximum velocity of each wheel.

robot01_path_avoidance

(a) TP (dark blue) and TO (light blue) to generate π1 with
v1max = 1ms−1.

robot00_path_avoidance

(b) TP (dark blue) and TO (light blue) to generate π2 with
v2max = 2ms−1.

Figure 6.11: Trajectories of robots R1 and R2 with different maximum velocities.

(a) t = 0s: Initial poses of both vehicles.
R1 on the left and R2 on the right.

(b) t = 10s (c) t = 15s: R1 passes R2.

(d) t = 22.5s (e) t = 30s (f) t = 35s

Figure 6.12: Trajectories of R1 and R2 at different time instants with different maximum velocities, v1max =
1ms−1 and v2max = 2ms−1. The faster vehicle was able to pass the slower one.

Once again, let us increase the safe distance between vehicles so that there is only enough space for

one vehicle to drive through the corridor. As shown in Figure 6.14a, the trajectory of vehicle R1 is the

first to be generated. Figure 6.16a proves that R1 moves with the maximum velocity in both wheels.

Next, the trajectory of R2 is calculated. As shown in Figure 6.16b, R2 cannot exceed the R1’s velocity

while following it. Finally, in Figures 6.15a-c, both vehicles are shown moving in different frames.

49

0 5 10 15 20
collocation points

0.0

0.5

1.0

1.5

2.0
ve

lo
ci

ty
 [

m
/s

]

vR

vL

(a) Right and left wheel velocity at every collocation point of
vehicle R1. R1 reaches the maximum velocity in both wheels.

0 5 10 15 20 25
collocation points

0.0

0.5

1.0

1.5

2.0

ve
lo

ci
ty

 [
m

/s
]

vR

vL

(b) [Right and left wheel velocity at every collocation point of
vehicle R2. R2 reaches the maximum velocity in both wheels.

Figure 6.13: Right and left wheel velocity at every collocation point of vehicles R1 and R2 with different
maximum velocities, v1max = 1ms−1 and v2max = 2ms−1.

robot01_path_avoidance

(a) TP (dark blue) and TO (light blue) to generate π1 with
v1max = 1ms−1.

robot00_path_avoidance

(b) TP (dark blue) and TO (light blue) to generate π2 with
v2max = 2ms−1.

Figure 6.14: Trajectories of robots R1 and R2 with different maximum velocities, v1max = 1ms−1 and
v2max = 2ms−1.

(a) t = 0s: Initial poses of both vehicles.

R1 on the left and R2 on the right.

(b) t = 27.5s (c) t = 37.5s

Figure 6.15: Trajectories of R1 and R2 at different time instants with different maximum velocities, v1max =
1ms−1 and v2max = 2ms−1. The faster vehicle was able to follow the slower one.

0 5 10 15 20 25
collocation points

0.0

0.5

1.0

1.5

2.0

ve
lo

ci
ty

 [
m

/s
]

vR

vL

(a) Right and left wheel velocity at every collocation point of
vehicle R1. R1 reaches the maximum velocity in both wheels.

0 2 4 6 8 10 12 14 16
collocation points

0.0

0.5

1.0

1.5

2.0

ve
lo

ci
ty

 [
m

/s
]

vR

vL

(b) Right and left wheel velocity at every collocation point of
vehicle R2. R2 does not exceed R1’s velocity while following it.

Figure 6.16: Right and left wheel velocity at every collocation point of vehicles R1 and R2 with different
maximum velocities, v1max = 1ms−1 and v2max = 2ms−1.

50

6.3 Trajectory Optimization with Six Robots

For a set of six vehicles R = {R1, R2, R3, R4, R5, R6}, asynchronous tasks are assigned at time instants

t1,2init = 0s, t3,4init = 5s and t5,6init = 10s for the pairs of robots {R1, R2}, {R3, R4} and {R5, R6}, respectively.

The trajectories are generated sequentially, i.e., the first and last trajectories to be calculated are π1 and

π6, respectively. To each vehicle i = 1, .., 6 is assigned an initial pose xi
init and a goal region Xi

goal.

First, the results for the described motion problem are presented without inter-vehicle avoidance. Then,

this scenario is solved using the proposed formulation and, therefore, taking into account moving obsta-

cles. Finally, the algorithm scalability is analysed.

6.3.1 Without Inter-Robot Avoidance

Let one assume that the vehicles do not take into consideration the others trajectories. Therefore, all

trajectories are generated as single-agent problems, as described in Chapter 5. Therefore, the optimiza-

tion problem used is the one described in (5.10)-(5.15), i.e., only static obstacles in the environment are

going to be avoided. The results are depicted in Figures 6.17a-f. As expected, there were collisions

between vehicles. These results emphasize the importance of implementing a robust mechanism that

handles multi-robot systems.

(a) t = 0s: R1 (dark green) and R2 (light
green) begin their trajectories.

(b) t = 5s: R3 (orange) and R4 (red) be-
gin their trajectories.

(c) t = 10s: R5 (blue) and R6 (purple)
begin their trajectories.

(d) t = 14s: R1 (dark green) and R2

(light green) collide with each other.
(e) t = 22s: R3 (orande), R4 (red) and
R5 (blue) collide with each other.

(f) t = 26s: R5 and R6 collide with each
other.

Figure 6.17: Trajectories of six vehicles without inter-vehicle avoidance, at different time instants. The
robots cannot swerve to avoid collisions.

51

6.3.2 With Inter-Robot Avoidance

Since the trajectory of R1 is the first one to be calculated, it does not depend on any other vehicle. There-

fore, it is treated as a single-agent problem. The tree and initial trajectory generated by the Kynodinamic

RRT are illustrated in Figure 6.18a. Figure 6.18b shows the final optimized trajectory.

When generating trajectory π2, the position of R1 through time is described by a set of SDFs. Figures

6.1a-d depicts some of these SDFs. This set is interpolated and used in the optimization problem to

reveal information regarding the distance from R2 to the nearest obstacle or vehicle. Figures 6.18c

and 6.18d illustrate the initial guess trajectory and the optimized π2, respectively. Similarly to π2, R3’s

trajectory is generated by avoiding the already existing ones, π1 and π2. The remaining trajectories were

generated using the same reasoning as the preceding ones. Figures 6.18e-i depict the initial guess

and final locally optimal trajectories of vehicles R3, R4, R5, and R6. Finally, Figures 6.19a-f show some

strategic frames that validate the implementation. It is possible to verify that all vehicles swerve to avoid

collisions.

To gather information regarding the implemented method, each trajectory of every vehicle was generated

fifty times. The motion planning problem of each robot was kept unchanged for every sample. The

overlapping trajectories of each vehicle are depicted in Figures 6.20a-f.

The six-vehicle motion planning problem of set R was solved fifty times with both approaches A and

B in order to compare them. The results are illustrated in Figures 6.21a-c. The data regarding the

computational time (Figure 6.21a) and the trajectory duration (Figure 6.21b) of each module (TP and

TO), for both approaches, was gathered for each of the six agents. Finally, the frequency of failed

trajectory generations is plotted in Figure 6.21c. A failure occurs when the IPOPT solver of the TO

module cannot find a locally optimal trajectory given the initial guess provided by TP.

Firstly, concerning approach A, it can be verified that the TP module is computationally faster. However,

the TO of approach A cannot always optimize the trajectory given by the TP, since it can be infeasible

when considering moving obstacles. This leads to a higher frequency of failures. Regarding approach

B, the altered TP is computationally slower, but the solver can always find a solution. Thus, it can be

concluded that there are both advantages and disadvantages when using either approach A or B. Thus,

approach C was design, represented in Figure 6.4, that contemplates both approaches. The following

tests depicted in this dissertation will be solved using the architecture corresponding to approach C.

52

RRT star

(a) Trajectory planning of R1. Kinody-
namic RRT tree constructed (grey) and
generated initial guess trajectory (dark
green).

robot00_path_avoidance

(b) Trajectory optimization of R1. Trajec-
tory π1 is the first to be calculated, thus it
does not depend on any other vehicle.

RRT star

(c) Trajectory planning of R2. Kinody-
namic RRT tree constructed (grey) and
generated initial guess trajectory (light
green).

robot10_path_avoidance

(d) Trajectory optimization of R2. Trajec-
tory π2 is generated by avoiding the al-
ready existing one, π1.

RRT star

(e) Trajectory planning of R3. Kin-
odynamic RRT tree constructed (grey)
and generated initial guess trajectory (or-
ange).

robot20_path_avoidance

(f) Trajectory optimization of R3. Trajec-
tory π3 is generated by avoiding the al-
ready existing ones, π1 and π2.

RRT star

(g) Trajectory planning of R4. Kinody-
namic RRT tree constructed (grey) and
generated initial guess trajectory (red).

robot30_path_avoidance

(h) Trajectory optimization of R4. Trajec-
tory π4 is generated by avoiding the al-
ready existing ones, π1, π2 and π3.

RRT star

(i) Trajectory planning of R5. Kinody-
namic RRT tree constructed (grey) and
generated initial guess trajectory (blue).

robot40_path_avoidance

(j) Trajectory optimization of R5. Trajec-
tory π5 is generated by avoiding the al-
ready existing ones, π1, π2, π3 and π4.

RRT star

(k) Trajectory planning of R6. Kinody-
namic RRT tree constructed (grey) and
generated initial guess trajectory (purple).

robot50_path_avoidance

(l) Trajectory optimization of R6. Trajec-
tory π6 is generated by avoiding the al-
ready existing ones, π1, π2, π3, π4 and
π5.

Figure 6.18: Generation of trajectories π1, π2, π3, π4, π5 and π6.

53

(a) t = 0s: R1 (dark green) and R2 (light
green) begin their trajectories.

(b) t = 5s: R3 (orange) and R4 (red) be-
gin their trajectories.

(c) t = 10s: R5 (blue) and R6 (purple)
begin their trajectories.

(d) t = 15s: R1 (dark green) and R2

(light green) avoid colliding with each
other.

(e) t = 24s: R3 (orange), R4 (red) avoid
colliding with each other.

(f) t = 29s: R5 (blue) and R6 (purple)
avoid colliding with each other.

Figure 6.19: Trajectories of six vehicles with inter-vehicle avoidance, at different time instants. All robots
swerve to avoid collisions 2.

trajectories

(a) Overlaid π1 (b) Overlaid π2 (c) Overlaind π3

(d) Overlaid π4 (e) Overlaind π5 (f) Overlaid π6

Figure 6.20: Fifty optimized trajectories overlapped for each motion planning problem with inter-vehicle
avoidance.

2youtube video URL: https://youtu.be/-77nMGYzww8

54

https://youtu.be/-77nMGYzww8

1 2 3 4 5 6
vehicle index

0

25

50

75

100

125

150

175

ru
nt

im
e

[s
ec

on
ds

]

TP (Approach A)
TP (Approach B)
TO (Approach A)
TO (Approach B)

(a) Data distribution regarding computational time. The violin plot symbolism used is described in Figure 4.3b.

1 2 3 4 5 6
vehicle index

20

30

40

50

60

70

co
st

 [
se

co
nd

s]

TP (Approach A)
TP (Approach B)
TO (Approach A)
TO (Approach B)

(b) Data distribution regarding trajectory duration (cost). The violin plot symbolism used is described in Figure 4.3b.

1 2 3 4 5 6
vehicle index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

fr
eq

ue
nc

y
of

 fa
ilu

re

Approach A
Approach B

(c) Frequency of failure with approaches A and B.

Figure 6.21: Violin plots regarding computational time (a) and trajectory duration (b) for the TP and TO
algorithms of each vehicle. Frequency of failure for both approaches (c).

55

6.4 Scalability Study

Next, the algorithm’s behaviour to overcrowded spaces and how many routes can be built on this specific

map is examined. The pseudocode that calculate the maximum number of generated trajectories is

accounted in Algorithm 8. Firstly, the function GenerateRandomInitialGoalStates computes randomly

the initial and final states of each trajectory (line 3). Nevertheless, some conditions must be met, such

as:

• Both states must be inside the set of free state space, xi
init,x

i
goal ∈ Xfree;

• All initial poses are separated by a distance greater than a safe margin, |pi
init − pj

init|> dsafe,

∀i, j ∈ {1, ..., N};

• All trajectories are assigned at the same instant, t1,...,N = 0s.

For each vehicle Ri, the motion planning module is executed based on approach C (line 4). If a trajectory

can be successfully generated, then the process is repeated for a new agent, Ri+1 (line 8). If trajectory

πi cannot be found, the number of fails is increased (line 6), until a maximum value, nmax, is reached.

In this case, the algorithm stops the search since it cannot add any more agents to the environment.

Algorithm 8 Maximum number of generated trajectories
Input: state space X
Ouput: number of generated trajectories i

1: i = 0, nfail = 0
2: while nfail < nmax do
3: xi

init,x
i
goal ← GenerateRandomInitialGoalStates(Xfree)

4: πi ← MotionPlanning(xi
init,x

i
goal)

5: if πi is failure then
6: nfail ← nfail + 1
7: end if
8: i← i+ 1
9: end while

10: return i

This procedure that analyses the scalability of the method was repeated 20 times. The histogram pre-

senting the frequency of the maximum number of agents allowed in the environment can be found in

Figure 6.22. The case with the least number of agents was obtained with 16 vehicles. On the other

hand, the situation in which more agents were added to the scenario was reached with 25 vehicles.

Examples of 16, 20 and 25 agents are represented in Figures 6.23a-c, respectively.

56

16 17 18 19 20 21 22 23 24
maximum number of agents

0.00

0.05

0.10

0.15

0.20

0.25

fr
eq

ue
nc

y

Figure 6.22: Histogram with frequency of maximum number of agents that can be added to the studied
scenario.

(a) 16 vehicles (b) 20 vehicles (c) 25 vehicles

Figure 6.23: Example of scenarios for different maximum number of agents allowed in the environment.

6.5 Trajectory Optimization with Fifty Robots

A set of fifty vehicles, R = {R1, ..., R50}, was used to analyse the computational complexity of the TO

module with an increasing number of agents. The initial and final states of the fifty vehicles were gen-

erated randomly, respecting function GenerateRandomInitialGoalStates’s conditions presented above.

One additional condition was considered: ensuring that the distance between initial and final poses of

each robot was inside a defined range, |pi
init − pi

goal|< drange. This allowed to create trajectories of

similar lengths.

Unlike the previous case, in which the behaviour of the proposed method in an overcrowded environment

was studied, now the purpose is to analyse the computational complexity with an increasing number of

agents. Therefore, the map of the environment was enlarged and the boundaries were removed. Figure

6.24 represents the enlarged map, as well as a solution for the fifty-agent motion planning problem.

In addiction, the fifty-agent motion planning problem was solved fifty times for each agent. The data

regarding the TO computational time of each agent was collected and presented in Figure 6.25a. As

previously mentioned, the first trajectory generated is treated as a single-robot problem. This leads to

visibly faster computation compared to the remaining agents. Generally, the computational time of the

TO increases slightly with the addition of new vehicles. In fact, the environment is becoming progres-

sively more crowded and the space for vehicles to move more scarce. Figure 6.25b depicts the data

57

Figure 6.24: Solution for the fifty-multi agent problem. The trajectories of all vehicles were overlapped.
The assigned initial pose of each robot is represented by its respective rectangular shape 3.

collected regarding the trajectory duration of the generated routes for each vehicle.

Furthermore, a regression analysis of the mean values of computational time of each vehicle was con-

ducted to measure the relationship between the complexity and the number of agents. The resulting

regression line, presented in Figure 6.25a, enabled us to estimate a growth rate of 0.208 seconds per

agent. This result indicates that the complexity scales slower than an unitary linear rate with the number

of vehicles.

3youtube video URL: https://youtu.be/b6iUmlzqf0Q

58

https://youtu.be/b6iUmlzqf0Q

1 10 20 30 40 50
vehicle index

0

10

20

30

40

50

ru
nt

im
e

[s
ec

on
ds

]

regression of mean values of runtime

(a) Data distribution regarding computational time of the Trajectory Optimization module for every vehicle. The violin plot sym-
bolism used is described in Figure 4.3b. The regression analysis of the mean values of computational time of each vehicle is
represented in blue. The resulting regression line presents a growth rate of 0.208 seconds per agent.

1 10 20 30 40 50
vehicle index

40

60

80

100

co
st

 [
se

co
nd

s]

(b) Data distribution regarding trajectory duration obtained for every vehicle. The violin plot simbolism used is described in Figure
4.3b.

Figure 6.25: Data collected regarding the Trajectory Optimization of each vehicle, generated fifty times.

59

Chapter 7

Real Environment Requirements

The effectiveness of the proposed method has been validated in simulation. However, when implement-

ing this algorithm in a real-world industrial scenario, some modifications and reformulations are required.

This chapter discusses the adjustments made. In Section 7.1, the objective function is reformulated so

that robots drive, preferentially, on the right side of the corridors. Section 7.2 presents a distributed

dynamic map update algorithm so that all robots can share detected changes in the environment.

7.1 Objective Function Reformulation

In a real-world industrial scenario, it is necessary to ensure the transportation of materials inside the

factory. This is done by generating smooth trajectories through the factory’s corridors that can avoid

static obstacles and other vehicles. Nevertheless, the AMRs are required to drive on the right side of the

factory’s corridors. This condition contributes to the organization and road-like circulation of the AMRs

in the industrial facilities. Additionally, this leads to a more predictable environment for people or other

vehicles that might move through the corridors, besides AMRs. Although it is necessary to guarantee

that each AMR drives preferably on the right side of the corridor, this must not be a strict restriction since

the vehicle should be able to swerve obstacles that might force the robot to momentarily left-hand drive.

Therefore, some adjustments in the cost function must be made. A term was added to the objective

function, which consists of a penalty parameter that penalizes when the vehicle is not moving on the

right side. First, the measure of violation was conceptualized for a set of vehicle’s orientations, such as

Θ = {−π,−π/2, 0, π/2, π}rad. Figures 7.1a-e depict the vehicle in various poses with Θ orientations.

Additionally, it is also represented where virtual obstacle/wall/corridor limitation should be placed to

ensure that the vehicle drives on its right-hand. Furthermore, the SDF of each obstacle in Figures

7.1a-e was generated and it is depicted in Figures 7.1f-j, respectively. Let osdf(θr) be a function that

represents the SDF generated by the right-side obstacle when the vehicle has an orientation θr.

For example, when a vehicle is moving with θr = 0rad, as shown in Figure 7.1c, the respective SDF

60

(a) θr = −πrad (b) θr = −π
2
rad (c) θr = 0rad (d) θr = π

2
rad (e) θr = πrad

(f) osdf(θr = −πrad) (g) osdf(θr = −π
2
rad) (h) osdf(θr = 0rad) (i) osdf(θr = π

2
rad) (j) osdf(θr = πrad)

Figure 7.1: Representation of where the closest obstacle should be placed to ensure that the vehicle
drives on its right-hand for the set of vehicle’s orientation Θ = {−π,−π/2, 0, π/2, π}rad, (a)-(e). SDFs
generated by the right side obstacle when the vehicle has an orientation from set Θ, (f)-(j).

generated by the right-side obstacle is represented in Figure 7.1h. It can be verified that if the vehicle

is moving far away from the right side (yellow color), the value given by osdf(θr = 0rad) is much larger

compared to a vehicle that is moving next to the obstacle (green color). This value can be used as a

measure of violation to be applied to the cost function. This parameter increases with the distance from

the right side of the corridor and is closest to zero in the region where the vehicle is moving at exactly

the safe distance from its right-side obstacle or corridor limits.

The set of all generated SDFs presented in Figures 7.1f-j is given by:

OSD =
⋃
θ∈Θ

{osdf(θ)}. (7.1)

By interpolating OSD, a function that provides the measure of violation is obtained:

m(pk), (7.2)

where the robot pose, pk = (xk, yk, θk) at a collocation point k ∈ {0, ..., C − 1}, is received as inputs.

The violation term provided by this function is considered at every collocation point. The reformulated

cost function is given by:

J(h,xk,uk) = h

C−1∑
k=0

m(pk), ∀k ∈ {0, ..., C − 1}. (7.3)

Tasks are assigned sequentially to each robot in a set of two vehicles, R = {R1, R2}. In Figures 7.2 is

presented the solution using the objective function proposed in Chapter 6 that minimizes the trajectory’s

duration.

61

R1

R2

t = 0.00 s

(a) t = 0s

t = 16.00 s

(b) t = 16s

t = 33.00 s

(c) t = 33s

Figure 7.2: Solution using the method proposed in Chapter 6, in which the objective function only mini-
mizes the trajectory duration.

Additionally, for the same motion planning problem, a solution was obtained using the reformulated

objective function, in which the vehicles drive preferably on the right side of the corridors. This result is

illustrated in Figures 7.3a-f.

R1

R2

t = 0.00 s

(a) t = 0s

t = 8.00 s

(b) t = 8s

t = 14.00 s

(c) t = 14s

t = 20.00 s

(d) t = 20s

t = 26.00 s

(e) t = 26s

t = 46.00 s

(f) t = 46s

Figure 7.3: Solution using the reformulated method, in which the vehicles drive preferably on the right
side on the corridors.

7.2 Dynamic Map Update

Since the environment under study is subject to changes, it is crucial that an autonomous agent per-

ceives and acts accordingly in its environment. To have an accurate picture of the scenario, these

changes must be found and then added to the map that is shared by all agents.

Initially, all vehicles own a Static Map (SM). In Figure 7.4a is presented the original map of Imeguisa’s

installations. The SM is created by binerazing the environment into unoccupied and obstacle areas.

The respective SM of Imeguisa’s installations, with the available corridors, is presented in 7.4b.

When driving through the environment each AMR computes an occupancy gridmap using laser scanners

62

(a) Map of Imeguisa’s infrastructures. (b) Static map.

Figure 7.4: Original map of Imeguisa’s installations (a) and corresponding binary Static Map created (b),
in which white represents the obstacle areas and black the unoccupied areas.

Algorithm 9 Decentralized Dynamic Map Update
Input: SM , LM i for all i = 1, ..., N
Output: UPM

1: PM ← (LM1 + ...LMN)/N
2: BPM ← Convert PM to a binary map using a threshold β
3: UPM ← SM ∨BPM
4: return UPM

built in the mobile robot. A costmap presents the probability of each map cell containing an obstacle.

This map is denominated as Local Map (LM) and every robot Ri, i = {1, ..., N} creates its own LM i

when driving through the environment. Each LM i is sent over to the network and shared with others.

The decentralized dynamic map update algorithm, presented in Algorithm 9, constructs an updated map

of the environment. Each vehicle receives the LM i of all robots. Then, a Public Map (PM) is created

by calculating an average of all LM i (line 1). An example of a PM is presented in Figure 7.5a. A

threshold was defined in order to transform PM into a Binary Public Map (BPM) (line 2). If the value

of a PM cell is smaller than this threshold, then it is assigned the value 0 to that cell that corresponds

to an unoccupied area. On the other hand, if the value of a PM cell is higher than the threshold, it is

assumed that there is an obstacle in that location and the value of the cell is assigned to 1. An example

of a BPM is presented in Figure 7.5b. Finally, the SM and the BPM are merged using the logical OR

operator (line 3), resulting in the Updated Public Map (UPM). With the UPM all robots can plan their

trajectories with the shared information.

63

(a) Public Map. (b) Binary Public Map.

0.0 0.2 0.4 0.6 0.8 1.0

(c) Updated Public Map.

Figure 7.5: Public Map (a) computed by the average of all robot’s Local Maps and corresponding Binary
Public Map (b). The Updated Public Map (c) is generated by merging the Static Map with the Binary
Public Map.

64

Chapter 8

Real Environment Results

In this chapter, the results of the experimental tests in a real environment were conducted at Imeguisa’s

installations, with a maximum of three vehicles, are depicted. Three different scenarios are presented

for a maximum of three AMRs and three tasks to be allocated.

8.1 Experimental Setup

The experimental tests on the work accomplished were conducted at Imeguisa’s installations. The map

of the environment was already presented in Chapter 7. Nevertheless, the robots were only allowed

to navigate certain corridors. In Figure 8.1 is illustrated the navigable areas where the tests were per-

formed, as well as the SM that all robots own initially.

Figure 8.1: Imeguisa’s installations and navigable areas. On the bottom right is represented the static
map of the navigable corridors.

Figures 8.2a and 8.2b illustrate the representation and a photograph of the real robot used in the ex-

perimental tests. The AMR is a differential drive vehicle that can be described by the model presented

65

in Section 3.3. The vehicle’s parameters used in the motion planning problem are presented in Table

8.1. These parameters are, respectively, the vehicle’s length and width, the distance between both con-

trollable wheels, the limitations in velocity and acceleration of each wheel, the sensor’s horizontal range

and the safe distance from obstacles.

(a) Representation of the real AMR. The sensor’s
angular range is illustrated in green.

(b) Real AMR used in the experimental tests.

Figure 8.2: Representation and real autonomous mobile robot used in the experimental tests 1.

Table 8.1: Vehicle parameters used in the experimental tests.

Parameter h w L vmax amax β dsafe

Value 1.20m 0.72m 0.63m 1ms−1 0.5ms−2 180◦ 0.6m

A maximum of three AMRs were used in the experimental tests. The decentralized robots communicate

using Wi-Fi and through a Robot Operating System (ROS) [54] Multimaster package 2. Additionally, with

odometry and the data provided by the horizontal sensor, the vehicle can navigate in the environment.

amcl 3 and move base 4 packages are used by each AMR for location and navigation, respectively.

As explained in the project’s functional architecture (Section 1.3), the Task Manager has the responsi-

bility of deciding which robot is the most apt to execute each task. Also, for the Task Executer, it uses

a local planner that constantly computes a path that minimizes the distance to the generated trajectory

and sends velocity commands to the robot’s motors to follow it. The local planner used in these prelim-

inary tests was the Timed Elastic Band (TEB) 5. These two modules were implemented by J. Tavares

[7].

8.2 Experimental Tests

Each AMR begins at rest in the idle zone. When a robot finishes a task and does not have a new one

assigned, it must drive to the idle zone, which is represented as a yellow rectangle in Figure 8.3. A set

of four different tasks S = {s1, s2, s3, s4} aree assigned. Each task has one starting point and, for testing

purposes, only one destination. This can be specified for each task as follows:

1Imeguisa authorizes the publication of both images in this dissertation.
2A. Tiderko. multimaster fkie. ROS wiki, 2022. URL http://wiki.ros.org/multimaster˙fkie.
3B. P. Gerkey. amcl. ROS wiki, 2022. URL http://wiki.ros.org/amcl.
4E. Marder-Eppstein. move base. ROS wiki, 2022. URL http://wiki.ros.org/move˙base.
5C. Rosmann. teb ¨ local planner. ROS wiki, 2022. URL http://wiki.ros.org/teb˙local˙planner.

66

• Task 1 (s1): Task starts at Location 2 and finishes at Location 1.

• Task 2 (s2): Task starts at Location 3 and finishes at Location 4.

• Task 3 (s3): Task starts at Location 4 and finishes at Location 3.

• Task 4 (s4): Task starts at Location 1 and finishes at Location 2.

Locations 1 to 4 are illustrated in Figure 8.3.

Location 2

Location 1

Location 3

Location 4

Idle

Figure 8.3: Location of starting and ending points of existing tasks (red). Idle zone (yellow), i.e., where
a robot must be when no task is assigned to it.

To evaluate the proposed planning techniques integrated with the task assignment strategy, tests were

conducted for three scenarios, which are described as follows:

• Scenario I: Comprehends a set of two AMRs, R1 and R2, to execute task s1.

• Scenario II: Comprehends a set of two AMRs, R1 and R2, to execute tasks s2 and s3.

• Scenario III: Comprehends a set of three AMRs, R1, R2 and R3, to execute tasks s2, s3 and s4.

67

8.2.1 Scenario I

To better understand Scenario I, the diagram in Figure 8.4 depicts the actions performed along this

experimental test. Initially, both robots R1 and R2 are in the idle zone (Figure 8.5a). Task s1 is triggered

at t = 0s and an auction is held to determine which robot is executing s1 (line 1 in Figure 8.4). Each

robot, in order to obtain its auction bid, must plan a trajectory from its current position to the starting point

of s1, Location 2. The wining robot, R1, drives to Location 2 using the trajectory computed for the bid, as

illustrated in Figure 8.5b (line 2 in Figure 8.4). In Figure 8.5c, R1 has already arrived to its destination

and plans a new trajectory from the beginning to the end of the assigned task (line 3 in Figure 8.4).

Finally, Figure 8.5d illustrates R1’s trajectory to return to the idle zone when the task is completed.

Time [s]
1: Auction of task 1

Drive to task 1 starting point (Location 2)
Execute task 1 (Location 2 to Location 1)

10 20 30 40 50 60 70 80 90 100 120 130

0

3: Execute task 1 (Location 2 to Location 1)
2: Drive to task 1 starting point (Location 2)

Figure 8.4: Sequential actions performed in Scenario I. Line 1: the auction of task 1, s1, is triggered.
Line 2: the winning robot must drive to the starting point of s1. Line 3: task s1 must be performed. The
blue lines indicates that vehicle R1 was chosen to execute s1.

Location 2

Location 1

R1 R2

(a) t = 0s: s1 is triggered. Vehicles R1 (blue) and R2 (green)
are in the idle zone. Red arrows represent the orientation of
both vehicles.

(b) t = 6.54s: R1 is allocated to execute task s1 and begins
its journey (blue curve) to the starting point of s1, Location 2.
R2 is in the idle zone.

(c) t = 80.57s: R1 begins its journey (blue curve) from the
starting to the ending point of s1, Locations 2 and 1, respec-
tively. R2 is in the idle zone.

(d) t = 135.42s: R1 finishes s1 and begins a journey (blue
curve) to return to the idle zone. R2 is in the idle zone.

Figure 8.5: Scenario at Imeguisa’s installations with a set of two robots to execute task s1. 6

6youtube video URL: https://youtu.be/BCL9o4V nM0

68

https://youtu.be/BCL9o4V_nM0

8.2.2 Scenario II

The diagram in Figure 8.6 depicts the actions performed in Scenario II. The second scenario begins at

t = 0s, with task s2 being triggered (line 1 in Figure 8.6). As shown in Figure 8.7b, R1 wins s2’s auction

and begins its trajectory to the starting point of its allocated task, Location 3 (line 2 in Figure 8.6). Then,

s3’s auction is held (line 4 in Figure 8.6). Now, R1’s bid must consider both the time required to complete

its current task and the time needed to reach s3’s starting position. Since it is faster for R2 to travel from

the idle zone to Location 4, task s3 is assigned to R2. Figure 8.8a depicts the trajectory from R2’s current

position to the starting point of s3, Location 4 (line 5 in Figure 8.6).

In Figure 8.8b, R2 arrives to Location 4 and plans a new trajectory to Location 3 (line 6 in Figure 8.6).

To complete task s2, R1 begins its journey to Location 4, as shown in Figure 8.8c (line 3 in Figure 8.6).

Figure 8.8d illustrates a situation in which the two vehicles share the same corridor. In fact, the planned

trajectories prevent both vehicles from colliding with each other. Also, it is verified that each robot is

driving on its right-hand side. Finally, Figures 8.8e and 8.8f show R2 and R1 completing their tasks and

planning their routes to the idle zone, respectively.

Time [s]
1: Auction of task 2
2: Drive to task 2 starting point (Location 3)
3: Execute task 2 (Location 3 to Location 4)

20 30 40 50 60 70 80 90 100 120

4: Auction of task 3
5: Drive to task 3 starting point (Location 4)
6: Execute task 3 (Location 4 to Location 3)

100

Figure 8.6: Sequential actions performed in Scenario II. Line 1: the auction of task 2, s2, is triggered.
Line 2: the winning robot must drive to the starting point of s2. Line 3: task s2 must be performed.
The blue lines indicates that vehicle R1 was chosen to execute s2 Line 4: the auction of task 3, s3,
is triggered. Line 5: the winning robot must drive to the starting point of s3. Line 6: task s3 must be
performed. The green lines indicates that vehicle R2 was chosen to execute s3.

Location 3

Location 4

R1 R2

(a) t = 0s: s2 is triggered. Vehicles R1 (blue) and R2 (green)
are in the idle zone. Red arrows represent the orientation of
both vehicles.

(b) t = 7.53s: R1 is allocated to execute task s2 and begins its
journey (blue curve) to the starting point of s2, Location 3. R2

(green) is in the idle zone.

Figure 8.7: Scenario at Imeguisa’s installations with a set of two robots to execute tasks s2 and s3. 7

7youtube video URL: https://youtu.be/WspBdT7FeT4

69

https://youtu.be/WspBdT7FeT4

(a) t = 16.50s: R2 is allocated to execute task s3 and begins

its journey (green line) to the starting point of s3, Location 4. R1

is following the trajectory previously initiated (blue curve).

(b) t = 38.56s: R2 begins its journey (green curve) from the

starting to the ending point of s3, Locations 4 and 3, respec-

tively. R1 is following the trajectory previously initiated (blue

curve).

(c) t = 59.14s: R1 begins its journey (blue curve) from the start-

ing to the ending point of s2, Locations 3 and 4, respectively. R2

is following the trajectory previously initiated (green curve).

(d) t = 74.76s: R1 (blue) and R2 (green) avoid each other.

The red arrows representing both vehicles’ orientation, show

that each vehicle drives on its right-hand side.

(e) t = 105.00s: R2 finishes s3 and begins a journey (green

curve) to return to the idle zone. R1 is following the trajectory

previously initiated (blue curve).

(f) t = 116.00s: R1 finishes s2 and begins a journey (blue

curve) to return to the idle zone. R2 is following the trajectory

previously initiated (green curve).

Figure 8.8: Scenario at Imeguisa’s installations with a set of two robots to execute tasks s2 and s3 (cont.).

70

8.2.3 Scenario III

The diagram in Figure 8.9 depicts the actions performed in Scenario III. In the final test, three robots

R1, R2, and R3 complete three tasks s2, s3, and s4. The tasks are allocated sequentially. First, s4 is

allocated (line 1 in Figure 8.9), then s2 (line 4 in Figure 8.9) and , finally, s3 (line 7 in Figure 8.9). Figure

8.10b shows that task s4 is assigned to R1 (line 2 in Figure 8.9). Then, task s2 is auctioned (line 5 in

Figure 8.9). During this auction, the three robots compute their bids to drive to s2’s initial point, Location

3. Even though R1 is the closest to Location 3, it still has to complete s4. Thus, R1’s bid must consider

finishing its assigned task and, posteriorly, driving to Location 3. On the other hand, R2 and R3’s bids

only consider the time it takes to drive from the idle zone to Location 3. As shown in Figure 8.11a, task

s2 is allocated to R2.

Time [s] 20 40 60 80 100 120 140 160 180 2000

1: Auction of task 4
2: Drive to task 4 starting point (Location 1)
3: Execute task 4 (Location 1 to Location 2)

9: Execute task 3 (Location 4 to Location 3)
8: Drive to task 3 starting point (Location 4)
7: Auction of task 3
6: Execute task 2 (Location 3 to Location 4)
5: Drive to task 2 starting point (Location 3)
4: Auction of task 2

Figure 8.9: Sequential actions performed in Scenario III. Line 1: the auction of task 4, s4, is triggered.
Line 2: the winning robot must drive to the starting point of s4. Line 3: task s4 must be performed.
The blue lines indicates that vehicle R1 was chosen to execute s4 Line 4: the auction of task 2, s2,
is triggered. Line 5: the winning robot must drive to the starting point of s2. Line 6: task s2 must be
performed. The green lines indicates that vehicle R2 was chosen to execute s2. Line 7: the auction of
task 3, s3, is triggered. Line 8: the winning robot must drive to the starting point of s3. Line 9: task s3

must be performed. The purple lines indicates that vehicle R3 was chosen to execute s3.

Location 2

Location 1

Location 3

Location 4

R1

R2
R3

(a) t = 0s: s4 is triggered. Vehicles R1 (blue), R2 (green)
and R3 (purple) are in the idle zone. Red arrows represent the
orientation of both vehicles.

(b) t = 3.44s: R1 is allocated to execute task s4 and begins its
journey (blue curve) to the starting point of s4, Location 1. R2

(green) and R3 (purple) are in the idle zone.

Figure 8.10: Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and
s4. 8

8youtube video URL: https://youtu.be/S9P7CLYURyE

71

https://youtu.be/S9P7CLYURyE

(a) t = 30.92s: R2 is allocated to execute task s2 and begins its

journey (green curve) to the starting point of s2, Location 3. R1

is following the trajectory previously initiated (blue curve). R3

(purple) is in the idle zone.

(b) t = 64.02s: R1 begins its journey (blue curve) from the start-

ing to the ending point of s4, Locations 1 and 2, respectively. R2

is following the trajectory previously initiated (green curve). R3

(purple) is in the idle zone.

(c) t = 75.39s: R3 is allocated to execute task s3 and begins its

journey (purple curve) to the starting point of s3, Location 4. R1

and R2 are following the trajectories previously initiated (blue

and green curves, respectively).

(d) t = 94.86s: R1 finishes s4 and begins a journey (blue curve)

to return to the idle zone. R2 (green) arrives to Location 3. R3

(purple) arrives to Location 4.

(e) t = 106.14s: R3 begins its journey (purple curve) from the

starting to the ending point of s3, Locations 4 and 3, respec-

tively. R1 is following the trajectory previously initiated (blue

curve). R2 (green) is at Location 3.

(f) t = 117.044s: R2 begins its journey (green curve) from the

starting to the ending point of s2, Locations 3 and 4, respec-

tively. R1 and R3 are following the trajectories previously initi-

ated (blue and purple curves, respectively).

Figure 8.11: Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and s4

(cont.).

72

(a) t = 119.31s: R1 (blue) and R3 (green) avoid each other.
The red arrows representing both vehicles’ orientation, show
that each vehicle drives on its right-hand side.

(b) t = 140.61s: R2 (green) and R3 (purple) avoid each other.
The red arrows representing both vehicles’ orientation, show
that each vehicle drives on its right-hand side. R1 arrives to the
idle zone.

(c) t = 203.68s: R3 finishes s3 and begins a journey (purple
curve) to return to the idle zone. R2 is following the trajectory
previously initiated (green curve). R1 (blue) is in the idle zone.

(d) t = 180.08s: R2 finishes s2 and begins a journey (green
curve) to return to the idle zone. R3 is following the trajectory
previously initiated (purple curve). R1 (blue) is in the idle zone.

Figure 8.12: Scenario at Imeguisa’s installations with a set of three robots to execute tasks s2, s3 and s4

(cont.).

Figure 8.11b shows R1 arriving at s4’s starting point and generating a trajectory to the task’s endpoint

(line 3 in Figure 8.9). The final task, s3, is allocated to R3 (line 8 in Figure 8.9), Figure 8.11c. Figure

8.11d shows R2 and R3 arriving to their respective task’s starting point. Additionally, R1 completes its

task and plans a route to return to the idle zone. Figures 8.11e and 8.11f show R3 and R2 planning

their journeys from the starting to the finishing point of their tasks, respectively (lines 9 e 6 in Figure 8.9,

respectively).

Figures 8.12a and 8.12b illustrate two situations in which the vehicles drive on their right-hand sides,

preventing them from colliding with each other. Finally, Figures 8.12c and 8.12d show R3 and R2 com-

pleting their tasks and planning their routes to the idle zone, respectively.

8.2.4 Final Remarks

The method proposed was suitable for generating collision-free and feasible trajectories for a fleet of

three real AMRs with non-linear constraints in a real environment. Nevertheless, in a real-world industrial

73

setting, the time required to generate each trajectory is a crucial factor that must be considered. When

a task is triggered, the algorithm must be able to plan a route to execute it as quickly as possible. In

addition, if a recalculation of a trajectory is required due to environmental changes, the robot must not

block the corridor while waiting for a new route to be calculated. Moreover, the synchronization between

robots is a crucial factor that may be compromised by high computational times.

Therefore, the computational time 9 of the generated trajectories used in the auction bids was gathered

for the tests conducted in scenarios similar to those described above. This data was divided into five

categories. When a task is auctioned, five possible routes might be planned:

• Route from the idle zone to Location 1.

• Route from the idle zone to Location 2.

• Route from the idle zone to Location 3.

• Route from the idle zone to Location 4.

• The robot has a task already allocated and needs to consider a route from its current position to

the endpoint of the respective assigned task and, then, to the startpoint of the auctioned task,

which might be Locations 1, 2, 3 or 4.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
seconds[s]

Occupied
 robots

Location 4

Location 3

Location 2

Location 1

Figure 8.13: Computational time for generating optimal collision-free and feasible trajectories in a real-
world scenario.

Figure 8.13 illustrates the collected data as violin plots. It can be verified that planning a trajectory from

the idle zone to Location 4 requires the least amount of time, as the shortest path is generated. However,

when a robot is occupied, takes longer to generate its bid since it must consider two routes: from its

current location to the endpoint of the assigned task and then to the startpoint of the auctioned task. In

general, the computational time is still considerable. In future work, it will be essential to restructure the

proposed method to reduce its computational time.

9Each robot has an onboard computer with an Intel Core i5-1145G7E Processor 2.60GHz, 8GB of RAM. The operative system
used is Ubuntu 20.04.1.

74

Chapter 9

Conclusions and Future Work

The work developed throughout this dissertation is aimed at creating a framework that can generate

collision-free and feasible trajectories for a fleet of autonomous vehicles with non-linear constraints in

obstacle-populated scenarios. In particular, the main purpose was to implement the proposed algorithm

in a fleet of AMRs that will operate in Volkswagen Autoeuropa facilities.

The motion planning problem was decoupled into two modules. The first module performs a sampling-

based Kinodynamic RRT trajectory search to find a collision-free route, while the second one uses

trapezoidal direct collocation to optimize the previous solution into a smooth and collision-free trajectory.

This formulation presented only one restriction in the optimization problem regarding static and mov-

ing obstacle avoidance. As the main novelty of this dissertation, a set of signed distance fields were

used to describe the environment and the dynamic obstacles through time. This renders the solver’s

performance independent of the number of agents.

The proposed method was initially validated for a six-vehicle problem. The algorithm scalability was

then evaluated. Finally, a fifty-agent motion optimization problem was analysed and it was concluded

that the increase in computational complexity with the number of vehicles occurs at a linear rate less

than unitary.

Some reformulations were required to implement the designed motion planning in a real-world scenario.

To attract vehicles to the right side of the factory’s corridors, a set of signed distance fields was used

to define a measure of violation to be considered in the objective function of the optimization problem.

Additionally, an algorithm was presented that allows all vehicles to have an up-to-date map of their

surroundings whenever other robots detect changes in the environment.

Finally, preliminary experimental tests for the AGiLE project were performed at Imeguisa’s facilities.

Overall, the proposed framework provided a satisfactory solution to the real-world trajectory planning

problem. However, the system requires a significant amount of computation time in order to generate a

feasible trajectory.

Concerns must be addressed prior to advancing to the next phase of testing in more complex scenarios.

75

As previously stated, it is crucial to reduce the computation time required to generate a collision-free

feasible trajectory. Adjustments on the Trajectory Planning module, i.e., on the Kinodynamic RRT, could

be one solution. Since the majority of the journeys already have predefined initial and destination coor-

dinates, a RRT tree could be precomputed on every known location where a trajectory might be initiated.

Thus, RRT trees can be generated only once for each location of a task’s starting or ending point, en-

suring that it would cover the entire area. Then, subsequent vehicles initiating a route at those locations

could use those precomputed trees, thereby reducing the computation time. Another possibility is re-

lated with the Trajectory Optimization module. The size of each signed distance field corresponds to the

size of the map used. Increasing the map’s resolution will result in the use of smaller matrices, which

could reduce the computation time.

Some additional improvements to the implemented Kinodynamic RRT should to be considered. Fre-

quently, this randomized trajectory planner delivers a first initial trajectory of such poor quality that

not even the optimizer can completely smooth it, leaving some unnecessary curves and manoeuvrers.

Therefore, it is essential to attempt to enhance the quality of the Kinodynamic RRT solution.

The importance of robot synchronization has already been discussed regarding robots’ computation

times. Nevertheless, this synchronization is frequently jeopardize by the local planner (in the experimen-

tal tests the TEB was used), which is responsible for ensuring that the provided trajectory is correctly

followed by the real AMR. This local planner is only prepared to accept paths and not trajectories. Thus,

it would only consider coordinates and not time or velocity commands. This may result in a deviation

between the planned trajectory and the executed trajectory. This makes synchronization between all

robots more difficult, as none of them knows precisely where the others are at any given moment. As

future work, it would be advantageous to adjust or create a new local planner that is able to adhere to a

given trajectory and not just a path.

76

Bibliography

[1] J. Carvalho. Logı́stica. Sı́labo, 3rd edition, 2002. isbn : 9789726182795.

[2] M. Hompel, T. Schmidt, L. Nagel, and R. Jünemann. Material Flow Systems. Springer, 3rd edition,

2007. isbn : 9783540732365.

[3] F. Kendoul. Survey of advances in guidance, navigation, and control of unmanned rotorcraft sys-

tems. In Journal of Field Robotics, volume 29, pages 315–378. Wiley Online Library, 2012. doi :

10.1002/rob.20414.

[4] R. Saber, W. Dunbar, and R. Murray. Cooperative control of multi-vehicle systems using cost graphs

and optimization. In American Control Conference, volume 3, pages 2217–2222. IEEE, 2003. doi

: 10.1109/ACC.2003.1243403.

[5] W. Meng, Z. He, R. Su, A. Shehabinia, L. Lin, R. Teo, and L. Xie. Decentralized control of multi-

UAVs for target search, tasking and tracking. In IFAC Proceedings Volumes, volume 47, pages

10048–10053. Elsevier, 2014. doi : 10.3182/20140824-6-ZA-1003.02665.

[6] Y. Zhao, Z. Zheng, and Y. Liu. Survey on computational-intelligence-based UAV path planning.

In Knowledge-Based Systems, volume 158, pages 54–64. Elsevier, 2018. doi : 10.1016/0021-

9991(88)90002-2.

[7] J. Tavares. Decentralized market-based task alloction for a fleet of industrial mobile robots (submit-

ted). Master’s dissertation, Instituto Superior Técnico, 2022.

[8] A. Wolek and C. Woolsey. Model-based path planning. In Sensing and Control for Autonomous

Vehicles, page 183–206. Springer, 2017. doi : 10.1007/978-3-319-55372-69.

[9] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[10] J. C. Latombe. Robot Motion Planning, chapter 2-3. Kluwer Academic Publishers, USA, 1991.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numerische Mathematik,

volume 1, pages 269–271. Springer, December 1959. doi : 10.1007/bf01386390.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of min-

imum cost paths. In IEEE Transactions on Systems Science and Cybernetics, July 1968. doi :

10.1109/TSSC.1968.300136.

77

[13] A. Stentz. Optimal and efficient path planning for partially known environments. In Intelligent

Unmanned Ground Vehicles, pages 203–220. Springer, 1997. doi : 10.1007/978-1-4615-6325-

9 11.

[14] L. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path plan-

ning in high-dimensional configuration spaces. In IEEE Transactions on Robotics and Automation,

volume 12, pages 566 – 580, September 1996. doi : 10.1109/70.508439.

[15] S. M. LaValle, J. Kuffner, B. Donald, et al. Rapidly-exploring random trees: Progress and prospects.

In Algorithmic and computational robotics: new directions, volume 5, pages 293–308, 2001.

[16] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. In

The International Journal of Robotics Research, volume 30, pages 846–894, 2011. doi :

10.1177/0278364911406761.

[17] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. IEEE International

Conference on Robotics and Automation, 2:500–505, 1985. doi : 10.1109/ROBOT.1985.1087247.

[18] J.O. Kim and P.K. Khosla. Real-time obstacle avoidance using harmonic potential functions.

In IEEE Transactions on Robotics and Automation, volume 8, pages 338–349, 1992. doi :

10.1109/70.143352.

[19] E. Rimon and D.E. Koditschek. Exact robot navigation using artificial potential functions. In

IEEE Transactions on Robotics and Automation, volume 8, pages 501–518, 1992. doi :

10.1109/70.163777.

[20] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based

on hamilton-jacobi formulations. In Journal of Computational Physics, volume 79, pages 12–49,

1988. doi : 10.1016/0021-9991(88)90002-2.

[21] A. Valero-Gomez, J. V. Gomez, S. Garrido, and L. Moreno. The path to efficiency: Fast marching

method for safer, more efficient mobile robot trajectories. In IEEE Robotics Automation Magazine,

volume 20, pages 111–120, 2013. doi: 10.1109/MRA.2013.2248309.

[22] S. Garrido, L. Moreno, D. Blanco, and F. Martin. FM2: A real-time fast marching sensor-based

motion planner. In IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

pages 1–6. IEEE, 2007. doi : 10.1109/AIM.2007.4412505.

[23] M. Kelly. An introduction to trajectory optimization: How to do your own direct collocation. In SIAM

Review, volume 59, pages 849–904. SIAM, 2017. doi: 10.1137/16M1062569.

[24] A. Chamseddine, Y. Zhang, C. A. Rabbath, C. Join, and D. Theilliol. Flatness-based trajectory

planning/replanning for a quadrotor unmanned aerial vehicle. In IEEE Transactions on Aerospace

and Electronic Systems, volume 48, pages 2832–2848, 2012. doi: 10.1109/TAES.2012.6324664.

78

[25] A. Richards and J. P. How. Aircraft trajectory planning with collision avoidance using mixed integer

linear programming. In IEEE American Control Conference, volume 3, pages 1936–1941. IEEE,

2002. doi: 10.1109/ACC.2002.1023918.

[26] E. Masehian and G. Habibi. Robot path planning in 3d space using binary integer programming.

In International Journal of Computer and Information Engineering, volume 1, pages 1255 – 1260.

World Academy of Science, Engineering and Technology, 2007. doi: 10.5281/zenodo.1072461.

[27] J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming.

Society for Industrial and Applied Mathematics, 2nd edition, 2010.

[28] J. T. Betts. Survey of numerical methods for trajectory optimization. In Journal of guidance, control,

and dynamics, volume 21, pages 193–207, 1998. doi: 10.2514/2.4231.

[29] D. Mellinger, A. Kushleyev, and V. Kumar. Mixed-integer quadratic program trajectory generation

for heterogeneous quadrotor teams. In IEEE international conference on robotics and automation,

pages 477–483. IEEE, 2012. doi: 10.1109/ICRA.2012.6225009.

[30] F. Augugliaro, A. P. Schoellig, and R. D’Andrea. Generation of collision-free trajectories for a quadro-

copter fleet: A sequential convex programming approach. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 1917–1922, 2012. doi: 10.1109/IROS.2012.6385823.

[31] J. Berg, M. Lin, and D. Manocha. Reciprocal velocity obstacles for real-time multi-agent navigation.

In IEEE International Conference on Robotics and Automation, pages 1928–1935. IEEE, 2008. doi:

10.1109/ROBOT.2008.4543489.

[32] J. Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-body collision avoidance. In Robotics

research, pages 3–19. Springer, 2011. doi: 10.1007/978-3-642-19457-3 1.

[33] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager. Fast, on-line collision avoidance for

dynamic vehicles using buffered voronoi cells. In IEEE Robotics and Automation Letters, volume 2,

pages 1047–1054. IEEE, 2017. doi: 10.1109/LRA.2017.2656241.

[34] C. E. Luis and A. P. Schoellig. Trajectory generation for multiagent point-to-point transitions via

distributed model predictive control. In IEEE Robotics and Automation Letters, volume 4, pages

375–382. IEEE, 2019. doi: 10.1109/LRA.2018.2890572.

[35] M. Čáp, P. Novák, A. Kleiner, and M. Selecký. Prioritized planning algorithms for trajectory coor-

dination of multiple mobile robots. In IEEE Transactions on Automation Science and Engineering,

volume 12, pages 835–849. IEEE, 2015. doi: 10.1109/TASE.2015.2445780.

[36] Y. Chen, M. Cutler, and J. P. How. Decoupled multiagent path planning via incremental sequential

convex programming. In IEEE International Conference on Robotics and Automation, pages 5954–

5961. IEEE, 2015. doi: 10.1109/ICRA.2015.7140034.

79

[37] D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer. An efficient algorithm for opti-

mal trajectory generation for heterogeneous multi-agent systems in non-convex environments.

In IEEE Robotics and Automation Letters, volume 3, pages 1215–1222. IEEE, 2018. doi:

10.1109/LRA.2018.2794582.

[38] S. Yu, C. Fu, A. K Gostar, and M. Hu. A review on map-merging methods for typical map

types in multiple-ground-robot slam solutions. In Sensors, volume 20, page 6988, 2020. doi:

10.3390/s20236988.

[39] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot exploration.

In IEEE International Conference on Robotics and Automation, volume 1, pages 476–481. IEEE,

2000. doi: 10.1109/ROBOT.2000.844100.

[40] S. Carpin. Fast and accurate map merging for multi-robot systems. In Autonomous robots, vol-

ume 25, pages 305–316. Springer, 2008. doi: 10.1007/s10514-008-9097-4.

[41] W. Huang and K. Beevers. Topological map merging. In The International Journal of Robotics

Research, volume 24, pages 601–613. SAGE Publications, 2005.

[42] F. Abrate, B. Bona, M. Indri, S. Rosa, and F. Tibaldi. Multi-robot map updating in dynamic environ-

ments. In Distributed Autonomous Robotic Systems, pages 147–160. Springer, 2013.

[43] A. Kleiner, D. Sun, and D. Meyer-Delius. ARMO: Adaptive roadmap optimization for large robot

teams. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3276–

3282. IEEE, 2011. doi: 10.1109/IROS.2011.6094734.

[44] N. Zoghby, V. Cherfaoui, and T. Denoeux. Evidential distributed dynamic map for cooperative per-

ception in vanets. In IEEE Intelligent Vehicles Symposium Proceedings, pages 1421–1426. IEEE,

2014. doi: 10.1109/IVS.2014.6856550.

[45] X. Zhang, A. Liniger, and F. Borrelli. Optimization-based collision avoidance. In IEEE

Transactions on Control Systems Technology, volume 29, pages 972–983. IEEE, 2021. doi:

10.1109/TCST.2019.2949540.

[46] K. Bergman. Exploiting Direct Optimal Control for Motion Planning in Unstructured Environments.

PhD thesis, Linkoping University Electronic Press, 2021.

[47] S. M. LaValle and J. Kuffner Jr. Randomized kinodynamic planning. In The international

journal of robotics research, volume 20, pages 378–400. SAGE Publications, 2001. doi:

doi.org/10.1177/027836401220674.

[48] T. Chan and Wei Z. Level set based shape prior segmentation. In IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, volume 2, pages 1164–1170. IEEE, 2005. doi:

10.1109/CVPR.2005.212.

80

[49] D. Kraft. Algorithm 733: TOMP–fortran modules for optimal control calculations. In ACM Transac-

tions on Mathematical Software, volume 20, page 262–281. Association for Computing Machinery,

September 1994. doi: 10.1145/192115.192124.

[50] D. Kraft. A software package for sequential quadratic programming. Forschungsbericht- Deutsche

Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, 1988.

[51] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm

for large-scale nonlinear programming. In Mathematical programming, volume 106, pages 25–57.

Springer, 2006. doi: 10.1007/s10107-004-0559-y.

[52] P. Virtanen et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. In Nature

Methods, volume 17, pages 261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[53] J. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – A software framework for

nonlinear optimization and optimal control. In Mathematical Programming Computation, volume 11,

pages 1–36. Springer, 2019. doi: 10.1007/s12532-018-0139-4.

[54] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng, et al. Ros:

an open-source robot operating system. In ICRA workshop on open source software, volume 3,

page 5. Kobe, Japan, 2009.

81

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Industrial Context
	1.2 Aerospace Motivation
	1.3 Project Outline
	1.3.1 Sequential Description
	1.3.2 Functional Architecture

	1.4 Problem Statement
	1.5 Objectives
	1.6 Contributions
	1.7 Dissertation Outline

	2 Background
	2.1 Motion Planning
	2.1.1 Configuration Space
	2.1.2 Motion Planning Methods

	2.2 Trajectory Optimization
	2.2.1 Linear Programming
	2.2.2 Optimal Control

	2.3 Multi-Robot Trajectory Planning
	2.4 Dynamic Map Update
	2.4.1 Map Merging
	2.4.2 Map sharing

	3 Proposed Approach
	3.1 Differential Constraints
	3.2 Problem Formulation
	3.3 Kinematic Model of the Vehicle
	3.3.1 Reachable states of the vehicle

	3.4 Methodology

	4 Single-Robot Trajectory Planning
	4.1 Kinodynamic RRT
	4.2 Trajectory Planning with a Differential Drive Robot

	5 Single-Robot Trajectory Optimization
	5.1 Optimization Problem
	5.2 Trajectory Optimization with a Differential Drive Robot
	5.2.1 Optimization Solver Integration
	5.2.2 Single-Robot Results

	6 Multi-Robot Trajectory Optimization
	6.1 Optimization Problem Reformulation
	6.1.1 Architecture of Motion Planning and Optimization

	6.2 Trajectory Optimization with Two Robots
	6.2.1 Two Robots with Identical Maximum Velocities
	6.2.2 Two Robots with Different Maximum Velocities

	6.3 Trajectory Optimization with Six Robots
	6.3.1 Without Inter-Robot Avoidance
	6.3.2 With Inter-Robot Avoidance

	6.4 Scalability Study
	6.5 Trajectory Optimization with Fifty Robots

	7 Real Environment Requirements
	7.1 Objective Function Reformulation
	7.2 Dynamic Map Update

	8 Real Environment Results
	8.1 Experimental Setup
	8.2 Experimental Tests
	8.2.1 Scenario I
	8.2.2 Scenario II
	8.2.3 Scenario III
	8.2.4 Final Remarks

	9 Conclusions and Future Work
	Bibliography

