
Automated Program Repair of Arithmetic Programs in
Dafny

Hugo Martins
hugo.r.f.martins@tecnico.ulisboa.pt
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Abstract

Writing software is hard. It would be amazing to be able to write programs without bugs, or at least
write them and easily finding those bugs. Beyond finding those bugs, being able to receive suggestions
on how to fix those bugs in useful time would be a tool that would greatly boost the productivity of any
programmer.

In this thesis we document the process of creating a solution to repair arithmetic Dafny programs with
bugs, using formal verification and expression templates.

To repair programs, we used an existing synthesizer, as well as an existing verifier, and in the process
created a framework that allows integration with any other program generator.

The proposed solution identifies suspicious statements in the input program with the help of the Dafny
verifier, traces the program execution to determine the point where the program failed, translates to the
language of the synthesizer (in case it doesn’t support Dafny out-of-the-box, in our case, Suslik’s SSL)
and suggests a correction for the bug that was found.
Keywords: Automated Program repair, Deductive Synthesis, Dafny, Formal Verification, Constraint
Solving, Program Synthesis, Dynamic Framing

1. Introduction
Writing Software is hard. Writing software without
bugs is even harder. It is estimated that around 15-
50 bugs are introduced per 1000 lines of code [17].
The fault of error introduction in software artifacts
can be mainly attributed to human causes.

The process of repairing human-introduced er-
rors is not only very tedious for the programmers,
but also very expensive. To reduce this debugging
cost, several researchers have been making devel-
opments in the field of Automated Program Repair
(APR): the repair of programs without user inter-
vention.

Due to the complex nature of this relatively new
procedure, the interest in this subject has been
gradually increasing, with a lot of investigation
being developed on this area, with several ap-
proaches being proposed, most of which depend-
ing on techniques such as mutation testing [9, 13]
and deep learning [5, 3, 16].

Test-suite [13] approaches are currently the
common ground used to localize bugs, and to gen-
erate and validate patches, but they have one ma-
jor flaw: since the program uses test-cases to find
the bugs, the patch found is limited by them, which
may sometimes result in repaired programs that

break in unexpected cases. Another important ap-
proach taken by many researchers is mutation-
based patch generation [13, 9], which uses ge-
netic programming operators such as mutate, in-
sert, delete, to generate mutated programs, which
are then validated by a verifier. These approaches
work for simpler programs, but they ultimately fail
at repairing some non-trivial bugs.

Since some of these processes have limitations,
some researchers turned to formal specification to
guide the repair process [11, 12, 19]. The correct-
ness of a program is ensured by using several log-
ical formulas like pre- and post-conditions, asser-
tions and invariants. The approaches based on for-
mal specification have some advantages over test-
based approaches since they provide better case
coverage, leading to programs that are less prone
to fail in edge cases.

In this work, we aim to use a formal-
specification-based approach to fix programs writ-
ten in Dafny [14]. To the best of our knowledge,
our solution is the first APR solution that can repair
Dafny programs. We will focus initially on a simpler
fragment of the Dafny language, with the goal of
extending the scope in the future.

The language Dafny was chosen since it has
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significant adoption in industry, with several com-
panies using it daily to develop highly-reliable soft-
ware (e.g. Amazon Web Services), and it can be
compiled to several other languages, broadening
our field of impact even further.

The general solution we propose is a multi-step
approach that can be summed up as:

1. The verifier is invoked to verify if the program
corresponds to its specification. If the verifica-
tion is successful, there is nothing to repair.

2. If the program does not match its specification,
the output of the verifier is collected and ana-
lyzed. This context will then be used to locate
the statements where the verification fails. For
the scope of this project we will only focus on
simple arithmetic programs, due to the com-
plexity of the implementation.

3. From the artifacts collected by analyzing the
context provided by the verifier, we can find
which statement is problematic. The purpose
of this is to introduce a Template Patch, an ar-
tifact that will be used to generate functional
code to replace the buggy statement, with its
main characteristic being that it has no body,
and its purpose being playing a key role in the
generation of the new program that will fix the
bug found.

4. The context of the program is then ana-
lyzed, with the template patch pre and post-
conditions being generated according to a set
of defined heuristics. This is the translation
part, where we analyze the context of the error
trace, and build the pre-conditions based on
every defined statement previous to the bug,
and the post-condition from the post-condition
of the original method.

5. The translated Template Patch created in the
previous step will be used by a program syn-
thesizer to generate appropriate pieces of
code, and thus by replacing the template patch
with the generated code we will get the re-
paired program.

This approach is, although not entirely similar,
based on the work developed by Nguyen et al. [19],
with the key difference being the language and
context in which it was implemented. Instead of at-
tempting to repair faulty C programs, in this project
the target is the automated repair of Dafny pro-
grams. We will also be using the Dafny Verifier
instead of a verifier developed in the context of the
project, as well as making use of an existing syn-
thesizer, namely the Suslik Synthesizer by Polikar-
pova et al. [20]

2. Work Objectives
The main goal of this project is to explore tech-
niques for automatic repair of programs using for-
mal specification and expression templates. More
specifically, the objectives are to:

1. Explore APR techniques to repair programs in
Dafny.

2. Test the usage of existing synthesizers, like
Jennysis [15] to support the synthesis of Tem-
plate patches.

3. Repair examples of buggy programs in Dafny.
We intend to use a small benchmark of syn-
thetic buggy examples, that despite being arti-
ficial, will establish a basis to be able to create
future tests.

2.1. Contributions
With this thesis we present an implementation of
automated program repair that was developed as
the first solution to automatically correct buggy pro-
grams in Dafny.

With this implementation we created a frame-
work that can be extended to support other syn-
thesizers. Along with that, a benchmark was es-
tablished to compare implementations.

2.2. Motivational Example
In this section, we present the motivating example
we will be using throughout the thesis. We will be
presenting a simple program that returns the value
of a variable. This program is part of our bench-
mark presented in Section 7. Without getting into
much detail, since we will look further into the spec-
ification of Dafny programs in Section 3.2, we will
now go over what the program does, and its imple-
mentation.

The program’s specification has a pre- and a
post-condition, and although these terms will be
defined in Section 3.1 in further detail, they essen-
tially mean that when the method call begins it re-
quires that i is bigger or equal to 0, and that when
the program exits (and thus, returns) the variable
to be returned (j) will be equal to i.

After the generation of the proof obligations, they
are then translated to the language of the synthe-
sizer, which then proceeds to generate a program
that meets the specification. After this process is
done, a suitable body for the template patch is gen-
erated, and the program proceeds to replace the
line 5 in Figure 1 with j := i, and by fixing it the
Dafny verifier successfuly verifies the program with
0 errors.

This is verified by Dafny as having one error, and
the verification can be done like in Figure 2, where
we can see that the state of the program in line 163
does not imply the post-condition of the method.
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method value(i: int) returns (j: int)

requires i >= 0

ensures j == i

{

j := 2;

}

Figure 1: Value method implementation

method value(i: int) returns (j: int)

requires i >= 0

ensures j == i

{

// i >= 0 (From the pre-condition)

j := 2;

// i >= 0 && j := 2

//

// Needs to prove the post-condition

}

Figure 2: Value method verification

3. Background
3.1. Hoare Logic
In this section, we will go over some of the basics
in Hoare Logic.

Hoare logic is a system to provide a formal way
to reason about program correctness. The core
concept behind Hoare’s logic is specification as a
contract. The specification is provided by the pro-
grammer while the body of the program is irrelevant
to the client: provided that the client meets the re-
quirements, the output will meet the guarantees.

These requirements and guarantees are pre-
cisely pre- and post-conditions, where pre-
conditions are predicates that define conditions
that the input must fulfil for the program to pro-
vide correct function, provided that post-conditions
describe the conditions in which the output will be
provided, if the pre-conditions are met. The ob-
jective of the pre- and post-condition is that the
client can trust the results obtained from the pro-
gram call.

In Hoare Logic a program is partially correct with
respect to its specification if before executing the
program the pre-condition is met, if the program
terminates the post-condition is true. A program
is correct with respect to its specification if be-
sides meeting the pre-condition before executing,
the program terminates and the post-condition is
correct.

Hoare Logic uses Hoare triples to reason about
program correctness, taking the form {P} C {Q},
where P represents the pre-conditions, Q repre-
sents the post-conditions, and C represents the
statements that implement the function. The
meaning of a triple {P} C {Q} is that if we start
the program C with P being true, the program will

{P}C1{Q} {Q}C2{R}
{P}C1;C2{R} seq {I∧B}C{I}

{I} while B C{I∧¬B} while
Figure 3: Hoare inference rules

terminate in a state where Q is true.
Consider the following Hoare triple {x = 0} x :=

x+ 5 {x > 0}. In the specification it is stated that x
must be equal to 0, for the program to give us a big-
ger value than 0 on x. This triple is clearly correct
since 0+5 will be assigned to x, which in turn will be
bigger than 0, and thus fulfilling the post-condition.

We use Hoare Logic [6] to verify a pro-
gram against its specification. The Hoare triple
{P} C {Q} is composed of two assertions, P and
Q that represent the pre- and post-conditions of the
program C, which in turn states that for a given
program state that satisfies P if program C is exe-
cuted and has termination, the new program state
will satisfy Q. In Hoare logic, this means that the
program is correct - the pre-condition is satisfied,
the program terminates and it will match the post-
condition.

To reason about program correctness, Hoare
logic defines inference rules and axioms for al-
most all of the constructs of a simple imperative
programming language. In addition to this, many
rules have been extended to other fields of appli-
cation, and even to support multiple other contexts,
like concurrency, pointers and jumps. In this paper
inference rules include rules handling conditional
branching, assignment, function calls, etc.

In Fig. 3 there are two inference rules repre-
sented: the first one being the sequential rule or
composition, while the second one refers to the
while (loop) rule. These are only two examples,
and since these rules are widely used in the field
of program verification, many works by other re-
searchers often make use of them [7] .

3.2. Dafny
While traditionally the full verification of a program’s
functional correctness has been done by hand,
with pen and paper, more recently the focus of
some researchers has been to fully automate the
process of verification. The main goal is to achieve
the verification of a program without having inter-
action of the programmer, meaning that all the in-
formation that the program needs to be verified is
already within the specification of the program it-
self.

Currently there are two techniques in which re-
searchers have mainly been focusing on: Verifica-
tion Condition Generation [2] and Symbolic Execu-
tion [10]. While the first one essentially transforms
the program and its specification into a big formula,
and afterwards using it to feed an automated the-
orem prover, which is responsible for doing the
proofs. The second approach is an SE-based tech-
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nique that executes all possible program paths of
the program using symbolic values instead of ac-
tual values, and collecting logical information along
the way, while calling the theorem prover every
time by passing it the logical information it collected
for each state.

While the technique plays a big part, the theo-
rem prover is essentially the key component of the
verifier. Currently the most popular automated the-
orem prover is Satisfiability Modulo Theories, such
as Z3 [4] which is used by Dafny.

Dafny is a language and a verifier itself. The lan-
guage Dafny is an imperative language, following
a sequential flow and it supports generic classes
and dynamic allocation, while allowing program-
mers to specify its programs with specifications
that the client must use. The specifications include
pre-, post- and framing conditions, as well as ter-
mination metrics. To better specify the programs,
the language includes user-defined mathematical
functions and ghost variables, which in turn allow
for modular verification: the separate verification of
all parts of a program implies the correctness of the
whole system.

Dafny’s program verifier works by translating the
given Dafny program into the intermediate verifica-
tion laguage Boogie 2 [1] in a way such that the
correctness of the Boogie program implies the cor-
rectness of the Dafny program. The semantics of
Dafny are close to the ones of Boogie to ease the
translation. The Boogie tool is then used to gener-
ate first-order verification condition, which are then
passed to the theorem prover Z3.

As an imperative language, it offers several con-
structs any programmer is used to: branching
statements (if, else), loops, functions, classes, etc.
Although functions are offered by Dafny, there is
one key difference from other languages: they de-
fine mathematical functions, which have no side-
effects.

Apart from functions, Dafny also provides meth-
ods, which in contrast to functions do define con-
tracts. Methods compute one or more values
and they may change the program state. Differ-
ently from other imperative languages they can
be defined outside classes. Since they define
a contract, they have the requires/ensures syn-
tax, having the requires clause to declare the
pre-conditions and the ensures defining the post-
conditions. Another key difference from functions is
that the inputs are immutable, and the outputs are
named. The methods follow the design-by-contract
methodology, meaning that Dafny only has to rea-
son about the body of the method it is verifying,
instead of verifying every method the programmer
is using. To achieve this, Dafny relies on the con-
tract (specification) of a method, and thus relying

method m4(n: nat)

{

var i := 0;

while i < n

invariant 0 <= i

decreases i

{

i := i+1;

}

assert i==n;

}

Figure 4: Loop invariants

on opacity. It is relevant to point out that Dafny can
use functions in the specification of methods.

Dafny also lets us define local variables with the
keyword var, which may or may not have type dec-
larations, since it can infer their type in almost all
situations.

Another key feature of Dafny is the usage of
loop invariants to specify the behavior of loops.
These loop invariants have the syntax represented
in Section 4 in line 5, and they are used to ensure
the condition represented holds upon entering the
loop, and during its execution. Another feature we
can see in the listing are assertions that are rep-
resented in line 9. Assertions can be introduced
in any point, and the usage of an assertion means
that the condition should always hold whenever it
reaches that part of the code. The last feature we
are able to see in Listing 4 is related with the us-
age of the decreases keyword. This keyword is
used to help Dafny reason about termination, and
although it is not strictly necessary every time, its
function is to prove that the program does not run
forever. There are two places where Dafny needs
to prove termination: Loops and recursion, which
both require either correct guess by the verifier, or
explicit declaration.

Dafny also has support for Arrays and Quanti-
fiers. The behaviour of Arrays closely follows the
implementation in other mainstream languages,
with the key difference being that accesses to the
array must be proven to be within bounds. These
are proved in verification time, while in runtime
no checks happen. Quantifiers in Dafny most of-
ten take the form of a forall expressions or exists,
which respectively represent a universal and an ex-
istential quantifier, and they are often used to rea-
son about elements of an Array or a data structure.

And lastly, Dafny follows the paradigm of Object
Oriented Programming (OOP), however some as-
pects of OOP are not supported yet: it does not
provide definition of subclasses and their verifica-
tion for example. Classes can have Class Invari-
ants, which define properties that must hold at the
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entry and exit point of every method, for every in-
stance of the class. They are often used to ex-
press properties about the consistency of the inter-
nal representation of an object, and they are typi-
cally transparent to the clients.

With the definition of classes, it is important to
take a look at Ghost fields. They are defined with
the modifier ghost and they are used only in ver-
ification time, so they are not present in compiled
versions of the code. Ghost variables are helpful
to model Dynamic Frames [8], Dafny’s approach to
solving the Frame Problem [18].

4. Related Work
4.1. Suslik
Suslik is a deductive program synthesizer that gen-
erates imperative programs with pointers, by using
declarative specifications written in its own form of
Separation Logic.

This work was developed by Polikarpova et al.
[21], and the authors’s approach is based on their
own framework used to reason about separation
logic called Synthetic Separation Logic (SSL).

Consider the implementation present in Fig. 5
of the procedure swap(x, y), a program used for
swapping the values stored in two distinct heap lo-
cations x and y. The pre- and post-conditions of
the method can be expressed in Separation Logic
(SL) - a Hoare-style program logic used to verify
programs with pointers.

{x 7→ a ∗ y 7→ b} void swap (loc x, loc y)
{x 7→ b ∗ y 7→ a}

Figure 5: swap method implementation

This is a declarative specification, it describes
what should be in the heap before and after the
code is executed. It states that the program takes
as two inputs x and y in form of pointers, where
each of them points to separate locations, with the
values a and b stored in the location, respectively.

The previous example illustrates Separation
Logic perfectly: assertions that capture the pro-
gram state, represented by a symbolic heap. Sep-
aration Logic is different from Dynamic Frames, be-
cause while Dynamic Frames tries to restrict what
the method can access to only what is being used
in its body, Separation Logic does not have the
need to get the frame assertions specifically writ-
ten, with the access being inferred from the asser-
tions in the pre- and post-conditions.

The authors then proceed to introducing the
rules that were implemented in the context of
the approach that compose Synthetic Separation
Logic, a framework used to reason about dynamic
memory access in heap-manipulating programs.
Some examples of rules include READ, WRITE,
FRAME, EMP to handle reasoning about ghost

variables and termination, ALLOC and FREE to
handle allocation and freeing of dynamic memory,
etc.

After defining the rules for SSL, the authors pro-
ceed to turning it from a declaratively defined in-
ference system to an algorithm used for deriving
provably correct imperative programs. The algo-
rithm follows the idea of a standard goal-directed
backtracking proof-search, and it works in a depth-
first manner, starting from the initial synthesis goal
and always extends the left-most open leaf (that
is not a terminal application). The algorithm has
multiple steps: initially, the algorithm starts by try-
ing to apply all the rules to the top-level goal. If it
succeeds, it collects the set of sub-derivations, and
tried to process the set of sub-derivations, at which
point the algorithm will either try to apply another
SSL rule, or try to solve the sub-goals and apply a
continuation. If it succeeds, a program will result
from here. If in any step of the algorithm it fails ap-
ply every single rule possible, the synthesis for the
current goal fails, and the algorithm backtracks. If
by the end the algorithm could not find code that
is suitable for the specification, the synthesis fails
and the algorithm ends.

After introducing the main algorithm the authors
also develop several optimizations and extensions
to give the algorithm better coverage and efficiency
such as invertible rules, branch abduction and
defining early failure rules, which greatly improve
the performance of the algorithm.

Suslik has proven to be efficient, with all of the
22 benchmarks defined by the authors being syn-
thesized within 40 seconds.

From this work we took a lot of information: from
the synthesis algorithm the authors used, to the
syntax used to do the program generation. Al-
though it is important to understand the synthesis
algorithm, for our implementation we used Suslik
as the main synthesizer, translating from Boogie
to SSL specification, having the synthesis done by
Suslik.

5. Jennisys
Jennisys [15] is based on the affirmation that the
desired behavior of a program can be described
using an abstract model, which can then be com-
piled into executable code by using synthesis.

According to the authors, most programming lan-
guages provide a mechanism to delineate between
the public specification of a method, type or a mod-
ule, and the private specification thereof. The pub-
lic specification can consist of a behavioral con-
tract, or just a simple type signature, letting users
know the types of the parameters to be used. Jen-
nisys takes this delineation further: dividing a pro-
gram into three parts: public interface, data struc-
tures and executable code.
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Public interface is the first component, and it
is used to define an abstract model of the com-
ponent, defined with resort to mathematical struc-
tures like sets and sequences. It is also used to
define the components operations and their behav-
ioral effects. These are not compiled, the are only
used during compilation time.

Data structures is the second component, it is
concerned with describing the data structures that
are used to represent a component in run-time. It
declares fields that are part of each instance of the
component, which other component instances are
part of the representation (referred to by the au-
thors as the frame, and also declares an invari-
ant that constrains the concrete variables and the
frame and couples them with the model variables
in the public interface.

Executable code is the final part of Jennisys,
it is responsible for the executable code that will
implement the component operations. This is the
most revolutionary feature about Jennisys: there
are multiple ways that the programmer can uti-
lize to produce the code: code synthesis, code-
generation hints, program sketches and manual
coding.

In the paper the authors propose a way to gen-
erate code from abstract variables, abstract code,
concrete variables, and a coupling invariant (from
the public interface and the datamodel of a com-
ponent), with the process being able to generate
loop-less programs, with branching, assignment
and method calls.

The technique that the authors use to do syn-
thesis is different from the ones mentioned previ-
ously: it uses the program verifier to obtain sample
inputs/outputs that satisfy the given specifications,
which are then extrapoled into code for all the in-
put variables. The name given to the algorithm is
dynamic synthesis, because it combines two ap-
proaches to the same problem: symbolic execution
and concrete execution.

The authors define an algorithm that is used
for systematic state exploration since the verifier
- Dafny - only outputs a single valid input/output
(pre- and post-state) pair, which is not enough for
generating code. It uses systematic state explo-
ration and program extrapolation from concrete in-
stances to fix the previously mentioned issue. Due
to the nature of Synthesis being undecidable, the
algorithm does not always succeed, but when it
does the program generated is provably correct.

6. Implementation
6.1. Architecture Overview
Our solution is made up from different components,
each with their own purpose. The program the user
designed is input to the Dafny verifier, which in turn
translates it to Boogie and passes it to the Boogie

verifier. This is where our main area of focus lies.
After the verification process is done, a list of errors
is passed to the synthesis/translation module we
implemented, where it gets translated by a transla-
tion module to the target synthesis language. This
is then passed to the synthesizer, that is responsi-
ble for providing the user with the generated code.

In the next sections we analyze the solution de-
velopment by going over the architecture and the
design decisions that were taken. Firstly, we will
shortly glance over the Dafny-Boogie interaction,
that although not developed by us needs to be ad-
dressed for the purposes of understanding the un-
derlying mechanics of the soluton. Then, we will
look over the translation process, in the first step to
the architectural pattern applied to reach the solu-
tion, and after that to the translation algorithm. We
then follow up by presenting another script, the one
responsible for making the entire solution work.

6.2. Dafny-Boogie Interaction
As we mentioned in Section 3.2, Dafny is not only
a language, but also a capable verifier. This ver-
ifier is developed in a .NET solution, with multiple
components. For the sake of this project, we only
used one of these components, DafnyDriver. This
component is the main component responsible for
taking a Dafny program, verifying it, and output-
ing to the user the result of the verification. This
is the component responsible for the communica-
tion with Boogie, as well as providing the compila-
tion of Dafny verified programs to languages like C#

or Go. We discovered that this component is only
responsible for translating the program to Boogie
Syntax, calling the Boogie verification tool with the
translated input, and, after the verification is done,
receiving the output from it.

Boogie is also a .NET solution, and to run the
Dafny verifier it gets bundled in the solution as
a dependency managed by NuGet. After provid-
ing Dafny with a custom implementation of Boogie,
which we cloned from the official Github repository,
we discovered that Dafny didn’t actually get the
output of the verification process, but rather only
a summary of what’s happened during the verifica-
tion process. The Boogie tool is also responsible
for compilling the Boogie language to verification
conditions which get passed to Z3.

6.3. Module Architecture
After the verification is done by the Boogie verififer,
a list of counterexamples/errors is generated. The
translation module is responsible for analyzing the
output of this step, and from it generate the tem-
plate patch we are going to pass to the synthesizer.

As we previously described, in the process of
designing the translation module we intended from
the start to leverage comparison between different
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synthesizers. This, along with the output of the ver-
ifier, are the main driving reasons behind some of
the design decisions we took.

To facilitate the integration of different imple-
mentations, we applied a Factory Pattern. The
TranslationFactory class has a single pub-
lic method available: getTranslation. In it’s
implementation, the TranslationFactory class
is responsible for calling the correct implemen-
tation of the interface ITranslationProcess.
In our case, we have one implementation:
SuslikTranslationProcess.

6.4. Errors trace structure
As mentioned in previous sections, the output of
the verification process is a List of objects of er-
rors of the class CounterExample. This CounterEx-
ample class has relations with many objects, and
among them a list of Blocks that represent blocks
in the code of the input program. In each block
there contains a list of Cmd that contain the infor-
mation about the expression of that command that
will be used to generate the pre-state of the pro-
gram.

6.5. Suslik SSL Translation
Like mentioned in the previous sections, in
our solution we have one class implementing
ITranslationProcess. This class is responsible
for encapsulating the logic we developed to trans-
late the programs from Boogie Syntax to Suslik’s
own SSL-compliant syntax.

6.5.1 Base Implementation

As shown by the pseudo-code, the main source of
information to run our algorithm is the errors list
provided by the Boogie verifier, like presented in
Section 6.4. Since we will only be considering one
method defined in each file, and each method only
having only one error, we can safely assume the
errors trace will always have a single element.

The errors list consists of a collection of objects
with information about the proof that was done
by Z3. While this does not contain information
about the program state at the point where it failed,
it does contain the trace of the expressions that
came before the corresponding error in the list.

By following the Trace of expressions of the error,
we can roughly estimate the state of the program
at the point where the erroneous state was found.
This is done by iterating over the trace and generat-
ing the information we need: what the state of the
program was before the error, and what it should
be like after the error. After collecting this informa-
tion, we can generate the syntax of the synthesizer
and pass the request to it.

The algorithm works by firstly finding all the

string translate(

List<CounterExample> errors,

string programName) {

var (headerVars, postCondVars) =

findAllVars(errors);

var preCalculatedState =

calculateState();

var failingEnsures =

errors[0].FailingEnsures;

var generatedPreCond =

genPreCond(preCalculatedState);

var generatedPostCond =

genPostCond(failingEnsures,

preCalculatedState);

assemblePatch(programName,

headerVars, generatedPreCond,

generatedPostCond)

}

Figure 6: Translate psudo-code

variables the program has: the header variables,
meaning variables that are present in the header of
the original method and the post-condition. These
variables are used since Suslik has a particular-
ity: all the variables in the pre- and post-conditions
need to be in the header, and vice-versa. Sec-
ondly, we calculate the state up to the point where
the error occurred, and finally the failing assertion.
Lastly, we will generate the pre- and post-condition
of the method, by combining the pre-calculated
state with the variables that exist in the headers
but are never referenced in the body of the func-
tions to generate the pre-conditions, and the pre-
calculated state along with the failing assertion.
This ensures that nothing in the program will be
changed except for the variables included in the
desired assertion.

6.5.2 Extending base implementation

After our base case was working, we extended the
algorithm to support branching. In the Boogie lan-
guage branching is handled in a very specific way:
when there is an if-else expression, the structure
of the errors trace has some changes, essentially
having a GeneratedUnifiedExitCondition in the
trace is created. This command used to define a
common exit-point for both branches, without split-
ting the flow of the program. So, to support branch-
ing, we had to take that into account.

7



method 9(i: int) returns (j: int)

requires i >= 0

ensures j == i;

{

if i == 0 {

j := i;

} else {

var k := 1;

j := k;

}

}

Figure 7: Example method with branching represented in the
benchmark by test 9.dfy

6.6. Connection to synthesizer
After developing the implementation of the transla-
tion module, the program had to be connected to
the synthesizer. During this step, we tried differ-
ent alternatives, including an attempt to generate
a DLL to introduce the functionality of Suslik into
our program, but ultimately the attempt failed since
the framework responsible for generating the DLL

didn’t work as intended, and we weren’t able to re-
liably call the needed methods.

For this reason, we decided to use IO to develop
the integration script, and develop the IO through
files. This was partly decided since Suslik expects
a file to work. To develop the integration script,
we used bash, to create a script that would call
the Dafny verification, translation, and later forward
the output of that step to the synthesizer. This, of
course, is not the case if the program had no er-
rors. If it didn’t have any errors, the program will
stop right after the verification phase.

7. Results and discussion
During the development of our project, we created
several inputs to test our implementation. Although
the coverage of the solutions is not very diversified
and the examples are in a limited number, they are
enough so we can take some conclusions from this
state-of-the-art project. In the following sections
we will present some examples, look at the gen-
erated output, rationalize about its correctness and
benchmark our solution.

As mentioned before, the coverage of our project
is limited only to simple programs with one or mul-
tiple assignments, and simple branching. For the
first example, let’s consider the code present in Fig-
ure 1, a simple program that given an input variable
i, returns the value of that variable. From the speci-
fication we can see there is an error in line 5. Using
our solution, we are successfully able to generate
a patch to replace the expression.

Taking into account the program in Figure 7, we
can see that the generation process initially verifies
the program, generates the intermediary program

Problematic program

###

{ i :-> 0 ** k :-> 1 ** j :-> k }

void TP (loc i, loc k, loc j)

{i :-> 0 ** k :-> 1 ** j :-> i }

###

Figure 8: Intermediary Suslik-syntax file generated with 9.dfy

in Suslik’s syntax and calls the synthesizer to get
the result. An intermediary program is created in
the translation phase, where the variable i is gener-
ated with an empty mapping, thus pointing to zero
and the variable j is generated pointing to two, ref-
erencing the last assignment to the variable. This
can be seen in Figure 8.

The reason for the last assignment to be present
is that from the errors trace the only way of know-
ing what is the last statement is by discarding the
last expression of one of the blocks. This would be
problematic in case of branching, so we decided
to keep the last statement, and assume the patch
would be generated and replaced after it.

7.1. Benchmark

As demonstrated by Table 1 present in this section,
we created a small benchmark of simple programs
our implementation mostly supports. From what
we can see, our solution is somewhat effective to
repair simple programs in an acceptable amount of
time.

Another thing we should take into consideration
is that the standard verification process, without
intervention from our solution, takes around 2.06
seconds. Our most complex example takes only
3.18 seconds, and although it may seem like a big
a difference, with an increase of 65% of the time,
we were able to generate a solution to a bug that
would take significantly more time to find.

8. Conclusions

As we described in the last sections, the results of
our solution are rather interesting: with only a slight
increase from the verification time, we were able to
create corrections for multiple programs.

Despite the range of programs supported being
very limited and very synthetic, we can take this im-
plementation as an example of automated program
repair in Dafny, and a proof that it can be done.

Our implementation not only proves that APR
can be done in Dafny, but it also establishes
a baseline for future comparisons, with improve-
ments that can be done to increase the scope of
supported programming constructs, some of which
we describe in the next section
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Program name Small Description Generated Solution (Y/N) Time (s)
0.dfy Correct program - 2.06
1.dfy Simple variable attribution Y 2.44
2.dfy Attribution of a variable with a simple expression Y 3.08
4.dfy Attribution of a variable with a complex expression Y 3.16
5.dfy Multi-line attribution of simple variables Y 3.10
6.dfy Multi-line attribution with expressions Y 3.23
7.dfy Branching program with wrong return statement in IF branch Y 3.03
8.dfy Branching program with wrong return statement in ELSE branch Y 3.02
9.dfy Branching program with multiple attributions Y 3.10
10.dfy Branching program with body after the branching statement Y 3.18
max.dfy Maximum of two variables with conditional return N

Table 1: Results

8.1. Future work
To actually have a tool to automatically suggest
fixes/repair programs some major improvements
need to be done, we will go over them in this sec-
tion.

Firstly, since our approach only statically evalu-
ates a program, assignments against same vari-
ables (e.g. sum := sum + 1) would be a problem,
since the translation wouldn’t account for the value
present in the variable and it would never be possi-
ble to synthesize a patch for that statement.

Secondly, as we mentioned in the previous chap-
ter, we assumed that the last statement of the pro-
gram would be used in the synthesis since ignor-
ing it would be a problem in several cases. This,
despite it being a relatively simple change to our
code, goes to show that our implementation has
some deep flaws: since the trace accessible from
Z3 is limited, it includes limited information, and
it would be impossible to achieve program repair
without creating a ”second” prover in the program.

And lastly, since Dafny uses Dynamic Frames
and Suslik has a different implementation named
SSL, the range of programs supported would be
limited from the start. To have an approach that
works with the full range of Dafny’s programming
constructs, a synthesizer would need to be devel-
oped specifically for Dafny.
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