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Abstract 

Network Science and Graph Theory can contribute to football analysis, providing valuable tools that 

allow describing the interactive behaviour of teams more consistently than the traditional analysis, which 

is based on the individual performance of players. Few research works have studied the relationship 

between a team's attacking strategy (possession play or direct play) and the characteristics of the 

network and how these affect the team's overall performance. On the other hand, the impact of the 

systems of play on the network's characteristics is still unclear. Therefore, this study analysed the 

passing sequences and networks of the national teams that competed in the UEFA EURO 2020. 

Verifying that most of the teams' distributions of passes completed tend to follow the power law, an 

innovative way to describe the general strategy of the play was proposed, through the power law 

exponent,−𝛼. Thus, teams with a possession game have a lower value of 𝛼, whereas teams with a 

direct play have a higher value of 𝛼. The results of statistical studies suggested that the teams that 

adopted a direct play, characterised by executing fewer passes and fewer passes completed, generating 

networks with a lower density and average clustering coefficient, were less successful, i.e., eliminated 

in the tournament's first stage. Finally, the clustering analysis was inconclusive in revealing how playing 

systems affect the networks’ characteristics. In summary, this study provides relevant insights that can 

aid the coaching staff’s work, enhancing the value of Network Science and Graph Theory in football 

analysis. 

Keywords: Football, Passing sequences, Passing networks, General attacking strategy, Team 

performance, Network Science 
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Resumo 

A Ciência de Redes e a Teoria de Grafos podem contribuir, decisivamente, para a análise do futebol, 

disponibilizando ferramentas valiosas que permitem descrever o comportamento relacional das 

equipas, de forma mais consistente que a análise tradicional, baseada no desempenho individual dos 

jogadores. Até à data, poucos trabalhos de investigação estudaram a relação entre a estratégia de 

ataque de uma equipa (jogo de posse ou jogo direto) e as características da rede e como estas afetam 

o desempenho global dessa mesma equipa. Por outro lado, o impacto dos sistemas de jogo nas 

características da rede ainda não é claro. Com o presente estudo, pretendeu-se analisar as sequências 

e redes de passes das seleções nacionais que participaram no UEFA EURO 2020. Verificando-se que 

a maior parte das distribuições de passes completos das equipas tende a seguir a lei de potência, foi 

proposta uma forma inovadora de descrever a estratégia geral do jogo, através do expoente da lei de 

potência,−𝛼. Assim, as equipas com um jogo de posse têm um menor valor de 𝛼, enquanto as equipas 

com um jogo direto têm um maior valor de 𝛼. Os resultados dos estudos estatísticos realizados 

sugeriram que as equipas que adotaram uma estratégia de jogo direto, caracterizadas por executar 

menos passes e com menos sucesso, gerar redes menos densas e com um coeficiente de 

agrupamento médio mais baixo, obtiveram menos sucesso, sendo eliminadas na primeira fase do 

torneio. Por último, a análise de clusters efetuada foi inconclusiva no que se refere a revelar como os 

sistemas de jogo afetam as características das redes. Em suma, o presente estudo fornece vários 

conhecimentos relevantes que podem ser uma ferramenta útil no trabalho das equipas técnicas, 

reforçando a utilidade da Ciência de Redes e a Teoria de Grafos na análise do futebol. 

Palavras-chave: Futebol, Sequências de passes, Redes de passes, Estrátegia geral de ataque, 

Desempenho da equipa, Ciência de redes 
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Chapter 1 – Introduction 

This chapter introduces the dissertation and is organised into three sections. Section 1.1 describes the 

motivation for this work, while section 1.2 presents the objectives and research questions. Finally, 

section 1.3 provides the document’s structure. 

1.1. Motivation  

Football, also known as soccer, is the most popular sport in the world. The number of players and fans 

has increased significantly worldwide since its inception in the 19th century in England (Garganta & 

Barreira, 2013). According to Fédération Internationale de Football Association (FIFA), there are 

265 million people who play football1, more than 130,700 active professional players2, and a remarkable 

5 billion football fans globally3. 

Since the two-opponent offside rule was established in 1920, football's fundamental rules have 

almost not been altered (Gyarmati et al., 2014). However, football has been evolving and becoming 

more professionalised. New strategies have arisen, and due to the constant innovation in team play, the 

demands of match analysis have grown to the point where coaches now want to thoroughly scrutinise 

match analysis (Memmert & Raabe, 2018). Furthermore, the methodology of match analysis has been 

supported by a combination of increased computational power and new technologies, such as the global 

positioning system (GPS), new video recording tools, and physical data devices that allow the collection 

of performance data. Thus, football analysis departments have transformed into multidisciplinary panels 

of specialists due to the exponential growth in data availability in recent years (Caicedo-Parada et al., 

2020). These professionals include sports scientists, computer scientists, mathematicians, and audio-

visual technicians. Their task is to extract information from the performance data and produce 

knowledge about their team to aid the coaching staff's decision-making (Clemente, Martins et al., 2016; 

Diquigiovanni & Scarpa, 2019; Duarte et al., 2012; Sarmento et al., 2018; Vales-Vásquez, 2012). 

The most appealing aspect of football is its emergent properties (Yamamoto & Yokoyama, 2011). 

Goldstein (1999) affirms that emergence “refers to the arising of novel and coherent structures, patterns, 

and properties during the process of self-organisation in complex systems”. Football's complexity stems 

primarily from the number of interactions between teammates and opponents, but it also exists in the 

game context (Bradley et al., 2021). Football teams can be described as groups of individuals that 

interact dynamically and interdependently to achieve their common objective: score goals and prevent 

the opposing team from doing the same (Kempe et al., 2014; Ribeiro et al., 2017). Hence, a football 

team is a complex, dynamic, nonlinear, open, and adaptable system formed by 11 players who are also 

themselves systems. The nonlinearity arises from the fact that the whole is not equal to the sum of its 

parts, and thus a football team cannot be understood solely by examining its components, i.e. its players 

(Hanseth & Lyytinen, 2016; Willy et al., 2003). The context and environment for creating a team system 

 
1 Source: FIFA. (2006). FIFA Big Count 2006: 270 million people active in football. Retrieved from: 

https://resources.fifa.com/image/upload/big-count-stats-package-520046.pdf?cloudid=mzid0qmguixkcmruvema. 
2 Source: FIFA. (2022). Total Number of Professional Players. Retrieved from: https://landscape.fifa.com/en/landscape. 
3 Source: FIFA. (2022). Total Number of Professional Players. Retrieved from: https://landscape.fifa.com/en/landscape. 

https://resources.fifa.com/image/upload/big-count-stats-package-520046.pdf?cloudid=mzid0qmguixkcmruvema
https://landscape.fifa.com/en/landscape
https://landscape.fifa.com/en/landscape
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are produced by each player's relational capacity (open system), evolving capacity (dynamic system), 

adaptability to the environment in which he performs his tasks, and the uncertainty with which he 

demonstrates his competitive capacity (Martín, 2022). 

Consequently, analysing football quantitively is complicated due to its unique nature (Peña & 

Touchette, 2012). The complexity of the play, the nearly constant flow of the ball during the match and 

the low scores are examples of factors that make simple statistics such as the number of goals, shots 

or assists insufficient as measures of player and team performance (Duch et al., 2010; Peña & 

Touchette, 2012). On the other hand, passes are the links between teammates and occur numerously 

in every match despite the quality of the teams (Gyarmati et al., 2014). Therefore, the passes performed 

in a match provide substantial elements for applying graph and complex networks theory to football 

analysis (Arriaza-Ardiles et al., 2018). Indeed, network analysis, by modelling the interactions based on 

the passes, captures teams' interactive behaviour, organisation and performance in a way that classical 

analysis, based on the performance of individual players, does not (Buldú et al., 2018; Korte & Lames, 

2019; Mclean et al., 2017). 

1.2. Objectives and Research Questions  

The ability to retain possession of the ball for more extended periods has been linked to success (Hook 

& Hughes, 2001; Jones et al., 2004; Lago-Peñas & Dellal, 2010). However, the difficulty in describing 

the possession characteristics is recognised in football performance analysis (Olsen & Larsen, 1997). 

Consequently, the ability to describe team possession in football must be improved. In recent years, ball 

possession has acquired fundamental importance in the attacking strategy of football teams (direct or 

possessive play) (Casal et al., 2019). However, the relationship between teams’ attacking strategy and 

the networks’ characteristics and how these two factors impact teams’ overall performance has barely 

been unveiled. 

Alternatively, the systems of play are the foundations of the football game, providing a reference to 

the team that assists players in positioning themselves and widely defining their specific roles in the 

attack and defence phases (Bradley et al., 2021; Fernandez & Bornn, 2018). Thus, the system of play 

influences the team’s network characteristics. However, few studies have investigated the effect of the 

systems of play in professional football, making the impact on the network's characteristics unclear 

(Memmert et al., 2019). 

Therefore, this work advances with three research questions that are intended to analyse and 

answered throughout this study: 

1. Does the distribution of successful passes tend to follow a power law distribution? How can the 

distribution of successful passes explain the general attacking strategy (direct or possessive 

play)? 

2. How do the general attacking strategy and network characteristics relate to each other, and how 

do they impact the team’s overall performance? 

3. How do the systems of play affect networks’ characteristics? More specifically, do the same 

systems of play generate similar networks? 
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As a result, this dissertation seeks to answer these research questions by applying statistical 

procedures, graph theory and network science and using as a sample the matches of the UEFA EURO 

2020. In this way, the literature work in passing sequences and network analysis is extended.  

1.3. Dissertation’s Structure 

This dissertation is structured into six chapters outlined below: 

▪ Chapter 1 – Introduction: This first chapter introduces the dissertation, comprehending, firstly, 

the motivation for this work, secondly, a formulation of the research questions and resultant works’ 

objectives and, finally, a specification of the document’s structure. 

▪ Chapter 2 – Background: This second chapter explains the main concepts required to 

understand the subsequent work. By setting a common terminology, this chapter covers the 

essential themes of this dissertation: football, graph theory and network science. Additionally, this 

chapter characterises the data studied in the analysis and the respective materials.  

▪ Chapter 3 – Literature Review: This third chapter reviews the literature on passing sequences 

and network analysis and presents a summary enhancing the relevancy of the research 

questions. 

▪ Chapter 4 – Passing sequences analysis: This fourth chapter exhibits the methodology, results 

and posterior discussion regarding the passing sequences analysis. 

▪ Chapter 5 – Passing networks analysis: This fifth chapter presents the methodology, results 

and posterior discussion regarding the passing networks analysis. 

▪ Chapter 6 – Conclusions, Limitations and Future Work: This sixth chapter summarises this 

dissertation's most relevant conclusions and insights, presenting the main limitations and 

highlighting opportunities for future work. 
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Chapter 2 – Background 

This chapter explains the main concepts required to understand the subsequent work. By setting a 

common terminology, this part covers the essential themes of this work. First, in section 2.1, football’s 

main rules are introduced (section 2.1.1), along with several notions about the game (section 2.1.2). 

Then, section 2.2 presents different definitions and concepts regarding graph theory and network 

science. Finally, section 2.3 characterises the data studied in the analyses and the used materials. 

2.1. Football 

This section presents football’s principal rules and concepts of the game needed to comprehend the 

work that follows. 

2.1.1. Main rules 

A professional football match is played between two teams using a spherical ball on a rectangular grass 

field (natural or artificial), with two goals at the end of each width. Each team has eleven players, one of 

whom must be the goalkeeper (see section 2.1.2.2). The game's objective is to score more goals on the 

opposing goal than the opponent. A goal is scored when the entire ball passes over the goal line, 

between the goalposts, and under the crossbar (IFAB, 2021). 

According to the first law of the game, the field is bounded by the touchlines (length sides) and two 

goal lines (width sides). The halfway line divides the field into two halves, and at its midpoint is the centre 

mark, which serves as the starting point for the game. Because all the opponent's players must be in 

their half and at least 9.15 meters from the ball until the game is started or restarted, the centre circle is 

marked around the centre mark and provides a reference for the kick-off (see section 2.1.2.1). 

Competitions can define the dimensions requirements according to the following constraints: the field's 

length must be between 90.00 and 120.00 meters, and the width must be between 45.00 and 90.00 

meters (IFAB, 2021). 

   

Figure 1: The field of play: components and measurements (Adapted from FIFA, (2015)) 

As seen in Figure 1, the penalty area is located on each half-side of the field, and inside this 

rectangular area, the goalkeeper can use his arms and hands to defend the ball. Inside the penalty area, 
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a penalty mark is drawn 11 meters from the midpoint between the goalposts, and this is where the 

penalty kicks are taken (see section 2.2.1.). Outside the penalty area, an arc of a circle with a radius of 

9.15 meters and a centre in the penalty mark is depicted as a reference for players other than the penalty 

kicker and goalkeeper, who must be at least 9.15 meters away from the penalty mark (IFAB, 2021). 

Within the penalty area is also the goal area. At 5.50 meters from the inner of each goalpost, two lines 

are drawn perpendicular to the goal line. A line drawn parallel to the goal line connects these lines, 

which extend 5.50 meters onto the playing field. The goal area is the region enclosed by these lines and 

the goal line and is used as a guide for goal kicks (see section 2.2.1.) since the ball must be kicked by 

a player inside of this area (IFAB, 2021). 

A match lasts 90 minutes and is divided into two 45-minute halves. In addition, in some competition 

stages, if the score is tied, two equal additional periods of 15 minutes each may be played. If this extra 

time still ends in a draw, a penalty shootout may be held until there is a winning team.  

A team can only make a certain number of substitutions during a match. Because of the COVID-19 

pandemic's impact on football players, the International Football Association Board (IFAB), responsible 

for establishing the Laws of the Game, has approved an amendment to the third law, increasing the 

maximum number of substitutes from three to five. These five substitutions can be done in a maximum 

of three moments. Moreover, if the game goes to extra time, teams have the opportunity to use an 

additional substitute4.  

Finally, one of the most important rules is the offside rule. A player is in an offside position if, in the 

opponent's half-side, any part of his head, body, or feet is closer to the opponent's goal line than the ball 

and the second-last opponent. This event is penalised with a fault in favour of the opposing team (IFAB, 

2021). 

2.1.2. The game 

The concepts of the game cycle, systems of play, and playing positions are presented in this section. 

2.1.2.1. Game cycle 

A football game is a whole, but it is possible to distinguish stages within it. The game can be described 

as a cycle that is made up of both dynamic and static phases (Castellano, 2000; Martín-Barrero & 

Ignacio Martínez-Cabrera, 2019). Consequently, the two phases of the game are the attacking phase 

and the defence phase. On the one hand, during the attacking phase of play, players attempt to move 

the ball toward key areas of the field to score a goal. On the other hand, in the defence phase, the team 

does not possess the ball and attempts to reclaim it by preventing the opponent from moving closer to 

the goal and scoring a goal. (Greco & Greco, 2009; Hewitt et al., 2016). 

Each game situation depends on the previous one and influences the next (Soriano, 2019). 

Therefore, despite the difficulty of precisely dividing the game into moments, four dynamic moments of 

play can be differentiated: organised attack, attack-defence transition, organised defence, and defence-

 
4 Source: IFAB. (2021). Additional Substitutes (Covid-19). Retrieved from: https://www.theifab.com/laws/latest/temporary-

amendment-covid/ 

https://www.theifab.com/laws/latest/temporary-amendment-covid/
https://www.theifab.com/laws/latest/temporary-amendment-covid/
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attack transition (Cano, 2009). As a result, it is possible to define each dynamic moment using Cano's 

(2009) proposal: 

▪ Organised attack: this is an offensive moment of the game in which the opposing team's defence 

is well-organised, limiting the attacking team's ability to react quickly; 

▪ Attack-defence transition: also referred to as counterattack; this is an offensive moment in which 

the defending team is surprised by the attacking team because the opposing team is defensively 

disorganised and thus vulnerable to a quick attack; 

▪ Organised defence: this is a defensive phase of the game in which the defensive team is well-

structured and cannot be momentarily caught off guard by the opposing team; 

▪ Defence-attack transition: this is a defensive moment in which the defending team is exposed to 

the opposing team's attack (Martín-Barrero & Ignacio Martínez-Cabrera, 2019). 

The set pieces, all restarts that occur in the game, are the static phases of the game. In this phase, 

the game is restarted from a standing position with the foot or hand. The team in possession of the ball 

may begin the game whenever it wishes, as long as the time limit for restarting the game is not 

exceeded. Set pieces can be identified as reasonably stable conditions within the dynamic and complex 

football system. Are included in this phase of the game the following: 

▪ Kick-off: starts a match's first and second halves, as well as both halves of extra time, and 

resumes play after a goal is scored; 

▪ Goal-kick: is awarded when the entire ball crosses the goal line, whether on the ground or in the 

air, after having last touched a member of the opposing team, and no goal is scored; 

▪ Throw-in: is awarded when the entire ball crosses over the touchline. It is awarded to the opponent 

team of the player who last touched the ball. A throw-in is performed with the hands, not being 

allowed to score a goal directly from it; 

▪ Corner-kick: is granted when the entire ball crosses the goal line, whether on the ground or in the 

air, being last touched by a member of the opposing team, and no goal is scored; 

Figure 2:Phases and moments of play (Adapted from Hewitt et al. ( 2016); Martín-Barrero & Ignacio 
Martínez-Cabrera (2019) 
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▪ Free-kick: is granted to the opposing team when a player commits a fault. A direct free-kick is one 

in which the ball can be kicked directly into the opponent's goal, whereas an indirect free-kick is 

one in which this is not possible; 

▪ A penalty kick: is granted to the opposing team if a player commits a direct free kick fault inside 

their penalty area (IFAB, 2021). 

2.1.2.2. Systems of play and playing positions 

Each player's position on the playing field facilitates the team's collective play development. The system 

of play has traditionally been the main point of reference for football players when deciding where to 

position on the field. This reference is organised in lines, with each player occupying a specific position 

within each line. The systems of play are generally defined by the number of players playing in each line 

(Vilar et al., 2013). Each line is related to the sectors in which the field of play can be divided. The 

defensive, midfield, and offensive sectors are the three main sectors, and these sectors can be further 

subdivided. Garganta (1997), considering previous studies, presented a playing field division model that 

has 12 zones resulting from the combination of four sectors (a transversal division of the playing field) 

and three corridors (a longitudinal division of the playing field). 

 

Figure 3: Division of the playing field (Adapted from Garganta, (1997)) 

In addition, other division models have been suggested. For instance, Diquigiovanni & Scarpa (2019) 

divided the playing field into nine zones, each consisting of three equal sectors and three equal corridors. 

Instead, Herrera-Diestra et al. (2020) used a thirty-zone division in their study (six equal sectors and five 

equal corridors). 

As a result, it is possible to characterise the four main playing positions that a team has by 

contemplating the three main sectors: 

▪ Goalkeeper: This player plays behind the three lines with gloves on and wearing a different colour 

jersey than his teammates. The goalkeeper is the only player on the team who is permitted to use 

his hands and arms inside the penalty area, and his primary duty is to prevent goals from the 

other team.  

▪ Defender: the primary concern of this defensive line player is to contain opposing attackers and 

prevent the other team from scoring goals. A defender may be a centre-back if positioned in the 

central corridor between the full-backs or a full-back if they are placed in the outer corridors. 
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▪ Midfielder: the principal task of this player is to create the connection between the defensive and 

the offensive lines. The midfielder may play a more significant amount of defensive or offensive 

roles. First, he can serve as a defensive centre midfielder, sitting in front of the defensive line, 

assisting teammates with defensive responsibilities, and distributing the ball to teammates. 

Second, he can perform offensive and defensive tasks in various roles. Finally, this player can 

also be an attacking midfielder who assists the team's offensive efforts and generates 

opportunities for himself or the forward to score goals. 

▪ Forward: this player's primary duty while in the attacking line is to score goals. The forward can 

be more versatile, helping his teammates score goals, or more of a target man, scoring goals 

primarily on his own. 

The system of play is a method of organizing a team by creating a framework that guides the 

behaviours to achieve the desired interactions and relationships. Besides, the systems of play are not 

rigid, i.e., players play from their position rather than in their position, constantly adjusting their 

behaviours in a coordinated manner to achieve the performance objectives (scoring and preventing 

goals) (Vilar et al., 2013). Hence, each team establishes an order between its players and its different 

lines. The systems of play are expressed in a sequence of numbers, i.e., a 4-3-3 has four defenders 

(defensive line), three midfielders (midfield line) and three forwards (offensive line) (Martín-Barrero & 

Ignacio Martínez-Cabrera, 2019; Mercé, 2004). There are several systems of play. Although they may 

share positions, there are differences between them. Additionally, the same systems of play can have 

multiple configurations. Thus, Figure 4 illustrates different examples of systems of play. 

    
(4a) 4-3-3 (4b) 4-4-2 (4c) 4-2-3-1 (4d) 5-2-3 

Figure 4: Examples of systems of play 

2.2. Operational Research: Graph Theory and Network Science 

Newman (2010) defines a network as “a collection of points joined together in pairs by lines” in which 

“the points are referred to as vertices or nodes and the lines are referred to as edges”. More specifically, 

social networks are networks in which nodes are people or groups of people, and the edges represent 

a social interaction between them, such as a pass in football (Newman, 2010). 

Graph theory is a mathematics branch with technical tools to analyse networks (Newman, 2010). 

This section introduces a small portion of concepts of the vast field of graph theory, concentrating only 

on those that are relevant to this dissertation. 
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A network is denoted in graph theory as a graph, a set of vertices linked by edges. One or more 

edges can link two vertices. In addition, a vertex can be connected to itself by an edge (referred to as 

self-edge). A simple graph is a network with neither self-edges nor multiedges, unlike a multigraph, a 

network with multiedges. The number of nodes, the size of a network, represents the number of 

components in the network, whereas the number of edges represents the total number of interactions 

between the nodes (Barabási, 2016; Newman, 2010). 

A network may have undirected or directed links. A network in which each edge has a direction 

pointing from one vertice to another is known as a directed network or directed graph (also designated 

as a digraph). Such edges are denoted as directed edges and can be represented by lines with arrows.  

 

(5a)  (5b)  

Figure 5: (5a) Simple undirected graph; (5b) Simple directed graph 

2.2.1. Adjacency matrix 

A network is usually represented by its adjacency matrix. The adjacency matrix 𝐴 of a directed network 

of 𝑛 nodes is a matrix that has 𝑛 rows and 𝑛 columns, with elements 𝐴𝑖𝑗 such that 

𝐴𝑖𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑖
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The adjacency matrix of an undirected network is symmetric 𝐴𝑖𝑗 =  𝐴𝑗𝑖, thus having two entries for 

each link. As an example, the adjacency matrices of the networks represented in Figure 5 are: 

𝐴5𝑎 = (

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

)                       𝐴5𝑏 = (

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

) 

In specific applications, networks might include weights reflecting the frequency of interaction 

between nodes. These networks in which each link (𝑖, 𝑗) has a unique weight 𝑤𝑖𝑗 are called weighted 

networks and can be represented by the elements of the adjacency matrix values equal to the weight of 

the link, 𝐴𝑖𝑗 =  𝑤𝑖𝑗 (Barabási, 2016; Newman, 2010). 

2.2.2. Degree 

The degree of a graph’s vertex is the number of edges linked to it. On the one hand, the degree, 𝑘𝑖, of 

the vertex 𝑖 for an undirected graph with 𝑛 vertices can be expressed in terms of the adjacency matrix 

as: 

𝑘𝑖 = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

. 
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Since in an undirected graph, every edge has two ends, the total number of edges, 𝑚, can be written 

as: 

𝑚 =
1

2
∑ 𝑘𝑖

𝑛

𝑗=1

. 

Moreover, the mean degree, 𝑐, of the undirected graph is: 

𝑐 =
1

𝑛
∑ 𝑘𝑖 =

2𝑚

𝑛

𝑛

𝑗=1

 

On the other hand, in a directed graph each vertex has two degrees: the in-degree and the out-

degree. The in-degree is the number of ingoing edges connected to a vertex, while the out-degree is 

the number of outgoing edges. Thus, the in-degree, 𝑘𝑖
𝑖𝑛, and out-degree, 𝑘𝑖

𝑜𝑢𝑡, of the vertex 𝑖 for a 

directed graph with 𝑛 vertices can be expressed in terms of the adjacency matrix as (Barabási, 2016; 

Newman, 2010): 

𝑘𝑖
𝑖𝑛 = ∑ 𝐴𝑖𝑗

𝑛

𝑗=1

      ;      𝑘𝑖
𝑜𝑢𝑡 = ∑ 𝐴𝑗𝑖  , 𝑤𝑖𝑡ℎ   𝑘𝑖 =  𝑘𝑖

𝑖𝑛 + 𝑘𝑖
𝑜𝑢𝑡

𝑛

𝑗=1

. 

Also, the total number of edges, 𝑚, in a directed graph can be written as: 

𝑚 = ∑ 𝑘𝑖
𝑖𝑛

𝑛

𝑗=1

= ∑ 𝑘𝑖
𝑜𝑢𝑡

𝑛

𝑗=1

. 

Therefore, the mean in-degree, 𝑐𝑖𝑛, and the mean out-degree, 𝑐𝑜𝑢𝑡, are equal: 

𝑐𝑖𝑛 =
1

𝑛
∑ 𝑘𝑖

𝑖𝑛

𝑛

𝑗=1

=
1

𝑛
∑ 𝑘𝑖

𝑜𝑢𝑡

𝑛

𝑗=1

=  𝑐𝑜𝑢𝑡 = 𝑐 =
𝑚

𝑛
. 

2.2.3. Density and paths 

The maximum possible number of edges in a simple undirected graph is 
1

2
𝑛(𝑛 − 1), whereas in a simple 

directed graph is 𝑛(𝑛 − 1). The density, 𝜌, is the interconnectedness of vertices of a graph and can be 

defined as the ratio between the number of edges and the maximum possible edges, lying in the range 

0 ≤ 𝜌 ≤ 1. As a result, the density of a simple undirected graph and a simple directed graph are, 

respectively (Newman, 2010): 

𝜌𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =
2𝑚

𝑛(𝑛 − 1)
     ;      𝜌𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑚

𝑛(𝑛 − 1)
 

Furthermore, a route along a network's links is referred to as a path. The length of a path is a measure 

of how many links are present on it. In addition, the geodesic path or shortest path, 𝑑𝑖𝑗, between two 

nodes 𝑖 and 𝑗 is the path with the fewest number of edges (Barabási, 2016). In opposition, the diameter 

is the length of the longest path between any two vertices (Newman, 2010). 
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2.2.4. Centrality measures 

The importance of the network's nodes is taken into account by the centrality measures, and each 

centrality measure examines a different type of importance. In this section, some measures are 

presented that are essential to comprehend the work that follows (Golbeck, 2015; Newman, 2010). 

2.2.4.1. Degree centrality 

The degree centrality is a simple centrality measure to compute, being just the degree of a vertex. It 

shows how many links a node has; thus, higher values mean the node is more central. In directed 

graphs, vertices have in-degree and out-degree centralities (Golbeck, 2015). For instance, in football, 

the player with the highest in-degree centrality is the one who receives more passes from teammates 

than the other players. In contrast, the player with the greatest out-degree centrality is the one who 

originated more passes than the other players (Clemente, Martins et al., 2016). 

2.2.4.2. Closeness centrality 

The closeness centrality measure focuses on how close a node is to all other nodes in the network 

through the mean distance (length of the shortest path) between a vertex and other vertices (Clemente, 

Martins et al., 2016; Newman, 2010). For example, a higher value of this measure in football indicates 

that one player chooses all the other players and that other players tend to primarily interact with this 

central player (Clemente, Martins et al., 2016). Over the years, several authors have developed different 

closeness-based measures.  

Sabidussi (1966) proposed that the sum of the geodesic distances between a vertex and all other 

vertices could be used to determine a vertex’s centrality. However, this is a measure of inverse centrality 

because it increases with greater distance between a vertex and all other vertices (Freeman, 1978). 

Therefore, the measure of centrality vertex 𝑖 for a graph with 𝑛 vertices is: 

𝐶𝑐(𝑖) =
1

∑ 𝑑𝑖𝑗
𝑛
𝑗

  

As described before, this measure depends on the number of vertices in the network from which it is 

computed. With the measure suggested by Sabidussi (1966), comparing graphs of different sizes is 

impossible. So, Beauchamp (1965) proposed a measure in which the impact of graph size was removed 

(Freeman, 1978): 

𝐶𝑐
′(𝑖) =

𝑛 − 1

∑ 𝑑𝑖𝑗
𝑛
𝑗

 

Years later, Wasserman & Faust (1994) proposed a new closeness metric that ignores vertices that 

are not reachable from vertex 𝑖 and focuses only on distances from vertex 𝑖 to all reachable vertices. 

Even if the graph is not strongly connected, this measure is determined by considering the ratio of the 

fraction of reachable vertices to the average distance from all reachable vertices. Thus, denoting 𝐽𝑖 as 

the number of vertices in the influence range of vertex 𝑖, this closeness metric can be expressed as 

(Wasserman & Faust, 1994): 
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𝐶𝑐
′′(𝑖) =

𝐽𝑖

𝑛 − 1
∑ 𝑑𝑖𝑗

𝑛
𝑗

𝐽𝑖

 

2.2.4.3. Betweenness centrality 

The betweenness centrality captures the degree to which a vertex 𝑖 is on the shortest paths between 

other vertices (Newman, 2010). Thus, this measure is the sum of the fraction of all-pairs shortest paths 

that traverse the vertex 𝑖: 

𝐶𝑏(𝑖) = ∑
𝜎𝑗𝑘(𝑖)

𝜎𝑗𝑘
𝑖≠𝑗≠𝑘

, 

with 𝜎𝑗𝑘 being the number of shortest (𝑗, 𝑘)-paths and 𝜎𝑗𝑘(𝑖) be the number of shortest (𝑗, 𝑘)-paths 

passing through some vertex 𝑖 other than (𝑗, 𝑘) (Brandes, 2008). For illustration, football players with 

high betweenness centrality may have considerable influence within the passing network, acting as 

bridges between their teammates (Clemente, Martins, et al., 2016). 

2.2.4. Clustering coefficient 

The clustering coefficient measures the degree to which the neighbours of a given vertex connect, 

quantifying how close a vertex and its neighbours in a graph are to forming a complete subgraph 

(Barabási, 2016; Clemente et al., 2015). For a vertex 𝑖 with a degree 𝑘𝑖 of an undirected graph, the local 

clustering coefficient is defined as: 

𝐶𝑢(𝑖) =
2𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1)
, 

where 𝑇𝑖 is the number of triangles through vertex 𝑖. Alternatively, for directed graphs, the clustering 

coefficient is defined as the fraction of all possible directed triangles (Fagiolo, 2007): 

𝐶𝑢(𝑖) =
2𝑇𝑖

𝑘𝑖(𝑘𝑖 − 1) − 2𝑘𝑖
↔, 

where, in this case, 𝑘𝑖 is the sum of in-degree and out-degree and 𝑘𝑖
↔ is the reciprocal degree of 𝑖. 

In addition, the average local clustering coefficient can be used to measure the clustering level 

throughout the network (Pina et al., 2017): 

𝐶̅ =
1

𝑛
∑ 𝐶𝑖

𝑛

𝑖=1

. 

2.2.5. Motifs 

Milo et al. (2002) first defined network motifs as ”patterns of interconnections occurring in complex 

networks in numbers that are significantly higher than those in randomized networks”, meaning that a 

motif is a subgraph that is statistically over-represented (Milo et al., 2002; Stone et al., 2019). This crucial 

concept, presented as a basic building block of complex networks, has been used to uncover network 
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structural properties. Hence, as an example, Figure 6 shows all possible motifs of a three-node 

connected directed subgraph. 

 

Figure 6: 13 different types of subgraphs of size 3 

2.2.6. Scale-free networks 

Many networks contain a small number of nodes with significantly more links than the average node. In 

these types of networks, termed scale-free networks, the fraction of nodes having 𝑘 edges, 𝑝𝑘, decays 

according to a power law (Milo et al., 2002; Yamamoto & Yokoyama, 2011): 

𝑝(𝑘)~𝐶𝑘−𝛼, 

where the constant 𝐶 is unimportant for the study and the exponent of the power law 𝛼 usually ranges 

between 2 and 3, although values outside this range are feasible and sporadically observed (Newman, 

2010).  

2.3. Data characterisation 

This section characterises the sample concerning the UEFA EURO 2020 and presents the used 

materials. 

2.3.1. Sample 

The 51 official matches from UEFA EURO 2020 were analysed (Appendix A). In this UEFA-organised 

tournament, the European senior men’s national teams competed to crown the continental champion. 

The competition, held since 1960, is slated to occur every four years between FIFA World Cup 

competitions in the even-numbered years. However, this edition was postponed to 2021 due to the 

COVID-19 pandemic. The tournament was hosted in several countries to celebrate the 60th anniversary 

of the European Championship competition: Azerbaijan, Denmark, England, Germany, Hungary, Italy, 

Netherlands, Romania, Russia, Scotland, and Spain. 

The tournament was competed by twenty-four teams, represented in Figure 7, and was composed 

of two different stages: the Group Stage and the Knockout Stage. Firstly, the twenty-four teams were 

divided into six groups of four in the Group Stage. Every team played every other team in their group 

once, being awarded three points for a win, one for a draw and none for a defeat. Thus, the six group 

winners, the six runners-up, and the four best third-placed teams qualified for the Round of 16. Secondly, 

the Knockout Stage was played in single-leg matches as follows: Round of 16, Quarter-finals, Semi-



14 

 

finals, and Final. In this stage, if there was no winner at the end of regular playing time, two 15-minute 

periods of extra time were played. Penalty kicks were required if there was still no winner after extra 

time(UEFA, 2018). The winning team of each match advanced to the next stage.  

 

Figure 7: UEFA EURO 2020 participants and respective groups 

2.3.2. Materials 

The raw data sets were provided by StatsBomb Services Ltd, which has made the data from UEFA 

EURO 2020 publicly and freely available5. StatsBomb covers 90 different leagues worldwide, gathering 

data for each league match at the same granularity level. The UK-based company collects data validated 

in multiple layers using proprietary camera calibration, computer vision tools, and human input, 

guaranteeing the most accurate data for its clients6. In its open data, there were four different types of 

datasets in a JSON format7: 

1. StatsBomb Competition Data: contains descriptive information about all competitions freely 

available; 

2. StatsBomb Match Data: records the match information for each match, including competition 

and season information, home and away team information and stadium and referee information; 

3. StatsBomb Lineup Data: reports the lineup information for the players, coaches, and referees 

involved in each match. The filenames correspond to the match ids. 

4. StatsBomb Event Data: comprises actions performed during play, concentrating on the ball. The 

three main characteristics of each event are (a) the timestamp, (b) the action and (c) the attributes. 

The timestamp registers the time in the match the event takes place; the action refers to the type 

of event to which it corresponds, and the attributes include general and specific information about 

the characteristics of the event and the entities involved in it. Once again, the filenames 

correspond to the match ids. 

First, the StatsBomb Competition Data was accessed to get the corresponding UEFA EURO 2020 

competition’s id and general information about the tournament. Second, information about each 

tournament’s match was collected from StatsBomb Match Data. Third, StatsBomb Lineup Data was not 

 
5 Source: StatsBomb. (2022). GitHub. Open data. Retrieved from: https://github.com/statsbomb/open-data 
6 Source: StatsBomb. (2022). Data Soccer. Retrieved from: https://statsbomb.com/what-we-do/soccer-data/ 
7 Source: StatsBomb. (2022). GitHub. Open Data. StatsBomb Open Data Specification v1.1.pdf. Retrieved from: 

https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf 

https://github.com/statsbomb/open-data
https://statsbomb.com/what-we-do/soccer-data/
https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf
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used. Finally, the StatsBomb Event Data of each tournament’s match was used to perform all the studies 

presented in the coming chapters. Nevertheless, it is highly recommended to read the document 

StatsBomb Data Specification v1.1, publicly available, to get more in-depth knowledge about StatsBomb 

data8. 

The dissertation’s analyses were carried out using Microsoft Excel®, IBM SPSS Statistics® (version 

28), Python 3.10.5 and the Python packages: NetworkX® (version 2.8.5), pandas (1.4.3), NumPy 

(1.23.1), scipy (1.9.0), scikit-learn (1.1.1), seaborn (0.11.2), statsmodel (0.13.2), matplotlib (3.5.2) and 

powerlaw (1.5). 

 
8 https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf 

 

https://github.com/statsbomb/open-data/blob/master/doc/StatsBomb%20Open%20Data%20Specification%20v1.1.pdf
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Chapter 3 – Literature Review 

This chapter reviews the literature on passing sequences analysis and passing network analysis in 

sections 3.1 and 3.2, respectively. In addition, section 3.3 presents a summary enhancing the relevancy 

of the research questions. 

3.1. Passing sequences analysis 

Over the years, few studies on passing sequences in football have been developed. Reep and his 

colleagues started researching this subject in the late 1960s and early 1970s. Reep & Benjamin (1968) 

statistically analysed the passing sequences that resulted in goals from football matches, presenting 

them as a negative binomial distribution. Reep et al. (1971) later expanded this work to other sports. 

These researchers' two primary discoveries were that a goal was scored every ten shots and that almost 

80% of the goals came from a sequence of three passes or fewer (Hughes & Franks, 2005).  

These works implied that those passing sequences with few passes were more successful. 

Consequently, as Bate (1988) deepened, it was possible to deduce that teams should adopt a “direct 

play” rather than a “possessive play” to be successful. However, most successful teams did not use a 

“direct play”. So, Hughes et al. (1988) studied the patterns of plays of the semifinalists and the national 

teams that were eliminated in the first round of the 1986 World Cup and found that the most successful 

teams played with more passes per possession than unsuccessful teams. In this way, they determined 

that the conclusions made by Reep & Benjamin (1968) and Bate (1988) did not apply to all levels of 

football (Hughes & Franks, 2005). 

Years later, Hughes & Franks (2005) replicated the work of Reep & Benjamin (1968)  and discovered 

that the conclusions reached by these authors could be misinterpreted. Because of this, Hughes & 

Franks (2005) questioned whether goal-scoring or shooting was influenced by the number of passes 

made per possession. To assess the relative contribution of each possession from equal frequencies of 

occurrence, they created a new methodology in which they normalised the data by dividing the number 

of goals scored during each possession by the frequency of that sequence length (Hughes & Franks, 

2005). 

Hughes & Franks (2005) reached three conclusions when the same data were normalised. First, 

longer passing sequences significantly increased shots per possession compared to shorter passing 

sequences. Second, "direct type of play" outperformed "possession type of play" regarding the 

conversion rate of shots to goals. Third, although the differences between the successful and 

unsuccessful teams at the 1990 World Cup were not substantial, the successful teams had a better 

conversion ratio of possession to shots on goal (Hughes & Franks, 2005). 

3.2. Passing network analysis 

A significant contribution to the description of team interactions can be provided by network analysis. 

Nevertheless, despite this substantial and fascinating contribution, few studies using this methodology 

have been published (Clemente, Martins et al., 2016; Cotta et al., 2013; Martins et al., 2013). One of 
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the first studies that introduced the concept of football passing networks was published by Gould & 

Gatrell (1979). They explored the structure of a football match, specifically the Cup Final of 1977 

between Liverpool and Manchester United. However, as Buldú et al. (2019) point out, this study did not 

receive the attention of the scientific and sports communities. Only more than thirty years later, the 

research into how network science can be used to reveal vital information about the organisation and 

performance of football teams and players started with the work conducted by Duch et al. (2010) (Buldú 

et al., 2019).  

Hence, through network analysis, Duch et al. (2010) evaluated players' performance in the 

EURO 2008 championship. The researchers identified the attacking plays that led to shots to create a 

directed weighted graph of the "ball flow", which included not only the players on a team but also two 

non-player nodes ("shots on goal" and "shots wide"). These two nodes were connected to a player's 

node by an arc and weighted based on the number of shots. By combining this network, denoted as the 

“flow network”, with passing accuracy and shooting accuracy, the probability that each network path 

would lead to a shot could be determined. As a result, they employed in this process a metric known as 

"flow centrality", i.e., the betweenness centrality of the player regarding the opponent’s goal. This metric 

recorded the percentage of times a player intervened in those paths that led to a shot. In addition, they 

defined each player's match performance as the normalised value of the logarithm of his flow centrality. 

Therefore, the researchers evaluated each player's influence on a game using these graph and 

centrality approaches, identifying the player who had the greatest influence on each team (Duch et al., 

2010). 

They concluded that eight of the twenty players integrated into this study list were also included in 

the tournament's top twenty players selected by the technical panel of UEFA (the tournament organiser). 

Moreover, according to their study, they realised that Xavi Hernandez, the tournament's top player, was 

also named the tournament's best player (Clemente, Martins et al., 2016; Duch et al., 2010). 

Similarly, Peña & Touchette (2012) constructed networks in which the players (nodes) were 

connected by passes (edges) using the data that was available from the FIFA World Cup 2010. The 

computation of centrality measures enabled researchers to examine the impact of eliminating a player 

from the game in addition to determining each player's relative importance (Peña & Touchette, 2012).  

Another early study that used network science to investigate football was performed by Yamamoto 

& Yokoyama (2011). They showed how networks formed by player interactions throughout a game might 

characterize the team members' collective behaviours as indicated by topologies such as small-world 

networks and scale-free networks. Consequently, a few nodes (players) would typically exhibit more 

links than others in this type of network (Gama et al., 2014; Yamamoto & Yokoyama, 2011). 

Furthermore, the two investigators affirmed that because football teams typically have particularly 

dominant players who tend to dictate the game, it was reasonable to assume that the degree distribution 

during a game displays the power law distribution. By building networks for every five minutes of the two 

games analysed, Yamamoto & Yokoyama (2011) concluded that the hub's role was transferred to 

another node (player) as the network topology changed to follow the power of law. As a result, the 

authors identified “the stochastically switched dynamics of the hub player throughout the game”, a 

specific characteristic of football (Yamamoto & Yokoyama, 2011). 
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On the other hand, Passos et al. (2011) discussed the value of performing network analysis in team 

sports sciences and emphasized that small-world networks were a valuable technique for capturing 

dynamics in football, in line with Yamamoto & Yokoyama (2011) (Gama et al., 2014; Passos et al., 

2011). The authors used network science to study water polo in their work, observing the passes as 

links between the players (nodes).  

To determine how the number of intra-team interactions emerges in a game, they considered two 

key factors linked to successful patterns of play: the number of interactions between teammates and the 

probability of each player interacting with each teammate in the following phases of the attack. The 

results indicated that the high probability of each player interacting with other players in a team was 

necessary for the most successful collective system behaviours (Clemente, Martins et al., 2016; Gama 

et al., 2014; Passos et al., 2011). Such evidence was also discovered in a research network analysis of 

twenty-three English Premier League teams, carried out in the following year by Grund (2012). Using a 

dataset of 760 football matches with 283,529 passes between teammates, the researcher demonstrated 

that high levels of interaction (density) were associated with higher team performance, which was 

measured by the goals scored. On the other hand, centralised interaction patterns led to lower team 

performance (goals scored) (Grund, 2012; Pina et al., 2017). 

Cotta et al. (2013) and Narizuka et al. (2014) were the only authors who applied a distinct 

methodology to represent the passing networks in their studies. Instead of representing the players or 

zones as nodes, they denoted as nodes the pairs (player, zone) to also capture the players’ location. 

As the contributions of Narizuka et al. (2014) are not relevant to this dissertation, only Cotta et al. (2013) 

findings are presented. Analysing the network of passes of the Spanish national team during the FIFA 

World Cup 2010 tournament, the researchers made a temporal analysis of the passing networks, looking 

at the number of passes, length of the chain of passes, centrality measures and clustering coefficient. 

Studying, in particular, the last three matches of Spain, the results indicated that the clustering coefficient 

remained high during the game, reflecting the elaborated style of the Spanish team. Furthermore, the 

effectiveness of the opposing teams was shown in the change of several network measures over time, 

more specifically, in the decrease of not only the clustering coefficient and passing length values but 

also in the importance of the key players in the network. 

Malta & Travassos (2014) characterised the defence-attack transition moment in football using 

network analysis. The two researchers considered 52 offensive play sequences from four games of one 

team in the Portuguese Premier League. To deal with these sequences of plays, they divided the playing 

field into 18 zones (6 sectors and 3 corridors) and identified the players' positions, treating these two 

approaches (player position as a node and zone as a node) separately. Then, for a better 

comprehension of the defence-attack transition moment, were computed for the two approaches 

different metrics, such as the betweenness centrality and the in-degree and out-degree centralities 

(Malta & Travassos, 2014).  

Their study revealed that two types of play were preferred at this moment of the game. First, the 

analysed team had a possession type of play, heavily influenced by the defensive centre midfielders 

and in the midfield region. Second, the direct type of play was also observed, dominated in the forward 

region and by the centre forwards. Moreover, Malta & Travassos (2014) also found that the defensive 
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midfielders had higher values of out-degree centrality and forwards had great levels of in-degree 

centralities, concluding that these player positions were the most important in this moment of play 

(Clemente, Martins, et al., 2016; Malta & Travassos, 2014). 

In another research work developed in the same year, Gyarmati et al. (2014) addressed whether it 

was possible to identify a unique style of football in the modern era by proposing a novel approach until 

then for quantifying teams' motif characteristics based on their passing networks. In particular, they 

introduced the idea of "flow motifs" of a passing network, an ordered list of players who participated in 

a set number of consecutive passes (in this case, three). Treating data from the top Premier Leagues 

(season 2012/2013), they concluded that FC Barcelona had a distinctive passing style (expressed by 

the unique motif characteristics) compared to the other teams. As a result, they emphasized that 

Barcelona's distinct tiki-taka9 philosophy had a clear, structured framework rather than an uncountable 

number of random passes (Gyarmati et al., 2014).  

In a similar work, Peña & Navarro (2015) expanded the “flow motif” analysis to a player level, 

concentrating on researching motifs corresponding to sequences of three consecutive passes. First, 

they divided each of the conceivable 3-passes motifs into 15 distinct variations. Then, the frequency of 

each pattern occurring for each player in their dataset was determined, yielding a 15-dimensional 

distribution that represented the player's type of involvement with his teammates. Finally, a similarity 

measure was built using these feature vectors to quantify how similar any two players' playing styles 

were (Peña & Navarro, 2015). 

Gama et al. (2014) sought to see if network analysis could be used to identify important players 

during the attacking phase of a football game. To accomplish this, they randomly selected six matches 

of a single team in the Portuguese Premier League and examined collective attacking actions, such as 

completed passes made, passes received and crosses. The investigators calculated the probability that 

each player would interact with any team member and used network analysis to depict the number of 

interactions. This work concluded that network analysis could help identify characteristics in various 

team strategic plans and quantify individual contributions and team interactions by studying the attacking 

phase actions (Caicedo-Parada et al., 2020; Gama et al., 2014). 

One year later, part of the research group, Gama et al. (2015), corroborated what authors such as 

Yamamoto & Yokoyama (2011) and Passos et al. (2011) had suggested, namely that small-world 

networks can capture the interactions among players in a football match. In their work, they observed 

30 matches of the Portuguese Premier League (season 2010/2011), analysing the same collective 

attacking actions as in their previous study. Based on the sectors, goalkeepers, defenders, midfielders, 

and forwards were the four groups into which the players were divided. According to the outcomes, 

defenders and midfielders interacted with their teammates to the greatest degree. Besides, it was 

possible to state that the key players (those who interact more) were essential for the team's process of 

self-organisation. The researchers concluded that network analysis could offer insights into how 

organizing individuals can collaborate and plan team strategies. 

 
9 Tiki-taka is a style of playing football made famous by FC Barcelona and the Spanish national team, in which a team makes a 

lot of short passes keeping the possession of the ball. Adapted from: Cambridge Dictionary. Retrieved from: 
https://dictionary.cambridge.org/pt/dicionario/ingles/tiki-taka 

https://dictionary.cambridge.org/pt/dicionario/ingles/style
https://dictionary.cambridge.org/pt/dicionario/ingles/card
https://dictionary.cambridge.org/pt/dicionario/ingles/football
https://dictionary.cambridge.org/pt/dicionario/ingles/team
https://dictionary.cambridge.org/pt/dicionario/ingles/short
https://dictionary.cambridge.org/pt/dicionario/ingles/pass
https://dictionary.cambridge.org/pt/dicionario/ingles/possession
https://dictionary.cambridge.org/pt/dicionario/ingles/ball
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In 2015 and 2016, Clemente, with other colleagues, developed several works in the field. First, 

Clemente et al. (2015) examined the national team networks that competed in the FIFA World Cup 2014. 

Using a dataset of 37,864 passes between teammates in 64 matches of 32 different teams, the 

investigators studied the relationship between the characteristics of the network formed on passes 

among teammates and the variables of overall team performance. On the one hand, they considered 

the density, the centrality, and the clustering coefficient as network graph performance variables. On 

the other hand, they considered the maximum stage in the competition, the match result, the goals, 

shots, and shots on goal as team performance variables. Their most pertinent findings demonstrated a 

relationship between high levels of total links, network density, clustering coefficient, and high levels of 

goals scored. Accordingly, they evidenced that successful teams were associated with higher values of 

these network performance variables (Clemente et al., 2015). 

Second, the following year, part of the research group developed a software named Performance 

Analysis Tool (PATO) that enabled users to quickly identify teammate interactions and extract network 

data for posterior analysis. This software computed not only the total links and the density of a graph 

constituted by the eleven players but also various centrality metrics, such as the in-degree centrality, 

the out-degree centrality, and the betweenness centrality. To test the software, Clemente, Silva, et al. 

(2016) chose seven games from the FIFA World Cup 2014 involving the German national team. Using 

the software features, they concluded that during the attacking phase, when in organised attack 

moment, midfielders, followed by central defenders, were the key players, having higher values of in-

degree and out-degree centralities. These findings followed the previous conclusions of the research 

works in the field. Moreover, the graph properties displayed high values of density and total links, 

demonstrating the strong ability of the team of Germany to create passes and incorporate all of the 

players in the attacking phase (Clemente, Silva et al., 2016). 

Third, Clemente, Martins, et al. (2016) examined the plays that resulted in goals scored and 

conceded by a particular team throughout an entire season in the Portuguese Premier League using 

network methods. Two distinct analyses were carried out: players as nodes and playing field zones as 

nodes. On the one hand, knowing that the team under study always adopted the same system of play, 

they classified each player's position on the field for the teammate's analysis. On the other hand, they 

chose to divide the field into 18 regions (6 sectors and 3 corridors) for the zone analysis. They treated 

the passes as edges in both approaches. Hence, considering the clustering coefficient and centrality 

measures, the findings revealed that most players who participated in the plays that led to goals were 

forwards in the forward regions, particularly in the penalty area. The team of researchers also discovered 

that most of the attacking plays that resulted in goals were started by the full-backs or midfielders, 

bearing in mind that the attack began at the moment that a given team recovered the ball and continued 

until a goal was scored (Clemente, Martins, et al., 2016). 

Finally, Clemente, José, et al. (2016) considered ten matches from the Spanish Premier League and 

ten matches from the English Premier League, aiming to study the variance of different competitive 

leagues, score status and tactical in several centrality measures. They discovered that different 

competitive leagues and scores did not statistically influence the centrality levels. Nevertheless, distinct 

centrality levels were observed in the various positions. The highest levels of in-degree and out-degree 
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centrality were found among midfielders. The external defenders had higher values of in-degree 

centrality than the central defenders, but the central defenders had higher values of out-degree 

centrality. Additionally, the goalkeeper and the forwards had the lowest centrality level values. 

(Clemente, José, et al., 2016). 

Gama, Dias, Couceiro, Belli, et al. (2016) intended to study the network of contacts resulting from 

the collective behaviour of professional football teams. The two top teams in the 2010–2011 Portuguese 

Premier League were their research subjects. Their findings from an analysis of 999 attacking actions, 

including passes made, passes received, and crosses, highlighted the importance of passing to key 

players to maintain possession of the ball. (Caicedo-Parada et al., 2020; Gama, Dias, Couceiro, Belli, 

et al., 2016). This study was complemented by Gama, Dias, Couceiro, Sousa, et al. (2016). They used 

a sample of 30 matches from a single team in the Portuguese Premier League (season 2010–2011) 

and took into account the degree, the clustering coefficient, and a weighted function of these two metrics 

in their network-based approach. Thus, they confirmed, as in the earlier studies (Gama, Dias, Couceiro, 

Belli, et al. (2016) and Gama et al. (2015)), that teams prioritize maintaining ball possession by working 

with key players, as these are essential for the team's self-organisation processes. Also, they 

emphasized that the key players are involved in the majority of productive interactions (Gama, Dias, 

Couceiro, Sousa, et al., 2016). 

Gonçalves et al. (2017) evidenced how network analysis allowed the description of significant 

aspects of collective performance, leading to a more comprehensive understanding of team sports 

performance. Focusing on youth football, the authors characterize the passing network by computing 

the closeness and betweenness centrality. Consequently, the results indicated that less dependence on 

passing for a given player (lower betweenness centrality values) and greater passing relationships (high 

values density and closeness centrality) could improve performance and lead to better outcomes 

(Caicedo-Parada et al., 2020; Gonçalves et al., 2017). These conclusions were consistent with the work 

of Grund (2012). 

At the same time, Pina et al. (2017) explored whether network density, clustering coefficient, and 

centralisation can predict the outcome of attacking plays. Analysing 12 matches of the group stage 

UEFA Champions League (season 2015/2016), the researchers, using a hierarchical logistic regression 

model, considered the three metrics to predict the success of the attacking plays. An offensive play was 

considered successful if it resulted in a shot on goal or if the team kept possession of the ball until the 

final sector was considered successful. Thus, the investigators showed that density was the only 

significant predictor of the success of attacking plays. A lower density was linked to more offensive 

plays, but most of them were unsuccessful. In contrast, high density was associated with less overall 

play and fewer ball possession losses before the attacking team entered the final area of the field, 

increasing the probability that the offensive plays would succeed (Pina et al., 2017). 

Similarly to Clemente, Martins, et al. (2016), Mclean et al. (2017) looked at networks that resulted in 

goals scored. However, they examined 108 passing networks from the 2016 European Championship 

(UEFA EURO 2016) that resulted in goals scored, intending to identify the characteristics of these 

networks for the entire competition. As a result, they created these networks, which consisted of the 

players (nodes) and passes (edges) that connected them. Each network's pass sequence was recorded, 
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including all passes into, out of, and within the four equally sized sectors (zones) into which the playing 

field was divided. They used a measure known as within-degree centrality, which was defined as the 

total number of passes made within the attacking play's zones that resulted in a goal, in addition to the 

in-degree and out-degree centralities, to determine the relative contributions of the playing field zones. 

In addition, the competition stage and the match status were considered in the analysis (Mclean et al., 

2017).  

Indeed, considering the two last points, they discovered that the match status significantly impacted 

the network metrics. These significant differences, however, were not seen between successful and 

unsuccessful teams or between teams in the various group stages. Regarding the field of play zones 

analysis, they identified differences between the four sectors when considering the degree centrality 

metrics. The sector closest to the opposing goal had the higher values of the chosen metrics, as would 

be expected when analysing attacking plays that resulted in a goal (Mclean et al., 2017). 

The same authors, McLean et al. (2018), were the first to explore the influence of the systems of play 

on the interaction of players through passing in another study. With this objective, they examined the 

passing characteristics of playing positions within an Australian professional team throughout two 

consecutive seasons while adopting two different systems of play: 4-2-2-2 and 4-2-3-1. Network analysis 

was used to determine for each playing position the centrality measures, i.e., the in-degree centrality, 

out-degree centrality, closeness centrality, and betweenness centrality. Consequently, it was possible 

to compare these measures across systems of play (McLean et al., 2018).  

The results showed that while the change in the system of play had little impact on the overall passing 

contributions, the degree of the defensive midfielders and forwards considerably changed. The 

defensive midfield positions had a substantially higher betweenness centrality in a 4-3-2-1 compared to 

the 4-4-2-2. In addition, the forward positions had a significantly higher out-degree centrality when the 

team played with two forwards (4-2-2-2). So, it was possible to conclude that the team’s coach should 

switch from the 4-2-3-1 playing formation to the 4-2-2-2 if they wanted the forwards to increase passing 

involvement. This was one significant contribution of this work for the coaching staff. 

Arriaza-Ardiles et al. (2018) modelled the passing networks of a single team in 32 official Spanish 

Premier League matches to prove that network analysis is a useful tool for the coaching staff, allowing 

them to characterize the play structure of a team. They used the clustering coefficient and the centrality 

measures (closeness and betweenness) to describe the players' contributions to the team. Additionally, 

they divided the field of play into 24 zones (6 sectors and 4 corridors). They recorded the number of 

events (passes made and received) in each zone, representing the results in a density map. Therefore, 

they highlighted that by capturing the game using the theory of complex systems, it was possible to 

analyse a player's role while also comprehending the performance of a team as a whole (Arriaza-Ardiles 

et al., 2018; Caicedo-Parada et al., 2020). 

Mendes et al. (2018) studied the variation in general network properties at different competitive levels 

and periods of the season. They analysed 132 full official matches from various teams in distinct age 

groups (under-15, under-17, under-19 and senior) by building passing networks and computing the total 

links, the network density, and the in-degree, out-degree, and betweenness centrality. This study's 

primary outcome was a moderate-to-strong correlation between network characteristics and 
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performance variables, namely the final score and the goals conceded. Indeed, on the one hand, the 

network density was positively correlated with the final score and, conversely, negatively correlated with 

the goals conceded. On the other hand, the elite teams (senior and under-19) had higher total links and 

network density (Caicedo-Parada et al., 2020; Mendes et al., 2018). 

More recently, Buldú et al. (2019) used various network metrics to identify the characteristics of the 

FC Barcelona team coached by Pep Guardiola during the 2009/2010 season. The investigators began 

by evaluating various network metrics and contrasting the Barcelona team's network with its rivals in the 

Spanish Premier League. Next, they focused on the temporal nature of football passing networks, 

looking at how all network properties changed throughout the game rather than just studying the average 

passing networks. Creating networks with 50 consecutive passes could account for the game's temporal 

evolution. Thus, this study showed how different each team was, highlighting how Guardiola's FC 

Barcelona stood out from the competition (Buldú et al., 2019). Moreover, the findings revealed that 

increasing the number of passes improved the passing networks' characteristics (Caicedo-Parada et 

al., 2020).  

This study was extended by Herrera-Diestra et al. (2020) by building the corresponding zone 

networks, in which the nodes of the networks are zones of the field of play. They compared FC 

Barcelona's network properties to their opponents' networks. They discovered significant differences in 

the clustering coefficient, network average shortest path, and the number of nodes occupied by a team 

for partitions with a large number of subdivisions of the playing field (Herrera-Diestra et al., 2020). 

At the same time, Korte et al. (2019) opted to apply a play-by-play network analysis. According to 

the researchers, this type of analysis was chosen to represent the actual interplay. Considering a sample 

of 70 matches between 35 professional football teams from Germany, they categorize a possession as 

successful when a team enters the final sector and unsuccessful otherwise. Also, in addition to 

calculating the general network metrics, they introduced a metric denoted as “flow betweenness” that 

measured the fraction of plays in which a player functions as an intermediate player, that is, a “player 

who acts as a bridge in terms of passing between any two other players” (Korte et al., 2019). According 

to the findings, midfielders were the primary intermediaries in successful plays, while central defenders 

were the primary intermediaries in unsuccessful plays (Caicedo-Parada et al., 2020). 

Diquigiovanni & Scarpa (2019) developed a hierarchical clustering method to divide a sample of 

undirected weighted networks into clusters, thus, detecting different play styles. In their article, they 

represented the networks of the Italian Premier League teams in all matches of the season 2015/2016. 

In these networks, the nodes were different zones of the playing field, and the edges were the ball's 

movements between these areas. In addition to dividing the field into nine evenly spaced zones (3 

sectors and 3 corridors), they also chose to characterize only certain degrees of connections by using 

the normalized weights of the edges with the selection of a threshold. If a high threshold were selected, 

for instance, only the communities with strong connections would be described without distinguishing 

between weights that were less than or equal to the threshold (Diquigiovanni & Scarpa, 2019). Their 

method detected six major categories identifying the main playing styles, which could still be subdivided 

into 15 different playing styles. 
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Bekkers & Dabadghao (2019) deepened the work of Gyarmati et al. (2014) and Peña & Navarro 

(2015) by analysing different motifs at the team and individual levels. Hence, they applied the network 

motif concept to study patterns of 155 different teams and 3532 different players in 6 top European 

leagues throughout four consecutive seasons (2012-2015). Along with expanding on the motif concept, 

they also developed an expected goals model to evaluate the efficacy of playing styles and a novel way 

to visualise motif data (radar charts) that made it possible to compare teams and individuals. In 

describing the relationships between position and playing style, they demonstrated how this analysis 

could aid player scouting (Bekkers & Dabadghao, 2019). 

Clemente et al. (2020) continued their previous works by studying network centrality measures 

between playing positions during pass sequences and their relationships to match outcomes. Indeed, 

the in-degree and out-degree centralities were sensitive to changes in playing positions after 

researchers studied the national teams' matches at the FIFA World Cup 2018. Additionally, this study 

showed that midfielders, wingers, and central forwards had possibly smaller increases in degree 

centrality levels during won matches compared to lost matches. 

3.3. Chapter considerations 

The recent ability to obtain datasets of all events occurring during a match leveraged the investigation 

of how Network Science can unveil the organisation and properties of football teams (Buldú et al., 2018). 

Indeed, several studies have focused on football analysis in the last decade, specifically on how players 

interact with each other by passing the ball (Buldú et al., 2019). The sample and scope of the studies 

vary, ranging from pilot studies (one match from one team) and case studies (a few matches from one 

or more teams) to full domestic, continental, or international competitions (one or more teams in one or 

more competitions). 

Using Network Science, the investigators construct what can be denoted as “football passing 

networks”, which can be of three main types (Buldú et al., 2018, 2019): 

1. Player/playing position passing networks, where nodes are a team's players/playing positions 

(Buldú et al., 2018; Gama et al., 2015; Grund, 2012; Passos et al., 2011). The majority of the 

research works studies this type of network.  

2. Zone passing networks, where nodes are zones of the field of play linked through passes 

performed by players in those zones (Buldú et al., 2018; Diquigiovanni & Scarpa, 2019; Herrera-

Diestra et al., 2020; Malta & Travassos, 2014; Mclean et al., 2017). Several studies have built this 

type of network., whereas other studies also include this kind of analysis to complement their 

examination of player passing networks. 

3. Player/playing position-zone passing networks, where nodes are the combination of a 

player/playing position and his location on the field of play at the moment of the pass (Buldú et 

al., 2018; Cotta et al., 2013; Narizuka & Yamazaki, 2019). Only two studies using this type of 

analysis were found in the literature. 

According to Buldú et al. (2018), after constructing the network, several “topological scales” can be 

identified: 
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1. Microscale, where analysis is performed at the node level. As presented before, most studies 

examine the importance of each player, considering network metrics, such as the degree, 

closeness, and betweenness centralities, and the clustering coefficient (Buldú et al., 2018). Some 

works focus their study on individual players (Duch et al., 2010; Peña & Touchette, 2012), while 

others concentrate their attention on the characteristics of the playing positions (Clemente, José 

et al., 2016; Gama et al., 2015; Malta & Travassos, 2014). At this level and considering the playing 

positions, the research works have indicated that midfielders are usually the most influential 

players. 

2. Mesoscale, where motifs depicting the interactions of three or four players are examined (Buldú 

et al., 2018). The analysis of motifs has revealed that most teams tend to apply a homogeneous 

style (Gyarmati et al., 2014). Also, it demonstrated how it is possible to identify the key players in 

the network (Peña & Navarro, 2015), thus assisting in the scouting process (Bekkers & 

Dabadghao, 2019). 

3. Macroscale, where the network is studied as a whole (Buldú et al., 2018). Studies have 

suggested that high-density and decentralised passing networks are associated with higher 

performance (Clemente et al., 2015; Gonçalves et al., 2017; Grund, 2012). 

The research has shown that the interaction between players during a football game supports a 

scale-free network (Gama et al., 2015; Yamamoto & Yokoyama, 2011). Furthermore, time is a 

dimension that is considered in a few works. Examining each game’s half was one method used to 

investigate how the network changed over time. This method has revealed differences between the first 

and second halves concerning the density and centralization of the network (Buldú et al., 2018; 

Clemente et al., 2015). Another technique was to build sliding windows with a specific length (between 

5 to 15 minutes) (Buldú et al., 2018; Cotta et al., 2013; Yamamoto & Yokoyama, 2011). Finally, the 

influence of the system of play was only found once in the literature, using only one team in two different 

seasons (McLean et al., 2018). 

Regarding the analysis of passing sequences, the literature only explored the passing sequences 

that led to a goal (Reep & Benjamin, 1968). Additionally, they related them with the general strategy of 

play (direct play or possession play) and with the number of shots and conversion ratio of shots into 

goals (M. Hughes & Franks, 2005). 

As a result, this dissertation intends to extend the work done in the passing sequence analysis to all 

the attacking plays, verifying if the passing distribution tends to follow the power law distribution and 

demonstrating how the passing distribution can translate the teams’ general strategy of play. Moreover, 

another objective is to study the relationship between the team's overall performance variables, the 

general strategy of play, and the network's characteristics. Additionally, the methodology of Hughes & 

Franks (2005) is reproduced to verify if their outcomes are still observed. On the other hand, this 

dissertation aims to study the influence of the systems of play on the network's characteristics by 

analysing the football player/playing position-zone passing networks from a spatiotemporal perspective 

while considering the systems of play. The teams under study were the national teams that competed 

in UEFA EURO 2020 since it was the most recent professional football tournament for the men's national 

team, and no studies have used this sample to address these themes.  
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Chapter 4 – Passing sequences analysis 

This chapter presents the methodology (section 4.1), results (section 4.2) and the discussion (section 

4.3) regarding the passing sequences analysis. 

4.1. Methodology 

According to Pollard & Reep (1997), “a team possession starts when a player gains possession of the 

ball by any means other than from a player of the same team. The player must have enough control 

over the ball to be able to have a deliberate influence on its subsequent direction. The team possession 

may continue with a series of passes between players of the same team but ends immediately when 

one of the following events occurs: 

a. the ball goes out of play;  

b. the ball touches a player of the opposing team (e.g. by means of a tackle, an intercepted pass or 

a shot being saved). A momentary touch that does not significantly change the direction of the 

ball is excluded;  

c. an infringement of the rules takes place (e.g. a player is offside or a foul is committed).” 

Therefore, the length of a passing sequence was used to define a team’s possession. A passing 

sequence of length equal to one was an intended pass that a teammate received, but then the second 

pass either left the field of play, was contacted by the opposition, or was interrupted by a foul. On the 

other hand, a two-pass sequence ended when the third pass did not reach the target, and so on (Hughes 

& Franks, 2005). 

In this way, two distinct analyses were conducted. First, the passing sequences were examined to 

check if the distribution of passes per possession tends to follow the power law distribution. Second, the 

distribution of passes was considered to study the general strategy of play (possession play or direct 

play) of the national teams that participated in the tournament. In addition, it was also utilised to 

investigate the relationship between the team's overall performance variables (match result, maximum 

stage reached in the tournament) and the general strategy of play. Next, to determine whether the 

article’s conclusions by Hughes & Franks (2005) are still observed, the study was limited to those 

possessions that led to a shot that resulted in a goal scored. For these analyses, each match's eventing 

data (StatsBomb Events Data) was used, centring the attention on the data related to the passes 

performed during each team's possession. 

4.1.1. Passing sequences 

The sequences of passes per possession executed during the attacking phase and set pieces by each 

team during the regular time (90 min) of each match were examined to confirm whether the power law 

distribution was an appropriate model for the distribution of passes per possession. The passes made 

during the extra time were excluded from the study to allow comparisons between all the matches. 

Additionally, there was no distinction between different game moments. Hence, the study included 
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passing sequences executed during the organised attack and defence-attack transition, as well as the 

ones performed during set pieces. 

The pure power law distribution, also referred to as the zeta distribution or discrete Pareto 

distribution, is written as follows: 

𝑝(𝑥) =
𝑥−𝛼

𝜁(𝛼, 𝑥𝑚𝑖𝑛)
, 

where 𝑥 is a positive integer measuring a variable of interest, 𝑝(𝑥) is the probability of observing the 

value 𝑥, 𝛼 is the power law exponent, 𝜁(𝛼, 𝑥𝑚𝑖𝑛) is the Riemann zeta function, defined as ∑ 𝑥−𝛼∞
𝑥=𝑥𝑚𝑖𝑛

, 

and 𝑥𝑚𝑖𝑛 is the value of 𝑥 from which the power law is obeyed (Clauset et al., 2009; Goldstein et al., 

2004b).  

There are several methods for fitting power law distributions. Many researchers make parameter 

estimations using linear regression. Different variations using the linear fit to the data plotted in a 𝑙𝑜𝑔 −

𝑙𝑜𝑔 scale were suggested. First, was proposed a direct linear fit of the 𝑙𝑜𝑔 − 𝑙𝑜𝑔 plot of the whole raw 

histogram of the data. However, this technique does not consider that the majority of data is collected 

at the first few points of the distribution, fitting all points with the same weight (Goldstein et al., 2004a, 

2004b). Therefore, other researchers only used the first 5 points of 𝑙𝑜𝑔 − 𝑙𝑜𝑔 plot for the linear 

regression. Likewise, a linear fitting to logarithmically binned histograms was introduced. This method 

applies linear regression to bins with equal logarithmic sizes. With this, the tail’s noise is reduced by 

grouping the data points into bins, so the noise reduction is determined by the bins’ size (Goldstein et 

al., 2004a). In summary, despite their easiness, due to the nonlinear nature of the data, these graphical 

methods tend to be biased and inaccurate (Goldstein et al., 2004b).  

In opposition, the maximum likelihood estimation (MLE) is a more robust method for fitting the power-

law distribution. It is based on finding the maximum value of the likelihood function: 

𝑙(𝛼 | 𝑥) = ∏
𝑥𝑖

−𝛼

𝜁(𝛼, 𝑥𝑚𝑖𝑛)
,

𝑁

𝑖=1

 

ℒ(𝛼 | 𝑥) = log 𝑙(𝛼 | 𝑥) 

                                                  =   ∑(−𝛼 log(𝑥𝑖) − log(𝜁(𝛼, 𝑥𝑚𝑖𝑛)))

𝑁

𝑖=1

 

                                               )    =   −𝛼 ∑ log(𝑥𝑖) − 𝑁 log(𝜁(𝛼, 𝑥𝑚𝑖𝑛))

𝑁

𝑖=1

, 

where 𝑙(𝛼 | 𝑥) is the likelihood function of 𝛼 given the unbinned data 𝑥 and 𝐿(𝛼 | 𝑥) is the log-likelihood 

function. 

This maximum can be obtained by setting 𝜕ℒ 𝜕𝛼⁄ = 0: 

𝜕

𝜕𝛼
ℒ(𝛼 | 𝑥) =  − ∑ log(𝑥𝑖) − 𝑁

1

𝜁(𝛼, 𝑥𝑚𝑖𝑛)

𝜕

𝜕𝛼
𝜁(𝛼, 𝑥𝑚𝑖𝑛)

𝑁

𝑖=1

= 0, 

and, therefore, the MLE 𝛼̂ is the solution of 
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𝜁′(𝛼̂, 𝑥𝑚𝑖𝑛)

𝜁( 𝛼̂, 𝑥𝑚𝑖𝑛)
=

1

𝑁
∑ log(𝑥𝑖) ,

𝑁

𝑖=1

 

where 𝜁′(𝛼̂, 𝑥𝑚𝑖𝑛) is the first derivate of the Riemann zeta function (Clauset et al., 2009; M. L. Goldstein 

et al., 2004b). 

Additionally, a test is necessary to assess the goodness-of-fit of the fitting method. Therefore, the 

Kolmogorov-Smirnov (KS) type test was chosen since it is one of the most simple and robust of the 

commonly used goodness-of-fit tests. This test is based on the following test statistic: 

𝐾 = 𝑚𝑎𝑥𝑥≥𝑥𝑚𝑖𝑛
|𝑆(𝑥) − 𝑃(𝑥)|, 

where 𝑆(𝑥) is the cumulative distribution function (CDF) of the data for the observations with a value of 

at least 𝑥𝑚𝑖𝑛 and 𝑃(𝑥) is the CDF for the power-law model that best fits the data in the region 𝑥 ≥ 𝑥𝑚𝑖𝑛 

(Clauset et al., 2009; M. L. Goldstein et al., 2004b). 

The passes per possession of each team in each tournament’s match were fitted using the powerlaw 

Python package, which offers commands for fitting and statistical analysis of distributions. These 

functionalities were used to compute the fitted 𝛼 parameter, i.e. the power law exponent. Thus, the 

discrete distribution of the passes per possession was fitted through the MLE. However, few empirical 

events follow a power law across the entire range of 𝑥, meaning that the optimal 𝑥𝑚𝑖𝑛 for each team's 

distribution of passes per possession can vary from one. By fitting a power law to each distinct value in 

the dataset and choosing the one that minimizes the KS distance between the data and the fit, the 

minimum value at which the power law's scaling relationship begins, 𝑥𝑚𝑖𝑛, was determined (Alstott et 

al., 2014).  

Although these tools give estimates for the parameters of 𝛼 and 𝑥𝑚𝑖𝑛, they cannot determine whether 

the power law is a reasonable fit to the data, so it was necessary to confirm this hypothesis given the 

passes per possession data (Clauset et al., 2009). Hence, the methodology described by Clauset et al. 

(2009) was employed. A goodness-of-fit test was used, which computes a p-value, 𝑝, that measures the 

plausibility of the hypothesis, given the observed data and the hypothesized power-law distribution. First, 

the empirical data was fitted to the power law. After that, a sizable number of power-law distributed 

synthetic data were created, each with parameter 𝛼 and lower bound 𝑥𝑚𝑖𝑛 equal to the distribution's 

parameters that best fit the observed data. Each synthetic data set was fitted to its power-law model, 

and the KS statistic was computed for each relative to its model. Then, the p-value, the percentage of 

the resulting statistic greater than the value of the empirical data, was calculated (Clauset et al., 2009). 

Therefore, to obtain an accurate estimate of the p-value, a semiparametric approach was used to 

produce the synthetic data that had a distribution similar to the empirical data below 𝑥𝑚𝑖𝑛 but that 

followed the fitted power law above 𝑥𝑚𝑖𝑛. Given a data set with 𝑛 observations and 𝑛𝑡𝑎𝑖𝑙 observations in 

which 𝑥 > 𝑥𝑚𝑖𝑛, the new synthetic data was generated as follows: for 𝑖 = 1, … , 𝑛, with a probability of 

𝑛𝑡𝑎𝑖𝑙/𝑛, a random number 𝑥𝑖 was created using a power law with a scaling parameter 𝛼̂ and 𝑥 > 𝑥𝑚𝑖𝑛. 

Otherwise, with a probability of 1 − 𝑛𝑡𝑎𝑖𝑙/𝑛, 𝑥𝑖 was equal to one element selected uniformly at random 

from among the elements of the observed data that had 𝑥 < 𝑥𝑚𝑖𝑛 (Clauset et al., 2009). 
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Knowing that, for the p-value to be accurate to within about 𝜖 of the true value, should be created at 

least 
1

4
𝜖−2 synthetic data sets, 2500 synthetic datasets were generated aiming to have a p-value 

accurate to about two decimal digits, this is 𝜖 = 0.01. After computing the p-value, it is necessary to 

decide whether 𝑝 is small to rule out the power-law hypothesis. Accordingly, a 𝑝 ≤ 0.05 was chosen to 

rule out the power-law hypothesis (Clauset et al., 2009). 

Considering real events, even if data are drawn from a power law, their observed distribution is 

unlikely to follow the power law exactly. In addition, there may be the possibility that there are samples 

that do not follow the power law. Nevertheless, regardless of the true data’s distribution, it is always 

possible to fit a power law. As a result, to allow comparison of 𝛼 of all teams, 𝑥𝑚𝑖𝑛 = 1 was fixed for all. 

Indeed, the power law exponent −𝛼 is the (negative) slope of the straight line in the logarithmic plot, 

describing the general attacking strategy of play utilised by a team: possession play or direct play. A 

possession play is characterised by more ball possession, expressed by more passes per possession. 

The teams applying this attacking strategy aim to retain the ball possession when progressing in the 

field of play. In contrast, direct play is characterised by trying to move the ball into a shooting position 

with few passes (Kempe et al., 2014; Tenga et al., 2010). As a result, teams with a lower value of 𝛼 are 

teams that apply a possession-based style of play, while teams with a higher value of 𝛼 are teams that 

favour a direct type of play. Subsequently, it was possible to explore the inherent characteristics of each 

strategy of play, extending, in this way, the literature’s works. 

Consequently, different objectives were defined considering the parameter 𝛼 as well as the number 

of passes, the number of passes completed and the percentage of passes completed (from now on, 

denoted as pass statistics). First, the parameter 𝛼 was computed for each national team in each match, 

aiming to study and distinguish the strategy of play of each team that competed in the tournament. 

Second, the relationship between the parameter 𝛼 and the pass statistics was investigated. This was 

performed using the Pearson Product-Moment correlation coefficient after ensuring that the 

assumptions of normality, linearity and homoscedasticity were not violated. When data failed these 

assumptions, Spearman’s Rank Order Correlation was used. Thus, to classify the correlation strength, 

the following scale was used: very small, ( ]0, 0.1[ ); small, ( [0.1, 0.3[ ); moderate, ( [0.3, 0.5[ ); large, 

( [0.5, 0.7[ ); very large, ( [0.7, 0.9[ ); nearly perfect ( [0.9, 1.0[ ); perfect, (1.0) (Clemente et al., 2015). 

Third, this study sought to relate the strategy of play with each team's overall performance. Similar to 

the research elaborated by Clemente et al. (2015), the final result of the match was considered a 

performance variable, i.e. (i) defeat, (ii) draw or (iii) victory. Additionally, a second overall performance 

of a team was determined by the stage that a team reached in the UEFA EURO 2020, wherefore the 

following were the variables that determined the performance: (i) Final, (ii) Semi-finals, (iii) Quarter-

finals, (iv) Round of 16 and (v) Group Stage. This way, this study sought to provide answers to the 

following questions: 

1. Are there any differences in the strategy of play, described by 𝛼, and pass statistics between 

teams that achieved different match results? 

2. Are there any differences in the strategy of play, described by 𝛼, and pass statistics between 

teams that reached different stages of the tournament? 



30 

 

After confirming the assumptions of normality and homogeneity, the influence of the match's result 

and the stage reached in the tournament were examined using one-way ANOVA. On the one hand, 

through the Kolmogorov-Smirnov tests, the assumption of normality was investigated (𝑝 > 0.05). Since 

𝑛 ≥ 30 and considering the Central Limit Theorem, the premise of normality was made to any distribution 

that was not normal. On the other hand, Levene's test was used to investigate the homogeneity 

assumption. When this assumption was violated, the Welsh and Brown-Forsythe tests were used 

instead of ANOVA. When the test found significant differences between the factors, the Tukey's HSD 

(honestly significant difference) test or the Tukey's-Kramer test was used to determine where the 

differences were (Clemente et al., 2015). For measuring the effect size in ANOVA, the eta-squared, 𝜂2, 

was used. The formula is: 

𝜂2 =
𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
. 

To interpret the strength of the eta-squared values, the guidelines of Cohen (1988) were used: 0.01 = 

small effect; 0.06 = moderate effect and 0.14 = large effect. 

4.1.2. Passing sequences that resulted in a goal scored 

To determine whether the article’s conclusions by M. Hughes & Franks (2005) are still observed, their 

research work's methodology was implemented. Initially, it was confirmed if the statement of Reep & 

Benjamin (1968), supported by M. Hughes & Franks (2005), that approximately 80% of the goals result 

from a sequence of three or fewer passes was verified or not.  

Then, as M. Hughes & Franks (2005) explains, when treating unequal frequencies of occurrences, 

the outcomes should be normalised by dividing the number of outcomes by the frequency of their 

occurrences. Consequently, the conversion rates from the different passing sequences’ lengths per 

possession into goals were examined. The data were normalized by dividing the number of goals scored 

in each team's possession by the sequence length and presented as goals per 1000 possessions for 

each possession length to avoid very small ratios. On the other hand, the analysis was done only to 

80% of the goals to avoid biased normalisations. Finally, an independent-samples t-test was conducted 

to compare the goals per 1000 possessions for two groups. The eta-squared, 𝜂2, was used as an effect 

size statistic for the t-test and is written as follows: 

𝜂2 =
𝑡2

𝑡2 + 𝑑𝑓
, 

where 𝑡 is the t-value and 𝑑𝑓 is the degrees of freedom. Again, the guidelines from Cohen (1988) were 

used to interpret the strength of the eta-squared values. 
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4.2. Results 

This section presents the results of the analyses of the passing sequences and the passing sequences 

that resulted in a goal scored. 

4.2.1. Passing sequences 

The distribution of passes per possession, presented in Appendix B, was first examined to see if it tends 

to follow a power law distribution. Therefore, the power-law hypothesis was tested for each team in each 

match. The results, displayed in Appendix C, indicated that approximately 70% of the 102 samples (2 

teams × 51 matches) were consistent with the power-law hypothesis, while the remaining 30% were 

not, having a 𝑝 ≤ 0.05. Therefore, it was possible to confirm that the power law was an appropriate 

model for a part of the data set.  

Although 30% of the samples failed the power-law hypothesis, the frequency of occurrences tended 

to decrease as the length of the pass sequences increased distributions. Indeed, regardless of the true 

data’s distribution, all the distribution of passes per possession were fitted to the power law and, to allow 

comparison of 𝛼 of all teams, 𝑥𝑚𝑖𝑛 = 1 was fixed for all samples. As a result, the parameter 𝛼 was 

computed for each national team in each match, as illustrated in Figures 8 and 9. 

 
10 

Figure 8: Power law fitting of England’s pass data in the regular time of the tournament’s final against Italy (match 
id =3795506). Data visualisation with probability density functions. (a) On a log-log axis, fit using logarithmically 
spaced bins (blue line) of the data (red points). (b) Dotted green line: power law fit starting at 𝑥𝑚𝑖𝑛 = 1. Dashed 

green line: power law fit starting from the optimal 𝑥𝑚𝑖𝑛. 

 
10 Note that, according to the StatsBomb Public Data User Agreement, is required to accredit any publication of analysis formed 

from StatsBomb Data with the StatsBomb brand logo. So, it is informed that all the subsequent work was performed using 
StatsBomb publicly and freely available data. Retrieved from: https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf 

https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf
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Figure 9: Power law fitting of Italy's pass data in the regular time of the tournament’s final against Italy (match id 
=3795506). Data visualisation with probability density functions. (a) On a log-log axis, fit using logarithmically 
spaced bins (blue line) of the data (red points). (b) Dotted green line: power law fit starting at 𝑥𝑚𝑖𝑛 = 1. Dashed 

green line: power law fit starting from the optimal 𝑥𝑚𝑖𝑛. 

After computing 𝛼 for all teams in all matches, the distributions of the pass statistics and the 

parameter 𝛼 were studied using descriptive statistics. Table 1 shows, firstly, that the mean values (and 

the standard deviation) of the number of passes and number of passes completed are, respectively, 

512.460 (±139.262) and 428.040 (±140.647). The percentage of passes completed had a mean (and 

a standard deviation) equal to 0.820 (±0.069). Furthermore, the parameter 𝛼 had a mean (and a 

standard deviation) of 1.612 (±0.123). Additionally, it is essential to highlight the range of the number of 

passes (773) and the number of passes completed (747). In particular, the minimum and maximum 

values of the number of passes completed were 94 and 841. Lastly, the descriptive statistics also 

provided some information concerning the distribution of the variables. The number of passes and the 

number of passes completed both had skewness values close to 0, representing the symmetry of the 

distribution. In contrast, the number of passes completed and 𝛼 had negative and positive skewness 

values, indicating that the values clustered to the right and left-hand sides of the distribution, 

respectively. Furthermore, Kurtosis, which provides information about the ‘peakedness’ of the 

distribution, revealed a high positive value for the percentage of passes completed, indicating that the 

distribution is peaked, with long thin tails (Pallant, 2005).  

Table 1: Descriptive table of the pass statistics and the parameter 𝛼 

 

Lower Bound Upper Bound

Nu passes 512.460 13.789 485.110 539.810 511.600 505.000 19393.974 139.262 173.000 946.000 773.000 188.000 0.185 0.239 0.015 0.474

Nu passes completed 428.040 13.926 400.410 455.660 427.700 407.000 19781.662 140.647 94.000 841.000 747.000 200.000 0.149 0.239 -0.204 0.474

% passes completed 0.820 0.007 0.807 0.834 0.827 0.830 0.005 0.069 0.540 0.920 0.380 0.080 -1.485 0.239 3.311 0.474

a 1.612 0.012 1.588 1.636 1.603 1.601 0.015 0.123 1.387 2.025 0.638 0.162 1.028 0.239 1.915 1.381

Mean

Std. Error 

(Mean)

5% Trimmed 

Mean Minimum Maximum

95% Confidence Interval for Mean Std. Error 

(Kurtosis)

Descriptive Statistics

Std. Error 

(Skewness) KurtosisSkewnessMedian Variance Std Deviation Range 

Interquartil 

Range 
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The descriptive study was then complemented with the inspection of the histograms (shape of the 

distribution) and the box plots, which simultaneously display several features of the data and allow the 

identification of outliers (Montgomery & Runger, 2003). According to the histograms in Figures 10 (a1) 

and 10 (b1), the distribution of the number of passes and the number of passes completed appeared to 

follow a normal distribution. In contrast, the visual inspection of the histograms of the percentage of 

passes completed and of 𝛼 along with the skewness and kurtosis values seemed not to reveal the same. 

Furthermore, one outlier was visible in the boxplots for the number of passes and completed passes. 

This outlier referred to Spain’s match against Sweeden during the group stage, in which the Spanish 

team performed 946 passes, of which 841 were successful.  

By analysing the boxplot regarding the percentage of passes completed (Figure 10 (c2)), four outliers 

were identified, one very similar to the minimum value of the box plot. The two lower values belonged 

to Sweeden. In contrast to Spain, the Swedish team only completed 94 of the 174 passes it attempted 

against Spain, resulting in a percentage of passes completed equal to 54%. In the match against Poland, 

the Swedish team completed 59% (163/278) of the passes. On the other hand, Poland's match versus 

Spain was the other outlier in the match against Spain. In this match, the Polish team completed 60% 

(176/289) of the passes, while the Spanish team performed 754 passes, of which 658 were successful.  

Additionally, the outcomes of the box plot of 𝛼 (Figure 10 (d2)) agreed with the outcomes of the box 

plot of the total number of passes completed. In the match versus Spain, Sweden had the higher outlier 

(2.025). Then, Hungary had an 𝛼 of 1.977 against Germany. Following that, Poland, in their match 

versus Spain, had an alpha equal to 1.953, and, finally, against Poland, Sweden had an alpha of 1.922. 

  
(a1) (a2) 

  
(b1) (b2) 
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(c1) (c2) 

  
(d1) (d2) 

Figure 10: (1) Histograms for the (a) number of passes, (b) the number of passes completed, (c) the percentage of 
passes completed, and (d) parameter 𝛼. (2) Box plots for the (a) number of passes, (b) the number of passes 

completed, (c) the percentage of passes completed, and (d) parameter 𝛼. 

The Pearson product-moment correlation and ANOVA assume that the data follow a normal 

distribution. The normality could be somewhat evaluated with descriptive statistics, specifically the 

skewness and kurtosis values (Pallant, 2005). However, the normality was assessed using the 

Kolmogorov-Smirnov statistic, a more reliable procedure. Table 2 shows the results of this test statistics 

that revealed that the distribution of the number of passes, number of passes completed and 𝛼 had a 

non-significant result (Sig.>0.05), indicating that these data were normally distributed. In opposition, in 

the case of the percentage of passes completed, the Sig. was less than 0.001, implying a violation of 

the assumption of normality.  

Table 2: Test of Normality for the number of passes, the number of passes completed, the percentage of passes 
completed, and parameter 𝛼. 

 

However, the Central Limit Theorem states in its most basic formulation that the sum of 𝑛 

independently distributed random variables will tend to be normally distributed as 𝑛 becomes larger and 

𝑛 ≥ 30, the normal approximation is satisfactory regardless of the shape of the population (Montgomery 

& Runger, 2003). Consequently, although the distribution of the percentage of passes completed was 

not normal, since 𝑛 = 102 and considering the Central Limit Theorem, the assumption of normality was 

assumed (Clemente et al., 2015). 

Statistic df Sig.

nu passes ,045 102.000 0.200

nu passes completed ,073 102.000 0.200

% passes completed ,137 102.000 <0.001

a ,083 102.000 0.077

Test of Normality

Kolmogorov-Smirnov
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Next, the Pearson product-moment correlation’s assumptions of linearity (the relationship between 

two variables is linear) and homoscedasticity (the variability of both variables is similar to all values) 

were analysed to see if there was any violation. The linearity was assessed by generating scatterplots 

between each pair of variables. Figure 11 shows that only the percentage of passes completed did not 

have a linear relationship with the other variables since a straight-line relationship between them was 

not present. In addition, the homoscedasticity assumption was not violated, as seen in Appendix D. 

Consequently, the Pearson Product-Moment was used to investigate the relationships between the 

number of passes, the number of passes completed, and 𝛼. At the same time, Spearman’s Rank Order 

Correlation was employed to examine the relationship between the percentage of passes completed 

and the remaining variables. 

   
(1) (2) 

   
(3) (4)  

   
(5) (6)  

Figure 11: (1) Plot of the number of passes vs the number of passes completed; (2) Plot of the number of passes 
vs the percentage of passes completed; (3) Plot of the number completed vs the percentage of passes completed; 
(4) Plot of the parameter 𝛼 vs the number of passes; (5) Plot of the parameter 𝛼 vs the number of passes completed; 

(6) Plot of the parameter 𝛼 vs the percentage of passes completed. 

Table 3 reveals the Pearson 𝑟 correlation coefficients between each pair of variables except for the 

percentage of passes completed. There was nearly a perfect positive correlation between the number 
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of passes and the number of passes completed (𝑟 = 0.994, 𝑛 = 102, 𝑝 < 0.01), with high levels of the 

number of passes completed associated with high levels of the number of passes. The parameter 𝛼 

showed a very large negative correlation with the number of passes (𝑟 = −0.820, 𝑛 = 102, 𝑝 < 0.01) 

and the number of passes completed (𝑟 = −0.834  𝑛 = 102, 𝑝 < 0.01). Thus, lower levels of 𝛼 were 

associated with high levels of the number of passes and the number of passes completed, suggesting 

that teams that adopt a possessive type of play tend to perform not only more passes but more 

successful passes. 

Table 3: Pearson Product-Moment Correlation values between the number of passes, the number of passes 
completed, and parameter 𝛼. 

 

Table 4 shows the Spearman 𝜌 correlation coefficients between the percentage of passes completed 

and the remaining variables. The percentage of passes completed revealed a nearly perfect positive 

correlation with the number of passes completed (𝜌 = 0.909, 𝑛 = 102, 𝑝 < 0.01), with high levels of the 

percentage of passes completed being associated with high levels of the number of passes completed. 

Additionally, this variable indicated a very large positive correlation with the number of passes (𝜌 =

0.866, 𝑛 = 102, 𝑝 < 0.01), while a very large negative correlation (𝜌 = −0.823, 𝑛 = 102, 𝑝 < 0.01) with 

𝛼. This means that high levels of the percentage of passes completed were associated with high (low) 

levels of the number of passes completed (the parameter 𝛼).  

Table 4: Spearman Rank’s Order Correlation values between the percentage of passes completed and the 
number of passes, the number of passes completed, and parameter 𝛼, respectevely. 

 

Indeed, this methodology made it possible to describe the general playing strategy by studying the 

differences between national teams throughout the tournament. Table 5 shows the mean and standard 

deviation of the number of passes, number of passes completed, percentage of passes completed, and 

the parameter 𝛼. On the one hand, Spain was the team with the highest mean values for passes made 

(755.197), passes completed (669.000), and percentage of passes completed (89%), followed by 

Germany. On the other hand, the Spanish team had 𝛼 = 1.509, while the German team had 𝛼 = 1.471, 

switching places in terms of the national teams with the lowest mean value of 𝛼. In addition, Germany 

was the national team with the lowest standard deviation regarding the mean 𝛼, denoting its loyalty to 

the possessive strategy of play. Besides, Spain was the team with the lowest standard deviation 

concerning the percentage of passes completed, demonstrating its ability to sustain the ball while 

(1) Nu passes

(2) Nu passes completed 0.994 **

(3) a -0.820 ** -0.834 **

N=102

** Correlation is significant at the 0.01 level 

Measures 1 2

Pearson Product-Moment Correlations

1 2 3

(Nu passes) (Nu passes completed) (a)

% passes completed 0.866 ** 0.909 ** -0.823 **

N=102

** Correlation is significant at the 0.01 level 

Measures

Spearman’s Rank Order Correlations
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moving it. In opposition, Hungary was the team that exhibited not only the lowest values in the mean of 

the number of passes, the number of passes completed, and the percentage of passes completed but 

also the highest mean value of 𝛼 (𝛼 = 1.779). Furthermore, Sweeden had the lowest mean percentage 

of passes completed (70%) and the highest standard deviation of the mean 𝛼, followed by Poland and 

Hungary, suggesting that these national teams sometimes used a less direct strategy even though they 

had higher mean values of 𝛼. 

Table 5: Descriptive statistics (mean and standard deviation) of the number of passes, the number of passes 
completed, and parameter 𝛼. 

 

Figure 12 shows the plots generated to explore the relationships between the mean 𝛼 and the pass 

statistics. For each plot, the average value of each variable was computed, thus forming four quadrants 

that helped analyse the data. Figure 12.1. shows the mean of the parameter 𝛼 versus its standard 

deviation. This plot reveals which teams were loyal to a general strategy of play and which ones did not. 

As mentioned before, Germany was the national team with the lowest mean value of 𝛼 and the lowest 

standard deviation of 𝛼, indicating loyalty to the possessive strategy of play. In opposition, some teams 

opted to play a more direct type of play, such as North Macedonia, Slovakia, and Scotland, as described 

by the higher mean 𝛼 and lower standard deviation values. On the other hand, the tournament’s finalists, 

Italy and England, were below the average value of the mean value but above the average of the 

standard deviation. 

Moreover, Figures 12.2. and 12.3. displays the mean 𝛼 versus, respectively, the number of passes 

and the number of passes completed. Thus, Spain stands out from the simple linear regression that 

considers the mean 𝛼 and, respectively, the number of passes and the number of passes completed. 

These plots demonstrate the capacity of Spain to exchange the ball and, consequently, to have more 

passes and more passes completed than its opponents. 

Mean SD Mean SD Mean SD Mean SD

Austria 537.750 48.808 439.750 44.977 82% 0.019 1.597 0.038

Belgium 606.400 132.221 524.000 131.924 86% 0.029 1.555 0.059

Croatia 493.750 130.811 415.250 129.962 84% 0.040 1.593 0.084

Czech Republic 441.800 47.620 335.800 47.851 76% 0.034 1.666 0.115

Denmark 502.000 103.454 410.333 94.580 81% 0.027 1.621 0.065

England 519.286 98.655 441.857 105.056 84% 0.048 1.590 0.111

Finland 396.667 79.827 309.333 92.034 77% 0.084 1.665 0.065

France 574.000 95.114 503.750 104.433 87% 0.046 1.536 0.079

Germany 667.500 107.600 586.750 103.219 88% 0.026 1.471 0.028

Hungary 316.000 57.420 240.000 54.028 76% 0.031 1.779 0.187

Italy 580.429 113.389 506.857 116.915 87% 0.050 1.544 0.107

Netherlands 566.000 118.830 470.250 133.440 82% 0.068 1.564 0.066

North Macedonia 410.000 51.098 331.000 54.617 80% 0.038 1.712 0.037

Poland 463.000 192.102 354.000 183.131 73% 0.118 1.698 0.220

Portugal 585.250 115.034 511.750 105.664 87% 0.030 1.551 0.079

Russia 435.000 165.638 333.333 161.029 75% 0.076 1.712 0.110

Scotland 413.000 79.373 319.667 61.695 78% 0.031 1.653 0.033

Slovakia 477.000 137.153 402.667 136.830 84% 0.040 1.651 0.036

Spain 755.167 99.012 669.000 88.916 89% 0.010 1.509 0.101

Sweden 382.000 195.433 290.500 197.499 70% 0.160 1.739 0.274

Switzerland 482.000 98.346 403.400 98.503 83% 0.050 1.618 0.108

Turkey 486.333 86.950 404.333 85.448 83% 0.036 1.664 0.080

Ukraine 519.200 61.141 441.000 70.601 85% 0.037 1.562 0.109

Wales 341.750 60.224 266.750 55.175 78% 0.033 1.722 0.129

Nu passes Nu passes completed % passes completed a
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(1) (2) 

   
(3) (4) 

Figure 12: (1) Plot of the mean of parameter 𝛼 vs the standard deviation of the parameter 𝛼; (2) Plot of the mean 

of parameter 𝛼 vs mean of the number of passes; (3) Plot of the mean of parameter 𝛼 vs mean of the number of 

passes completed; (4) Plot of the mean of parameter 𝛼 vs mean of the percentage of passes completed. 

Although it was possible to differentiate teams and to take several conclusions by examining Table 

5 and Figure 12, the one-way ANOVA or the Welch and Brown-Forsythe tests were conducted to answer 

the two questions mentioned earlier. First, the differences in the parameter 𝛼 and the pass statistics 

between teams that achieved different match results (defeat, draw or victory) were analysed. Thus, the 

samples were divided into three groups according to the match result (Group 1: defeat; Group 2: draw; 

Group 3: victory). In the 51 matches played in the UEFA EURO 2020, 35 games ended in a victory for 

one team and 16 games resulted in a draw, as can be understood from Table 6.  

Table 6: Descriptive table and statistical comparison between groups (match results), considering the pass 
statistics and parameter 𝛼.

 

After generating the descriptive statistics, Levene's test tested the assumption of homogeneity of the 

variances. This assumption was not violated if the significance value, Sig., was greater than 0.05. 

However, assessing Levene’s test in Table 7, it was found that the number of passes and the number 

Lower Bound Upper Bound

Defeat 35 481.110 106.813 18.055 444.420 517.810 274.000 733.000

Draw 32 519.000 179.836 31.791 454.160 583.840 173.000 946.000

Victory 35 537.830 122.477 20.702 495.760 579.900 278.000 763.000

Total 102 512.460 139.262 13.789 485.110 539.810 173.000 946.000

Defeat 35 392.940 104.552 17.673 357.030 428.860 197.000 644.000

Draw 32 439.750 178.550 31.563 375.380 504.120 94.000 841.000

Victory 35 452.430 129.444 21.880 407.960 496.890 163.000 675.000

Total 102 428.040 140.647 13.926 400.410 455.660 94.000 841.000

Defeat 35 0.809 0.049 0.008 0.793 0.826 0.680 0.900

Draw 32 0.824 0.085 0.015 0.793 0.854 0.540 0.920

Victory 35 0.828 0.070 0.012 0.804 0.852 0.590 0.910

Total 102 0.820 0.069 0.007 0.807 0.834 0.540 0.920

Defeat 35 1.627 0.101 0.017 1.592 1.662 1.410 1.881

Draw 32 1.615 0.156 0.028 1.559 1.671 1.387 2.025

Victory 35 1.594 0.109 0.018 1.557 1.631 1.463 1.922

Total 102 1.612 0.123 0.012 1.588 1.636 1.387 2.025

Nu passes

Nu passes 

completed

% passes 

completed

a

Descriptive Statistics

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum Maximum
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of passes completed violated this assumption. For these cases, the Welsh and Brown-Forsythe were 

used instead of consulting the ANOVA because they are preferable when this assumption is violated 

(Pallant, 2005). 

Table 7: Test of Homogeneity of variances between groups (match results), considering the pass statistics and 
parameter 𝛼. 

 

Therefore, a one-way between-groups analysis of variance (Table 8) was conducted to explore the 

impact of the percentage of passes and the parameter 𝛼 on the match result. There was not a statistically 

significant difference at the 𝑝 < 0.05. In addition, the Welch and Brown-Forsythe tests (Table 9) were 

conducted to investigate the impact of the number of passes and the number of passes completed. As 

previously mentioned, the samples were divided into three groups, and there was not a statistically 

significant difference at the 𝑝 < 0.05. 

Table 8: One-way between-groups analysis of variance (match results), considering the pass statistics and 
parameter 𝛼. 

 

Table 9: Welch and Brown-Forsythe tests (match results), considering the pass statistics and parameter 𝛼. 

 

Second, the analysis focused on the differences between teams that reached different stages of the 

tournament. As before, descriptive statistics, represented in Table 10, were initially produced, and then 

the assumption of homogeneity of the variances was again tested using Levene’s test with the same 

Levene Statistic df1 df2 Sig.

Nu passes Based on Mean 5.946 2.000 99.000 0.004

Nu passes completed Based on Mean 6.677 2.000 99.000 0.002

% passes completed Based on Mean 2.363 2.000 99.000 0.099

a Based on Mean 2.940 2.000 99.000 0.057

Test of Homogeneity of Variances

Sum of Squares df Mean Square F Sig.

Between Groups 58282.829 2.000 29141.414 1.518 0.224

Within Groups 1900508.514 99.000 19197.056

Total 1958791.343 101.000

Between Groups 68319.386 2.000 34159.693 1.753 0.179

Within Groups 1929628.457 99.000 19491.197

Total 1997947.843 101.000

Between Groups 0.006 2.000 0.003 0.675 0.511

Within Groups 0.472 99.000 0.005

Total 0.478 101.000

Between Groups 0.019 2.000 0.010 0.639 0.530

Within Groups 1.508 99.000 0.015

Total 1.527 101.000

ANOVA

Nu passes

Nu passes 

completed

% passes 

completed

a

Statistic df1 df2 Sig.

Welch 2.183 2.000 62.234 0.121

Brown-Forsythe 1.474 2.000 76.654 0.235

Welch 2.440 2.000 61.987 0.096

Brown-Forsythe 1.705 2.000 78.226 0.188

Welch 0.923 2.000 61.117 0.403

Brown-Forsythe 0.660 2.000 80.954 0.519

Welch 0.857 2.000 62.923 0.430

Brown-Forsythe 0.622 2.000 80.483 0.539

Robust Tests of Equality of Means

Nu passes

Nu passes 

completed

% passes 

competed

a
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significance value. Table 11 demonstrates that this assumption was not violated, so the ANOVA test 

was executed. 

Table 10: Descriptive table and statistical comparison between groups (stage reached in the tournament), 
considering the pass statistics and parameter 𝛼. 

 

Table 11: Test of Homogeneity of variances between groups (stage reached in the tournament), considering the 
pass statistics and parameter 𝛼. 

  

Therefore, a one-way between-groups analysis of variance (Table 12) was conducted to explore the 

impact of the percentage of passes and the parameter 𝛼 on the stage reached in the tournament. The 

samples were divided into five groups according to the stage reached in the tournament (Group 1: Final; 

Group 2: Semi-finals; Group 3: Quarter-finals; Group 4: Round of 16; Group 5: Group Stage). There 

were statistically significant differences at the 𝑝 < 0.05 between the different groups (stage reached in 

the tournament) in the variables: number of passes (𝐹4,97 = 5.605, 𝑝 < 0.001, 𝜂2 = 0.188, large effect), 

the number of passes completed (𝐹4,97 = 5.719, 𝑝 < 0.001, 𝜂2 = 0.191, large effect), the percentage of 

passes (𝐹4,97 = 3.770, 𝑝 = 0.007, 𝜂2 = 0.134, moderate effect) and the parameter 𝛼 (𝐹4,97 = 4.048, 𝑝 =

0.004, 𝜂2 = 0.143, large effect). 

  

Lower Bound Upper Bound

Final 14 549.860 106.923 28.576 488.120 611.590 344.000 703.000

Semi-finals 12 628.580 163.710 47.259 524.570 732.600 398.000 946.000

Quarter-finals 20 512.350 104.276 23.317 463.550 561.150 333.000 763.000

Round of 16 32 518.500 145.832 25.780 465.920 571.080 173.000 783.000

Group Stage 24 424.630 110.683 22.593 377.890 471.360 242.000 631.000

Total 102 512.460 139.262 13.789 485.110 539.810 173.000 946.000

Final 14 474.360 111.983 29.929 409.700 539.010 261.000 633.000

Semi-finals 12 539.670 160.958 46.465 437.400 641.930 307.000 841.000

Quarter-finals 20 426.050 110.001 24.597 374.570 477.530 247.000 675.000

Round of 16 32 435.590 147.279 26.036 382.490 488.690 94.000 698.000

Group Stage 24 336.790 107.606 21.965 291.350 382.230 146.000 556.000

Total 102 428.040 140.647 13.926 400.410 455.660 94.000 841.000

Final 14 0.854 0.048 0.013 0.826 0.882 0.760 0.910

Semi-finals 12 0.850 0.043 0.012 0.823 0.877 0.770 0.900

Quarter-finals 20 0.823 0.054 0.012 0.798 0.848 0.700 0.900

Round of 16 32 0.822 0.082 0.015 0.792 0.852 0.540 0.920

Group Stage 24 0.781 0.065 0.013 0.753 0.808 0.600 0.880

Total 102 0.820 0.069 0.007 0.807 0.834 0.540 0.920

Final 14 1.567 0.107 0.029 1.505 1.629 1.462 1.773

Semi-finals 12 1.565 0.100 0.029 1.501 1.628 1.387 1.692

Quarter-finals 20 1.600 0.103 0.023 1.552 1.648 1.410 1.864

Round of 16 32 1.597 0.138 0.024 1.547 1.646 1.432 2.025

Group Stage 24 1.692 0.106 0.022 1.647 1.737 1.566 1.977

Total 102 1.612 0.123 0.012 1.588 1.636 1.387 2.025

Nu passes

Nu passes 

completed

% passes 

completed

a

Descriptive Statistics

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum Maximum

Levene Statistic df1 df2 Sig.

Nu passes Based on Mean 1.855 4.000 97.000 0.124

Nu passes completed Based on Mean 1.744 4.000 97.000 0.147

% passes completed Based on Mean 0.663 4.000 97.000 0.619

a Based on Mean 0.451 4.000 97.000 0.772

Test of Homogeneity of Variances
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Table 12: One-way between-groups analysis of variance (stage reached in the tournament), considering the pass 
statistics and parameter 𝛼. 

 

As ANOVA detected significant statistical differences, the Tukey-Kramer modification of Tukey’s 

HSD test was implemented as the sample sizes were unequal. First, regarding the number of passes, 

the post-hoc comparisons indicated that the mean number of passes for Group 5 (Group Stage) 

[𝑀 = 424.630, 𝑆𝐷 = 110.683] was significantly different at the 𝑝 < 0.05 from Group 2 (Semi-finals) 

[𝑀 = 628.580, 𝑆𝐷 = 163.710] and from Group 1 (Final) [𝑀 = 549.860, 𝑆𝐷 = 106.923], as discriminated 

in Table 13. 

Table 13: Post-hoc test for the number of passes 

 

Second, Table 14 displays the post-hoc comparisons for the number of passes completed. The test’s 

result revealed that the mean number of passes completed for Group 5 (Group Stage) 

[𝑀 = 336.790, 𝑆𝐷 = 107.606] was significantly different at the 𝑝 < 0.05 from, firstly, Group 4 (Round of 

16) [𝑀 = 435.590, 𝑆𝐷 = 147.279], secondly from Group 2 (Semi-finals) [𝑀 = 539.670, 𝑆𝐷 = 160.958], 

and, finally, from Group 1 (Final) [𝑀 = 474.360, 𝑆𝐷 = 111.983]. 

Sum of Squares df Mean Square F Sig.

Between Groups 367722.537 4.000 91930.634 5.605 <0.001

Within Groups 1591068.806 97.000 16402.771

Total 1958791.343 101.000

Between Groups 381295.335 4.000 95323.834 5.719 <0.001

Within Groups 1616652.508 97.000 16666.521

Total 1997947.843 101.000

Between Groups 0.064 4.000 0.016 3.770 0.007

Within Groups 0.414 97.000 0.004

Total 0.478 101.000

Between Groups 0.218 4.000 0.055 4.048 0.004

Within Groups 1.309 97.000 0.013

Total 1.527 101.000

ANOVA

Nu passes

Nu passes 

completed

% passes 

completed

a

Nu passes

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals -78.726 50.384 0.525 -218.780 61.330

Semi-finals 37.507 44.629 0.917 -86.550 161.570

Round of 16 31.357 41.039 0.940 -82.720 145.440

Group Stage 125.232 * 43.071 0.036 5.510 244.960

Final 78.726 50.384 0.525 -61.330 218.780

Quarter-finals 116.233 46.766 0.102 -13.760 246.230

Round of 16 110.083 43.353 0.090 -10.430 230.590

Group Stage 203.958 * 45.281 <.001 78.090 329.830

Final -37.507 44.629 0.917 -161.570 86.550

Semi-finals -116.233 46.766 0.102 -246.230 13.760

Round of 16 -6.150 36.507 1.000 -107.630 95.330

Group Stage 87.725 38.776 0.166 -20.060 195.510

Final -31.357 41.039 0.940 -145.440 82.720

Semi-finals -110.083 43.353 0.090 -230.590 10.430

Quarter-finals 6.150 36.507 1.000 -95.330 107.630

Group Stage 93.875 34.584 0.059 -2.260 190.010

Final -125.232 * 43.071 0.036 -244.960 -5.510

Semi-finals -203.958 * 45.281 <.001 -329.830 -78.090

Quarter-finals -87.725 38.776 0.166 -195.510 20.060

Round of 16 -93.875 34.584 0.059 -190.010 2.260

* The mean difference is significant at the 0.05 level.

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16
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Table 14: Post-hoc test for the number of passes completed  

 

Third, the post-hoc comparisons point out that the mean percentage of passes completed for Group 

5 (Group Stage) [𝑀 = 0.781, 𝑆𝐷 = 0.065] was significantly different from Group 2 (Semi-finals) 

[𝑀 = 0.850, 𝑆𝐷 = 0.043] and from Group 1 (Final) [𝑀 = 0.854, 𝑆𝐷 = 0.048], as seen in Table 15. 

Table 15: Post-hoc test for the percentage of passes completed  

 

Nu passes completed

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals -65.310 50.787 0.700 -206.490 75.870

Semi-finals 48.307 44.987 0.820 -76.740 173.360

Round of 16 38.763 41.368 0.882 -76.230 153.760

Group Stage 137.565 * 43.415 0.017 16.880 258.250

Final 65.310 50.787 0.700 -75.870 206.490

Quarter-finals 113.617 47.140 0.121 -17.420 244.660

Round of 16 104.073 43.700 0.129 -17.400 225.550

Group Stage 202.875 * 45.643 <0.001 76.000 329.750

Final -48.307 44.987 0.820 -173.360 76.740

Semi-finals -113.617 47.140 0.121 -244.660 17.420

Round of 16 -9.544 36.799 0.999 -111.840 92.750

Group Stage 89.258 39.087 0.159 -19.390 197.910

Final -38.763 41.368 0.882 -153.760 76.230

Semi-finals -104.073 43.700 0.129 -225.550 17.400

Quarter-finals 9.544 36.799 0.999 -92.750 111.840

Group Stage 98.802 * 34.861 0.043 1.900 195.710

Final -137.565 * 43.415 0.017 -258.250 -16.880

Semi-finals -202.875 * 45.643 <0.001 -329.750 -76.000

Quarter-finals -89.258 39.087 0.159 -197.910 19.390

Round of 16 -98.802 * 34.861 0.043 -195.710 -1.900

* The mean difference is significant at the 0.05 level.

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16

% passes completed

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals 0.004 0.026 1.000 -0.067 0.076

Semi-finals 0.031 0.023 0.646 -0.032 0.095

Round of 16 0.032 0.021 0.534 -0.026 0.091

Group Stage 0.073 * 0.022 0.010 0.012 0.135

Final -0.004 0.026 1.000 -0.076 0.067

Quarter-finals 0.027 0.024 0.789 -0.039 0.093

Round of 16 0.028 0.022 0.709 -0.033 0.090

Group Stage 0.069 * 0.023 0.028 0.005 0.133

Final -0.031 0.023 0.646 -0.095 0.032

Semi-finals -0.027 0.024 0.789 -0.093 0.039

Round of 16 0.001 0.019 1.000 -0.051 0.053

Group Stage 0.042 0.020 0.215 -0.013 0.097

Final -0.032 0.021 0.534 -0.091 0.026

Semi-finals -0.028 0.022 0.709 -0.090 0.033

Quarter-finals -0.001 0.019 1.000 -0.053 0.051

Group Stage 0.041 0.018 0.145 -0.008 0.090

Final -0.073 * 0.022 0.010 -0.135 -0.012

Semi-finals -0.069 * 0.023 0.028 -0.133 -0.005

Quarter-finals -0.042 0.020 0.215 -0.097 0.013

Round of 16 -0.041 0.018 0.145 -0.090 0.008

* The mean difference is significant at the 0.05 level.

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16
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Finally, the post-hoc comparisons, presented in Table 16, showed that the mean parameter for Group 

5 (Group Stage) [𝑀 = 1.692, 𝑆𝐷 = 0.106] was significantly different from Group 4 (Round of 16) 

[𝑀 = 1.597, 𝑆𝐷 = 0.138], from Group 2 (Semi-finals) [𝑀 = 1.565, 𝑆𝐷 = 0.100] and from Group 1 (Final) 

[𝑀 = 1.567, 𝑆𝐷 = 0.107]. 

Table 16: Post-hoc test for the parameter 𝛼 

 

4.2.2. Passing sequences that resulted in a goal scored 

All goals scored from a sequence of one or more passes during regular time and extra time were 

considered in this analysis. The 14 goals that came from a possession without any passes (such as 

penalty kicks, direct free kicks, and ball recoveries immediately following a goal) and the 11 own goals 

were, thus, excluded from the analysis of the 142 goals scored during the tournament. 

 

Figure 13: Cumulative frequency of goals 

a

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals 0.002 0.046 1.000 -0.125 0.129

Semi-finals -0.033 0.040 0.922 -0.146 0.079

Round of 16 -0.030 0.037 0.928 -0.133 0.073

Group Stage -0.125 * 0.039 0.016 -0.234 -0.016

Final -0.002 0.046 1.000 -0.129 0.125

Quarter-finals -0.035 0.042 0.919 -0.153 0.083

Round of 16 -0.032 0.039 0.926 -0.141 0.077

Group Stage -0.127 * 0.041 0.021 -0.241 -0.013

Final 0.033 0.040 0.922 -0.079 0.146

Semi-finals 0.035 0.042 0.919 -0.083 0.153

Round of 16 0.003 0.033 1.000 -0.089 0.095

Group Stage -0.092 0.035 0.077 -0.189 0.006

Final 0.030 0.037 0.928 -0.073 0.133

Semi-finals 0.032 0.039 0.926 -0.077 0.141

Quarter-finals -0.003 0.033 1.000 -0.095 0.089

Group Stage -0.095 * 0.031 0.025 -0.182 -0.008

Final 0.125 * 0.039 0.016 0.016 0.234

Semi-finals 0.127 * 0.041 0.021 0.013 0.241

Quarter-finals 0.092 0.035 0.077 -0.006 0.189

Round of 16 0.095 * 0.031 0.025 0.008 0.182

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16
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The UEFA EURO 2020 data on the passing sequence revealed that 80% of the goals resulted from 

12 passes or less, as represented in Figure 13. Indeed, approximately 50% of the goals resulted from 

possessions of five or fewer passes. In addition, Figures 14 and 15 show the frequency of each 

sequence length and the frequency of goals concerning the possession length. As a result, the previous 

results can be explained by the tail’s elongation of the goal-scoring possessions’ distribution which in 

turn is explained by the tail’s elongation of the passing sequences’ distribution.  

 

Figure 14: Frequency of each sequence length in the UEFA EURO 2020 tournament 

 

Figure 15: Frequency of goals concerning the length of the possession in the UEFA EURO 2020 tournament 

However, as the frequencies of occurrences are unequal, the results were normalised by dividing 

the number of goals scored in each team's possession by the sequence length. Therefore, a profile of 

the relative importance of the different passing sequence lengths was obtained. Figure 16 shows that 

the longer passing sequence lengths have a higher conversion ratio of goals per 1000 possessions. 

These results indicate that teams that have the capacity to sustain long passing sequences tend to 

score more goals (Hughes & Franks, 2005). Note that the low value of the goals/1000 possession that 

resulted from an eight-pass sequence can be classified as an outlier of the dataset. 
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Figure 16: Analysis of the number of goals scored per 1000 possession for the UEFA EURO 2020 

Finally, the sample was divided into two groups: the goals per 1000 possessions that resulted from 

a sequence of 6 or fewer passes and the goals per 1000 possessions that resulted from a sequence of 

7 or more passes. The means of goals per 1000 possessions for sequence lengths 1–6 and 7-12 were 

compared using a t-test after performing a descriptive group statistics analysis (Table 17). There was a 

significant difference between the two groups (𝑡10 = −2.878; 𝑝 = 0.016; 𝜂2 = 0.45, large effect), as seen 

in Table 18. 

Table 17: Group Statistics for each group (goals per 1000 possessions for sequence lengths 0–6 and 7-12) 

 

Table 18: Independent-samples t-test for comparing the two groups (goals per 1000 possessions for sequence 
lengths 0–6 and 7-12) 

 

4.3. Discussion 

This section discusses the results of the analyses of the passing sequences and the passing sequences 

that resulted in a goal scored. 

4.3.1. Passing sequences 

Previous works have reported that the general attacking strategy, depicted by the possession 

characteristics, influences teams' performance in a football match (Garganta, 1997; M. Hughes & 

Franks, 2005; Tenga & Sigmundstad, 2011). Therefore, the work developed in section 4.2.1 aimed to 

Lenght N Mean Std Deviation Std. Error Mean

1−6 6 12.637 3.834 1.565

7−12 6 20.784 5.779 2.359

Group Statistics

Goals/1000 possessions

F Sig. t df One-Sided p Two-sided p Lower Upper

Equal variances 

assumed 0.196 0.667 -2.878 10.000 0.008 0.016 -8.148 2.831 -14.456 -1.840

Equal variances 

not assumed -2.878 8.687 0.009 0.019 -8.148 2.831 -14.588 -1.708

Goals/1000 possessions

Levene's Test for 

Equality of Variances t-test for Equality of Means

Independent Samples Test

Mean 

Difference

95% Confidence 

Interval of the Std. Error 

Difference
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study the passing sequences, specifically, the distribution of passes per possession, which describes 

the general attacking strategy. First, it was found that roughly 70% of the 102 samples were consistent 

with the power-law hypothesis by fitting the passing distribution to the power law and testing it at 𝑝 ≤

0.05. More precisely, it was possible to confirm that, for those samples consistent with the power-law 

hypothesis, the power-law distribution was an appropriate model for a portion of the sample of the 

passes per possession distributions (Clauset et al., 2009). However, as few real events follow power 

laws for all range of 𝑥, the passing distributions were fitted to the power law regardless of their true 

distribution, and 𝑥𝑚𝑖𝑛 = 1 was fixed for all samples to allow comparison of the power law exponent, −𝛼, 

of the different teams. 

As a result, a novel way of describing the general attacking strategy of football teams was introduced. 

Hence, this dissertation proposed to use 𝛼 to describe the general attacking strategy of football teams. 

Indeed, teams with a lower value of 𝛼 are teams that employ a possession-based strategy of play, while 

teams with a higher value of 𝛼 are teams that adopt a direct strategy of play. Next, the relationship 

between 𝛼 and pass statistics, such as the number of passes, the number of passes completed and the 

percentage of passes completed, was examined. The findings revealed that teams that performed more 

passes during the regular time of the match also executed more successful passes, as suggested by 

the nearly perfect positive correlation between the number of passes and the number of passes 

completed. Such outcomes align with the work of Gama, Dias, Couceiro, Sousa, et al. (2016). Moreover, 

the results demonstrated that the percentage of passes completed was very large and nearly perfect 

positively correlated with the number of passes and the number of passes completed, respectively. 

These findings indicated that teams that execute more passes and, so, more passes completed 

exchange the ball more successfully. Additionally, the parameter 𝛼 showed a very large negative 

correlation with all the pass statistics. Thus, these results suggested that teams adopting a possessive 

play perform more passes and more successfully, losing the ball less when exchanging it during the 

attacking phase and set pieces.  

Then, the mean values of 𝛼 for each national team combined with the mean values of the passes 

statistics unveiled that Germany was the team with the lowest mean values of 𝛼 and its standard 

deviation. This indicated that Germany was the national team that played a more possessive type of 

play and was loyal to its strategy. This result is in line with the findings of Clemente, Silva, et al. (2016). 

These researchers studied Germany in the FIFA World Cup 2014. They highlighted the capacity of the 

German team to have ball possession and create passes, as was found to be a feature of teams with a 

lower 𝛼, i.e., teams that adopt a possession-based strategy of play. As a result, it is possible to 

understand that possessive play is an inherent characteristic of the German team in different 

tournaments. In contrast, North Macedonia, Slovakia, and Scotland opted to play a direct type of play, 

as suggested by the higher mean 𝛼 and lower standard deviation values.  

Furthermore, Spain stood out from its rivals concerning the number of passes and the number of 

passes completed, also presenting the second lowest mean 𝛼. Cotta et al. (2013) studied Spain during 

the FIFA World Cup 2010 tournament, highlighting the Spanish team's elaborated style. This elaborated 

style, reflected in the high number of passes completed, is a characteristic of tiki-taka, a style of playing 

football implemented by the Spanish national team, in which teams execute a lot of short passes, 
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keeping the possession of the ball. Lastly, England and Italy, the tournament's finalists, presented a 

standard deviation of 𝛼 above the average, which raises the question of whether adjusting the strategy 

of play for each match leads to success in a tournament. This question was not answered and is 

presented for future work. 

The relationship of the overall performance variables (match result and stage reached in the 

tournament) with the pass statistics and the general strategy of play was examined. First, no statistical 

differences were found between teams that achieved different match results (defeat, draw or victory) 

concerning the variables: pass statistics and 𝛼. In opposition, statistical differences were found between 

the stage reached in the competition and all the variables. The results indicated that teams that achieved 

the highest stages of the tournament, namely the Semi-finals and Final, were significantly different from 

the teams that were eliminated in the first stage of the tournament (Group Stage) concerning the number 

of passes and the percentage of passes completed. Thus, this showed that the most unsuccessful teams 

performed a lower number of passes in the matches played and did so less successfully. In the same 

way, regarding the number of passes completed and the parameter 𝛼, teams that achieved the Round 

of 16, Semi-finals and Final were significantly different from the teams that were eliminated in the Group 

Stage. These results revealed that unsuccessful teams adopted a more direct type of play while 

executing fewer passes completed. These findings contradict Bate (1988) and extend the findings of 

Hughes et al. (1988). On the one hand, the idea of Bate (1988) that teams should adopt direct play with 

fewer passes per possession rather than a possessive type of play to be successful was refuted by this 

dissertation's findings. On the other hand, Hughes et al. (1988) findings in which was suggested that 

most successful teams played with more passes per possession than unsuccessful teams were 

extended with the introduction of the parameter 𝛼 and the discovered relationships of it with the pass 

statistics. 

4.3.2. Passing sequences that resulted in a goal scored 

In section 4.2.2, the study was limited to those possessions that resulted in a goal scored. Thus, it was 

revealed that 80% of the goals resulted from 12 passes or less. Consequently, the outcomes did not 

agree with Reep & Benjamin (1968) and M. Hughes & Franks (2005), whose results showed that 80% 

of the goals came from three/four passes or fewer. This finding and the t-test results indicated that, 

nowadays, teams score more goals from longer passing sequences compared to data from the last 

century. Moreover, this reveals how professional football has evolved in the last decades, with teams 

exchanging and sustaining the ball longer in their possessions. The increase in this threshold 

demonstrates how football has become more organised, being necessary to exchange the ball more, 

creating unbalances and disassembling the opposing team’s structure to score goals.  

  



48 

 

Chapter 5 – Passing network analysis 

This chapter presents the methodology (section 5.1), results (section 5.2) and posterior discussion 

(section 5.3) regarding the passing network analysis. 

5.1. Methodology 

The second part of this dissertation had two main objectives. First, the analysis aimed to study the 

impact of macro network properties on performance variables, namely the match result and the stage 

reached in the tournament. Second, the goal was to analyse player/playing position-zone passing 

networks, and study the differences and similarities of distinct systems of play, while capturing the 

spatial-temporal components of the passing network. 

The eventing data sets (StatsBomb Event Data) were again used to accomplish these objectives. 

For each team in each match, it was only considered the “Pass” and “Ball Receipt*” types of events in 

the attacking phase and during all set pieces. This allowed the collection of the following information 

from each completed pass: (i) the player and respective playing position who passed the ball, (ii) the 

player and respective playing position who received the ball, (iii) the location (coordinates (𝑥, 𝑦)) of the 

sender and the receiver; (iv) the time at which the pass was made and (v) some pass attributes (see 

Table 19 as an example). Therefore, this information enabled the construction of the different types of 

networks using Python and its package NetworkX®. 

Table 19: Example of the dataset structure, with a sequence of passes of Portugal in the match against Belgium.  

 

5.1.1. Zone passing networks analysis 

Initially, the analysis was carried out by building zone passing networks of the passes performed during 

the regular time (90 min). This type of network was chosen over the player/playing position network 

because, in the latter, the number of nodes depends on the number of players or playing positions used 

throughout the game. However, splitting the field of play into different-sized zones leads to different 

networks. Consequently, the question "How many zones should the field of play be divided into?" arose. 

Therefore, a preliminary analysis was conducted to answer this question.  

The zone networks were formed by splitting the field of play (Figure 17.1) equally into 𝑍 zones, as 

illustrated in Figure 17.2; where 𝑍 = 𝑠 × 𝑐 is the number of nodes (zone areas), 𝑠 = {3, 4, 6} is the 

number of sectors (vertical subdivisions) and 𝑐 = {3, 5} is the number of corridors (horizontal 

index timestamp type_name play_pattern_name team_name location player_id position_id pass_recipient_id pass_length pass_height_name pass_end_location pass_body_part_name pass_outcome_name

1451 00:31:04 Pass Regular Play Portugal [75.1, 65.6] 16028.0 2.0 5207.0 24.446268 Ground Pass [79.2, 41.5] Right Foot

1452 00:31:06 Ball Receipt* Regular Play Portugal [79.2, 41.5] 5207.0 23.0

1453 00:31:06 Pass Regular Play Portugal [79.2, 41.5] 5207.0 23.0 9929.0 18.681005 Ground Pass [65.5, 28.8] Right Foot

1454 00:31:09 Ball Receipt* Regular Play Portugal [65.5, 28.8] 9929.0 21.0

1456 00:31:12 Pass Regular Play Portugal [76.8, 23.1] 9929.0 21.0 5209.0 14.676852 Ground Pass [75.3, 8.5] Right Foot

1457 00:31:14 Ball Receipt* Regular Play Portugal [75.3, 8.5] 5209.0 6.0

1458 00:31:14 Pass Regular Play Portugal [75.3, 7.2] 5209.0 6.0 3168.0 9.552486 Ground Pass [70.4, 15.4] Left Foot

1459 00:31:16 Ball Receipt* Regular Play Portugal [70.4, 15.4] 3168.0 13.0

1461 00:31:20 Pass Regular Play Portugal [72.8, 23.3] 3168.0 13.0 20016.0 28.255442 Low Pass [58.9, 47.9] Right Foot

1462 00:31:22 Ball Receipt* Regular Play Portugal [58.9, 47.9] 20016.0 3.0

1464 00:31:23 Pass Regular Play Portugal [59.3, 49.8] 20016.0 3.0 3593.0 10.606602 Ground Pass [69.8, 48.3] Right Foot

1465 00:31:24 Ball Receipt* Regular Play Portugal [69.8, 48.3] 3593.0 15.0

1466 00:31:24 Pass Regular Play Portugal [70.0, 49.6] 3593.0 15.0 20016.0 14.045996 Ground Pass [58.0, 56.9] Right Foot

1467 00:31:26 Ball Receipt* Regular Play Portugal [58.0, 56.9] 20016.0 3.0

1469 00:31:31 Pass Regular Play Portugal [57.4, 55.1] 20016.0 3.0 5206.0 23.11731 Ground Pass [50.3, 33.1] Right Foot

1470 00:31:33 Ball Receipt* Regular Play Portugal [50.3, 33.1] 5206.0 5.0
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subdivisions). When a pass was made from region 𝑖 to 𝑗, a link from node 𝑖 to 𝑗 was created with a 

weight that measured the total number of successful passes. As a result, as discriminated in Table 20, 

different-sized zone networks were generated, where the number of nodes was the number of playing 

field divisions, 𝑍 = {9, 12, 15, 18, 20, 30}. Then, a descriptive analysis was conducted to decide the 

appropriate number of zones for the subsequent analysis. 

  
(1) (2) 

Figure 17: (1) Field of play coordinates (x,y) in yards; (2) Example of the field of play’s division into 30 zones (6 
sectors x 5 corridors) 

Table 20: Zone passing networks analysed 

 

After selecting the number of zones, the analysis examined the relationship between the networks' 

density and average clustering coefficient and the variables covered in Chapter 4, namely the parameter 

𝛼 and the pass statistics. The same procedure of the previous chapter was adopted. After confirming 

that the assumptions of normality, linearity and homoscedasticity were not violated, the Pearson 

Product-Moment correlation coefficient was used to study the relationship between these variables. 

Spearman’s Rank Order Correlation was employed when the data did not respect the assumptions. An 

identical scale was applied to classify the correlation strength: very small, ( ]0, 0.1[ ); small, ( [0.1, 0.3[ ); 

moderate, ( [0.3, 0.5[ ); large, ( [0.5, 0.7[ ); very large, ( [0.7, 0.9[ ); nearly perfect ( [0.9, 1.0[ ); perfect, 

(1.0).  

Additionally, the differences in the networks’ density and average clustering coefficient were explored 

between teams that achieved different match results ((i) defeat, (ii) draw or (iii) victory) and teams that 

reached different stages of the tournament ((i) Final, (ii) Semi-finals, (iii) Quarter-finals, (iv) Round of 16 

and (v) Group Stage). These investigations were performed using one-way ANOVA or the Welsh and 

Brown-Forsythe tests after verifying the assumptions of normality and homogeneity. Firstly, the 

assumption of normality was evaluated using Kolmogorov-Smirnov tests (𝑝 > 0.05). However, the 

Central Limit Theorem was evoked since 𝑛 ≥ 30 to assume the assumption of normality. Secondly, the 

# Type of passing network Node Nu of sectors Nu of corridors Nu of zones 

1 Zone passing network Zone 3 3 9 

2 Zone passing network Zone 4 3 12 

3 Zone passing network Zone 3 5 15 

4 Zone passing network Zone 6 3 18 

5 Zone passing network Zone 4 5 20 

6 Zone passing network Zone 6 5 30 
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homogeneity assumption was investigated using Levene's test. ANOVA was substituted with the Welsh 

and Brown-Forsythe tests when this assumption was violated. The Tukey's HSD (honestly significant 

difference) test or the Tukey's-Kramer test was used to identify the differences when the test found 

significant differences between the factors (Clemente et al., 2015). Finally, the eta-squared, 𝜂2, was 

used for measuring the effect size in ANOVA, and the guidelines from Cohen (1988) were followed to 

translate the strength of the eta-squared: 0.01=small effect; 0.06=moderate effect and 0.14=large effect. 

5.1.2. Clustering analysis 

Clustering analysis was conducted to study the zone networks and the differences and similarities of 

various systems of play in the playing position-zone networks. Clustering analysis can be a valuable 

tool for discovering and exploring data characteristics by organising them into subgroups or clusters 

(Everitt et al., 2011). Han & Kamber (2006) designate clustering as “the process of grouping the data 

into classes or clusters so that objects within a cluster have high similarity in comparison to one another 

but are very dissimilar to objects in other clusters”. The methodology for this section’s work was an 

adaptation of the work of Milligan (1996), which includes a framework with seven steps that typically 

constitute the clustering analysis (Everitt et al., 2011). As a result, the main steps are outlined below 

(Milligan, 1996): 

1. Clustering objects: the objects to be clustered must be selected and chosen in such a way as to 

be representative of the cluster structure believed to be present in the data; 

2. Clustering variables: the variables used in the clustering analysis must be chosen and contain 

sufficient information to permit the clustering of the objects; 

3. Variable standardisation: a choice must be made regarding the standardization of each variable 

used in the cluster analysis. However, variable standardisation is not always a requirement that 

must be fulfilled and can sometimes be misleading (Everitt et al., 2011); 

4. Proximity measure: a similarity or dissimilarity measure must be selected to reflect the degree of 

closeness or separation of the objects to be clustered; 

5. Clustering method: a method suitable for the kind of clustering that is expected to be present in 

the data must be selected. 

6. Number of clusters: the number of clusters must be determined with the help of different 

techniques; 

7. Interpretation: the results must be interpreted within their context with the auxiliary of graphical 

representation and descriptive statistics (Everitt et al., 2011). 

5.1.2.1. Clustering objects 

Initially, a preliminary clustering analysis was performed on the 102 zone networks examined in section 

5.1.1 to determine if any general differences were observed. Then, instead of using the player/playing 

position or the zone of the playing field as a node, the combination of both was considered. Thus, the 

playing position-zone networks were constructed by representing each pair (𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑧𝑜𝑛𝑒) as 

a node. In this type of network, the size of this type of network is determined by multiplying the number 

of playing positions by the number of zones. A pass from the pair 𝑖 = (𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑎, 𝑧𝑜𝑛𝑒𝑏) to 𝑗 =
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(𝑝𝑙𝑎𝑦𝑖𝑛𝑔 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐 ,   𝑧𝑜𝑛𝑒𝑑) results in the creation of a link from node 𝑖 to 𝑗, and this link has a weight 

that quantifies the total number of complete passes.  

Several decisions were made to achieve this section’s objectives. First, to allow the comparison between 

teams and systems of play, rather than analysing the players individually, the study concentrated on 

analysing the playing positions, which various players throughout the match could carry out. In addition, 

the number of zones chosen for this analysis was equal to the number of zones selected in section 

4.1.1. after the descriptive statistics. 

Second, a team can adopt more than one system of play throughout the match. For this reason, a 

sliding window technique was applied. As Cotta et al. (2013) and Clemente et al. (2015) suggested, a 

sliding window’s size equal to 15 minutes and a step of 5 minutes were chosen. This window’s size was 

selected because it is “long enough to capture the state of the game” (Cotta et al., 2013). Furthermore, 

regular and extra time were studied, but the distinct parts of the match were treated separately. The last 

sliding window of each part contained the additional time for that part. Therefore, 14 playing position-

zone networks were constructed for each team in each match’s regular time. Two additional networks 

were constructed for teams in matches that went to extra time. However, when a team changed its 

system of play within a sliding window, an extra network was built if the respective team made ten or 

more passes. In addition, this value was used as a threshold, i.e., teams that performed less than ten 

passes during the sliding window length did not enter the clustering analysis. To sum up, by generating 

distinct networks for the different systems of play, building networks with the same number of nodes 

was possible since the number of playing positions and zones remained constant. Thus, the networks’ 

size was equal to the multiplication of the eleven playing positions by the number of zones. 

Third, although the different systems of play may share playing positions, they always have 

differences. For illustration purposes, considering the possible positions shown in Figure 18, a 4-3-3 

system of play, 𝑆𝑃4−3−3 = {𝐺𝐾, 𝑅𝐵, 𝑅𝐶𝐵, 𝑅𝐿𝐵, 𝐿𝐵, 𝑪𝑫𝑴, 𝑅𝐶𝑀, 𝐿𝐶𝑀, 𝑹𝑾, 𝑳𝑾, 𝑪𝑭}, and a 4-4-2 system of 

play, 𝑆𝑃4−4−2 = {𝐺𝐾, 𝑅𝐵, 𝑅𝐶𝐵, 𝑅𝐿𝐵, 𝐿𝐵, 𝑹𝑴, 𝑅𝐶𝑀, 𝐿𝐶𝑀, 𝑳𝑴, 𝑹𝑪𝑭, 𝑳𝑪𝑭}, share seven playing positions and 

have four different ones. Moreover, the same system of play can have different configurations. 

Therefore, an adaptation of the general classification of the playing positions proposed by Clemente, 

José, et al. (2016) was adopted. As represented in Figure 18, the 25 positions categorized by StatsBomb 

have been reduced to 6 common positions:  

▪ Goalkeeper = {𝐺𝐾};  

▪ Central Defenders = {𝑅𝐶𝐵, 𝐶𝐵, 𝐿𝐶𝐵};  

▪ External Defenders = {𝑅𝐵, 𝐿𝐵, 𝑅𝑊𝐵, 𝐿𝑊𝐵};  

▪ Central Midfielders = {𝑅𝐷𝑀, 𝐶𝐷𝑀, 𝐿𝐷𝑀, 𝑅𝐶𝑀, 𝐶𝑀, 𝐿𝐶𝑀, 𝑅𝐴𝑀, 𝐶𝐴𝑀, 𝐿𝐴𝑀};  

▪ External Midfielders = {𝑅𝑀, 𝐿𝑀, 𝑅𝑊, 𝐿𝑊}; 

▪ Forwards = {𝑅𝐶𝐹, 𝐶𝐹, 𝐿𝐶𝐹, 𝑆𝑆}.  

As a result, this process established a common classification for the various play systems, enabling 

comparisons between them.  
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Figure 18: Statsbomb’s playing positions and the respective six common positions 

5.1.2.2. Clustering variables 

Clustering analysis was proposed to divide the generated networks into groups according to specific 

criteria: the local clustering coefficient and the degree (Diquigiovanni & Scarpa, 2019). These two 

metrics were selected because they have been reported as good descriptors to capture how teams play 

(Pina et al., 2017). Thus, the clustering analysis was conducted using the specific criteria independently. 

On the one hand, for the zone networks’ analysis, the clustering analysis was first carried out using the 

nodes' clustering coefficient as variables (attributes) of the objects and then using the nodes' degree as 

variables. On the other hand, instead of using the nodes’ metric values, the average clustering 

coefficient and the sum of the degree per common position per zone were used as variables for the 

playing position-zone networks' analysis. For example, in a team playing in a 4-4-2, the clustering 

coefficient and degree of the right and left centre forwards in zone 𝑧 were, respectively, averaged 

(𝐶(̅𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠,𝑧) =
1

2
[𝐶(𝑅𝐶𝐹,𝑧) + 𝐶(𝐿𝐶𝐹,𝑧)]) and summed (𝑘(𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑠,𝑧) = 𝑘(𝑅𝐶𝐹,𝑧) + 𝑘(𝐿𝐶𝐹,𝑧)). Consequently, each 

object was described by 𝑛 variables, where 𝑛 is equal to the multiplication of the number of 6 common 

positions by the selected number of zones.  

The clustering analysis requires particular attention to a specific case: clustering high-dimensional 

data, and this is challenging due to the curse of dimensionality. According to the curse of dimensionality, 

initially formulated by Bellman (1961), the number of samples required to estimate any function with a 

given level of accuracy increases exponentially concerning the number of input variables (i.e., 
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dimensionality) of the function (Chen, 2009). The data in clustering become increasingly sparse as the 

number of dimensions rises, rendering the distance between pairs of points irrelevant and making it 

likely that any one point's average density will be low (Han & Kamber, 2006). As a result, a feature 

transformation technique was applied to reduce dimensionality (Chen, 2009; Han & Kamber, 2006). The 

Principal Component Analysis (PCA) was the method selected for the reduction of dimensionality.  

The PCA, introduced by Pearson (1901) and later developed by (Pearson, 1901), seeks to represent 

the data using 𝑘 𝑛-dimensional orthogonal vectors, where 𝑘 ≤ 𝑛 (Han & Kamber, 2006). The 

dimensionality reduction is achieved by projecting the data onto a smaller space. The original variables 

are transformed into a new set of variables, named principal components (PCs), uncorrelated and 

ordered so that the first PCs retain the most variation in the data (Roessner et al., 2011). The PCs 

represent a selection of a new coordinate system obtained by rotating the original axis to a set of new 

axis. Thus, the first PC is a linear combination of all the original variables, representing the direction of 

maximum variability (Roessner et al., 2011). The second PC represents the direction of maximum 

variability orthogonal to the first. Accordingly, the last PC represents the direction of maximum variability 

and is orthogonal to all the others. Because the reduction of dimensionality is an objective of PCA, 

several criteria have been proposed for determining how many PCs should be used in the clustering 

analysis. However, the criterion used was to include all those PCs up to a predetermined total 

percentage variance explained equally to 90% (Holland, 2019). 

5.1.2.2. Variable standardisation 

Each variable's measurement unit affects the clustering analysis, so the data needs to be standardized 

to give each variable the same weight. Converting the original measurements to unitless variables is 

one way to standardize measurements (Han & Kamber, 2006). However, since the clustering analysis 

was conducted using the specific criteria separately, the objects clustered were measured in the same 

units, so the standardization process was not performed. 

6.1.2.4. Proximity measure 

The dissimilarity between objects was computed based on the distance between objects. The distance 

measure chosen was the Euclidian distance, which is written as:  

𝑑( 𝑖, 𝑗) = √(𝑥𝑖1 − 𝑥𝑗1)2 +  (𝑥𝑖2 − 𝑥𝑗2)2 + ⋯ + (𝑥𝑖𝑛 − 𝑥𝑗𝑛)
2

, 

where 𝑖 = (𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑛) and 𝑗 = (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑛) are two 𝑛-dimensional data objects (Han & Kamber, 

2006). 

6.1.2.5. Clustering method  

Numerous clustering algorithms have been proposed in the literature; however, K-means was chosen. 

This method is one of the most well-known and widely used partitioning techniques and has various 

advantages, such as simple mathematical principles and easy implementation (Han & Kamber, 2006; 

Jain, 2010; Li et al., 2017; Yuan & Yang, 2019). K-means is a partitioning algorithm that uses a 

dissimilarity function based on distance as a partitioning criterion (Hartigan & Wong, 1979). This 

algorithm takes the input parameter, 𝑘, and partitions a set of 𝑛 objects into 𝑘 clusters so that the 
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resulting intracluster similarity is high and the intercluster similarity is low. Cluster similarity is measured 

regarding the mean value of the objects in a cluster, which can be viewed as the cluster’s centroid or 

centre of gravity (Han & Kamber, 2006). 

K-means first initializes the cluster means by randomly selecting 𝑘 points. Each iteration consists of 

two steps: clustering assignment and centroid update. Thus, first, each remaining point is assigned to 

the most similar cluster, i.e., with the closest mean. Second, the new means for each cluster are 

updated. This process is done until the scoring function converges. Usually, the sum of squared errors 

(SSE) is used as the scoring function and is defined as: 

𝑆𝑆𝐸(𝐶) = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝐶𝑖

,

𝑘

𝑖=1

 

where 𝑥𝑗 is the point in space representing a given object and 𝜇𝑖 is the mean of the cluster 𝐶𝑖. K-means 

has converged if the centroids do not change from one iteration to the next or if ∑ ‖𝜇𝑖
𝑡 − 𝜇𝑖

𝑡−1‖2 ≤ 𝜖𝑘
𝑖=1 , 

where 𝜖 > 0 denotes the convergence threshold, 𝑡 the current iteration and 𝜇𝑖
𝑡 the mean for the cluster 

𝐶𝑖 in iteration 𝑡 (Zaki et al., 2014). 

Usually, K-means is performed multiple times and for different values of 𝑘. The method starts with a 

random choice for the initial centroids. Hence, the K-means pseudo-code is presented in Algorithm 1 

(Zaki et al., 2014).  
 

Algorithm 1: K-means algorithm 

K-means (𝐷, 𝑘, 𝜖) 

1 𝑡 = 0 

2 Initialize randomly 𝑘 centroids: 𝜇1
𝑡 , 𝜇2

𝑡 , … , 𝜇𝑘
𝑡 ∈ ℝ𝑑 

3 repeat 

4 

 

𝑡 ⟵ 𝑡 + 1 

5 

 

𝐶𝑗 ⟵ ∅ for all 𝑗 = 1, … , 𝑘 

6 

 

foreach 𝑥𝑗 ∈ 𝐷 do 

7 

  

 𝑗∗ ⟵ arg 𝑚𝑖𝑛𝑖 {‖𝑥𝑗 − 𝜇𝑖
𝑡‖

2
}  

8 

  

 𝐶𝑗∗ ⟵  𝐶𝑗∗ ∪ {𝑥𝑗} 

9 

 

foreach 𝑖 = 1 𝑡𝑜 𝑘 do 

10 

  

 
𝜇𝑖

𝑡 ⟵
1

𝐶𝑖
∑ 𝑥𝑗

𝑥𝑗∈𝐶𝑖

 
 

11 until ∑ ‖𝜇𝑖
𝑡 − 𝜇𝑖

𝑡−1‖
2

≤ 𝜖𝑘
𝑖=1  

 
 

6.1.2.6. Number of clusters 

Selecting the number of clusters is one of the most challenging decisions (Everitt et al., 2011). Hence, 

the elbow method was employed to select the number of clusters, 𝑘, to analyse. This approach uses the 

square of the distance between the objects in each cluster and the cluster's centroid. So, the 𝑆𝑆𝐸 is 

computed and used as a performance indicator, so smaller values indicate that each cluster is more 

convergent. The 𝑘 value can be determined by observing the plot of the 𝑘-𝑆𝑆𝐸 curve and finding the 

“elbow” (Yuan & Yang, 2019). 

It is imperative and crucial the validating the results of the clustering algorithm. Consequently, the 

Silhouette analysis, proposed by Rousseeuw (1987), was done. This technique compares each cluster's 
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tightness and separation. Each cluster is represented by one silhouette, revealing which objects are well 

within their cluster and which are not. To compare the quality of the clusters, the entire clustering can 

be viewed by plotting all the silhouettes into a single diagram (Kaufman & Rousseeuw, 1990). The 

silhouette width, 𝑠(𝑖), compares the within-cluster cohesion, based on the distance to all entities in the 

same cluster, to the cluster separation and is written as follows (de Amorim & Hennig, 2015; Kaufman 

& Rousseeuw, 1990): 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
, 

where 𝑎(𝑖) is the average dissimilarity of 𝑖 ∈ 𝐶𝑘 to all other 𝑗 ∈ 𝐶𝑘, 𝑏(𝑖) is the minimum dissimilarity over 

all clusters 𝐶𝑙, to which 𝑖 is not assigned, of the average dissimilarities to 𝑗 ∈ 𝐶𝑙 , 𝑙 ≠ 𝑘. Therefore, -−1 ≤

𝑠(𝑖) ≤ 1 (de Amorim & Hennig, 2015). A silhouette width near 1 implies that the object is far away from 

the neighbouring clusters. On the other hand, a value of 0 suggests that the object should be assigned 

to its or a neighbour cluster. Finally, a negative value indicates that those objects might have been 

assigned to the wrong cluster. The average silhouette width, or silhouette coefficient (𝑆𝐶), can be used 

not only to assess the validity of the clustering but also might be used to select the number of clusters 

(Rousseeuw, 1987). 

5.2. Results 

This section presents the results of zone passing networks analysis and the clustering analyses. 

5.2.1. Zone passing networks analysis 

First, 102 networks were built for the different number of zones 𝑍 = {9, 12, 15, 18, 20, 30}. Next, a 

descriptive analysis, shown in detail in Appendix E, was performed to select the number of zones, i.e., 

the number of nodes to be used in this section’s analysis. Therefore, as seen in Figure 19, the division 

of the playing field in 30 zones had a substantially greater mean of the number of edges, capturing much 

more information about the passes occurring in the game. In addition, in the majority of these networks, 

all zones were connected with at least another zone. For these reasons, the 102 networks with 30 nodes, 

presented in Appendix F, were selected to analyse the impact of macro network properties on 

performance variables, such as the match result and the maximum stage reached in the tournament. 

  
(1) (2) 

Figure 19: (1) Mean number of edges of the different-sized networks; (2) Mean number of isolated nodes of the 
different-sized networks 
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As in Chapter 4, a descriptive study of the networks’ macro properties, namely the density and the 

average clustering coefficient, was initially done, as presented in Table 21. This study was then 

accompanied by an analysis of the histograms and boxplot. The main finding from the descriptive 

analysis was the negative skewness of both variables that suggested the cluster of values in the right 

at high distribution levels, as confirmed by the inspection of the histograms in Figure 22. 

Table 21: Descriptive table of the networks’ density and average clustering coefficient 

 

  
(a1) (a2) 

  
(b1) (b2) 

Figure 20: (1) Histograms for the (a) density and (b) the average clustering coefficient. (2) Box plots for the (a) 
density and (b) the average clustering coefficient 

Moreover, the box plot’s examination identified two outliers for all variables. These two outliers 

belong to Sweeden and Poland in their group stage matches against Spain. On the one hand, the 

Swedish team had the lowest values in the density (0.087) and average clustering coefficient (0.086) of 

the tournament. On the other hand, the Polish team had the second lowest values in the density (0.113) 

and average clustering coefficient (0.181) of the tournament. 

Again, the normality assumption of Pearson product-moment and ANOVA was evaluated using the 

Kolmogorov-Smirnov statistic. Table 22 displays the results of this test statistics that showed that the 

distribution of the number of edges, density and average clustering coefficient had a significant result 

(Sig.<0.05), indicating a violation of the assumption of normality. However, again, since 𝑛 ≥ 30 and 

considering the Central Limit Theorem, the assumption was assumed. 

  

Lower Bound Upper Bound

Density 0.209 0.003 0.202 0.216 0.211 0.213 0.001 0.034 0.087 0.274 0.186 0.045 -0.916 1.068

Average clustering coefficient 0.383 0.007 0.368 0.397 0.387 0.394 0.006 0.074 0.086 0.554 0.468 0.100 -1.006 1.915

Skewness Kurtosis

Descriptive Statistics

Median Variance Std Deviation Range Interquartil Range Mean Std. Error

5% Trimmed 

Mean Minimum Maximum

95% Confidence Interval for Mean
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Table 22: Test of Normality for the density and the average clustering coefficient 

 

In addition to examining the relationships between density and clustering coefficient, the relationships 

between these variables and the variables presented in Chapter 4, namely the pass statistics and the 

parameter 𝛼, were also investigated. Thus, the assumptions of linearity and homoscedasticity of the 

Pearson product-moment were assessed to see if there was any violation. Figure 21 shows that the 

relationship between the network’s macro properties and pass statistics was not linear. In addition, the 

homoscedasticity was only violated for the relationship between the percentage of passes completed 

and the network’s macro properties, as seen in Appendix D. 

 
(1) 

  
(2) (3) 

  
(4) (5) 

Statistic df Sig.

Density 0.101 102.000 0.012

Average clustering coefficient 0.100 102.000 0.014

Kolmogorov-Smirnov

Test of Normality
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(6) (7) 

  
(8) (9) 

Figure 21: (1) Plot of the density vs the average clustering coefficient; (2) Plot of the parameter 𝛼 vs the density; (3) 

Plot of the parameter 𝛼 vs the average clustering coefficient; (4) Plot of the number passes vs the density; (5) Plot 

of the number passes 𝛼 vs the average clustering coefficient; (6) Plot of the number passes completed vs the 
density; (7) Plot of the number passes completed vs the average clustering coefficient; (8) Plot of the percentage 
passes vs the density; (9) Plot of the number passes vs the average clustering coefficient; 

As a result, Pearson Product-Moment was applied to investigate the relationships between the 

networks’ macro-properties and 𝛼. Simultaneously, Spearman’s Rank Order Correlation was used to 

study the relationship between the networks’ macro-properties and pass statistics. 

The Pearson r correlation coefficients between each pair of networks’ macro properties and 𝛼 are 

exhibited in Table 23. The average clustering coefficient showed, on the one hand, a very large positive 

correlation with the density (𝑟 = 0.894, 𝑛 = 102, 𝑝 < 0.01) and, on the other hand, a very large negative 

correlation with the parameter 𝛼 (𝑟 = −0.781, 𝑛 = 102, 𝑝 < 0.01). In addition, there was a very large 

negative correlation between the parameter 𝛼 and the density (𝑟 = −0.811, 𝑛 = 102, 𝑝 < 0.01). So, low 

values of the parameter 𝛼 were associated with high values of these networks’ macro properties. 

Table 23: Pearson Product-Moment Correlation values between the density, the average clustering coefficient 
and parameter 𝛼 

 

Table 24 exposes the Spearman 𝜌 correlation coefficients between pass statistics and the networks’ 

macro properties. Firstly, the number of passes showed a very large correlation with the density (𝜌 =

0.873, 𝑛 = 102, 𝑝 < 0.01) and also with the average clustering coefficient (𝜌 = 0.797  𝑛 = 102, 𝑝 <

0.01). Secondly, the number of passes completed revealed a nearly perfect positive correlation with the 

(1) Density 

(2) Average clustering coefficient 0.894 **

(3) a -0.811 ** -0.781 **

N=102

** Correlation is significant at the 0.01 level 

Measures 1 2

Pearson Product-Moment Correlations
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density (𝜌 = 0.917, 𝑛 = 102, 𝑝 < 0.01) and a very large positive correlation with the average clustering 

coefficient (𝜌 = 0.825, 𝑛 = 102, 𝑝 < 0.01). Finally, there was a large positive correlation between the 

percentage of passes completed and the number of edges and the density (𝜌 = 0.588, 𝑛 = 102, 𝑝 <

0.01), and the average clustering coefficient (𝜌 = 0.521, 𝑛 = 102, 𝑝 < 0.01). Thus, high values of the 

pass statistics were associated with high values of the network’s macro properties. 

Table 24: Spearman Rank’s Order Correlation values between pass statistics and the density and the average 
clustering coefficient, respectively. 

 

Then, similarly to the procedure in Chapter 4, the analysis focused on the differences between teams 

that achieved different match results. As before, descriptive statistics were initially produced, and then 

the assumption of homogeneity of the variances was again tested using Levene’s test with the same 

significance value. Table 25 demonstrates that this assumption was not violated, so the ANOVA test 

was executed. 

Table 25: Descriptive table and statistical comparison between groups (match results), considering the density 
and the average clustering coefficient 

 

After generating the descriptive statistics, Levene's test (Table 26) was again used to assess the 

assumption of homogeneity of the variances. This assumption was violated for the density since the 

significance value, Sig., was lower than 0.05. Consequently, on the one hand, the ANOVA test was 

performed for the average clustering coefficient. On the other hand, the Welsh and Brown-Forsythe 

tests were used for the density because they are preferable when this assumption is violated (Pallant, 

2005). 

Table 26: Test of Homogeneity of variances between groups (match results), considering the density and the 
average clustering coefficient. 

 

Firstly, a one-way between-groups analysis of variance (Table 27) was conducted to explore the 

impact of the average clustering coefficient on the match result. Like before, the samples were divided 

into three groups (Group 1: defeat; Group 2: draw; Group 3: victory), but there were no statistically 

1 2

(Density) (Avg. Clustering coefficient)

Nu passes 0.873 ** 0.797 **

Nu passes completed 0.917 ** 0.825 **

% passes completed 0.588 ** 0.521 **

N=102

** Correlation is significant at the 0.01 level 

Spearman’s Rank Order Correlations

Measures

Lower Bound Upper Bound

Defeat 35 0.206 0.027 0.004 0.196 0.215 0.148 0.260

Draw 32 0.205 0.044 0.008 0.189 0.221 0.087 0.274

Victory 35 0.216 0.030 0.005 0.205 0.226 0.136 0.255

Total 102 0.209 0.034 0.003 0.202 0.216 0.087 0.274

Defeat 35 0.376 0.059 0.010 0.355 0.396 0.234 0.466

Draw 32 0.385 0.097 0.017 0.350 0.420 0.086 0.554

Victory 35 0.388 0.065 0.011 0.365 0.410 0.230 0.480

Total 102 0.383 0.074 0.007 0.368 0.397 0.086 0.554

Density

Average 

Clustering 

Coefficient

Descriptive Statistics

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum Maximum

Levene Statistic df1 df2 Sig.

Density Based on Mean 4.660 2.000 99.000 0.012

Average clustering coefficient Based on Mean 3.069 2.000 99.000 0.051

Test of Homogeneity of Variances
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significant differences at the 𝑝 < 0.05 level. Secondly, the Welch and Brown-Forsythe tests (Table 28) 

investigated the impact of the density on the match result – however, no statistically significant 

differences at the 𝑝 < 0.05 level were found as well. 

Table 27: One-way between-groups analysis of variance (match results), considering the density and the average 
clustering coefficient. 

 

Table 28: Welch and Brown-Forsythe tests (match results), considering the density and the average clustering 
coefficient. 

 

Alternatively, the differences between the networks’ macro properties of teams that reached different 

stages of the tournament were studied. As before, descriptive statistics were initially made, as displayed 

in Table 29. Levene’s test was used to evaluate the assumption of homogeneity of the variances and 

was again tested using the same significance value. Table 30 demonstrates that this assumption was 

not violated since the significance value, Sig., of both networks’ macro properties was greater than 0.05. 

As a result, the analysis was accomplished using ANOVA. 

Table 29: Descriptive table and statistical comparison between groups (stage reached in the tournament), 
considering the density and the average clustering coefficient 

 

Table 30: Test of Homogeneity of variances between groups (stage reached in the tournament), considering the 
density and the average clustering coefficient. 

 

Sum of Squares df Mean Square F Sig.

Between Groups 0.002 2.000 0.001 1.030 0.361

Within Groups 0.115 99.000 0.001

Total 0.117 101.000

Between Groups 0.003 2.000 0.001 0.246 0.782

Within Groups 0.557 99.000 0.006

Total 0.559 101.000

ANOVA

Density

Average 

Clustering 

Coefficient

Statistic df1 df2 Sig.

Welch 1.222 2.000 62.391 0.302

Brown-Forsythe 1.001 2.000 77.746 0.372

Welch 0.344 2.000 62.400 0.711

Brown-Forsythe 0.239 2.000 76.881 0.788

Robust Tests of Equality of Means

Density

Average Clustering 

Coefficient

Lower Bound Upper Bound

Final 14 0.220 0.025 0.007 0.205 0.234 0.167 0.240

Semi-finals 12 0.230 0.031 0.009 0.211 0.250 0.175 0.274

Quarter-finals 20 0.209 0.022 0.005 0.198 0.219 0.162 0.253

Round of 16 32 0.212 0.037 0.007 0.199 0.226 0.087 0.260

Group Stage 24 0.187 0.035 0.007 0.173 0.202 0.113 0.241

Total 102 0.209 0.034 0.003 0.202 0.216 0.087 0.274

Final 14 0.409 0.055 0.015 0.378 0.441 0.317 0.498

Semi-finals 12 0.415 0.069 0.020 0.371 0.459 0.276 0.554

Quarter-finals 20 0.395 0.060 0.013 0.367 0.423 0.230 0.480

Round of 16 32 0.388 0.081 0.014 0.359 0.417 0.086 0.485

Group Stage 24 0.334 0.071 0.014 0.304 0.364 0.181 0.459

Total 102 0.383 0.074 0.007 0.368 0.397 0.086 0.554

Maximum

Descriptive Statistics

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Density

Average 

Clustering 

Coefficient

Minimum

Levene Statistic df1 df2 Sig.

Density Based on Mean 1.404 4.000 97.000 0.238

Average clustering coefficient Based on Mean 3.069 4.000 97.000 0.697

Test of Homogeneity of Variances
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Table 31 shows the results of the one-way between-groups analysis of variance conducted to explore 

the impact of the percentage of passes and the parameter 𝛼 on the stage reached in the tournament. 

The samples were divided into five groups according to the stage reached in the tournament (Group 1: 

Final; Group 2: Semi-finals; Group 3: Quarter-finals; Group 4: Round of 16; Group 5: Group Stage). 

There were statistically significant differences at the 𝑝 < 0.05 between the different groups (stage 

reached in the tournament) in the density (𝐹4,97 = 4.648, 𝑝 = 0.002, 𝜂2 = 0.162, large effect), and the 

average clustering coefficient (𝐹4,97 = 4.218, 𝑝 = 0.003, 𝜂2 = 0.148, large effect). 

Table 31: One-way between-groups analysis of variance (stage reached in the tournament), considering the 
density and the average clustering coefficient. 

 

The Tukey-Kramer modification of Tukey’s HSD post-hoc test was executed since ANOVA detected 

statistical differences. First, Table 32 shows the post-hoc comparisons for the number of edges. The 

findings indicated that the mean number of passes for Group 5 (Group Stage) [𝑀 = 162.880, 𝑆𝐷 =

30.115] was significantly different from Group 4 (Round of 16) [𝑀 = 184.720, 𝑆𝐷 = 32.401], from Group 

2 (Semi-finals) [𝑀 = 200.420, 𝑆𝐷 = 26.623] and from Group 1 (Final) [𝑀 = 191.140, 𝑆𝐷 = 21.947]. 

Table 32: Post-hoc test for the density 

 

Second, the post-hoc comparisons, exhibited in Table 33, showed that the average clustering 

coefficient for Group 5 (Group Stage) [𝑀 = 0.334, 𝑆𝐷 = 0.071] was significantly different from all the 

Sum of Squares df Mean Square F Sig.

Between Groups 0.019 4.000 0.005 4.648 0.002

Within Groups 0.098 97.000 0.001

Total 0.117 101.000

Between Groups 0.083 4.000 0.021 4.218 0.003

Within Groups 0.476 97.000 0.005

Total 0.559 101.000

Density

Average 

Clustering 

Coefficient

ANOVA

Density

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals -0.011 0.013 0.914 -0.045 0.024

Semi-finals 0.011 0.011 0.860 -0.020 0.042

Round of 16 0.007 0.010 0.950 -0.021 0.036

Group Stage 0.032 * 0.011 0.025 0.003 0.062

Final 0.011 0.013 0.914 -0.024 0.045

Quarter-finals 0.022 0.012 0.345 -0.011 0.054

Round of 16 0.018 0.011 0.454 -0.012 0.048

Group Stage 0.043 * 0.011 0.002 0.012 0.074

Final -0.011 0.011 0.860 -0.042 0.020

Semi-finals -0.022 0.012 0.345 -0.054 0.011

Round of 16 -0.004 0.009 0.995 -0.029 0.022

Group Stage 0.022 0.010 0.176 -0.005 0.048

Final -0.007 0.010 0.950 -0.036 0.021

Semi-finals -0.018 0.011 0.454 -0.048 0.012

Quarter-finals 0.004 0.009 0.995 -0.022 0.029

Group Stage 0.025 * 0.009 0.034 0.001 0.049

Final -0.032 * 0.011 0.025 -0.062 -0.003

Semi-finals -0.043 * 0.011 0.002 -0.074 -0.012

Quarter-finals -0.022 0.010 0.176 -0.048 0.005

Round of 16 -0.025 * 0.009 0.034 -0.049 -0.001

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16
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other groups, i.e., from Group 4 (Round of 16) [𝑀 = 0.388, 𝑆𝐷 = 0.081], from Group 3 (Quarter-finals) 

[𝑀 = 0.395, 𝑆𝐷 = 0.060], from Group 2 (Semi-finals) [𝑀 = 0.415, 𝑆𝐷 = 0.069] and from Group 1 (Final) 

[𝑀 = 0.409, 𝑆𝐷 = 0.055]. 

Table 33: Post-hoc test for the clustering coefficient 

 

5.2.2. Clustering analysis 

5.2.2.1. Clustering analysis on the zone passing networks 

Initially, the local clustering coefficient and degree were computed for all zone networks, as exemplified 

in Figures 22 and 23. Consequently, two clustering analyses were performed using the 30 nodes’ 

clustering coefficient and degree as clustering variables. 

  
(1) (2) 

Figure 22: Local clustering coefficient of each node in the zone network of size 30 of (1) England and (2) Italy in 
the tournament’s final match. 

Average clustering coeffiicient

Tukey HSD  

(I) (J) Mean Difference Std. Error Sig.

competition stage competition stage (I-J) Lower Bound Upper Bound

Quarter-finals -0.005 0.028 1.000 -0.082 0.072

Semi-finals 0.014 0.024 0.976 -0.054 0.082

Round of 16 0.022 0.022 0.869 -0.041 0.084

Group Stage 0.075 * 0.024 0.016 0.010 0.141

Final 0.005 0.028 1.000 -0.072 0.082

Quarter-finals 0.019 0.026 0.941 -0.052 0.091

Round of 16 0.027 0.024 0.789 -0.039 0.093

Group Stage 0.081 * 0.025 0.013 0.012 0.149

Final -0.014 0.024 0.976 -0.082 0.054

Semi-finals -0.019 0.026 0.941 -0.091 0.052

Round of 16 0.007 0.020 0.996 -0.048 0.063

Group Stage 0.061 * 0.021 0.039 0.002 0.120

Final -0.022 0.022 0.869 -0.084 0.041

Semi-finals -0.027 0.024 0.789 -0.093 0.039

Quarter-finals -0.007 0.020 0.996 -0.063 0.048

Group Stage 0.054 * 0.019 0.043 0.001 0.106

Final -0.075 * 0.024 0.016 -0.141 -0.010

Semi-finals -0.081 * 0.025 0.013 -0.149 -0.012

Quarter-finals -0.061 * 0.021 0.039 -0.120 -0.002

Round of 16 -0.054 * 0.019 0.043 -0.106 -0.001

Group Stage

Multiple Comparisons

95% Confidence Interval

Final

Semi-finals

Quarter-finals

Round of 16
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(b1) (b2) 

Figure 23: (1) Degree of each node in the zone network of size 30 of (1) England and (2) Italy in the tournament’s 
final match 

Figures 24 and 25 show the selection process of the number of PC using the PCA technique for the 

clustering analysis using the local clustering coefficient and the degree, respectively. The criterion that 

states to include all those PCs up to the predetermined 90% total percentage variance explained was 

applied. On the one hand, 13 PCs were selected for the clustering analysis using the local clustering 

coefficient, and the two first PC explains 37.42% of the variance in this instance. On the other hand, for 

the clustering analysis using degree, 17 PCs were chosen. In this case, the two first PC explains 51.75% 

of the variance (Holland, 2019). 

 

Figure 24: Cumulative explained variance by components for the clustering analysis on the zone passing 
networks using the local clustering coefficient 

 

Figure 25: Cumulative explained variance by components for the clustering analysis on the zone passing 
networks using the degree 
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The choice of the number of clusters is one of the hardest decisions. Indeed, this decision was made 

by the joint use of the elbow method and the silhouette analysis. Figure 26.1. shows that there is no 

evident elbow in both 𝑘-𝑆𝑆𝐸 plots. Thus, the decision was made by mainly looking at the silhouette 

coefficient. On the one hand, 𝑘 = 3 was selected for the clustering analysis using the clustering 

coefficient since 𝑘 = 3 had the highest silhouette coefficient (𝑆𝐶𝑘=3 = 0.138), as seen in the 𝑘-𝑆𝐶 plot in 

Figure 26.2. On the other hand, the 𝑘-𝑆𝐶 plot for the clustering analysis using the degree reveals that 

𝑘 = 2 (𝑆𝐶𝑘=2 = 0.252) had the highest silhouette coefficient, followed by 𝑘 = 3 (𝑆𝐶𝑘=3 = 0.133). 

Therefore, as 𝑘 = 3 has a lower 𝑆𝑆𝐸 than 𝑘 = 2, 𝑘 = 3 was chosen as the number of clusters to use in 

the clustering analysis using the degree. Figures 27 and 28 show the silhouette analysis and the 

visualisation of the clustered data for the clustering analysis using the clustering coefficient and the 

degree. Note that the clustering analysis results must be interpreted with caution since there were some 

objects with a silhouette width near 0, which means that they should have been assigned to their or 

another cluster. 

 
(1) (2) 

Figure 26:(1) 𝑘-𝑆𝑆𝐸 and 𝑘-𝑆𝐶 plots using the for the clustering analysis on the zone passing networks clustering 

coefficient. (2) 𝑘 -𝑆𝑆𝐸 and 𝑘-𝑆𝐶 plots for the clustering analysis on the zone passing networks using the degree. 

 

Figure 27: Silhouette analysis and visualisation of the clustered data for the clustering analysis with 3 clusters on 
the zone passing networks using the clustering coefficient. 
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Figure 28: Silhouette analysis and visualisation of the clustered data for the clustering analysis with 3 clusters on 
the zone passing networks using the degree. 

Tables 34.1 and 34.2 show the assignment of each network to each cluster, grouped by team, in the 

clustering analysis using the clustering coefficient and the degree, respectively. A more detailed analysis 

is presented in Appendix G. In the clustering analysis using the clustering coefficient, Cluster 0 has 17 

objects, whereas Cluster 1 has 50 objects and Cluster 2 has 35 objects. Cluster 0 is composed of 

networks with lower values of the local clustering coefficient across the 30 zones of the playing field. 

The zone in which networks have, although low, higher values is the one formed by the second half of 

the defensive and the first half of midfield sectors 𝑍𝐷−𝑀 = {2, 3, 8, 9, 14, 15, 20, 21, 26, 27}, as can be seen 

in Figure 29. The local clustering coefficients become lower as it goes further into the field, and so, the 

offensive sector, formed by 𝑍𝑂 = {5, 6, 11, 12, 17, 18, 23, 24, 29, 30}, is the one that presents the lower 

values, suggesting not only the teams’ difficulty in progressing through the playing field but also the 

teams' incapacity of playing near the opposing penalty area. Most objects that integrate cluster 0 are 

networks from national teams that only reached the Group Stage of the competition, which are the case 

of Finland, Hungary, North Macedonia, Poland, Russia, Scotland, Slovakia and Turkey. In addition, 

networks from the Czech Republic, Denmark, England, France, and Wales are part of this cluster. 

Cluster 1 and Cluster 2 are constituted by networks with higher clustering coefficient values across the 

30 zones of the playing field compared to the networks in Cluster 0. The central aspect that distinguishes 

the networks of these two clusters is a tendency to have a higher value of cluster coefficient in the 

opposing penalty box, 𝑍𝑃𝐵 = {12, 18, 24}, as seen in Figure 29. 

In the clustering analysis using the degree, Cluster 0 has 42 objects, while Cluster 1 has 17 objects 

and Cluster 2 has 43 objects. In all clusters, the second half of the defensive sector and the midfield 

sector tended to have higher values of degree. In contrast, the outer corridors tended to have lower 

values of degree. Compared with clusters 0 and 2, cluster 1 had networks with lower values of degree 

throughout the 30 zones of the playing field. However, these differences were most visible in the second 

half of the midfield sector and in the offensive sector. Additionally, Cluster 0 differentiates from Cluster 
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2 by having lower values in the central corridors of the second half of the midfield sector and of the 

offensive sector, 𝑍𝐶𝐷−𝐶𝑂 = {9, 10, 11, 15, 16, 17, 21, 22, 23}. 

Table 34: Assignment of each network to each cluster, grouped by team, in the clustering analysis on the zone 
passing networks using the (1) clustering coefficient and (2) the degree. 

(1) (2) 

                     

 

Figure 29: Field of play’s division into 30 zones (6 sectors x 5 corridors). 

5.2.2.1. Clustering analysis on the playing position-zone passing networks 

By applying the methodology described in section 5.1.2., 1463 playing position-zone passing networks 

were the subject of the clustering analysis. As shown in Figure 30, nine systems of play were identified 

in this set of networks, namely the 4-3-3; 4-2-3-1; 3-5-2; 3-4-2-1; 3-4-1-2; 4-1-4-1; 3-4-3; 4-4-2 and 4-2-

2-2. Firstly, the local clustering coefficient and degree were computed for all networks. Therefore, the 

combination of the six common positions and 30 zones was used as clustering variables. 

National Team Cluster 0 Cluster 1 Cluster 2  Total

Austria 1 3 4

Belgium 4 1 5

Croatia 2 2 4

Czech Republic 1 3 1 5

Denmark 1 3 2 6

England 1 5 1 7

Finland 1 2 3

France 1 2 1 4

Germany 1 3 4

Hungary 1 2 3

Italy 2 5 7

Netherlands 2 2 4

North Macedonia 1 2 3

Poland 2 1 3

Portugal 4 4

Russia 2 1 3

Scotland 1 2 3

Slovakia 1 1 1 3

Spain 2 4 6

Sweden 2 2 4

Switzerland 4 1 5

Turkey 1 2 3

Ukraine 3 2 5

Wales 1 3 4

Total 17 50 35 102

National Team Cluster 0 Cluster 1 Cluster 2  Total

Austria 1 3 4

Belgium 3 2 5

Croatia 3 1 4

Czech Republic 4 1 5

Denmark 3 3 6

England 4 1 2 7

Finland 2 1 3

France 2 2 4

Germany 1 3 4

Hungary 3 3

Italy 1 6 7

Netherlands 2 2 4

North Macedonia 2 1 3

Poland 1 2 3

Portugal 2 2 4

Russia 1 1 1 3

Scotland 2 1 3

Slovakia 1 1 1 3

Spain 6 6

Sweden 2 2 4

Switzerland 2 1 2 5

Turkey 1 1 1 3

Ukraine 4 1 5

Wales 2 2 4

Total 42 17 43 102
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Figure 30: Frequency of each system of play in the 1463 playing position-zone passing networks. 

Then, the PCA was executed to reduce the dimensionality of the clustering variables. Again, the 

criterion that states to include all those PCs up to the predetermined 90% total percentage variance 

explained was applied. On the one hand, for the clustering analysis using the clustering coefficient, 69 

PCs were selected. In this case, the two first PC explains 8.28% of the variance (Holland, 2019). On the 

other hand, 59 PCs were chosen for the clustering analysis using the degree, and the two first PC 

explains 26.40% of the variance in this instance. 

Similarly, the number of clusters was selected using the elbow method and the silhouette analysis. 

Figure 31 shows that there is no evident elbow in both 𝑘-𝑆𝑆𝐸 plots. On the one hand, for the clustering 

analysis using the clustering coefficient, since 𝑘 = 7 had the highest silhouette coefficient (𝑆𝐶𝑘=7 =

0.347) 𝑘 = 7 was selected, as can be seen in the 𝑘-𝑆𝐶 plot in Figure X. On the other hand, the 𝑘-𝑆𝐶 plot 

for the clustering analysis using the degree reveals that 𝑘 = 2 (𝑆𝐶𝑘=2 = 0.183) had the highest silhouette 

coefficient, followed by 𝑘 = 3 (𝑆𝐶𝑘=3 = 0.100) and by 𝑘 = 7 (𝑆𝐶𝑘=7 = 0.061). However, as the main 

objective was to study the differences and similarities between the nine systems of play, 𝑘 = 7 was 

chosen as the number of clusters to use in the clustering analysis using the degree. Once more, the 

clustering analysis results must be interpreted with caution since some objects with a silhouette width 

have a negative value, which means that they should have been to the wrong cluster. 

 

(1) (2) 
Figure 31: (1) 𝑘-𝑆𝑆𝐸 and 𝑘-𝑆𝐶 plots using the for the clustering analysis on the playing position-zone passing 

networks clustering coefficient. (2) 𝑘 -𝑆𝑆𝐸 and 𝑘-𝑆𝐶 plots for the clustering analysis on the playing position-zone 
passing networks using the degree. 

Figure 32 shows the clustering analysis results using the clustering coefficient. Cluster 0 is 

constituted of 1354 objects, whereas Cluster 1 and 4 both have 16 objects; Cluster 2 is composed of 33 

objects; Cluster 3 is made up of 4 objects; Cluster 5 consists of 8 objects and Cluster 6 has 32 objects. 

Therefore, since most objects were assigned to the same cluster, it is possible to conclude that the 

clustering coefficient was a poor feature in partitioning the different objects. In addition, using the 
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clustering analysis, it was impossible to verify the differences and similarities between the different 

systems of play.  

 

Figure 32: Silhouette analysis and visualisation of the clustered data for the clustering analysis with 7 clusters on 
the playing position-zone passing networks using the clustering coefficient. 

Moreover, there were 617 with a silhouette width lower than the average, of which 28 had negative 

silhouette width. However, considering this fact, a prudent description of the objects in the different 

clusters is still possible. First, the Goalkeeper has a positive cluster coefficient within his penalty area, 

particularly zone 13, and also in the inner corridors of the second half of the defensive sector, 𝑍𝐼𝐷2 =

{8, 14, 20}. In region 13, the Goalkeepers in networks belonging to Cluster 2 have a higher cluster 

coefficient, whereas those in Cluster 4 have a lower cluster coefficient. Alternatively, the Goalkeepers 

in networks of Cluster 5 have a higher clustering coefficient in zone 7. Second, the Central Defenders 

have a higher clustering coefficient in the inner corridors of the defensive sector and the first half of the 

midfield sector, 𝑍𝐼𝐷−𝐼𝑀1 = {8, 9, 14, 15, 20, 21}. However, Central Defenders in the networks of Cluster 3 

have a higher clustering coefficient in the inner corridors of the second half of the midfield sector 𝑍𝐼𝑀2 =

{10, 16, 22}. Specifically, 3 of these networks are consecutive sliding windows, between minutes 50 and 

75, from Portugal in the Group Stage match against Hungary. Thus, this can mean that, during this 

period of the game, Portugal played mainly in the opponent’s half. Third, the External Defenders have 

a higher clustering coefficient in the outer corridors of the midfield sector and the first half of the offensive 

sector, 𝑍𝑂𝑀−𝐼𝑂1 = {3, 4, 5, 27, 28, 29}. Fourth, the Central Midfielders present a higher cluster coefficient 

in the midfield sector, greater in the interior corridors than in the exterior corridors. Fifth, the External 

Midfielders have a higher clustering coefficient in the outer corridors of the midfield sector and the first 

half of the offensive sector, 𝑍𝑂𝑀−𝐼𝑂1 = {3, 4, 5, 27, 28, 29}. However, there are networks in Clusters 1 and 

4 which also have high values of the clustering coefficient in the inner corridors of the midfield and 

offensive sectors, 𝑍𝑂𝑀−𝐼𝑂1 = {10, 11, 22, 23}. This indicates a tendency to play inside with the External 

Midfielders. Finally, the Forwards have a higher clustering coefficient in the inner corridors of the second 

half of the midfield sector and the offensive sector, 𝑍𝐼𝑀2−𝐼𝑂 = {10, 11, 15, 16, 22, 23}. 

Figure 33 shows the clustering analysis results using the degree. Cluster 0 has 136 objects, whereas 

Cluster 1 is composed of 316 objects; Cluster 2 is constituted of 107 objects; Cluster 3 consists of 129 
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objects; Cluster 4 is made up of 126 objects; Cluster 5 is formed of 258 objects, and Cluster 6 has 391 

objects. Cluster 6 is the only cluster in which all objects have a positive silhouette width. Indeed, 973 

objects have a silhouette width lower than the average, of which 673 have a negative value. Considering 

this fact and the close-to-zero value of the silhouette coefficient, the results were not interpreted. 

 

Figure 33: Silhouette analysis and visualisation of the clustered data for the clustering analysis with 7 clusters on 
the playing position-zone passing networks using degree. 

5.3. Discussion 

This section discusses the results of zone passing networks analysis and the clustering analyses. 

5.3.1. Zone passing networks analysis 

Network macro characteristics, such as the density and the average clustering coefficient, have been 

reported to be valuable descriptors of how football teams play. Also, they can be associated with 

performance variables, such as the match results achieved and the competition stage reached by teams 

(Pina et al., 2017). Indeed, few research works have evidenced how passing network characteristics 

influence the overall performance of a team (Clemente et al., 2015; Passos et al., 2011). Consequently, 

the work developed in section 5.2.1 extended the work of section 4.2.1 by relating the network’s density 

and average clustering coefficient with, firstly, the general strategy of play, described by 𝛼, and the pass 

statistics and, secondly, with overall team performance variables. 

On the one hand, the density showed a very large positive correlation with the number of passes, a 

nearly perfect correlation with the number of passes completed and a large correlation with the 

percentage of passes completed. The nearly perfect correlation of the density with the number of passes 

completed can be explained by the number of edges being highly dependent on the number of 

successful passes since the pass is the link between nodes in these networks. Thus, these findings 

revealed how teams that performed more passes and more successfully originated denser networks. 

Moreover, the findings revealed that teams that adopt a more possessive type of play, characterised by 

higher values of 𝛼, also generate denser networks. This fact is demonstrated by the very large negative 

correlation between the density and the parameter 𝛼. 
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On the other hand, the average clustering showed a very large positive correlation with the number 

of passes and the number of passes completed and a large correlation with the percentage of passes 

completed. In the same way, teams performing more passes and more successfully have a higher 

probability of forming triangles around the zones of the playing field (Herrera-Diestra et al., 2020). 

Furthermore, the findings also revealed that teams characterised by a possessive type of play have 

higher values of the average clustering coefficient, indicated by the very large negative correlation 

between the average clustering coefficient and the parameter 𝛼. This means that, specifically in zone 

networks, teams with a possession-based strategy reach the ball to all playing field areas and better 

connect the field through the network of passes (Herrera-Diestra et al., 2020). Consequently, these 

results align with the findings of Buldú et al. (2019), which revealed that increasing the number of passes 

improved the passing networks' characteristics. 

Then, the work investigated how the networks’ macro properties (density and the average clustering 

coefficient) are related to the overall performance variables (match result and stage reached in the 

tournament). As a result, no statistical differences were observed between teams that achieved different 

match results (defeat, draw or victory) regarding the density and the average clustering coefficient. This 

result did not corroborate the research work of Clemente et al. (2015), which found differences in 

network density between teams that achieved different match results. This disparity, however, could be 

explained by the differences in the type of networks, competition, and the number of teams studied. 

Conversely, statistical differences were found between the stage reached in the competition and the 

networks’ macro properties. The results revealed that achieved higher stages of the tournament, namely 

the Round of 16, Semi-finals and Final, were significantly different from the teams that were eliminated 

in the first stage of the tournament (Group Stage) concerning the density. In addition, regarding the 

average clustering coefficient, teams that were eliminated in the Group Stage were significantly different 

from all the other teams. These findings are consistent with the conclusions of Grund (2012), Clemente 

et al. (2015) and Gonçalves et al. (2017), who found that successful teams are associated with high 

levels and distribution of interactions. Clemente et al. (2015) also concluded that high cooperation and 

interconnectivity could lead to better performance outcomes, as also suggested by the previous results. 

5.3.2. Clustering analysis 

Section 5.2.2 aimed to study how the systems of play affect networks’ characteristics, more specifically, 

whether the same systems of play generate similar networks. Thus, to accomplish this objective, a 

clustering analysis was performed using, one the one hand, the local clustering coefficient and, on the 

other hand, the degree. These two metrics were chosen because they have been reported to 

characterize well how teams play (Pina et al., 2017). First and foremost, a preliminary clustering analysis 

was conducted on the 102 zone networks generated in section 5.2.1 to determine if any general 

differences were observed.  

Using the nodes’ clustering coefficient as the clustering variables, the networks were divided into 3 

clusters. One of the clusters was composed of networks with lower values of the local clustering 

coefficient across the 30 zones of the field of play. In their respective matches, these teams have a 

lower probability of forming triangles around the zones of the playing field. However, although low, the 
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higher values were present in the defensive sector's second half and the offensive sector's first half, 

suggesting the zone in which these teams mainly exchange the ball. Additionally, the local clustering 

coefficient becomes lower in the offensive sector. Alternatively, the two other clusters present higher 

values of the local clustering coefficient across the 30 zones of the field of play. The main difference is 

that one of these clusters has a higher local clustering coefficient within the penalty area, demonstrating 

how some teams in certain matches can form triangles in the offensive sector’s zones and better connect 

the zones near the opposing goal through the network of passes. 

Using the nodes’ degree as the clustering variables, the networks were also divided into 3 clusters. 

The second half of the defensive sector and the midfield sector tended to have higher degree values 

across all clusters. In opposition, the outer corridors tended to have lower degree values. This result 

can be explained by the fact that the midfield sector and inner corridors act as bridges to the other 

sectors and the outer corridors, respectively. Furthermore, one of the clusters was characterised by 

having networks with lower degree values throughout the 30 zones of the playing field, being these 

differences most evident in the second half of the midfield sector and the offensive sector, demonstrating 

the inability to exchange the ball on the opposing half of the playing field.  

The cluster analysis on the player position-zone networks did not have the expected results, so it 

was impossible to capture the differences and similarities between the different systems of play. On the 

one hand, in the clustering analysis using the clustering coefficient, most objects were assigned to the 

same cluster. On the other hand, the clustering analysis using the degree had poor performance, as 

described by the low values of the silhouette coefficient for the different values of the number of clusters. 

Therefore, it is possible to conclude that the proposed methodology was inappropriate for examining the 

differences and similarities between the different systems of play was again impossible. Nevertheless, 

through the clustering analysis using the clustering coefficient, it was possible to observe with caution 

which zones of the playing field each common position tends to form triangles.  

First, the Goalkeeper has a positive clustering coefficient within his penalty area. Second, the Central 

Defenders have a higher clustering coefficient in the inner corridors of the defensive sector and the first 

half of the midfield sector. However, in some networks, Central Defenders also have a higher clustering 

coefficient in the inner corridors of the second half of the midfield sector. Third, the External Defenders 

have a higher clustering coefficient in the outer corridors of the midfield sector and the first half of the 

offensive sector. Forth, the Central Midfielders present a higher cluster coefficient in the midfield sector, 

greater in the interior corridors than in the exterior corridors. Fifth, the External Midfielders had a higher 

clustering coefficient in the outer corridors of the midfield sector and the first half of the offensive sector. 

However, in some networks,  this common position also has high clustering coefficient values in the 

inner corridors of the midfield and offensive sectors, indicating a tendency to play inside. Finally, the 

Forwards have a higher clustering coefficient in the inner corridors of the second half of the midfield 

sector and the offensive sector. 
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Chapter 6 – Conclusions, Limitations and Future Work 

This chapter summarises this dissertation's conclusions and insights in section 6.1, presenting the main 

limitations and highlighting opportunities for future work in section 6.2. 

6.1. Conclusions 

Football has become more professionalised, and match analysis demands have grown. Nowadays, to 

improve their teams' play and identify weaknesses in the opposition, coaches seek to extract information 

and produce knowledge about both performances of their team and the opponents. Additionally, the 

coaches want to know how they can lead their teams to success. As a result, the application of graph 

theory and network science has emerged in football analysis, providing valuable tools for describing 

teams' interactive behaviour, organisation and performance that classical analysis based on the 

performance of individual players does not capture.  

This dissertation sought to answer several research questions to validate and extend the literature 

on passing sequences and network analysis. First, this work studied whether the distribution of 

successful passes tends to follow a power law distribution and how can this distribution of successful 

passes explain the general attacking strategy (direct or possessive play). Thus, it was found that 

approximately 70% of the samples were consistent with the power-law hypothesis. Furthermore, this 

dissertation proposed to describe the general attacking strategy of football teams through the power law 

exponent, −𝛼. Teams that use a possession-based strategy of play have a lower value of 𝛼, whereas 

teams that use a direct strategy of play have a higher value of 𝛼.  

Second, this work examined how the general attacking strategy and network characteristics relate to 

each other and how they impact the match result achieved and the stage reached in the tournament. 

Through statistical studies, the outcomes suggested that teams that adopt a possessive strategy of play 

perform more passes and more successfully, generating denser zone networks with a higher average 

clustering coefficient. Moreover, the findings indicated that unsuccessful teams that were eliminated in 

the first stage of the tournament have higher values of 𝛼 and lower values of the number of passes, the 

number of passes completed, percentage of passes completed, density and average clustering 

coefficient. This suggested that teams embracing direct play are less successful. In addition, the 

outcomes indicated that, nowadays, teams score more goals from longer passing sequences, 

demonstrating how football has become more organised, being necessary to exchange the ball more to 

score goals.  

Finally, this work could not unveil how the systems of play affect the characteristics of the networks. 

Indeed with the clustering analysis approach, it was impossible to reveal the differences and similarities 

between the different systems of play. Given the importance of the systems of play for player interactions 

within the team, this issue, which has received little attention in the literature, needs to be continually 

explored. 

Although not all the questions were answered, this dissertation enhances that graph theory and 

network science are valuable for football analysis by providing relevant insights that can aid coaches. 
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Therefore, the use of these approaches in the football analysis departments is recommended to extract 

deeper information about the team at collective and individual levels. 

6.2. Limitations and Future Work 

This dissertation faces some limitations that should be addressed. First, as this dissertation was time 

constrained, the scope of the analysis was limited since much time was consumed in designing and 

developing the Python scripts that made the multiple analysis from StatsBomb's raw data possible. 

However, this limitation can be considered an advantage because, with the code developed, the study 

can be replicated for other tournaments provided by StatsBomb. Second, although 30% of the samples 

were not consistent with the power-law hypothesis, all the samples were fitted to the power-law 

distribution. Third, the clustering analysis should have been reproduced for the different combinations 

of the divisions of the field of play, for different sliding window sizes, and using different clustering 

methods to make possible a comparative study between them. 

As a result, this dissertation contributes to future research with proposals that complement the 

present work and the literature in general. First, further investigations should replicate this dissertation 

methodology with other data sets to validate and corroborate this work's findings. Second, the matter of 

how the systems of play affect the characteristics of the networks should be a subject of future studies 

using different methodologies. Another clustering method should be experienced to verify if it can unveil 

the differences between the different systems of play. The motifs between playing positions of the same 

sector and between playing positions of different sectors should also be studied in addition to the micro 

and macro levels of networks. Third, future studies should continuously focus on the study of network 

metrics at a macro, but more particularly at a micro level that can reflect the teams’ general attacking 

strategies. Fourth, how adapting the general strategy of play to the opponent can lead to winning the 

match should be investigated. Fifth, further studies should consider the spatiotemporal evolution of the 

football passing networks, namely the player/playing position-zone networks, to enhance the knowledge 

of how teams organise and evolve during a match and how it relates to their performance. Finally, future 

research should address one significant gap in the literature: the need to consider how players and 

teams adapt to the ball's location in the field of play. This will provide pertinent and detailed information 

on how players interact within the game's dynamics. This study begins to be possible with the 

introduction of technology within the ball that allows the collection of the ball’s tracking data. 
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Appendix 

Appendix A – UEFA EURO 2020’s matches 

 

# match_id match_date group* competition_stage_name home_team_home_team_name away_team_away_team_name home_score away_score stadium_name stadium_country_name

1 3788741 11/06/2021 Group A Group Stage Turkey Italy 0 3 Stadio Olimpico   Italy

2 3788742 12/06/2021 Group B Group Stage Denmark Finland 0 1 Parken Denmark

3 3788743 12/06/2021 Group B Group Stage Belgium Russia 3 0 Saint-Petersburg Stadium Russia

4 3788744 12/06/2021 Group A Group Stage Wales Switzerland 1 1 Bakı Olimpiya Stadionu Azerbaijan

5 3788745 13/06/2021 Group D Group Stage England Croatia 1 0 Wembley Stadium England

6 3788746 13/06/2021 Group C Group Stage Netherlands Ukraine 3 2 Johan Cruijff Arena (Amsterdam) Netherlands

7 3788747 13/06/2021 Group C Group Stage Austria North Macedonia 3 1 Arena Naţională Romania

8 3788749 14/06/2021 Group E Group Stage Poland Slovakia 1 2 Saint-Petersburg Stadium Russia

9 3788750 14/06/2021 Group E Group Stage Spain Sweden 0 0 Estadio de La Cartuja Spain

10 3788748 14/06/2021 Group D Group Stage Scotland Czech Republic 0 2 Hampden Park Scotland

11 3788751 15/06/2021 Group F Group Stage France Germany 1 0 Allianz Arena Germany

12 3788752 15/06/2021 Group F Group Stage Hungary Portugal 0 3 Puskás Aréna Hungary

13 3788753 16/06/2021 Group B Group Stage Finland Russia 0 1 Saint-Petersburg Stadium Russia

14 3788754 16/06/2021 Group A Group Stage Italy Switzerland 3 0 Stadio Olimpico   Italy

15 3788755 16/06/2021 Group A Group Stage Turkey Wales 0 2 Bakı Olimpiya Stadionu Azerbaijan

16 3788758 17/06/2021 Group C Group Stage Ukraine North Macedonia 2 1 Arena Naţională Romania

17 3788757 17/06/2021 Group B Group Stage Denmark Belgium 1 2 Parken Denmark

18 3788756 17/06/2021 Group C Group Stage Netherlands Austria 2 0 Johan Cruijff Arena (Amsterdam) Netherlands

19 3788759 18/06/2021 Group D Group Stage England Scotland 0 0 Wembley Stadium England

20 3788761 18/06/2021 Group E Group Stage Sweden Slovakia 1 0 Saint-Petersburg Stadium Russia

21 3788760 18/06/2021 Group D Group Stage Croatia Czech Republic 1 1 Hampden Park Scotland

22 3788763 19/06/2021 Group F Group Stage Hungary France 1 1 Puskás Aréna Hungary

23 3788764 19/06/2021 Group F Group Stage Portugal Germany 2 4 Allianz Arena Germany

24 3788762 19/06/2021 Group E Group Stage Spain Poland 1 1 Estadio de La Cartuja Spain

25 3788765 20/06/2021 Group A Group Stage Switzerland Turkey 3 1 Bakı Olimpiya Stadionu Azerbaijan

26 3788766 20/06/2021 Group A Group Stage Italy Wales 1 0 Stadio Olimpico   Italy

27 3788768 21/06/2021 Group B Group Stage Finland Belgium 0 2 Saint-Petersburg Stadium Russia

28 3788767 21/06/2021 Group C Group Stage Ukraine Austria 0 1 Arena Naţională Romania

29 3788769 21/06/2021 Group B Group Stage Russia Denmark 1 4 Parken Denmark

30 3788770 21/06/2021 Group C Group Stage North Macedonia Netherlands 0 3 Johan Cruijff Arena (Amsterdam) Netherlands

31 3788771 22/06/2021 Group D Group Stage Croatia Scotland 3 1 Hampden Park Scotland

32 3788772 22/06/2021 Group D Group Stage Czech Republic England 0 1 Wembley Stadium England

33 3788774 23/06/2021 Group F Group Stage Germany Hungary 2 2 Allianz Arena Germany

34 3788773 23/06/2021 Group F Group Stage Portugal France 2 2 Puskás Aréna Hungary

35 3788775 23/06/2021 Group E Group Stage Slovakia Spain 0 5 Estadio de La Cartuja Spain

36 3788776 23/06/2021 Group E Group Stage Sweden Poland 3 2 Saint-Petersburg Stadium Russia

37 3794685 26/06/2021 Round of 16 Italy Austria 2 1 Wembley Stadium England

38 3794689 26/06/2021 Round of 16 Wales Denmark 0 4 Johan Cruijff Arena (Amsterdam) Netherlands

39 3794687 27/06/2021 Round of 16 Belgium Portugal 1 0 Estadio de La Cartuja Spain

40 3794690 27/06/2021 Round of 16 Netherlands Czech Republic 0 2 Puskás Aréna Hungary

41 3794686 28/06/2021 Round of 16 Croatia Spain 3 5 Parken Denmark

42 3794691 28/06/2021 Round of 16 France Switzerland 3 3 Arena Naţională Romania

43 3794688 29/06/2021 Round of 16 England Germany 2 0 Wembley Stadium England

44 3794692 29/06/2021 Round of 16 Sweden Ukraine 1 2 Hampden Park Scotland

45 3795107 02/07/2021 Quarter-finals Belgium Italy 1 2 Allianz Arena Germany

46 3795108 02/07/2021 Quarter-finals Switzerland Spain 1 1 Saint-Petersburg Stadium Russia

47 3795187 03/07/2021 Quarter-finals Ukraine England 0 4 Stadio Olimpico   Italy

48 3795109 03/07/2021 Quarter-finals Czech Republic Denmark 1 2 Bakı Olimpiya Stadionu Azerbaijan

49 3795220 06/07/2021 Semi-finals Italy Spain 1 1 Wembley Stadium England

50 3795221 07/07/2021 Semi-finals England Denmark 2 1 Wembley Stadium England

51 3795506 11/07/2021 Final Italy England 1 1 Wembley Stadium England



81 

 

Appendix B – Passing sequences’ distribution 

 

(continues on the next page) 

# id match_id team_name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

1 3788741_Italy 3788741 Italy 14 11 6 9 7 6 5 4 1 1 3 4 2 1 1 1 2 1 1 1 1 1

2 3788741_Turkey 3788741 Turkey 29 21 8 8 3 3 1 1 3 1 4 1 1 1

3 3788742_Denmark 3788742 Denmark 16 15 8 4 3 8 5 6 1 2 3 2 3 1 1 2 2 1 1 1 1 1

4 3788742_Finland 3788742 Finland 17 14 9 2 5 2 2 2 2 2

5 3788743_Belgium 3788743 Belgium 28 8 6 7 4 5 4 1 4 4 2 4 5 1 1 1 2 1 1 1 1 1 1 1

6 3788743_Russia 3788743 Russia 20 14 7 5 7 4 2 1 2 1 2 1 1 2

7 3788744_Switzerland 3788744 Switzerland 15 5 11 6 7 2 6 4 3 5 1 2 2 2 1 1 2 1

8 3788744_Wales 3788744 Wales 18 8 13 8 5 2 3 2 3 1 2

9 3788745_Croatia 3788745 Croatia 9 16 5 6 7 2 1 2 3 1 2 2 1 1 3 3 1 1

10 3788745_England 3788745 England 22 11 6 2 2 1 3 2 1 2 1 1 2 2 1 1 1 1

11 3788746_Netherlands 3788746 Netherlands 20 6 4 5 4 6 5 6 2 3 3 3 2 1 2 3 1 3 1 1 1 1

12 3788746_Ukraine 3788746 Ukraine 24 13 7 5 3 4 1 4 1 3 2 2 1 1 2 1 1

13 3788747_Austria 3788747 Austria 21 15 7 6 7 6 9 7 1 1 7 1 3 1 2

14 3788747_North Macedonia 3788747 North Macedonia 25 23 13 3 8 4 3 1 3 1

15 3788748_Czech Republic 3788748 Czech Republic 40 24 10 3 7 1 1 3 1 2 1 1 1

16 3788748_Scotland 3788748 Scotland 27 14 18 5 2 3 6 7 4 2 1 2 1 1

17 3788749_Poland 3788749 Poland 21 10 16 6 3 3 4 3 3 3 3 2 4 2 1 1 1 1

18 3788749_Slovakia 3788749 Slovakia 26 10 5 6 1 4 4 4 2 1 1 1 2 1 1 1 1 1

19 3788750_Spain 3788750 Spain 5 4 6 2 5 4 4 4 6 3 1 3 2 3 2 2 1 1 2 1 1 2 1 1 1 1 1 1 2

20 3788750_Sweden 3788750 Sweden 21 12 6 5 1 1

21 3788751_France 3788751 France 24 12 8 5 3 2 4 2 4 1 2 1 1 1 1 1

22 3788751_Germany 3788751 Germany 6 8 9 2 6 1 5 5 7 6 3 2 2 1 1 2 2 3 2 2 1

23 3788752_Hungary 3788752 Hungary 25 17 12 11 7 7 1 1 1

24 3788752_Portugal 3788752 Portugal 38 10 11 4 8 6 3 6 2 2 4 2 3 1 2 1 1 1 1 1 2

25 3788753_Finland 3788753 Finland 28 15 6 10 7 6 5 3 3 2 1 1

26 3788753_Russia 3788753 Russia 35 14 9 6 7 8 4 4 5 3 1 1 2 1 1 1 1 1

27 3788754_Italy 3788754 Italy 16 17 5 3 7 3 6 2 3 1 2 2 2 1 2 1 1 1 1 1 1

28 3788754_Switzerland 3788754 Switzerland 15 8 10 9 4 3 1 5 6 6 3 1 3 1 2 1 1 1

29 3788755_Turkey 3788755 Turkey 23 11 7 4 9 1 2 5 4 2 4 2 3 1 1 1 1

30 3788755_Wales 3788755 Wales 31 10 12 4 7 3 5 2 1 2 1

31 3788756_Austria 3788756 Austria 19 13 8 5 6 11 7 5 3 2 2 2 1 1 2

32 3788756_Netherlands 3788756 Netherlands 14 14 13 3 6 4 3 4 1 3 2 1 4 1 3 1

33 3788757_Belgium 3788757 Belgium 20 10 7 10 7 3 3 6 2 2 3 2 2 2 2 1 1 1 2

34 3788757_Denmark 3788757 Denmark 29 15 11 5 6 3 4 2 5 3 3 1 1 3 1 1 1

35 3788758_North Macedonia 3788758 North Macedonia 35 14 8 3 5 7 3 2 4 2 1 1 2 2 1

36 3788758_Ukraine 3788758 Ukraine 17 10 7 5 6 3 5 3 5 1 1 1 1 1 1 1 1 1 1

37 3788759_England 3788759 England 18 6 8 2 5 2 1 3 2 1 4 3 1 1 3 2 2 1 1 1 1

38 3788759_Scotland 3788759 Scotland 16 13 7 4 2 3 1 4 1 4 1 1 2 1

39 3788760_Croatia 3788760 Croatia 19 12 9 8 7 4 8 4 1 1 1 1 3 2 1

40 3788760_Czech Republic 3788760 Czech Republic 21 14 12 6 3 4 3 1 1 2 2 1 1 1 2 1 1 1

41 3788761_Slovakia 3788761 Slovakia 37 9 6 6 3 3 3 1 3 4 1 2 1 1 1 1 3 1 1 1 2 1 1

42 3788761_Sweden 3788761 Sweden 9 9 5 5 1 5 3 3 2 2 2 1 2 1 1 1 1 1

43 3788762_Poland 3788762 Poland 28 14 13 2 3 2 1 1

44 3788762_Spain 3788762 Spain 18 10 12 5 3 8 5 4 2 2 6 1 3 3 2 2 2 3 2 1

45 3788763_France 3788763 France 31 6 4 4 6 7 4 2 3 4 6 3 1 2 5 3 1 1 1 1

46 3788763_Hungary 3788763 Hungary 13 15 6 6 2 5 4 4 2 1 1 1 1 1 1

47 3788764_Germany 3788764 Germany 12 5 4 8 4 4 4 3 1 3 3 1 2 3 2 1 2 1 1 1 1

48 3788764_Portugal 3788764 Portugal 24 12 10 7 7 6 6 4 2 2 3 1 1

49 3788765_Switzerland 3788765 Switzerland 25 17 10 8 3 3 9 4 2 2 2 1 1 1 1 1 2

50 3788765_Turkey 3788765 Turkey 36 15 7 6 3 7 1 3 2 4 2 3 1 2 1 1 1 1

51 3788766_Italy 3788766 Italy 14 3 9 4 6 3 6 2 5 2 1 3 1 1 1 2 1 1 1 1 1 1 1

52 3788766_Wales 3788766 Wales 33 14 7 1 3 1 2 3 1 1 1 1
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# id match_id team_name 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

53 3788767_Austria 3788767 Austria 23 15 12 11 7 3 3 8 1 2 2 3 2

54 3788767_Ukraine 3788767 Ukraine 35 17 12 4 6 5 5 5 4 1 1 3 2 1

55 3788768_Belgium 3788768 Belgium 15 7 6 8 3 6 3 1 3 3 1 3 2 3 4 3 3 3 1 1

56 3788768_Finland 3788768 Finland 21 7 6 8 2 2 1 1 4 2 1 1 2 1 1 1 2 2

57 3788769_Denmark 3788769 Denmark 18 24 6 7 4 5 2 3 2 1 2 2 2 3 3 1 1

58 3788769_Russia 3788769 Russia 26 21 9 5 6 5 1 1

59 3788770_Netherlands 3788770 Netherlands 18 17 5 8 6 4 1 4 2 1 2 1 2 4 1 2 1 2 1 1

60 3788770_North Macedonia 3788770 North Macedonia 29 11 12 8 7 1 3 3 2 2 2 2 1 1 1

61 3788771_Croatia 3788771 Croatia 24 10 9 7 5 3 1 2 4 1 5 6 2 3 1 4 1 1 2 1

62 3788771_Scotland 3788771 Scotland 21 17 3 2 5 2 2 3 6 1 1 2 1

63 3788772_Czech Republic 3788772 Czech Republic 13 10 11 3 7 2 3 5 2 3 1 1 1 1 1

64 3788772_England 3788772 England 16 3 3 6 7 3 1 2 2 4 3 3 2 1 2 3 1 1 1

65 3788773_France 3788773 France 17 5 1 3 1 6 2 4 1 3 4 4 3 2 1 2 1 1 2 1 1

66 3788773_Portugal 3788773 Portugal 11 6 4 3 1 6 2 1 7 5 1 1 1 3 1 2 2 1 1 2

67 3788774_Germany 3788774 Germany 18 5 9 11 5 3 4 4 4 1 2 4 1 2 3 1 1 1 1 1 1 1 1 1 1

68 3788774_Hungary 3788774 Hungary 39 14 5 8 2 3 1 1 1 1

69 3788775_Slovakia 3788775 Slovakia 26 10 5 8 7 6 2 1 1 1 2 1 1 1

70 3788775_Spain 3788775 Spain 14 4 9 10 6 5 3 5 4 3 3 3 1 1 3 1 2 1 1 1 1 1

71 3788776_Poland 3788776 Poland 18 12 9 13 8 7 9 4 2 1 1 2 1 2

72 3788776_Sweden 3788776 Sweden 28 18 8 4 2 1 2 3

73 3794685_Austria 3794685 Austria 26 12 12 12 4 3 4 2 3 1 1 1 1 1 1 2 2

74 3794685_Italy 3794685 Italy 16 18 9 7 4 6 5 3 3 5 1 3 2 1 2 1 1 1

75 3794686_Croatia 3794686 Croatia 28 10 8 9 8 6 3 1 1 3 2

76 3794686_Spain 3794686 Spain 26 8 7 6 4 4 5 4 6 4 6 1 2 1 4 1 1 1 1 1

77 3794687_Belgium 3794687 Belgium 22 12 4 4 3 3 2 3 3 3 2 2 1 1 1 1 1 1

78 3794687_Portugal 3794687 Portugal 17 8 7 10 2 4 1 4 2 2 1 4 1 3 3 1 1 3 1 1 1

79 3794688_England 3794688 England 44 12 5 2 7 2 2 3 5 3 2 1 4 1 1 1

80 3794688_Germany 3794688 Germany 7 8 16 8 4 5 4 2 2 2 1 2 2 1 3 1 2 1 1

81 3794689_Denmark 3794689 Denmark 18 11 14 5 1 4 1 2 2 2 3 1 1 1 1 2 1 1

82 3794689_Wales 3794689 Wales 18 10 4 5 2 3 7 1 2 2 3 2 1 2 1 1

83 3794690_Czech Republic 3794690 Czech Republic 22 14 3 4 8 3 4 3 3 1 2 1 2 1

84 3794690_Netherlands 3794690 Netherlands 19 19 10 4 8 4 2 3 2 3 2 2

85 3794691_France 3794691 France 8 11 7 2 3 4 4 2 2 1 5 2 2 1 2 2 1 3 1

86 3794691_Switzerland 3794691 Switzerland 30 10 3 5 1 4 6 2 1 3 2 2 2 1 1 2 1

87 3794692_Sweden 3794692 Sweden 17 8 5 4 3 5 6 4 1 2 1 2 2 2 2 1 2 1 1 1 1

88 3794692_Ukraine 3794692 Ukraine 14 11 5 2 2 1 1 3 3 2 1 1 3 1 1 1 2 1 1 1 1 1 1

89 3795107_Belgium 3795107 Belgium 23 12 8 8 4 2 3 3 3 3 4 1 2 1 1

90 3795107_Italy 3795107 Italy 14 8 6 6 4 4 4 3 2 2 2 2 3 1 1 1 1 1 1 1 1

91 3795108_Spain 3795108 Spain 13 5 4 9 7 6 2 8 4 4 1 1 2 1 6 1 1 1 1 1 1 1

92 3795108_Switzerland 3795108 Switzerland 28 18 9 8 6 2 4 1 2 1 1

93 3795109_Czech Republic 3795109 Czech Republic 26 8 8 5 7 6 1 4 3 4 3 2 1 1 1 1

94 3795109_Denmark 3795109 Denmark 25 13 11 5 4 3 4 1 2 1 1 1 1 1 2

95 3795187_England 3795187 England 13 6 5 3 5 1 3 3 1 1 2 5 1 1 2 1 1 1 1 1 1 1 1

96 3795187_Ukraine 3795187 Ukraine 6 2 2 7 5 2 3 1 1 1 6 1 2 4 1 1 1 1 1 2 1 1

97 3795220_Italy 3795220 Italy 32 19 5 9 6 4 2 4 3 2

98 3795220_Spain 3795220 Spain 56 15 6 7 6 6 2 4 1 1 3 3 1 1 2 4 1 3 1 1 1

99 3795221_Denmark 3795221 Denmark 25 14 7 2 4 3 2 1 1 1 3 1 1 2 1

100 3795221_England 3795221 England 21 6 9 3 10 6 1 1 3 1 2 2 2 2 1 1 1 1 1

101 3795506_England 3795506 England 27 10 12 6 6 1 3 2 2 1 2 1

102 3795506_Italy 3795506 Italy 11 9 5 7 4 4 1 3 1 3 4 1 2 3 1 1 2 2 1 1 1 1 1 1 1
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Appendix C – Fitting the passing sequences to the power-law distribution (90 min11) 

 

(continues on the next page) 

 
11 Note that the variable result is the match result after the regular time (90 min) 

# id match_id match_date group competition_stage_name team_name opponent result goals scored nu_passes nu_passes_completed per_passes_completed a xmin a(opt) xmin(opt) p-value

1 3788741_Italy 3788741 2021-06-11 Group A Group Stage Italy Turkey victory 3 669 577 86% 1.502 1 2.169 4 0.062

2 3788741_Turkey 3788741 2021-06-11 Group A Group Stage Turkey Italy defeat 0 390 307 79% 1.740 1 2.120 2 0.116

3 3788742_Denmark 3788742 2021-06-12 Group B Group Stage Denmark Finland defeat 0 678 567 84% 1.519 1 5.192 16 0.000

4 3788742_Finland 3788742 2021-06-12 Group B Group Stage Finland Denmark victory 1 307 205 67% 1.721 1 2.987 5 0.661

5 3788743_Belgium 3788743 2021-06-12 Group B Group Stage Belgium Russia victory 3 763 675 88% 1.533 1 3.352 12 0.250

6 3788743_Russia 3788743 2021-06-12 Group B Group Stage Russia Belgium defeat 0 401 292 73% 1.660 1 1.985 2 0.008

7 3788744_Switzerland 3788744 2021-06-12 Group A Group Stage Switzerland Wales draw 1 563 477 85% 1.516 1 3.407 9 0.624

8 3788744_Wales 3788744 2021-06-12 Group A Group Stage Wales Switzerland draw 1 329 257 78% 1.660 1 2.524 3 0.625

9 3788745_Croatia 3788745 2021-06-13 Group D Group Stage Croatia England defeat 0 483 405 84% 1.527 1 1.848 2 0.000

10 3788745_England 3788745 2021-06-13 Group D Group Stage England Croatia victory 1 470 391 83% 1.617 1 1.617 1 0.044

11 3788746_Netherlands 3788746 2021-06-13 Group C Group Stage Netherlands Ukraine victory 3 705 626 89% 1.492 1 5.000 16 0.000

12 3788746_Ukraine 3788746 2021-06-13 Group C Group Stage Ukraine Netherlands defeat 2 449 367 82% 1.637 1 3.753 10 0.590

13 3788747_Austria 3788747 2021-06-13 Group C Group Stage Austria North Macedonia victory 3 605 500 83% 1.562 1 3.027 6 0.029

14 3788747_North Macedonia 3788747 2021-06-13 Group C Group Stage North Macedonia Austria defeat 1 351 268 76% 1.752 1 2.290 2 0.052

15 3788748_Czech Republic 3788748 2021-06-14 Group D Group Stage Czech Republic Scotland victory 2 386 270 70% 1.864 1 2.307 2 0.091

16 3788748_Scotland 3788748 2021-06-14 Group D Group Stage Scotland Czech Republic defeat 0 503 386 77% 1.654 1 3.990 7 0.538

17 3788749_Poland 3788749 2021-06-14 Group E Group Stage Poland Slovakia defeat 1 590 491 83% 1.566 1 2.765 7 0.053

18 3788749_Slovakia 3788749 2021-06-14 Group E Group Stage Slovakia Poland victory 2 432 359 83% 1.644 1 2.679 6 0.599

19 3788750_Spain 3788750 2021-06-14 Group E Group Stage Spain Sweden draw 0 946 841 89% 1.387 1 2.859 12 0.393

20 3788750_Sweden 3788750 2021-06-14 Group E Group Stage Sweden Spain draw 0 173 94 54% 2.025 1 6.315 4 0.000

21 3788751_France 3788751 2021-06-15 Group F Group Stage France Germany victory 1 463 375 81% 1.644 1 1.857 2 0.079

22 3788751_Germany 3788751 2021-06-15 Group F Group Stage Germany France defeat 0 733 644 88% 1.432 1 2.999 8 0.149

23 3788752_Hungary 3788752 2021-06-15 Group F Group Stage Hungary Portugal defeat 0 324 242 75% 1.758 1 6.692 6 0.000

24 3788752_Portugal 3788752 2021-06-15 Group F Group Stage Portugal Hungary victory 3 713 627 88% 1.602 1 3.000 10 0.198

25 3788753_Finland 3788753 2021-06-16 Group B Group Stage Finland Russia defeat 0 423 344 81% 1.681 1 3.368 6 0.687

26 3788753_Russia 3788753 2021-06-16 Group B Group Stage Russia Finland victory 1 615 511 83% 1.637 1 2.821 6 0.680

27 3788754_Italy 3788754 2021-06-16 Group A Group Stage Italy Switzerland victory 3 554 475 86% 1.548 1 3.434 11 0.816

28 3788754_Switzerland 3788754 2021-06-16 Group A Group Stage Switzerland Italy defeat 0 563 483 86% 1.520 1 4.211 9 0.406

29 3788755_Turkey 3788755 2021-06-16 Group A Group Stage Turkey Wales defeat 0 559 467 84% 1.581 1 3.203 8 0.860

30 3788755_Wales 3788755 2021-06-16 Group A Group Stage Wales Turkey victory 2 344 256 74% 1.765 1 3.402 5 0.327

31 3788756_Austria 3788756 2021-06-17 Group C Group Stage Austria Netherlands defeat 0 542 448 83% 1.568 1 3.395 6 0.983

32 3788756_Netherlands 3788756 2021-06-17 Group C Group Stage Netherlands Austria victory 2 500 405 81% 1.562 1 7.918 13 0.000

33 3788757_Belgium 3788757 2021-06-17 Group B Group Stage Belgium Denmark victory 2 602 517 86% 1.543 1 2.735 7 0.081

34 3788757_Denmark 3788757 2021-06-17 Group B Group Stage Denmark Belgium defeat 1 519 437 84% 1.635 1 4.043 9 0.357

35 3788758_North Macedonia 3788758 2021-06-17 Group C Group Stage North Macedonia Ukraine defeat 1 440 365 83% 1.705 1 1.705 1 0.001

36 3788758_Ukraine 3788758 2021-06-17 Group C Group Stage Ukraine North Macedonia victory 2 485 409 84% 1.562 1 4.389 15 0.001

37 3788759_England 3788759 2021-06-18 Group D Group Stage England Scotland draw 0 580 513 88% 1.518 1 3.359 11 0.854

38 3788759_Scotland 3788759 2021-06-18 Group D Group Stage Scotland England draw 0 383 309 81% 1.619 1 1.908 2 0.118

39 3788760_Croatia 3788760 2021-06-18 Group D Group Stage Croatia Czech Republic draw 1 465 378 81% 1.596 1 3.767 7 0.767

40 3788760_Czech Republic 3788760 2021-06-18 Group D Group Stage Czech Republic Croatia draw 1 469 368 78% 1.631 1 2.155 3 0.139

41 3788761_Slovakia 3788761 2021-06-18 Group E Group Stage Slovakia Sweden defeat 0 631 556 88% 1.620 1 1.620 1 0.002

42 3788761_Sweden 3788761 2021-06-18 Group E Group Stage Sweden Slovakia victory 1 464 383 83% 1.507 1 2.488 6 0.348

43 3788762_Poland 3788762 2021-06-19 Group E Group Stage Poland Spain draw 1 242 146 60% 1.953 1 3.543 3 0.539

44 3788762_Spain 3788762 2021-06-19 Group E Group Stage Spain Poland draw 1 754 658 87% 1.501 1 3.720 11 0.655

45 3788763_France 3788763 2021-06-19 Group F Group Stage France Hungary draw 1 681 605 89% 1.545 1 7.231 15 0.000

46 3788763_Hungary 3788763 2021-06-19 Group F Group Stage Hungary France draw 1 369 293 79% 1.603 1 3.172 6 0.718

47 3788764_Germany 3788764 2021-06-19 Group F Group Stage Germany Portugal victory 4 596 535 90% 1.471 1 5.398 19 0.000

48 3788764_Portugal 3788764 2021-06-19 Group F Group Stage Portugal Germany defeat 2 442 373 84% 1.631 1 3.258 6 0.467

49 3788765_Switzerland 3788765 2021-06-20 Group A Group Stage Switzerland Turkey victory 3 516 441 85% 1.622 1 3.355 7 0.864

50 3788765_Turkey 3788765 2021-06-20 Group A Group Stage Turkey Switzerland defeat 1 510 439 86% 1.671 1 3.976 10 0.514

51 3788766_Italy 3788766 2021-06-20 Group A Group Stage Italy Wales victory 1 629 574 91% 1.467 1 2.540 7 0.050

52 3788766_Wales 3788766 2021-06-20 Group A Group Stage Wales Italy defeat 0 274 211 77% 1.881 1 1.881 1 0.046
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# id match_id match_date group competition_stage_name team_name opponent result goals scored nu_passes nu_passes_completed per_passes_completed a xmin a(opt) xmin(opt) p-value

53 3788767_Austria 3788767 2021-06-21 Group C Group Stage Austria Ukraine victory 1 507 402 79% 1.624 1 2.270 3 0.007

54 3788767_Ukraine 3788767 2021-06-21 Group C Group Stage Ukraine Austria defeat 0 499 402 81% 1.691 1 3.616 7 0.546

55 3788768_Belgium 3788768 2021-06-21 Group B Group Stage Belgium Finland victory 2 714 639 89% 1.473 1 5.270 15 0.000

56 3788768_Finland 3788768 2021-06-21 Group B Group Stage Finland Belgium defeat 0 460 379 82% 1.594 1 2.696 8 0.080

57 3788769_Denmark 3788769 2021-06-21 Group B Group Stage Denmark Russia victory 4 542 444 82% 1.595 1 1.938 2 0.016

58 3788769_Russia 3788769 2021-06-21 Group B Group Stage Russia Denmark defeat 1 289 197 68% 1.838 1 2.471 2 0.177

59 3788770_Netherlands 3788770 2021-06-21 Group C Group Stage Netherlands North Macedonia victory 3 619 527 85% 1.550 1 4.101 14 0.092

60 3788770_North Macedonia 3788770 2021-06-21 Group C Group Stage North Macedonia Netherlands defeat 0 439 360 82% 1.679 1 2.269 3 0.332

61 3788771_Croatia 3788771 2021-06-22 Group D Group Stage Croatia Scotland victory 3 671 594 89% 1.537 1 4.276 11 0.174

62 3788771_Scotland 3788771 2021-06-22 Group D Group Stage Scotland Croatia defeat 1 353 264 75% 1.685 1 6.054 9 0.000

63 3788772_Czech Republic 3788772 2021-06-22 Group D Group Stage Czech Republic England defeat 0 431 335 78% 1.571 1 4.277 9 0.197

64 3788772_England 3788772 2021-06-22 Group D Group Stage England Czech Republic victory 1 554 462 83% 1.500 1 3.556 10 0.780

65 3788773_France 3788773 2021-06-23 Group F Group Stage France Portugal draw 2 617 570 92% 1.474 1 3.092 11 0.190

66 3788773_Portugal 3788773 2021-06-23 Group F Group Stage Portugal France draw 2 556 505 91% 1.462 1 6.088 18 0.000

67 3788774_Germany 3788774 2021-06-23 Group F Group Stage Germany Hungary draw 2 783 698 89% 1.486 1 3.378 13 0.939

68 3788774_Hungary 3788774 2021-06-23 Group F Group Stage Hungary Germany draw 2 255 185 73% 1.977 1 1.977 1 0.018

69 3788775_Slovakia 3788775 2021-06-23 Group E Group Stage Slovakia Spain defeat 0 368 293 80% 1.690 1 2.635 4 0.585

70 3788775_Spain 3788775 2021-06-23 Group E Group Stage Spain Slovakia victory 5 702 631 90% 1.476 1 2.734 8 0.260

71 3788776_Poland 3788776 2021-06-23 Group E Group Stage Poland Sweden defeat 2 557 425 76% 1.577 1 3.314 6 0.453

72 3788776_Sweden 3788776 2021-06-23 Group E Group Stage Sweden Poland victory 3 278 163 59% 1.922 1 2.534 2 0.430

73 3794685_Austria 3794685 2021-06-26 Round of 16 Austria Italy draw 1 497 409 82% 1.636 1 2.212 3 0.124

74 3794685_Italy 3794685 2021-06-26 Round of 16 Italy Austria draw 2 604 530 88% 1.547 1 2.589 6 0.359

75 3794686_Croatia 3794686 2021-06-28 Round of 16 Croatia Spain draw 3 356 284 80% 1.711 1 3.445 5 0.924

76 3794686_Spain 3794686 2021-06-28 Round of 16 Spain Croatia draw 5 661 581 88% 1.541 1 3.615 9 0.872

77 3794687_Belgium 3794687 2021-06-27 Round of 16 Belgium Portugal victory 1 471 394 84% 1.608 1 2.942 8 0.817

78 3794687_Portugal 3794687 2021-06-27 Round of 16 Portugal Belgium defeat 0 630 542 86% 1.511 1 5.612 15 0.000

79 3794688_England 3794688 2021-06-29 Round of 16 England Germany victory 2 476 395 83% 1.732 1 4.148 9 0.006

80 3794688_Germany 3794688 2021-06-29 Round of 16 Germany England defeat 0 558 470 84% 1.496 1 2.125 3 0.078

81 3794689_Denmark 3794689 2021-06-26 Round of 16 Denmark Wales victory 4 465 378 81% 1.600 1 2.125 3 0.050

82 3794689_Wales 3794689 2021-06-26 Round of 16 Wales Denmark defeat 0 420 343 82% 1.585 1 4.597 11 0.000

83 3794690_Czech Republic 3794690 2021-06-27 Round of 16 Czech Republic Netherlands victory 2 415 313 75% 1.648 1 3.341 7 0.608

84 3794690_Netherlands 3794690 2021-06-27 Round of 16 Netherlands Czech Republic defeat 0 440 323 73% 1.652 1 2.919 5 0.454

85 3794691_France 3794691 2021-06-28 Round of 16 France Switzerland draw 3 535 465 87% 1.479 1 8.689 17 0.000

86 3794691_Switzerland 3794691 2021-06-28 Round of 16 Switzerland France draw 3 435 369 85% 1.654 1 3.939 10 0.267

87 3794692_Sweden 3794692 2021-06-29 Round of 16 Sweden Ukraine draw 1 613 522 85% 1.502 1 4.337 14 0.002

88 3794692_Ukraine 3794692 2021-06-29 Round of 16 Ukraine Sweden draw 2 563 487 87% 1.511 1 4.395 19 0.020

89 3795107_Belgium 3795107 2021-07-02 Quarter-finals Belgium Italy defeat 1 482 395 82% 1.616 1 2.058 3 0.013

90 3795107_Italy 3795107 2021-07-02 Quarter-finals Italy Belgium victory 2 546 486 89% 1.509 1 2.366 6 0.151

91 3795108_Spain 3795108 2021-07-02 Quarter-finals Spain Switzerland draw 1 736 655 89% 1.462 1 2.866 8 0.354

92 3795108_Switzerland 3795108 2021-07-02 Quarter-finals Switzerland Spain draw 1 333 247 74% 1.778 1 3.061 4 0.464

93 3795109_Czech Republic 3795109 2021-07-03 Quarter-finals Czech Republic Denmark defeat 1 508 393 77% 1.614 1 4.076 9 0.157

94 3795109_Denmark 3795109 2021-07-03 Quarter-finals Denmark Czech Republic victory 2 398 307 77% 1.692 1 2.249 3 0.269

95 3795187_England 3795187 2021-07-03 Quarter-finals England Ukraine victory 4 648 589 91% 1.463 1 4.103 21 0.270

96 3795187_Ukraine 3795187 2021-07-03 Quarter-finals Ukraine England defeat 0 600 540 90% 1.410 1 3.059 11 0.163

97 3795220_Italy 3795220 2021-07-06 Semi-finals Italy Spain draw 1 358 273 76% 1.773 1 2.980 4 0.231

98 3795220_Spain 3795220 2021-07-06 Semi-finals Spain Italy draw 1 732 648 89% 1.686 1 1.686 1 0.002

99 3795221_Denmark 3795221 2021-07-07 Semi-finals Denmark England draw 1 410 329 80% 1.687 1 1.900 2 0.061

100 3795221_England 3795221 2021-07-07 Semi-finals England Denmark draw 2 563 482 86% 1.559 1 2.384 5 0.250

101 3795506_England 3795506 2021-07-11 Final England Italy draw 1 344 261 76% 1.739 1 3.463 7 0.707

102 3795506_Italy 3795506 2021-07-11 Final Italy England draw 1 703 633 90% 1.462 1 3.158 13 0.832
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Appendix D– Homoscedasticity plots 

 

Figure E1: Homoscedasticity plot of nu 
passes vs nu passes completed 

Figure E2: Homoscedasticity plot of 
parameter 𝛼 vs nu passes completed 

Figure E3: Homoscedasticity plot of 
parameter 𝛼 vs nu passes 

Figure E4: Homoscedasticity plot of 
parameter 𝛼 vs density 

  
Figure E5: Homoscedasticity plot of 
parameter 𝛼 vs average clustering coefficient 

Figure E6: Homoscedasticity plot of nu 
passes vs density 

Figure E7: Homoscedasticity plot of nu 
passes vs average clustering coefficient 

Figure E8: Homoscedasticity plot of nu 
passes completed vs density 

 

    

Figure E9: Homoscedasticity plot of nu 
passes completed vs average clustering 

coefficient 

Figure E10: Homoscedasticity plot of % 
passes completed vs density 

Figure E11: Homoscedasticity plot of % 
passes completed vs average clustering 

coefficient 
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Appendix E – Descriptive analysis of the different-sized zone networks 

 

 

id results_zone_all_3_3 results_zone_all_3_5 results_zone_all_4_3 results_zone_all_4_5 results_zone_all_6_3 results_zone_all_6_5

type_analysis zone zone zone zone zone zone

play_pattern all all all all all all

nu_sectors 3 3 4 4 6 6

nu_corridors 3 5 3 5 3 5

nu_zones 9 15 12 20 18 30

nu_nodes_mean 9 15 12 20 18 30

nu_nodes_median 9 15 12 20 18 30

nu_nodes_max 9 15 12 20 18 30

nu_nodes_min 9 15 12 20 18 30

nu_nodes_q1 9 15 12 20 18 30

nu_nodes_q3 9 15 12 20 18 30

nu_nodes_iqr 0 0 0 0 0 0

nu_nodes_ub 9 15 12 20 18 30

nu_nodes_lb 9 15 12 20 18 30

nu_edges_mean 50.35294118 100.7352941 70.04901961 131.3921569 108.6568627 181.6960784

nu_edges_median 50 102 71 134.5 110 185.5

nu_edges_max 60 121 82 162 133 238

nu_edges_min 34 55 43 60 60 76

nu_edges_q1 49 95.25 67 124.25 104 167.5

nu_edges_q3 54 108.75 74 143 117 204

nu_edges_iqr 5 13.5 7 18.75 13 36.5

nu_edges_ub 61.5 129 84.5 171.125 136.5 258.75

nu_edges_lb 41.5 75 56.5 96.125 84.5 112.75

nu_isolates_mean 0 0 0 0.019607843 0.039215686 0.235294118

nu_isolates_median 0 0 0 0 0 0

nu_isolates_max 0 0 0 1 2 3

nu_isolates_min 0 0 0 0 0 0

nu_isolates_q1 0 0 0 0 0 0

nu_isolates_q3 0 0 0 0 0 0

nu_isolates_iqr 0 0 0 0 0 0

nu_isolates_ub 0 0 0 0 0 0

nu_isolates_lb 0 0 0 0 0 0

density_mean 0.699346405 0.479691877 0.530674391 0.345768834 0.355087787 0.208846067

density_median 0.694444444 0.485714286 0.537878788 0.353947368 0.359477124 0.213218391

density_max 0.833333333 0.576190476 0.621212121 0.426315789 0.434640523 0.273563218

density_min 0.472222222 0.261904762 0.325757576 0.157894737 0.196078431 0.087356322

density_q1 0.680555556 0.453571429 0.507575758 0.326973684 0.339869281 0.192528736

density_q3 0.75 0.517857143 0.560606061 0.376315789 0.382352941 0.234482759

density_iqr 0.069444444 0.064285714 0.053030303 0.049342105 0.04248366 0.041954023

density_ub 0.854166667 0.614285714 0.640151515 0.450328947 0.446078431 0.297413793

density_lb 0.576388889 0.357142857 0.428030303 0.252960526 0.276143791 0.129597701

nu_triangles_mean 28.79411765 84.25490196 44.79411765 112.9019608 79.32352941 152.9019608

nu_triangles_median 28.5 83.5 45 114 80 151.5

nu_triangles_max 45 128 73 177 131 250

nu_triangles_min 10 20 16 15 30 19

nu_triangles_q1 24 71.25 38 98.25 68.25 122.75

nu_triangles_q3 34 95.75 51 132.75 91 182

nu_triangles_iqr 10 24.5 13 34.5 22.75 59.25

nu_triangles_ub 49 132.5 70.5 184.5 125.125 270.875

nu_triangles_lb 9 34.5 18.5 46.5 34.125 33.875

nu_cc_mean 1 1 1 1.039215686 1.049019608 1.284313725

nu_cc_median 1 1 1 1 1 1

nu_cc_max 1 1 1 2 3 4

nu_cc_min 1 1 1 1 1 1

nu_cc_q1 1 1 1 1 1 1

nu_cc_q3 1 1 1 1 1 1

nu_cc_iqr 0 0 0 0 0 0

nu_cc_ub 1 1 1 1 1 1

nu_cc_lb 1 1 1 1 1 1

avg_clust_coef_mean 0.682988508 0.563488326 0.60546674 0.490997308 0.500021057 0.382706615

avg_clust_coef_median 0.698125568 0.577149924 0.612357925 0.502061945 0.508697536 0.393920414

avg_clust_coef_max 0.803127889 0.706603732 0.745203913 0.629693919 0.637381206 0.553751526

avg_clust_coef_min 0.412798856 0.28245381 0.386135037 0.15836335 0.285576268 0.086072

avg_clust_coef_q1 0.650328638 0.533164613 0.55795364 0.457131935 0.453184993 0.34043304

avg_clust_coef_q3 0.734614769 0.611148055 0.661108835 0.54070218 0.54833246 0.437086323

avg_clust_coef_iqr 0.084286132 0.077983442 0.103155195 0.083570245 0.095147467 0.096653283

avg_clust_coef_ub 0.861043967 0.728123218 0.815841629 0.666057548 0.691053661 0.582066247

avg_clust_coef_lb 0.52389944 0.41618945 0.403220847 0.331776567 0.310463792 0.195453116
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Appendix F – Zone 6x5 (90 min12) 

 

 

(continues on the next page) 

 
12 Note that the variable result is the match result after the regular time (90 min) 

# id match_id match_date group competition_stage_name team_name opponent result goals_scored nu_nodes nu_edges nu_isolates density nu_triangles nu_connected_components average_clustering_coefficient

1 3788741_Italy 3788741 2021-06-11 Group A Group Stage Italy Turkey victory 3 30 209 0 0.240229885 179 1 0.419054769

2 3788741_Turkey 3788741 2021-06-11 Group A Group Stage Turkey Italy defeat 0 30 154 0 0.177011494 122 1 0.290475416

3 3788742_Denmark 3788742 2021-06-12 Group B Group Stage Denmark Finland defeat 0 30 196 0 0.225287356 142 1 0.371506042

4 3788742_Finland 3788742 2021-06-12 Group B Group Stage Finland Denmark victory 1 30 124 3 0.142528736 69 4 0.306004408

5 3788743_Belgium 3788743 2021-06-12 Group B Group Stage Belgium Russia victory 3 30 220 0 0.252873563 235 1 0.48030078

6 3788743_Russia 3788743 2021-06-12 Group B Group Stage Russia Belgium defeat 0 30 160 0 0.183908046 105 1 0.305886213

7 3788744_Switzerland 3788744 2021-06-12 Group A Group Stage Switzerland Wales draw 1 30 194 0 0.222988506 159 1 0.432899359

8 3788744_Wales 3788744 2021-06-12 Group A Group Stage Wales Switzerland draw 1 30 152 0 0.174712644 103 1 0.325882005

9 3788745_Croatia 3788745 2021-06-13 Group D Group Stage Croatia England defeat 0 30 174 1 0.2 128 2 0.350628669

10 3788745_England 3788745 2021-06-13 Group D Group Stage England Croatia victory 1 30 177 0 0.203448276 141 1 0.378100208

11 3788746_Netherlands 3788746 2021-06-13 Group C Group Stage Netherlands Ukraine victory 3 30 214 0 0.245977011 213 1 0.405972333

12 3788746_Ukraine 3788746 2021-06-13 Group C Group Stage Ukraine Netherlands defeat 2 30 184 0 0.211494253 157 1 0.379598073

13 3788747_Austria 3788747 2021-06-13 Group C Group Stage Austria North Macedonia victory 3 30 213 0 0.244827586 197 1 0.4547707

14 3788747_North Macedonia 3788747 2021-06-13 Group C Group Stage North Macedonia Austria defeat 1 30 146 1 0.167816092 117 2 0.283769669

15 3788748_Czech Republic 3788748 2021-06-14 Group D Group Stage Czech Republic Scotland victory 2 30 141 1 0.162068966 76 2 0.22968586

16 3788748_Scotland 3788748 2021-06-14 Group D Group Stage Scotland Czech Republic defeat 0 30 199 0 0.228735632 194 1 0.361706996

17 3788749_Poland 3788749 2021-06-14 Group E Group Stage Poland Slovakia defeat 1 30 181 0 0.208045977 139 3 0.370947856

18 3788749_Slovakia 3788749 2021-06-14 Group E Group Stage Slovakia Poland victory 2 30 172 0 0.197701149 114 1 0.32903389

19 3788750_Spain 3788750 2021-06-14 Group E Group Stage Spain Sweden draw 0 30 208 0 0.23908046 197 1 0.444687147

20 3788750_Sweden 3788750 2021-06-14 Group E Group Stage Sweden Spain draw 0 30 76 1 0.087356322 19 3 0.086072

21 3788751_France 3788751 2021-06-15 Group F Group Stage France Germany victory 1 30 161 0 0.185057471 119 1 0.279882535

22 3788751_Germany 3788751 2021-06-15 Group F Group Stage Germany France defeat 0 30 226 0 0.259770115 247 1 0.465678121

23 3788752_Hungary 3788752 2021-06-15 Group F Group Stage Hungary Portugal defeat 0 30 136 1 0.156321839 85 2 0.338753405

24 3788752_Portugal 3788752 2021-06-15 Group F Group Stage Portugal Hungary victory 3 30 213 0 0.244827586 207 1 0.430184442

25 3788753_Finland 3788753 2021-06-16 Group B Group Stage Finland Russia defeat 0 30 173 0 0.198850575 158 1 0.389298345

26 3788753_Russia 3788753 2021-06-16 Group B Group Stage Russia Finland victory 1 30 196 0 0.225287356 182 1 0.408270069

27 3788754_Italy 3788754 2021-06-16 Group A Group Stage Italy Switzerland victory 3 30 209 0 0.240229885 191 1 0.450742991

28 3788754_Switzerland 3788754 2021-06-16 Group A Group Stage Switzerland Italy defeat 0 30 196 0 0.225287356 157 1 0.404910918

29 3788755_Turkey 3788755 2021-06-16 Group A Group Stage Turkey Wales defeat 0 30 210 0 0.24137931 221 1 0.458701463

30 3788755_Wales 3788755 2021-06-16 Group A Group Stage Wales Turkey victory 2 30 157 0 0.18045977 112 1 0.276908324

31 3788756_Austria 3788756 2021-06-17 Group C Group Stage Austria Netherlands defeat 0 30 197 0 0.226436782 184 1 0.426231392

32 3788756_Netherlands 3788756 2021-06-17 Group C Group Stage Netherlands Austria victory 2 30 182 0 0.209195402 177 1 0.408074494

33 3788757_Belgium 3788757 2021-06-17 Group B Group Stage Belgium Denmark victory 2 30 200 1 0.229885057 196 2 0.419498631

34 3788757_Denmark 3788757 2021-06-17 Group B Group Stage Denmark Belgium defeat 1 30 185 0 0.212643678 167 1 0.390016031

35 3788758_North Macedonia 3788758 2021-06-17 Group C Group Stage North Macedonia Ukraine defeat 1 30 181 0 0.208045977 149 1 0.41362375

36 3788758_Ukraine 3788758 2021-06-17 Group C Group Stage Ukraine North Macedonia victory 2 30 195 0 0.224137931 181 1 0.472593542

37 3788759_England 3788759 2021-06-18 Group D Group Stage England Scotland draw 0 30 207 0 0.237931034 238 1 0.498309617

38 3788759_Scotland 3788759 2021-06-18 Group D Group Stage Scotland England draw 0 30 173 0 0.198850575 151 1 0.345471945

39 3788760_Croatia 3788760 2021-06-18 Group D Group Stage Croatia Czech Republic draw 1 30 186 1 0.213793103 182 2 0.361671641

40 3788760_Czech Republic 3788760 2021-06-18 Group D Group Stage Czech Republic Croatia draw 1 30 173 0 0.198850575 111 1 0.365243689

41 3788761_Slovakia 3788761 2021-06-18 Group E Group Stage Slovakia Sweden defeat 0 30 210 0 0.24137931 199 1 0.413956589

42 3788761_Sweden 3788761 2021-06-18 Group E Group Stage Sweden Slovakia victory 1 30 179 1 0.205747126 155 2 0.427235175

43 3788762_Poland 3788762 2021-06-19 Group E Group Stage Poland Spain draw 1 30 98 2 0.112643678 53 3 0.181317899

44 3788762_Spain 3788762 2021-06-19 Group E Group Stage Spain Poland draw 1 30 213 0 0.244827586 211 1 0.44647925

45 3788763_France 3788763 2021-06-19 Group F Group Stage France Hungary draw 1 30 209 0 0.240229885 176 1 0.435375686

46 3788763_Hungary 3788763 2021-06-19 Group F Group Stage Hungary France draw 1 30 124 1 0.142528736 66 2 0.311712886

47 3788764_Germany 3788764 2021-06-19 Group F Group Stage Germany Portugal victory 4 30 205 0 0.235632184 177 1 0.418309989

48 3788764_Portugal 3788764 2021-06-19 Group F Group Stage Portugal Germany defeat 2 30 180 0 0.206896552 138 1 0.371493449

49 3788765_Switzerland 3788765 2021-06-20 Group A Group Stage Switzerland Turkey victory 3 30 185 0 0.212643678 144 1 0.384030727

50 3788765_Turkey 3788765 2021-06-20 Group A Group Stage Turkey Switzerland defeat 1 30 184 0 0.211494253 160 1 0.363661276

51 3788766_Italy 3788766 2021-06-20 Group A Group Stage Italy Wales victory 1 30 204 0 0.234482759 147 1 0.422344165

52 3788766_Wales 3788766 2021-06-20 Group A Group Stage Wales Italy defeat 0 30 135 1 0.155172414 71 2 0.326320035
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# id match_id match_date group competition_stage_name team_name opponent result goals_scored nu_nodes nu_edges nu_isolates density nu_triangles nu_connected_components average_clustering_coefficient

53 3788767_Austria 3788767 2021-06-21 Group C Group Stage Austria Ukraine victory 1 30 190 0 0.218390805 151 1 0.350531303

54 3788767_Ukraine 3788767 2021-06-21 Group C Group Stage Ukraine Austria defeat 0 30 187 1 0.214942529 173 2 0.415323548

55 3788768_Belgium 3788768 2021-06-21 Group B Group Stage Belgium Finland victory 2 30 200 0 0.229885057 181 1 0.445526744

56 3788768_Finland 3788768 2021-06-21 Group B Group Stage Finland Belgium defeat 0 30 175 0 0.201149425 152 1 0.395936581

57 3788769_Denmark 3788769 2021-06-21 Group B Group Stage Denmark Russia victory 4 30 193 0 0.22183908 165 1 0.408287644

58 3788769_Russia 3788769 2021-06-21 Group B Group Stage Russia Denmark defeat 1 30 129 0 0.148275862 81 1 0.233706353

59 3788770_Netherlands 3788770 2021-06-21 Group C Group Stage Netherlands North Macedonia victory 3 30 207 0 0.237931034 163 1 0.437656535

60 3788770_North Macedonia 3788770 2021-06-21 Group C Group Stage North Macedonia Netherlands defeat 0 30 182 0 0.209195402 151 1 0.426070611

61 3788771_Croatia 3788771 2021-06-22 Group D Group Stage Croatia Scotland victory 3 30 222 0 0.255172414 199 1 0.466243912

62 3788771_Scotland 3788771 2021-06-22 Group D Group Stage Scotland Croatia defeat 1 30 155 0 0.17816092 136 2 0.296377783

63 3788772_Czech Republic 3788772 2021-06-22 Group D Group Stage Czech Republic England defeat 0 30 171 0 0.196551724 143 1 0.387066986

64 3788772_England 3788772 2021-06-22 Group D Group Stage England Czech Republic victory 1 30 206 0 0.236781609 176 1 0.379140383

65 3788773_France 3788773 2021-06-23 Group F Group Stage France Portugal draw 2 30 192 1 0.220689655 163 2 0.439757672

66 3788773_Portugal 3788773 2021-06-23 Group F Group Stage Portugal France draw 2 30 188 1 0.216091954 156 2 0.411193511

67 3788774_Germany 3788774 2021-06-23 Group F Group Stage Germany Hungary draw 2 30 219 0 0.251724138 250 1 0.485216143

68 3788774_Hungary 3788774 2021-06-23 Group F Group Stage Hungary Germany draw 2 30 116 1 0.133333333 53 2 0.213519852

69 3788775_Slovakia 3788775 2021-06-23 Group E Group Stage Slovakia Spain defeat 0 30 152 3 0.174712644 113 4 0.252641903

70 3788775_Spain 3788775 2021-06-23 Group E Group Stage Spain Slovakia victory 5 30 219 0 0.251724138 226 1 0.451093554

71 3788776_Poland 3788776 2021-06-23 Group E Group Stage Poland Sweden defeat 2 30 179 0 0.205747126 147 1 0.327173273

72 3788776_Sweden 3788776 2021-06-23 Group E Group Stage Sweden Poland victory 3 30 118 0 0.135632184 57 1 0.255140905

73 3794685_Austria 3794685 2021-06-26 Round of 16 Austria Italy draw 1 30 191 0 0.21954023 181 1 0.468761372

74 3794685_Italy 3794685 2021-06-26 Round of 16 Italy Austria draw 2 30 193 0 0.22183908 160 1 0.410525766

75 3794686_Croatia 3794686 2021-06-28 Round of 16 Croatia Spain draw 3 30 169 0 0.194252874 151 1 0.383403266

76 3794686_Spain 3794686 2021-06-28 Round of 16 Spain Croatia draw 5 30 229 0 0.263218391 245 1 0.444968046

77 3794687_Belgium 3794687 2021-06-27 Round of 16 Belgium Portugal victory 1 30 174 0 0.2 140 1 0.337844153

78 3794687_Portugal 3794687 2021-06-27 Round of 16 Portugal Belgium defeat 0 30 213 0 0.244827586 227 1 0.440943821

79 3794688_England 3794688 2021-06-29 Round of 16 England Germany victory 2 30 184 0 0.211494253 149 1 0.388745487

80 3794688_Germany 3794688 2021-06-29 Round of 16 Germany England defeat 0 30 213 0 0.244827586 197 1 0.441925385

81 3794689_Denmark 3794689 2021-06-26 Round of 16 Denmark Wales victory 4 30 194 0 0.222988506 134 1 0.404179798

82 3794689_Wales 3794689 2021-06-26 Round of 16 Wales Denmark defeat 0 30 170 1 0.195402299 139 2 0.371618473

83 3794690_Czech Republic 3794690 2021-06-27 Round of 16 Czech Republic Netherlands victory 2 30 155 0 0.17816092 106 1 0.360740263

84 3794690_Netherlands 3794690 2021-06-27 Round of 16 Netherlands Czech Republic defeat 0 30 167 0 0.191954023 125 2 0.363066203

85 3794691_France 3794691 2021-06-28 Round of 16 France Switzerland draw 3 30 191 0 0.21954023 179 1 0.394673873

86 3794691_Switzerland 3794691 2021-06-28 Round of 16 Switzerland France draw 3 30 155 0 0.17816092 101 1 0.371423314

87 3794692_Sweden 3794692 2021-06-29 Round of 16 Sweden Ukraine draw 1 30 202 0 0.232183908 198 1 0.446834851

88 3794692_Ukraine 3794692 2021-06-29 Round of 16 Ukraine Sweden draw 2 30 188 0 0.216091954 161 1 0.393166956

89 3795107_Belgium 3795107 2021-07-02 Quarter-finals Belgium Italy defeat 1 30 190 0 0.218390805 148 1 0.452895448

90 3795107_Italy 3795107 2021-07-02 Quarter-finals Italy Belgium victory 2 30 204 0 0.234482759 207 1 0.37749886

91 3795108_Spain 3795108 2021-07-02 Quarter-finals Spain Switzerland draw 1 30 221 0 0.254022989 214 1 0.448475468

92 3795108_Switzerland 3795108 2021-07-02 Quarter-finals Switzerland Spain draw 1 30 155 0 0.17816092 108 1 0.30408934

93 3795109_Czech Republic 3795109 2021-07-03 Quarter-finals Czech Republic Denmark defeat 1 30 183 0 0.210344828 139 1 0.408745907

94 3795109_Denmark 3795109 2021-07-03 Quarter-finals Denmark Czech Republic victory 2 30 157 0 0.18045977 91 1 0.275807241

95 3795187_England 3795187 2021-07-03 Quarter-finals England Ukraine victory 4 30 184 0 0.211494253 151 1 0.427126759

96 3795187_Ukraine 3795187 2021-07-03 Quarter-finals Ukraine England defeat 0 30 186 1 0.213793103 150 2 0.4568334

97 3795220_Italy 3795220 2021-07-06 Semi-finals Italy Spain draw 1 30 146 0 0.167816092 90 1 0.316904552

98 3795220_Spain 3795220 2021-07-06 Semi-finals Spain Italy draw 1 30 238 0 0.273563218 240 1 0.553751526

99 3795221_Denmark 3795221 2021-07-07 Semi-finals Denmark England draw 1 30 152 0 0.174712644 95 1 0.335824429

100 3795221_England 3795221 2021-07-07 Semi-finals England Denmark draw 2 30 207 0 0.237931034 183 1 0.448552261

101 3795506_England 3795506 2021-07-11 Final England Italy draw 1 30 145 0 0.166666667 83 1 0.31789832

102 3795506_Italy 3795506 2021-07-11 Final Italy England draw 1 30 201 0 0.231034483 150 1 0.497960127



89 

 

Appendix G – Clustering analyses on the zone passing networks (𝒌 = 𝟑) 

Table G1: Clustering analysis using the clustering 
coefficient on the zone passing networks (𝑘 = 3) 

Table G2: Clustering analysis using the degree on the 
zone passing networks (𝑘 = 3) 

                                                  

National Team/match_id Cluster 0 Cluster 1 Cluster 2  Total

Austria 1 3 4

3788747_Austria 1 1

3788756_Austria 1 1

3788767_Austria 1 1

3794685_Austria 1 1

Belgium 4 1 5

3788743_Belgium 1 1

3788757_Belgium 1 1

3788768_Belgium 1 1

3794687_Belgium 1 1

3795107_Belgium 1 1

Croatia 2 2 4

3788745_Croatia 1 1

3788760_Croatia 1 1

3788771_Croatia 1 1

3794686_Croatia 1 1

Czech Republic 1 3 1 5

3788748_Czech Republic 1 1

3788760_Czech Republic 1 1

3788772_Czech Republic 1 1

3794690_Czech Republic 1 1

3795109_Czech Republic 1 1

Denmark 1 3 2 6

3788742_Denmark 1 1

3788757_Denmark 1 1

3788769_Denmark 1 1

3794689_Denmark 1 1

3795109_Denmark 1 1

3795221_Denmark 1 1

England 1 5 1 7

3788745_England 1 1

3788759_England 1 1

3788772_England 1 1

3794688_England 1 1

3795187_England 1 1

3795221_England 1 1

3795506_England 1 1

Finland 1 2 3

3788742_Finland 1 1

3788753_Finland 1 1

3788768_Finland 1 1

France 1 2 1 4

3788751_France 1 1

3788763_France 1 1

3788773_France 1 1

3794691_France 1 1

Germany 1 3 4

3788751_Germany 1 1

3788764_Germany 1 1

3788774_Germany 1 1

3794688_Germany 1 1

Hungary 1 2 3

3788752_Hungary 1 1

3788763_Hungary 1 1

3788774_Hungary 1 1

Italy 2 5 7

3788741_Italy 1 1

3788754_Italy 1 1

3788766_Italy 1 1

3794685_Italy 1 1

3795107_Italy 1 1

3795220_Italy 1 1

3795506_Italy 1 1

Netherlands 2 2 4

3788746_Netherlands 1 1

3788756_Netherlands 1 1

3788770_Netherlands 1 1

3794690_Netherlands 1 1

North Macedonia 1 2 3

3788747_North Macedonia 1 1

3788758_North Macedonia 1 1

3788770_North Macedonia 1 1

Poland 2 1 3

3788749_Poland 1 1

3788762_Poland 1 1

3788776_Poland 1 1

Portugal 4 4

3788752_Portugal 1 1

3788764_Portugal 1 1

3788773_Portugal 1 1

3794687_Portugal 1 1

Russia 2 1 3

3788743_Russia 1 1

3788753_Russia 1 1

3788769_Russia 1 1

Scotland 1 2 3

3788748_Scotland 1 1

3788759_Scotland 1 1

3788771_Scotland 1 1

Slovakia 1 1 1 3

3788749_Slovakia 1 1

3788761_Slovakia 1 1

3788775_Slovakia 1 1

Spain 2 4 6

3788750_Spain 1 1

3788762_Spain 1 1

3788775_Spain 1 1

3794686_Spain 1 1

3795108_Spain 1 1

3795220_Spain 1 1

Sweden 2 2 4

3788750_Sweden 1 1

3788761_Sweden 1 1

3788776_Sweden 1 1

3794692_Sweden 1 1

Switzerland 4 1 5

3788744_Switzerland 1 1

3788754_Switzerland 1 1

3788765_Switzerland 1 1

3794691_Switzerland 1 1

3795108_Switzerland 1 1

Turkey 1 2 3

3788741_Turkey 1 1

3788755_Turkey 1 1

3788765_Turkey 1 1

Ukraine 3 2 5

3788746_Ukraine 1 1

3788758_Ukraine 1 1

3788767_Ukraine 1 1

3794692_Ukraine 1 1

3795187_Ukraine 1 1

Wales 1 3 4

3788744_Wales 1 1

3788755_Wales 1 1

3788766_Wales 1 1

3794689_Wales 1 1

Total 17 50 35 102

National Team/match_id Cluster 0 Cluster 1 Cluster 2  Total

Austria 1 3 4

3788747_Austria 1 1

3788756_Austria 1 1

3788767_Austria 1 1

3794685_Austria 1 1

Belgium 3 2 5

3788743_Belgium 1 1

3788757_Belgium 1 1

3788768_Belgium 1 1

3794687_Belgium 1 1

3795107_Belgium 1 1

Croatia 3 1 4

3788745_Croatia 1 1

3788760_Croatia 1 1

3788771_Croatia 1 1

3794686_Croatia 1 1

Czech Republic 4 1 5

3788748_Czech Republic 1 1

3788760_Czech Republic 1 1

3788772_Czech Republic 1 1

3794690_Czech Republic 1 1

3795109_Czech Republic 1 1

Denmark 3 3 6

3788742_Denmark 1 1

3788757_Denmark 1 1

3788769_Denmark 1 1

3794689_Denmark 1 1

3795109_Denmark 1 1

3795221_Denmark 1 1

England 4 1 2 7

3788745_England 1 1

3788759_England 1 1

3788772_England 1 1

3794688_England 1 1

3795187_England 1 1

3795221_England 1 1

3795506_England 1 1

Finland 2 1 3

3788742_Finland 1 1

3788753_Finland 1 1

3788768_Finland 1 1

France 2 2 4

3788751_France 1 1

3788763_France 1 1

3788773_France 1 1

3794691_France 1 1

Germany 1 3 4

3788751_Germany 1 1

3788764_Germany 1 1

3788774_Germany 1 1

3794688_Germany 1 1

Hungary 3 3

3788752_Hungary 1 1

3788763_Hungary 1 1

3788774_Hungary 1 1

Italy 1 6 7

3788741_Italy 1 1

3788754_Italy 1 1

3788766_Italy 1 1

3794685_Italy 1 1

3795107_Italy 1 1

3795220_Italy 1 1

3795506_Italy 1 1

Netherlands 2 2 4

3788746_Netherlands 1 1

3788756_Netherlands 1 1

3788770_Netherlands 1 1

3794690_Netherlands 1 1

North Macedonia 2 1 3

3788747_North Macedonia 1 1

3788758_North Macedonia 1 1

3788770_North Macedonia 1 1

Poland 1 2 3

3788749_Poland 1 1

3788762_Poland 1 1

3788776_Poland 1 1

Portugal 2 2 4

3788752_Portugal 1 1

3788764_Portugal 1 1

3788773_Portugal 1 1

3794687_Portugal 1 1

Russia 1 1 1 3

3788743_Russia 1 1

3788753_Russia 1 1

3788769_Russia 1 1

Scotland 2 1 3

3788748_Scotland 1 1

3788759_Scotland 1 1

3788771_Scotland 1 1

Slovakia 1 1 1 3

3788749_Slovakia 1 1

3788761_Slovakia 1 1

3788775_Slovakia 1 1

Spain 6 6

3788750_Spain 1 1

3788762_Spain 1 1

3788775_Spain 1 1

3794686_Spain 1 1

3795108_Spain 1 1

3795220_Spain 1 1

Sweden 2 2 4

3788750_Sweden 1 1

3788761_Sweden 1 1

3788776_Sweden 1 1

3794692_Sweden 1 1

Switzerland 2 1 2 5

3788744_Switzerland 1 1

3788754_Switzerland 1 1

3788765_Switzerland 1 1

3794691_Switzerland 1 1

3795108_Switzerland 1 1

Turkey 1 1 1 3

3788741_Turkey 1 1

3788755_Turkey 1 1

3788765_Turkey 1 1

Ukraine 4 1 5

3788746_Ukraine 1 1

3788758_Ukraine 1 1

3788767_Ukraine 1 1

3794692_Ukraine 1 1

3795187_Ukraine 1 1

Wales 2 2 4

3788744_Wales 1 1

3788755_Wales 1 1

3788766_Wales 1 1

3794689_Wales 1 1

Grand Total 42 17 43 102
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