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Abstract 
Network Science and Graph Theory can contribute to football analysis, providing valuable tools that allow 

describing the interactive behaviour of teams more consistently than the traditional analysis, which is based 

on the individual performance of players. Few research works have studied the relationship between a 

team's attacking strategy (possession play or direct play) and the characteristics of the network and how 

these affect the team's overall performance. On the other hand, the impact of the systems of play on the 

network's characteristics is still unclear. Therefore, this study analysed the passing sequences and networks 

of the national teams that competed in the UEFA EURO 2020. Verifying that most of the teams' 

distributions of passes completed tend to follow the power law, an innovative way to describe the general 

strategy of the play was proposed, through the power law exponent,-α. Thus, teams with a possession game 

have a lower value of α, whereas teams with a direct play have a higher value of α. The results of statistical 

studies suggested that the teams that adopted a direct play, characterised by executing fewer passes and 

fewer passes completed, generating networks with a lower density and average clustering coefficient, were 

less successful, i.e., eliminated in the tournament's first stage. Finally, the clustering analysis was 

inconclusive in revealing how playing systems affect the networks' characteristics. In summary, this study 

provides relevant insights that can aid the coaching staff's work, enhancing the value of Network Science 

and Graph Theory in football analysis. 

Keywords: Football, Passing sequences, Passing networks, Attacking strategy, Team performance, 

Network Science 

 

1. Introduction 

Football, also known as soccer, is the most popular 

sport in the world. Since the two-opponent offside 

rule was established in 1920, football's fundamental 

rules have almost not been altered [1]. However, 

football has been evolving and becoming more 

professionalised. New strategies have arisen, and 

due to the constant innovation in team play, the 

demands of match analysis have grown to the point 

where coaches now want to scrutinise match 

analysis [2]. 

The most appealing aspect of football is its 

emergent properties [3]. Goldstein [4] affirms that 

emergence "refers to the arising of novel and 

coherent structures, patterns, and properties during 

the process of self-organisation in complex 

systems". Football's complexity stems primarily 

from the number of interactions between teammates 

and opponents, but it also exists in the game context 

[5]. Football teams can be described as groups of 

individuals that interact dynamically and 

interdependently to achieve their common 

objective: score goals and prevent the opposing 

team from doing the same [6], [7]. Thus, a football 

team is a complex, dynamic, nonlinear, open, and 

adaptable system formed by 11 players who are also 

themselves systems. The nonlinearity arises from 

the fact that the whole is not equal to the sum of its 

parts, and thus a football team cannot be understood 

solely by examining its components, i.e. its players 

[8], [9]. The context and environment for creating a 

team system are produced by each player's 

relational capacity (open system), evolving capacity 

(dynamic system), adaptability to the environment 

in which he performs his tasks, and the uncertainty 

with which he demonstrates his competitive 

capacity [10]. 

As a result, the complexity of the play, the 

nearly constant flow of the ball during the match 

and the low scores are examples of factors that 

make simple statistics such as the number of goals, 

shots or assists insufficient as measures of player 

and team performance [11], [12]. In opposition, 

passes are the links between teammates and occur 

numerously in every match despite the quality of the 

teams [1]. Thus, by modelling the interactions based 

on the passes, network analysis captures teams' 

behaviour, organisation and performance in a way 

that classical analysis, based on the performance of 

individual players, cannot [13]–[15]. 

The ability to retain possession of the ball for 

more extended periods has been linked to success 

[16]–[18]. In addition, in recent years, ball 

possession has acquired fundamental importance in 

the attacking strategy of football teams [19]. 

However, few research works have studied the 

relationship between a team's attacking strategy 

(direct or possessive play) and how these two 

factors impact teams' overall performance. 

Alternatively, the system of play influences the 

team's network characteristics since it provides a 

reference to the players' interactions within the team 

[5], [20]. However, few studies have investigated 

the effect of the systems of play in professional 

football, namely the impact on the network's 

characteristics [21]. 

Therefore, three research questions are intended 

to analyse and answered throughout this study: 
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(1) Does the distribution of successful passes tend 

to follow a power law distribution? How can the 

distribution of successful passes explain the general 

attacking strategy (direct or possessive play)? (2) 

How do the general attacking strategy and network 

characteristics relate to each other, and how do they 

impact the team's overall performance? (3) How do 

the systems of play affect networks' characteristics? 

More specifically, do the same systems of play 

generate similar networks? 

As a result, this study seeks to answer these 

research questions by applying statistical 

procedures, graph theory and network science and 

using as a sample the matches of UEFA EURO 

2020. 

2. Literature Review 

This section reviews the literature on the passing 

sequence analysis (subsection 2.1) and the passing 

network analysis (subsection 2.2). 

2.1. Passing sequences analysis 

Over the years, few studies on passing sequences in 

football have been developed. Reep and his 

colleagues started researching this subject in the late 

1960s and early 1970s. Reep & Benjamin [22] 

analysed statistically the passing sequences that 

resulted in goals from football matches, presenting 

them as a negative binomial distribution. Reep et al. 

[23] later expanded this work to other sports. These 

researchers' two primary discoveries were that a 

goal was scored every ten shots and that almost 80% 

of the goals came from a sequence of three passes 

or fewer [24]. 

These works implied that those passing 

sequences with few passes were more successful. 

Consequently, as Bate [25] deepened, it was 

possible to deduce that teams should adopt a "direct 

play" rather than a "possessive play" to be 

successful. However, most successful teams did not 

use a "direct play". So, Hughes et al. [26] studied 

the patterns of plays of the semifinalists and the 

national teams that were eliminated in the first stage 

of the 1986 World Cup and found that the most 

successful teams played with more passes per 

possession than unsuccessful teams. In this way, 

they determined that the conclusions made by Reep 

& Benjamin [22] and Bate [25] did not apply to all 

levels of football [24]. 

Years later, Hughes & Franks [24] replicated the 

work of Reep & Benjamin [22] and discovered that 

the conclusions reached by these authors could be 

misinterpreted. Because of this, Hughes & Franks 

[24] questioned whether goal-scoring or shooting 

was influenced by the number of passes made per 

possession. To assess the relative contribution of 

each possession from equal frequencies of 

occurrence, they created a new methodology in 

which they normalised the data by dividing the 

number of goals scored during each possession by 

the frequency of that sequence length [24]. 

Hughes & Franks [24] reached three 

conclusions when the same data were normalised. 

First, longer passing sequences significantly 

increased shots per possession compared to shorter 

passing sequences. Second, "direct type of play" 

outperformed "possession type of play" regarding 

the conversion rate of shots to goals. Third, 

although the differences between the successful and 

unsuccessful teams at the 1990 World Cup were not 

substantial, the successful teams had a better 

conversion ratio of possession to shots on goal [24]. 

2.2. Passing networks analysis 

A significant contribution to the description of team 

interactions can be provided by network analysis. 

Nevertheless, despite this substantial and 

fascinating contribution, few studies using this 

methodology have been published [27]–[29]. One 

of the first studies that introduced the concept of 

football passing networks was published by Gould 

& Gatrell [30]. They explored the structure of a 

football match, specifically the Cup Final of 1977 

between Liverpool and Manchester United. 

However, as Buldú et al. [31] point out, this study 

did not receive the attention of the scientific and 

sports communities. Only more than thirty years 

later, the research into how network science can be 

used to reveal vital information about the 

organisation and performance of football teams and 

players started [31]. 

Indeed, the recent ability to obtain datasets of all 

events occurring during a match leveraged the 

investigation of how Network Science can unveil 

the organisation and properties of football teams 

[13]. Several studies have focused on football 

analysis in the last decade, specifically on how 

players interact with each other by passing the ball 

[31]. The sample and scope of the studies vary, 

ranging from pilot studies (one match from one 

team) and case studies (a few matches from one or 

more teams) to full domestic, continental, or 

international competitions (one or more teams in 

one or more competitions). 

Using Network Science, the investigators 

construct what can be denoted as "football passing 

networks", which can be of three main types [13], 

[31]: (1) Player/playing position passing 

networks, where nodes are a team's players/playing 

positions [13], [32]–[34]. The majority of the 

research works studies this type of network; (2) 

Zone passing networks, where nodes are zones of 

the field of play linked through passes performed by 

players in those zones [13], [15], [35]–[37]. Several 

studies have built this type of network, whereas 

other studies also include this kind of analysis to 

complement their examination of player passing 

networks; (3) Player/playing position-zone 

passing networks, where nodes are the 

combination of a player/playing position and his 

location on the field of play at the moment of the 
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pass [13], [28], [38]. Only two studies using this 

type of analysis were found in the literature. 

According to Buldú et al. [13], after 

constructing the network, several "topological 

scales" can be identified: (1) Microscale, where 

analysis is performed at the node level. As 

presented before, most studies examine the 

importance of each player, considering network 

metrics, such as the degree, closeness, and 

betweenness centralities, and the clustering 

coefficient [13]. Some works focus their study on 

individual players [11], [12], while others 

concentrate their attention on the characteristics of 

the playing positions [34], [37], [39]. At this level 

and considering the playing positions, the research 

works have indicated that midfielders are usually 

the most influential players; (2) Mesoscale, where 

motifs depicting the interactions of three or four 

players are examined [13]. The analysis of motifs 

has revealed that most teams tend to apply a 

homogeneous style [1]. Also, it demonstrated how 

it is possible to identify the key players in the 

network [40], thus assisting in the scouting process 

[41]; (3) Macroscale, where the network is studied 

as a whole [13]. Studies have suggested that high-

density and decentralised passing networks are 

associated with higher performance [33], [42], [43]. 

In addition, research works have shown that the 

interaction between players during a football game 

supports a scale-free network [3], [34]. Also, time 

is a dimension that is considered in a few works. 

Examining each game's half was one method used 

to investigate how the network changed over time. 

This method has revealed differences between the 

first and second halves concerning the density and 

centralisation of the network [13], [42]. Another 

technique was to build sliding windows with a 

specific length (between 5 to 15 minutes) [3], [13], 

[28]. Finally, the influence of the system of play 

was only found once in the literature, using only one 

team in two different seasons [44]. 

3. Methods 

This section presents this study's sample 

(subsection 3.1), materials (subsection 3.2), and 

procedures (subsection 3.3). 

3.1. Sample 

The 51 official matches from UEFA EURO 2020 

were analysed. This UEFA-organised tournament 

was competed by twenty-four European men's 

national teams and was composed of two different 

stages: the Group Stage and the Knockout Stage. 

Firstly, the twenty-four teams were divided into six 

groups of four in the group stage. Every team played 

every other team in their group once, being awarded 

three points for a win, one for a draw and none for 

a defeat. Thus, the six group winners, the six 

runners-up, and the four best third-placed teams 

 
1 Source: StatsBomb. (2022). GitHub. Open data. Retrieved 
from: https://github.com/statsbomb/open-

qualified for the Round of 16. Secondly, the 

knockout stage was played in single-leg matches as 

follows: Round of 16, Quarter-finals, Semi-finals, 

and Final. In this stage, if there was no winner at the 

end of regular playing time, two 15-minute periods 

of extra time were played. Penalty kicks were 

required if there was still no winner after extra time. 

The winning team of each match advanced to the 

next stage.  

3.2. Materials 

The raw data sets were provided by StatsBomb 

Services Ltd, which has made the data from UEFA 

EURO 2020 publicly and freely available. There 

were different types of datasets in a JSON format in 

its open data. On the one hand, the StatsBomb 

Match Data records the match information for each 

match, including competition and season 

information, home and away team information, 

match results, stadium and referee information. On 

the other hand, StatsBomb Event Data comprises 

actions performed during play, concentrating on the 

ball. The three main characteristics of each event 

are (a) the timestamp, (b) the action and (c) the 

attributes. The timestamp registers the time in the 

match the event takes place; the action refers to the 

type of event to which it corresponds, and the 

attributes include general and specific information 

about the characteristics of the event and the entities 

involved in it. Thus, these types of files were used 

to perform all the analyses presented in the coming 

sections. Nevertheless, it is highly recommended to 

read the document StatsBomb Data Specification 

v1.1, publicly available, to get more in-depth 

knowledge about StatsBomb data1. 

This study's analyses were carried out using 

Microsoft Excel®, IBM SPSS Statistics® 

(version 28), Python 3.10.5 and the Python 

packages: NetworkX® (version 2.8.5), pandas 

(1.4.3), NumPy (1.23.1), scipy (1.9.0), scikit-learn 

(1.1.1), seaborn (0.11.2), statsmodel (0.13.2), 

matplotlib (3.5.2) and powerlaw (1.5). 

3.3. Procedures 

The first focus of this study was to verify if the 

teams' distribution of passes per possession tended 

to follow the power law distribution. The length of 

a passing sequence was used to define a team's 

possession. A passing sequence of length equal to 

one was an intended pass that a teammate received, 

but then the second pass either left the field of play, 

was contacted by the opposition, or was interrupted 

by a foul. On the other hand, a two-pass sequence 

ended when the third pass did not reach the target, 

and so on [24]. The sequences of passes per 

possession executed during the attacking phase and 

set pieces by each team during the regular time 

(90 min) of each match were examined. Note that 

the passes made during the extra time were 

data/blob/master/doc/StatsBomb%20Open%20Data%20Specifi
cation%20v1.1.pdf 

https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf
https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf
https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf
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excluded from the study to allow comparisons 

between all the matches. 

The pure power law distribution, also referred to 

as the zeta distribution or discrete Pareto 

distribution, is written as follows: 

𝑝(𝑥) =
𝑥−𝛼

𝜁(𝛼, 𝑥𝑚𝑖𝑛)
, 

where 𝑥 is a positive integer measuring a variable of 

interest, 𝑝(𝑥) is the probability of observing the 

value 𝑥, 𝛼 is the power law exponent, 𝜁(𝛼, 𝑥𝑚𝑖𝑛) is 

the Riemann zeta function, defined as ∑ 𝑥−𝛼∞
𝑥=𝑥𝑚𝑖𝑛

, 

and 𝑥𝑚𝑖𝑛 is the value of 𝑥 from which the power law 

is obeyed [45], [46]. 

There are several methods for fitting power law 

distributions. However, the maximum likelihood 

estimation (MLE) was used since it is one of the 

most robust methods for fitting the power-law 

distribution. It is based on finding the maximum 

value of the likelihood function: 

𝑙(𝛼 | 𝑥) = ∏
𝑥𝑖

−𝛼

𝜁(𝛼, 𝑥𝑚𝑖𝑛)
,

𝑁

𝑖=1

 

ℒ(𝛼 | 𝑥) = log 𝑙(𝛼 | 𝑥) 

                 =   ∑(−𝛼 log(𝑥𝑖) − log(𝜁(𝛼, 𝑥𝑚𝑖𝑛))

𝑁

𝑖=1

) 

                 =   −𝛼 ∑ log(𝑥𝑖) − 𝑁 log(𝜁(𝛼, 𝑥𝑚𝑖𝑛))

𝑁

𝑖=1

, 

where 𝑙(𝛼 | 𝑥) is the likelihood function of 𝛼 given 

the unbinned data 𝑥 and 𝐿(𝛼 | 𝑥) is the log-

likelihood function. 

This maximum can be obtained by setting 𝜕ℒ 𝜕𝛼⁄ =

0: 

 − ∑ log(𝑥𝑖) − 𝑁
1

𝜁(𝛼, 𝑥𝑚𝑖𝑛)

𝜕

𝜕𝛼
𝜁(𝛼, 𝑥𝑚𝑖𝑛)

𝑁

𝑖=1

= 0, 

and, therefore, the MLE 𝛼̂ is the solution of 

𝜁′(𝛼̂, 𝑥𝑚𝑖𝑛)

𝜁( 𝛼̂, 𝑥𝑚𝑖𝑛)
=

1

𝑁
∑ log(𝑥𝑖) ,

𝑁

𝑖=1

 

where 𝜁′(𝛼̂, 𝑥𝑚𝑖𝑛) is the first derivate of the Riemann 

zeta function [45], [46]. 

Additionally, a test was necessary to assess the 

goodness-of-fit of the fitting method. Therefore, the 

Kolmogorov-Smirnov (KS) type test was chosen 

since it is one of the most simple and robust of the 

commonly used goodness-of-fit tests. This test is 

based on the following test statistic: 
𝐾 = 𝑚𝑎𝑥𝑥≥𝑥𝑚𝑖𝑛

|𝑆(𝑥) − 𝑃(𝑥)|, 

where 𝑆(𝑥) is the cumulative distribution function 

(CDF) of the data for the observations with a value 

of at least 𝑥𝑚𝑖𝑛 and 𝑃(𝑥) is the CDF for the power-

law model that best fits the data in the region 𝑥 ≥

𝑥𝑚𝑖𝑛 [45], [46]. 

The passes per possession of each team in each 

tournament's match were fitted using the powerlaw 

Python package, which offers commands for fitting 

and statistical analysis of distributions. These 

functionalities were used to compute the fitted 𝛼 

parameter, i.e., the power law exponent. Thus, the 

discrete distribution of the passes per possession 

was fitted through the MLE. However, few 

empirical events follow a power law across the 

entire range of 𝑥, meaning that the optimal 𝑥𝑚𝑖𝑛 for 

each team's distribution of passes per possession 

can vary from one. By fitting a power law to each 

distinct value in the dataset and choosing the one 

that minimises the KS distance between the data and 

the fit, the minimum value at which the power law's 

scaling relationship begins, 𝑥𝑚𝑖𝑛, was determined 

[47].  

Although these tools give estimates for the 

parameters of 𝛼 and 𝑥𝑚𝑖𝑛, they cannot determine 

whether the power law is a reasonable fit to the data, 

so it was necessary to confirm this hypothesis given 

the passes per possession data [45]. Hence, the 

methodology described by Clauset et al. [45] was 

employed. A goodness-of-fit test was used, which 

computes a p-value, 𝑝, that measures the plausibility 

of the hypothesis, given the observed data and the 

hypothesised power-law distribution. First, the 

empirical data was fitted to the power law. After 

that, a sizable number of power-law distributed 

synthetic data were created, each with parameter 𝛼 

and lower bound 𝑥𝑚𝑖𝑛 equal to the distribution's 

parameters that best fit the observed data. Each 

synthetic data set was fitted to its power-law model, 

and the KS statistic was computed for each relative 

to its model. Then, the p-value, the percentage of 

the resulting statistic greater than the value of the 

empirical data, was calculated [45]. 

Therefore, to obtain an accurate estimate of the 

p-value, a semiparametric approach was used to 

produce the synthetic data that had a distribution 

similar to the empirical data below 𝑥𝑚𝑖𝑛 but that 

followed the fitted power law above 𝑥𝑚𝑖𝑛. Given a 

data set with 𝑛 observations and 𝑛𝑡𝑎𝑖𝑙 observations 

in which 𝑥 > 𝑥𝑚𝑖𝑛, the new synthetic data was 

generated as follows: for 𝑖 = 1, … , 𝑛, with a 

probability of 𝑛𝑡𝑎𝑖𝑙/𝑛, a random number 𝑥𝑖 was 

created using a power law with a scaling parameter 

𝛼̂ and 𝑥 > 𝑥𝑚𝑖𝑛. Otherwise, with a probability of 

1 − 𝑛𝑡𝑎𝑖𝑙/𝑛, 𝑥𝑖 was equal to one element selected 

uniformly at random from among the elements of 

the observed data that had 𝑥 < 𝑥𝑚𝑖𝑛 [45]. 

Knowing that, for the p-value to be accurate to 

within about 𝜖 of the true value, it should be created 

at least 0.25𝜖−2 synthetic data sets, 2500 synthetic 

datasets were generated aiming to have a p-value 

accurate to about two decimal digits, this is 𝜖 =

0.01. After computing the p-value, it is necessary to 

decide whether 𝑝 is small to rule out the power-law 

hypothesis. Accordingly, a 𝑝 ≤ 0.05 was chosen to 

rule out the power-law hypothesis [45]. 

Considering real events, even if data are drawn 

from a power law, their observed distribution is 

unlikely to follow the power law exactly. In 

addition, there may be the possibility that there are 

samples that do not follow the power law. 

Nevertheless, regardless of the true data's 
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distribution, it is always possible to fit a power law. 

As a result, to allow comparison of 𝛼 of all teams, 

𝑥𝑚𝑖𝑛 = 1 was fixed for all samples. 

There are two paradigms in the attacking 

strategy of play: possession play and direct play 

[21]. A possession play is characterised by more 

ball possession, expressed by more passes per 

possession. The teams applying this attacking 

strategy aim to retain the ball possession when 

progressing in the field of play. In contrast, direct 

play is characterised by trying to move the ball into 

a shooting position with few passes [7], [48]. 

Therefore, this study proposes to describe the 

general attacking strategy of a team (possessive or 

direct play) through the power law exponent,−𝛼. 

Thus, teams with a possession game have a lower 

value of 𝛼, while teams with a direct game have a 

higher value of 𝛼. As a result, the parameter 𝛼 was 

computed for each national team in each match, 

aiming to study and distinguish the strategy of play 

of each team that competed in the tournament. 

Second, this study investigated the relationship 

between a team's attacking strategy (possession or 

direct play) and the characteristics of the network 

and how these impact the team's overall 

performance. Consequently, the zone passing 

networks of each team in each match were built. 

This type of network was chosen over the 

player/playing position network because, in the 

latter, the number of nodes depends on the number 

of players or playing positions used throughout the 

game. In each StatsBomb Event Data file, it was 

only considered the "Pass" and "Ball Receipt*" 

types of events in the attacking phase and during all 

set pieces. This allowed for the collection of the 

following information from each completed pass: 

(i) the player and respective playing position who 

passed the ball, (ii) the player and respective 

playing position who received the ball, (iii) the 

location (coordinates (x,y)) of the sender and the 

receiver; (iv) the time at which the pass was made 

and (v) some pass attributes [31]. This way, this 

information enabled the construction of the 

networks using Python and its package NetworkX®. 

However, splitting the field of play into 

different-sized zones leads to different networks. 

Consequently, the question "How many zones 

should the field of play be divided into?" arose. The 

zone networks were formed by splitting the field of 

play equally into 𝑍 zones, where 𝑍 = 𝑠 × 𝑐 is the 

number of nodes (zone areas), 𝑠 = {3,4,6} is the 

number of sectors (vertical subdivisions), and 𝑐 =

{3,5} is the number of corridors (horizontal 

subdivisions). When a pass was made from region i 

to j, a link from node i to j was created. This edge 

had a weight that measured the total number of 

successful passes. As a result, different-sized zone 

networks were generated, where the number of 

nodes was the number of playing field divisions, 

Z={9,12,15,18,20,30}. Then, a descriptive analysis 

was conducted to decide the appropriate number of 

zones for the subsequent analysis. 

After building the zone networks with the 

number of nodes equal to the selected number of 

zones, the networks' density and average clustering 

coefficient were computed. On the one hand, 

density is the interconnectedness of nodes (zones) of 

a network (team) [49]. Since the passes have a 

direction, the network is represented by a digraph, 

so the maximum possible number of edges is 𝑛(𝑛 −

1). Thus, the density, 𝜌, is defined as the ratio 

between the number of edges, 𝑚, and the maximum 

possible edges: 

𝜌 =
𝑚

𝑛(𝑛 − 1)
, 

lying in the range 0 ≤ 𝜌 ≤ 1. On the other hand, the 

clustering coefficient measures the degree to which 

the neighbours of a given node connect, quantifying 

how close a node and its neighbours in a graph are 

to forming a complete subgraph [42], [50]. For a 

digraph, the clustering coefficient is defined as the 

fraction of all possible directed triangles [51]: 

𝐶𝑢(𝑖) =
2𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1) − 2𝑘𝑖
↔, 

where, 𝑇𝑖 is the number of triangles through node 𝑖, 

𝑘𝑖 is the sum of in-degree and out-degree and 𝑘𝑖
↔ is 

the reciprocal degree of 𝑖. In addition, the average 

local clustering coefficient can be used to measure 

the clustering level throughout the network [49]: 

𝐶̅ =
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

. 

Hence, the relationship between the parameter 

𝛼, the pass statistics (number of passes, number of 

passes completed and percentage of passes 

completed), and the networks' density and the 

average clustering coefficient was investigated. 

This was performed using the Pearson Product-

Moment correlation coefficient after ensuring that 

the assumptions of normality, linearity and 

homoscedasticity were not violated. When data 

failed these assumptions, Spearman's Rank Order 

Correlation was used. Thus, to classify the 

correlation strength, the following scale was used: 

very small, ( ]0, 0.1[ ); small, ( [0.1, 0.3[ ); moderate, 
( [0.3, 0.5[ ); large, ( [0.5, 0.7[ ); very large, 
( [0.7, 0.9[ ); nearly perfect ( [0.9, 1.0[ ); perfect, 

(1.0) [42].  

Then, this study aimed to relate the strategy of 

play with the teams' overall performance. First, the 

final result of the match was considered a 

performance variable, i.e. (i) defeat, (ii) draw or (iii) 

victory. Second, another overall performance of a 

team was determined by the stage that a team 

reached in the tournament, wherefore the following 

were the variables that determined the performance: 

(i) Final, (ii) Semi-finals, (iii) Quarter-finals, (iv) 

Round of 16 and (v) Group Stage. This way, this 

study sought to answer the following questions: (1) 

Are there any differences in the strategy of play, 

described by α, pass statistics and network density 
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and average clustering coefficient between teams 

that achieved different match results? (2) Are there 

any differences in the strategy of play, described by 

α, pass statistics and network density and average 

clustering coefficient between teams that reached 

different stages of the tournament? After 

confirming the assumptions of normality and 

homogeneity, the influence of the match's result and 

the stage reached in the tournament were examined 

using one-way ANOVA. On the one hand, through 

the Kolmogorov-Smirnov tests, the assumption of 

normality was investigated (𝑝 > 0.05). Since 𝑛 ≥ 30 

and considering the Central Limit Theorem, the 

premise of normality was assumed for any 

distribution that was not normal. On the other hand, 

Levene's test was used to investigate the 

homogeneity assumption. However, when this 

assumption was violated, the Welsh and Brown-

Forsythe tests were used instead of ANOVA. When 

the test found significant differences between the 

factors, the Tukey's HSD (honestly significant 

difference) test or the Tukey's-Kramer test was used 

to determine where the differences were [42]. For 

measuring the effect size in ANOVA, the eta-

squared, 𝜂2, was used. The formula is: 

𝜂2 =
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
. 

To interpret the strength of the eta-squared 

values, the guidelines from Cohen [52] 0.01=small 

effect; 0.06=moderate effect and 0.14=large effect. 

In addition, to determine whether the article's 

conclusions by Hughes & Franks [24] are still 

observed, their research work's methodology was 

implemented. Initially, it was confirmed if the 

statement of Reep & Benjamin [22], supported by 

Hughes & Franks [24], that approximately 80% of 

the goals result from a sequence of three or fewer 

passes was verified or not.  

Then, as Hughes & Franks [24] explains, when 

treating unequal frequencies of occurrences, the 

outcomes should be normalised by dividing the 

number of outcomes by the frequency of their 

occurrences. Consequently, the conversion rates 

from the different passing sequences' lengths per 

possession into goals were examined. The data were 

normalised by dividing the number of goals scored 

in each team's possession by the sequence length 

and presented as goals per 1000 possessions to 

avoid very small ratios. In addition, the analysis was 

done only to 80% of the goals to avoid biased 

normalisations. Finally, an independent-samples t-

test was conducted to compare the goals per 1000 

possessions for two groups. The eta-squared, 𝜂2, 

was used as an effect size statistic for the t-test and 

is written as follows: 

𝜂2 =
𝑡2

𝑡2 + 𝑑𝑓
, 

where 𝑡 is the t-value and 𝑑𝑓 is the degrees of 

freedom. Again, the guidelines from Cohen [52] 

were used to interpret the strength of the eta-squared 

values. 

Finally, the differences and similarities of 

various systems of play were studied by conducting 

a clustering analysis while considering position-

zone networks. However, it was not possible to 

draw any conclusions regarding the impact of the 

systems of play on the networks' characteristics. For 

these reasons, the procedure and results of this part 

are not presented. Thus, it is recommended to read 

the dissertation if interested in this subject. 

4. Results and discussion 

First, the power-law hypothesis was tested for each 

team's distribution of passes per possession in each 

match. The results indicated that approximately 

70% of the 102 samples (2 teams × 51 matches) 

were consistent with the power-law hypothesis, 

while the remaining 30% were not, having a 𝑝 ≤

0.05. Therefore, it was possible to confirm that the 

power law was an appropriate model for a part of 

the data set. Although 30% of the samples failed the 

power-law hypothesis, the frequency of 

occurrences tended to decrease as the pass 

sequences' length increased. Indeed, regardless of 

the true data's distribution, all the distribution of 

passes per possession were fitted to the power law 

and, to allow comparison of 𝛼 of all teams, 𝑥𝑚𝑖𝑛 = 1 

was fixed for all samples. As a result, the parameter 

𝛼 was computed for each national team in each 

match. 

At the same time, 102 networks were built for 

the different number of zones 𝑍 =
{9, 12, 15, 18, 20, 30}. The descriptive analysis 

performed to select the number of zones revealed 

that the division of the playing field in 30 zones had 

a substantially greater mean of the number of edges, 

capturing much more information about the passes 

occurring in the game. In addition, in most of these 

networks, all zones were connected with at least 

another zone. For these reasons, the 102 networks 

with 30 nodes were used in the subsequent analysis. 

Then, as the Pearson product-moment 

correlation and ANOVA assume that the data 

follow a normal distribution, the normality was 

assessed using the Kolmogorov-Smirnov statistic. 

The results of this test revealed that the distributions 

of the number of passes, number of passes 

completed and 𝛼 had a non-significant result 
(𝑝 > 0.05), indicating that these data were normally 

distributed. In opposition, the distribution of the 

percentage of passes completed, density and 

average clustering coefficient violated the 

assumption of normality. However, since 𝑛 = 102 

and considering the Central Limit Theorem, the 

assumption of normality was assumed. In addition, 

the Pearson product-moment correlation's 

assumptions of linearity (the relationship between 

two variables is linear) and homoscedasticity (the 

variability of both variables is similar to all values) 

were analysed to see if there was any violation. 
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First, the relationship between the pass statistics and 

the network characteristics was not linear. 

Moreover, the percentage of passes completed did 

not have a linear relationship with the number of 

passes, the number of passes completed and the 

parameter 𝛼. Second, homoscedasticity was only 

violated for the relationship between the percentage 

of passes completed and the network's 

characteristics. Consequently, the Pearson product-

moment was used to investigate not only the 

relationships between the number of passes, the 

number of passes completed, and 𝛼, but also 

between 𝛼 and the network's characteristics. At the 

same time, Spearman's Rank Order Correlation was 

employed to examine the relationship between the 

percentage of passes completed and the remaining 

variables, and between the number of passes, the 

number of passes and the network's characteristics. 

On the one hand, Table 1 reveals the Pearson 𝑟 

correlation coefficients. First, there was nearly a 

perfect positive correlation between the number of 

passes and the number of passes completed (𝑟 =

0.994, 𝑛 = 102, 𝑝 < 0.01. Such outcomes align e 

with the conclusions of Gama et al. [53]. Second, 

the parameter 𝛼 showed a very large negative 

correlation with the number of passes (𝑟 = −0.820,

𝑛 = 102, 𝑝 < 0.01), the number of passes 

completed (𝑟 = −0.834  𝑛 = 102, 𝑝 < 0.01), the 

density (𝑟 = −0.811, 𝑛 = 102, 𝑝 < 0.01) and the 

clustering coefficient (𝑟 = −0.781, 𝑛 = 102, 𝑝 <

0.01). Finally, the average clustering coefficient 

showed a very large positive correlation with the 

density (𝑟 = 0.894, 𝑛 = 102, 𝑝 < 0.01). 

Table 1: Pearson Product-Moment Correlation coefficients 

 
On the other hand, Table 4 shows the Spearman 

𝜌 correlation coefficients. The number of passes 

showed a very large correlation with the density 

(𝜌 = 0.873, 𝑛 = 102, 𝑝 < 0.01) and also with the 

average clustering coefficient (𝜌 = 0.797  𝑛 = 102,

𝑝 < 0.01). Secondly, the number of passes 

completed revealed a nearly perfect positive 

correlation with density (𝜌 = 0.917, 𝑛 = 102, 𝑝 <

0.01) and a very large positive correlation with the 

average clustering coefficient (𝜌 = 0.825, 𝑛 = 102,

𝑝 < 0.01). The nearly perfect correlation of the 

density with the number of passes completed can be 

explained by the number of edges being highly 

dependent on the number of successful passes since 

the passes are the links between nodes in these 

networks. In addition, the percentage of passes 

completed revealed a nearly perfect positive 

correlation with the number of passes completed 

(𝜌 = 0.909, 𝑛 = 102, 𝑝 < 0.01). This variable also 

indicated a very large positive correlation with the 

number of passes (𝜌 = 0.866, 𝑛 = 102, 𝑝 < 0.01), 

while a very large negative correlation (𝜌 = −0.823,

𝑛 = 102, 𝑝 < 0.01) with 𝛼. Finally, there was a large 

positive correlation between the percentage of 

passes completed and the number of edges and the 

density (𝜌 = 0.588, 𝑛 = 102, 𝑝 < 0.01), and the 

average clustering coefficient (𝜌 = 0.521, 𝑛 = 102,

𝑝 < 0.01).  

Table 2: Spearman's Rank Order Correlation coefficients 

 

Therefore, these results suggested that teams 

that adopt a possessive strategy of play perform 

more passes and more successfully, generating 

denser zone networks with a higher average 

clustering coefficient. 

Subsequently, the one-way ANOVA or the 

Welch and Brown-Forsythe test were conducted to 

examine the differences in the variables, first, 

between teams that achieved different match results 

and, secondly, between teams that achieved 

different stages in the tournament. 

First, the samples were divided into three groups 

according to the match result (Group 1: defeat; 

Group 2: draw; Group 3: victory). In the 51 matches 

played in the UEFA EURO 2020, 35 games ended 

in a victory for one team and 16 games resulted in a 

draw. After generating the descriptive statistics 

(Table 3), Levene's test was used to check the 

assumption of homogeneity of the variances. Thus, 

it was found that the number of passes, the number 

of passes completed and the density violated this 

assumption. For these cases, the Welsh and Brown-

Forsythe tests were used instead of consulting the 

ANOVA. The results indicated that there were no 

statistical differences at the 𝑝 < 0.05 level between 

the three groups concerning all variables. This 

result did not corroborate the research work of 

Clemente et al. [42], which found differences in 

network density between teams that achieved 

different match results. However, this disparity 

could be explained by differences in the type of 

networks, the type of competition, and the number 

of teams studied. 

Table 3: Descriptive table (mean and standard deviation) and 
statistical comparison between teams that achieved different 

match results 

 

Second, the analysis focused on the differences 

between teams that reached different stages of the 

tournament. Thus, the samples were divided into 

five groups according to the stage reached in the 

tournament (Group 1: Final; Group 2: Semi-finals; 

Group 3: Quarter-finals; Group 4: Round of 16; 

(1) (2) (3) (4) (5) (6)

(1) Nu passes 1.000 0.994 * ─── -0.820 * ─── ───

(2) Nu passes completed 1.000 ─── -0.834 * ─── ───

(3) % passes completed 1.000 ─── ─── ───

(4) a 1.000 -0.811 * -0.781 *

(5) Density 1.000 0.894 *

(6) Avg Clustering coefficient 1.000

Pearson Product-Moment Correlations

N=102; * Correlation is significant at the 0.01 level

(1) (2) (3) (4) (5) (6)

(1) Nu passes 1.000 ─── 0.866 * ─── 0.873 * 0.797 *

(2) Nu passes completed 1.000 0.909 * ─── 0.917 * 0.825 *

(3) % passes completed 1.000 -0.823 * 0.588 * 0.521 *

(4) a 1.000 ─── ───

(5) Density 1.000 ───

(6) Avg Clustering coefficient 1.000

Spearman's Rank Order Correlations

N=102; * Correlation is significant at the 0.01 level

(1) Nu passes 481.110 (106.813) 519.000 (179.836) 537.830 (122.477)

(2) Nu passes completed 392.940 (104.552) 439.750 (178.550) 452.430 (129.444)

(3) % passes completed 0.809 (0.049) 0.824 (0.085) 0.828 (0.070)

(4) a 1.627 (0.101) 1.615 (0.156) 1.594 (0.109)

(5) Density 0.206 (0.027) 0.205 (0.044) 0.216 (0.097)

(6) Avg Clustering coefficient 0.376 (0.059) 0.385 (0.030) 0.388 (0.065)

Defeat (N=35) Draw (N=32) Victory (N=35)
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Group 5: Group Stage). In this case, Levene's test 

verified that no variables violated the assumption of 

homogeneity of the variances. As a result, the 

analysis was accomplished using ANOVA. Table 4 

shows the results of the one-way between-groups 

analysis of variance and the post-hoc tests 

conducted to explore the differences between teams 

that reached different stages of the tournament on 

the variables. 

Table 4: Descriptive table (mean and standard deviation) and 
statistical comparison between teams that reached different 

stages in the tournament 

 

Statistically significant differences were found 

between groups (stage reached in the competition) 

in all variables: number of passes (𝐹4,97 = 5.605,

𝑝 < 0.001, 𝜂2 = 0.188, large effect); the number of 

passes completed (𝐹4,97 = 5.719, 𝑝 < 0.001, 𝜂2 =

0.191, large effect); the percentage of passes (𝐹4,97 =

3.770, 𝑝 = 0.007, 𝜂2 = 0.134, moderate effect); the 

parameter 𝛼 (𝐹4,97 = 4.048, 𝑝 = 0.004, 𝜂2 =

0.143, large effect); the density (𝐹4,97 = 4.648, 𝑝 =

0.002, 𝜂2 = 0.162, large effect), and the average 

clustering coefficient (𝐹4,97 = 4.218, 𝑝 =

0.003, 𝜂2 = 0.148, large effect). Consequently, 

regarding, firstly, the number of passes and the 

percentage, the post-hoc tests indicated that the 

mean for Group 5 (Group Stage) was significantly 

different at the 𝑝 < 0.05 from Group 2 (Semi-finals) 

and Group 1 (Final). Secondly, concerning the 

number of passes completed, the parameter 𝛼 and 

the density, the test revealed that the mean number 

of passes completed for Group 5 (Group Stage) was 

significantly different at the 𝑝 < 0.05 from Group 4 

(Round of 16), from Group 2 (Semi-finals) and, 

from Group 1 (Final). Finally, post-hoc tests 

showed that the average clustering coefficient for 

Group 5 (Group Stage) was significantly different 

from all the other groups, i.e., from Group 4 (Round 

of 16), Group 3 (Quarter-finals), Group 2 (Semi-

finals) and Group 1 (Final). 

These results revealed that unsuccessful teams, 

i.e., teams eliminated in the first stage of the 

tournament (Group Stage), adopted a more direct 

type of play and were characterised by performing 

fewer passes and fewer passes completed. These 

findings contradict Bate (1988) and extend the 

findings of Hughes et al. (1988). On the one hand, 

the idea of Bate (1988) that teams should adopt 

direct play with fewer passes per possession rather 

than a possessive type of play to be successful was 

refuted by this study's findings. On the other hand, 

the findings of Hughes et al. [26], in which it was 

suggested that most successful teams played with 

more passes per possession than unsuccessful 

teams, were extended with the introduction of the 

parameter 𝛼 and the discovered relationships of it 

with the pass statistics. Furthermore, the 

unsuccessful teams had lower values of density and 

average clustering coefficient. Thus, these findings 

are consistent with the conclusions of Grund [33], 

Clemente et al. [42] and Gonçalves et al. [43]. They 

found that successful teams are associated with high 

levels and distribution of interactions. Clemente et 

al. [42] also concluded that high cooperation and 

interconnectivity could lead to better performance 

outcomes, as also suggested by the previous results. 

Additionally, the research work's methodology 

of Hughes & Franks [24] was reproduced. All goals 

scored from a sequence of one or more passes 

during regular time and extra time were considered 

in this analysis. The 14 goals that came from a 

possession without any passes (such as penalty 

kicks, direct free kicks, and ball recoveries 

immediately following a goal) and the 11 own goals 

were, thus, excluded from the analysis of the 142 

goals scored during the tournament. The UEFA 

EURO 2020 data revealed that 80% of the goals 

resulted from 12 passes or less. Indeed, 

approximately 50% of the goals resulted from 

possessions of five or fewer passes. 

As seen in Figures 1 and 2, these results can be 

explained by the tail's elongation of the goal-scoring 

possessions' distribution which in turn is explained 

by the tail's elongation of the passing sequences' 

distribution. 

 
Figure 1: Frequency of each sequence length in the tournament 

 
Figure 2: Frequency of goals concerning the length of the 

possession in the tournament 

However, as the frequencies of occurrences are 

unequal, the results were normalised by dividing the 

number of goals scored in each team's possession 

by the sequence length. Therefore, a profile of the 

relative importance of the different passing 

sequence lengths was obtained. Figure 3 shows that 

the longer passing sequence lengths have a higher 

conversion ratio of goals per 1000 possessions. 

These results indicate that teams that have the 

capacity to sustain long passing sequences tend to 

score more goals [24]. Note that the low value of 

the goals/1000 possession that resulted from an 

eight-pass sequence can be classified as an outlier 

of the dataset. 

(1) Nu passes 549.860 (106.923) ** 628.580 (163.71) ** 512.350 (104.276) 518.500 (145.832) 424.630 (110.683)

(2) Nu passes completed 474.360 (111.983) ** 539.670 (160.958) ** 426.050 (110.001) 435.590 (147.279) ** 336.790 (107.606)

(3) % passes completed 0.854 (0.048) ** 0.850 (0.043) ** 0.823 (0.054) 0.822 (0.082) 0.781 (0.065)

(4) a 1.567 (0.029) ** 1.565 (0.100) ** 1.600 (0.103) 1.597 (0.138) ** 1.692 (0.106)

(5) Density 0.220 (0.025) ** 0.230 (0.031) ** 0.209 (0.022) 0.212 (0.037) ** 0.187 (0.035)

(6) Avg Clustering coefficient 0.409 (0.055) ** 0.415 (0.069) ** 0.395 (0.060) ** 0.388 (0.081) ** 0.334 (0.071)

Final (N=14) Semi-finals (N=12) Quarter-finals (N=20) Round of 16 (N=32) Group Stage (N=24)

** Significantly different compared with the Group Stage
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Figure 3: Analysis of the number of goals scored per 1000 

possession for the tournament 

Finally, the sample was divided into two groups: 

the goals per 1000 possessions that resulted from a 

sequence of 6 or fewer passes and the goals per 

1000 possessions that resulted from a sequence of 7 

or more passes. The means of goals per 1000 

possessions for sequence lengths 0–6 and 7-12 were 

compared using a t-test after performing a 

descriptive group statistics analysis (Table 5). There 

was a significant difference between the two groups 

(𝑡10 = −2.878; 𝑝 = 0.016; 𝜂2 = 0.45, large effect). 

Table 5: Group Statistics for each group (goals per 1000 
possessions for sequence lengths 0–6 and 7-12) 

 
These results indicated that, nowadays, teams 

score more goals from longer passing sequences 

compared to data from the last century. Moreover, 

this reveals how professional football has evolved 

in the last decades, with teams exchanging and 

sustaining the ball longer in their possessions. The 

increase in this threshold demonstrates how football 

has become more organised, being necessary to 

exchange the ball more, creating unbalances and 

disassembling the opposing team's structure to 

score goals.  

5. Conclusions 

This study concluded that the power law was an 

appropriate model for a part of the distributions of 

passes per possession. Consequently, this work 

contributed with an innovative way to describe the 

general attacking strategy of football teams through 

the power law exponent, −𝛼. Thus, teams that use a 

possession-based strategy of play have a lower 

value of 𝛼, whereas teams that use a direct strategy 

of play have a higher value of 𝛼. The main findings 

of this study suggest that unsuccessful teams adopt 

a direct play, which is characterised by lower values 

of all variables, i.e., number of passes, number of 

passes completed, percentage of passes completed, 

network's density and average clustering 

coefficient. 

This study faces some limitations that should be 

addressed. On the one hand, as this work was time 

constrained, the scope of the analysis was limited 

since much time was consumed in designing and 

developing the Python scripts that made the 

multiple analysis from StatsBomb's raw data 

possible. However, this limitation can be 

considered an advantage because, with the code 

developed, the study can be replicated for other 

tournaments provided by StatsBomb. On the other 

hand, although 30% of the samples were not 

consistent with the power-law hypothesis, all the 

samples were fitted to the power-law distribution.  

As a result, this study provides future research 

proposals that complement the present work and the 

literature in general. First, further investigations 

should replicate this study's methodology with other 

data sets to validate and corroborate this work's 

findings. Second, the matter of how the systems of 

play affect the characteristics of the networks 

should be a subject of future studies using different 

methodologies. Different clustering methods 

should be experienced to verify if they can unveil 

the differences between the different systems of 

play. The motifs between playing positions of the 

same sector and between playing positions of 

different sectors should also be studied in addition 

to the micro and macro levels of networks. Third, 

future studies should continuously focus on the 

study of network metrics at a macro, but more 

particularly at a micro level that can reflect the 

teams' general attacking strategies. Fourth, how 

adapting the general strategy of play to the opponent 

can lead to winning the match should be 

investigated. Fifth, further studies should consider 

the spatiotemporal evolution of the football passing 

networks, namely the player/playing position-zone 

networks, to enhance the knowledge of how teams 

organise and evolve during a match and how it 

relates to their performance. Finally, future research 

should address one significant gap in the literature: 

the need to consider how players and teams adapt to 

the ball's location in the field of play. This will 

provide pertinent and detailed information on how 

players interact within the game's dynamics.  
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