
Efficient Algorithms for Medical Image
Segmentation
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Abstract—With the growth in cancer cases and the increasing
expenditures in the healthcare system, it is necessary to automate
processes, aiming for a faster diagnostic and decrease in expenses.
Although current technologies enable to capture high-resolution
3D images of organs, manual segmentation of organs and
tumours is still a complex process that requires high expertise.

State-of-the-art algorithms are already very accurate. How-
ever, they are very compute-intensive tasks, leading to the need
for expensive hardware and energy wasting. Coupling state-of-
the-art efficient feature extraction algorithms to the nnUNet
segmentation framework, this work proposes novel efficient
architectures for medical image segmentation. For some tasks,
similar results were achieved using around 30% less coputing
operations than the baseline nnUNet, also decreasing the infer-
ence time. Morevover, a better performance then nnUNet was
achieved using architectures with slightly longer inference time.

Index Terms—Deep Learning, Medical Imaging, Segmentation,
Efficiency

I. INTRODUCTION

Malignant tumours are a relatively growing cause of death in
Portugal (Figure 1), being the second greatest in this country.
In fact, data from the World Health Organization (WHO),
indicates that 1 in 6 world deaths is due to cancer [1].

Despite the advances in medicine and the increase in cancer
survival rate [2], [3], deaths caused by cancer do not stop
growing each year, and represent now about 1/4 of deaths
in Portugal according to INE (Portuguese Statistics Institute).
Trivially, we can conclude that the number of cancer cases
is growing. This growth is mainly explained by the ageing
population [4]. This demographic problem is making health
expenses grow each year and cancer treatment represents
around 6% of the total Portuguese Health Service expenditure
[5].

Early diagnosis of tumours plays a significant role in the
treatment of cancer and increases the survival rate of patients
[6]. To this end, medical images should be acquired through
radiological means and analyzed, with the goal of extracting
information about the clinical situation of the patient. Cancer
screening images are generally acquired through a computa-
tional process called CT (Computed Tomography). One of the
most essential steps in acquiring valid information from these
medical images is image segmentation. Since the segmentation
of tumour areas is a truly specialized and time-consuming task
requiring a fair amount of expertise, the automation of this
process is considered advantageous.
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Fig. 1. Percentage of deaths caused by cancer, in Portugal. Data by
PORDATA©

This field of computer vision is in extensive development
and the advances are evident every year. However, frequently,
improvement is related to the increase of computational re-
sources needed to evaluate each image. These computing oper-
ations, apart from representing excessive energy consumption,
are not always available for health institutions.

Using state-of-the-art computationally efficient feature ex-
traction algorithms, the goal of this work is to try to improve a
baseline encoder-decoder network (U-Net), by comparing the
performance and resource consumption of different encoder-
decoder combinations. The chosen dataset is KiTS, an open
database of kidney cancer CTs and annotations done by spe-
cialists. Kidney tumours are among the top 10 most frequent
cancers in men [3] and have a survival rate near the average
cancer [2]. The growing trend follows the general malignant
tumour growth already covered in this section.

II. RELATED WORK

A. Convolutional Neural Networks

CNNs (Convolutional Neural Networks) are a specific type
of deep learning algorithms targeted at spatially structured
data, such as images. Quickly these algorithms turned into
the state-of-the-art architecture family for visual tasks. Trying
to simulate the visual perception process of living beings,
CNNs learn small details during the first stages and use



those details to learn more high-level features and output
valid information, such as segmentation, classification or other
semantic characteristics of the input. Inspired by Fukushima’s
Neocognitron [7] that emerged in 1980, the first scientists
to introduce the concept of CNNs were Lecun et al. [8] in
1998, with their acclaimed LeNet. The name makes refer-
ence to the mathematical convolution operation, the basis for
the feature extraction operations used by these networks. In
general, CNNs are composed of various convolutional layers,
alternated with pooling layers (to reduce the complexity of the
network) and non-linear activation functions. Convolutional
layers comprehend various kernels, which will learn different
features of their input. This operation may be seen as the
weighted sum of neighbour pixels of an image, whose weights
are the kernel and are learned through back-propagation.

More than a decade later, with the increase of the compu-
tational power of GPUs (General Processing Units), one of
the first GPU-based CNNs used in such tasks was presented
by Krizhevsky et al. [9], making them win the ILSVRC
(ImageNet Large Scale Visual Recognition Challenge). Their
proposed AlexNet consisted of a sequence of 5 convolutional
and 3 fully connected layers. The main particularity of their
approach is the parallelization technique used. Aiming to be
able to run the model in low memory GPUs, they divided
the kernels between 2 processing units, which shared outputs
among them only on certain layers.

The increasing of computational power of existent hardware
paved the way for the emergence of more and more complex
algorithms. This complexity, however, brings some drawbacks:
besides the need for powerful hardware and the increase in
inference and training time, the increase in complexity does
not always mean an increase in performance. Hence, scientific
works on CNNs started to make an effort to amortize these
hitches.

In 2015, Szegedy et al. [10] introduced the Inception mod-
ules. These modules consisted of a set of convolutions with
different kernel sizes, whose outputs were concatenated with
others’, in order to extract features at different dimensions and
scale without blowing up in computational complexity. The
developed network, GoogLeNet, made up of these modules,
was able to perform state-of-the-art results on ILSVRC 2014
with a top-5 error rate of 6.67%.

Comparing the performance of shallow with deeper net-
works, He et al. [11] realised that shallow networks may
perform better than their deeper counterparts because deeper
layers hardly learn identity mapping. Aiming to combat this
degradation problem, they introduced in 2016 the ResNet,
a remarkable deep learning framework that learns residual
functions. Outputs from early layers are directly summed to
the outputs from deeper layers (residual), through residual
connections. In extreme cases, the residual would be pushed to
zero, which proved to be easier to learn than identity mapping.
This technique allowed to build a 152-layer architecture, which
achieved state-of-the-art performance on the ImageNet dataset,
with less resources than previous approaches [10].

Aiming to further exploring residual learning, Huang et
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Fig. 2. Building block of the ResNet architecture. The input is summed to the
output and stacked layers aim to learn the residual function R(x) = H(x)−x

al. [12] proposed in 2017 the DenseNet. This architecture
makes use of residual connections to connect every layer to
every following layer. This approach proved to reduce the
vanishing gradient problem, strengthen feature propagation
and also reduce the number of parameters. This architecture
enabled the researchers to achieve state-of-the-art performance
on CIFAR, SVHN and ILSVRC datasets while using a smaller
number of parameters than ResNet [11].
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Fig. 3. EfficientNet architecture. This network comprises 9 phases, that consist
of a first convolution, followed by 7 MBConv blocks and a final mapping
phase. The number of repetitions of each MBConv block, their number of
channels and the input resolution are scaled following the method proposed
by the authors [13]

Recently, in 2020, motivated by the need of creating scaling
criteria for CNNs, Tan et al. [13] presented the EfficientNet.
The proposed method combines width (number of channels),
depth (number of convolutions) and resolution scaling to
adapt the size of the networks to the usage requirements.
Besides applying this method to existing architectures (such
as the MobileNets [14], [15] and ResNet [11]), authors have
also proposed their own series of CNNs (a baseline and its
scaled variations), which achieved state-of-the-art results on
the ImageNet dataset, using at least 4 times fewer FLOPs
and 2 times fewer parameters than previous state-of-the-art
architectures. Heavily influenced by the MobileNets [14], [15],



this architecture comprises an initial 3×3 convolution used to
expand the number of channels, followed by 7 scalable phases
composed of MBConv blocks, and the final output phase
(Figure 3). The resolution, number of channels and number of
convolutions used in each MBconv phase are determined by
the scale factor, which varies among EfficientNet variations.

MBConvs are convolutional blocks originally presented by
Sandler et al. [15], characterized by their inverted residual
shape. Each block comprises an optional 1 × 1 convolution
to increase the number of channels, followed by a depthwise
convolution, a Squeeze-Excitation module [16] and a final
convolution whose output is then added to the input of the
block, as with the Resnet [11]. Every convolutional operation
is followed by a batch normalization layer and a swish [17]
activation function.

Later, in 2021, the same authors [18] proposed an improved
model of this network, EfficientNetv2. The main architectural
difference relative to the former is the use of Fused-MBConvs,
which replaces the first expanding convolution and the depth-
wise convolution with an expanding 3x3 convolution.

B. CNN Architectures for Image Segmentation

Image segmentation is the process of assigning a class to
each pixel of an image, creating different regions of pixels
that ideally correspond to different objects or different classes
of objects. There are different types of image segmenta-
tion: semantic segmentation (where objects of the same class
are assigned the same label), instance segmentation (where
different objects of the same class are assigned different
labels), and panoptic segmentation (a combination of the
previous two). Image segmentation has umpteen use cases,
such as autonomous vehicles, medical image analysis and
digital marketing [19], making it a very important problem
in the computer vision field. Following the success of CNNs
on image feature extraction, and motivated by the relevancy
of image segmentation in some fields of science such as
medicine, this technique rapidly become standard for tasks
of this kind.

In 2012, Ciresan et al. [20] proposed a ”classical” CNN,
composed of convolutional and max pooling layers, followed
by several fully connected layers. The inference and training
were done to the neighbouring region (patch) of a pixel and the
output represented the class that each pixel belongs to, from
among 2 classes. Although disruptive, this network has shown
some drawbacks, such as slow ”patch-by-patch” inference and
the trade-off between good context when using larger patches
and good localization accuracy with smaller ones [21].

Aiming to increase the segmentation accuracy of this
method, the first FCNs (Fully Convolutional Layers) have sur-
faced. Long et al. [22] propose to make the ”convolutionaliza-
tion” of existing classification network architectures, such as
AlexNet [9], VGG16 [23] and GoogLeNet [10], removing fully-
connected layers and replacing them with convolutions. This
makes the networks resolution-agnostic and enables them to
output a spatial output map, making them fit for segmentation
problems. Moreover, the computation is highly amortized over

the overlapping regions of input patches. Although this method
works, the results were not satisfactory, which motivated the
same authors to propose a novel network architecture, that
introduced skip connections to combine coarse with finer
information.

Fig. 4. The U-Net architecture consists of a contractive and an expansive
path, where feature maps’ dimensions are halved and doubled respectively,
while the number of feature maps increases in the former and decreases in the
latter. Also, the contractive path’s feature maps are concatenated with their
expansive path counterpart to recover spatial information.

Based on the work on FCNs [22] and other scientific
papers that suggested to combine finer with coarser feature
maps to produce the output [24], [25], Ronneberger et al.
[21] came up with one of the most relevant works on image
segmentation, the U-Net (Figure 4). Originally conceived to be
applied to biomedical imaging, it is now the basis for the vast
majority of state-of-the-art works on semantic segmentation.
This architecture consists of two branches: a contractive and
an expansive path. The former (also known as the encoder)
follows a typical convolutional network architecture. It is a
sequence of blocks of two convolutions followed by max
pooling for down-sampling. At each down-sampling step, the
number of feature maps is doubled. The expansive path (also
known as the decoder) consists of the inverse operations:
transposed convolutions to perform the up-sampling, followed
by convolutions used to halve the feature map size. At the end
of the decoder, a 1× 1 convolution is applied in order to map
each pixel to the desired class. At each level of the encoder,
there is a ”skip connection” to the corresponding decoder
resolution step. These connections consist of the concatenation
of the feature maps in the contraction path to the corresponding
ones in the up-sampling path. This process enables the decoder
to recover the spatial information that may have been lost
during the contraction step.

Aiming to overcome data scarcity specific of the biomedical
domain, the U-Net applies data augmentation, specifically
random elastic deformations, and makes use of a dropout
layer at the end of the contracting path. With the same
goal, other authors introduced different error functions, to
handle class imbalance (background is often more frequent
than foreground labels). Çiçek et al. [26] propose a weighted
cross entropy error, whereas Milletari et al. [27] suggests to



maximize the Dice Coefficient Function. Other approaches
apply a combination of both binary cross-entropy loss and
dice coefficient [28] [29].

The encoder-decoder model used by the U-net has been
the target of extensive studies and improvements. The need of
performing segmentation on 3D images led to 3D variations
of the U-Net [26], [27]. Specifically, the V-net [27] uses
residual connections in the encoder convolutions, improving
learning speed and achieving better results than state-of-the-
art architectures. In 2018, Oktay, Schlemper, Folgoc, et al.
introduced attention gates (AG) to the U-Net’s skip connec-
tions [30], aiming to suppress feature responses in irrelevant
background regions, in order to reduce false positives. This
latter technique has showed some improvements in the expanse
of increased computational requirements. Another relevant
work was the UNet+++ [28], a U-Net-like architecture, but
with an expansive path for every encoder level, enabling deep
supervision to be used on every full-resolution feature map.
Different encoders and decoders were also tested on these
architectures, such as DenseNets [31] or EfficientNets [32].

C. Medical Image Segmentation

Compared to natural images, medical images require a much
greater level of accuracy. Otherwise, automatic segmentation
can lead to poor user experience [28]. Medical datasets fea-
ture many characteristics that differentiate them from other
datasets, such as the low number of classes [33], data scarcity
[34] or class imbalance [27]. Other factors make these tasks
challenging, such as the variation in the appearance of certain
organs and medical images and the pollution of medical
images with artefacts and distortions [27].

The U-Net has undoubtedly played a crucial role in medical
imaging segmentation. We can clearly note this by looking at
the leaderboard of the 2019 edition of KiTS, one of the biggest
segmentation challenges hosted by the MICCAI: all the 15-top
methods are U-Net like architectures [29].

1) State-of-the-Art Tumor Segmentation Techniques: In
2018, the second place on the BraTS (Brain Tumor Seg-
mentation) Challenge’s leaderboard went to a CNN model
proposed by Isensee, Kickingereder, Wick, et al., called No
New-Net [35]. This model assumes that a well trained U-
Net or 3D U-Net [21], [26] is more dataset agnostic and
may show better results than other U-Net variations (such as
residual connections [11], [27], dense connections [12], [31]
or attention gates [30]). Later on, the same authors proposed
the nnU-net [29], a self configuring deep learning method for
medical image segmentation. The self-configuration enables
less experienced users to train the network without great
knowledge and ensures the best approach for each dataset.
The key idea behind this approach is to capture the dataset
fingerprint, which describes the dataset used for training and
to elaborate the pipeline fingerprint based on it (Figure 5).

The pipeline fingerprint consists of 3 types of parame-
ters: Blueprint Parameters, Inferred Parameters and Empirical
Parameters. Blueprint Parameters are key network choices,
that won’t change among different datasets. It features key

Fig. 5. The nnU-Net’s parameters consists of Inferred Parameters (inferred
through the data fingerprint), Blueprint Parameters (key choices) and Empir-
ical Parameters (chosen by cross-validation)

details about the network architecture and training parameters.
Inferred Parameters are variable depending on the dataset. On
data preprocessing, they specify the target spacing desired
for the training samples and normalization and resampling
techniques to be applied to the training set. They also adjust
batch and patch size to fit hardware limitations, as well as the
number of downsampling/upsampling steps to be performed by
the encoder/decoder. A 2D U-Net, a 3D U-Net and a cascade
3D U-Net are then trained and the best ensemble is chosen
by cross-validation. This ensemble constitutes the Empirical
Parameters. For training, the authors propose deep supervision
at every but the two lowest resolutions and as a loss function,
the sum of cross-entropy and Dice loss is proposed.

nnU-net proved to be very impactful on medical imaging
segmentation research. Many applications and variations of
this approach have been proposed both by the same authors
as well as by other researchers.

A large portion of KiTS 2019 and 2021’s approaches is
based on the successful nnU-Net and its variants. Hou et
al. [36] propose to use the nnU-Net on a 3 stage approach:
after the pre-processing, first and second stage use a nnU-
Net in order to localize and segment the kidney. The tumour
segmentation is then performed using a custom-made 3D U-
Net. Other similar 2-stage approaches have also been followed
[37], [38], where they take advantage of 2 nnU-Nets in order
to first localize the kidneys and then segment the tumour. The
approach from Zhao et al. [39] goes even further, using 4
distinct nnU-Nets: one for firstly segment the RoI (Region of
Interest) of the kidney and then the other 3 to finely segment
the kidney, the tumour and the mass, respectively. The latter
2 receive as input both the RoI and the finely segmented
kidney. The authors also propose a novel loss function, the
Surface Dice Loss, based on the Surface Dice Coefficient. This
loss penalizes the model based on the distance between the
wrongly classified pixels and the boundary of the ground-truth
region. Golts, Khapun, Shats, et al. [40] also use the nnU-Net
architecture, and propose a loss function that penalizes the
output of a pixel based on its neighbouring pixels. On the
other hand, Yang et al. [41] propose to train a model on a
large medical imaging dataset and then use the best weights
to initialize the training on the KiTS dataset. All the datasets
are pre-processed with the methods suggested by the nnU-
Net and the model used for training is a U-Net with residual
connections.

Despite the predominance of the use of nnU-Net by the
top places in this challenge, other promising approaches are



Fig. 6. Architecture proposed by Myronenko [43]. Two different decoders
are attached at the end of the encoder: One for performing the segmentation
and a VAE branch for ”regularizing” encoder training.

worth noting. Myronenko et al. [42] presented an encoder-
decoder architecture consisting of a larger encoder and a
smaller decoder, with a series of convolutions and residual
connections. The output of the decoder is concatenated with
the output of a parallel boundary stream, which consists of
a series of convolutions and attention gates, similar to the
approach proposed by Oktay et al. [30].

In 2019, the same author proposed another asymmetrical
encoder-decoder architecture with two parallel decoders. Here,
besides UNet’s classic decoder that outputs the segmentation
mask, an auxiliary VAE (Variational Auto-Encoder) decoder is
implemented in the other branch and used during training only,
trying to reconstruct the original, ”regularizing” the learning
process of the encoder (Figure 6). The novel loss function
presented is a weighted sum of VAE loss and segmentation
loss and is given by:

L = Ldice + 0.1× LL2 + 0.1LKL (1)

where Ldice is the dice loss of the output segmentation,
LL2 is the L2 loss of the VAE output and LKL is the KL
divergence between the estimated distribution N (µ, σ2) and
a prior distribution N (0, 1). This approach has won the first
place in BraTS 2018, outperforming the original nnU-Net [35].
Jiang et al. [44] followed a similar strategy to win BraTS in
2019, with a two-stage segmentation approach, where the first
stage is performed by a U-Net with a larger encoder and the
second stage is performed by a similar network, but with a
double decoder, one of which is only used during training.
This way, the loss function and the gradient can be applied
based on 2 decoders instead of just one.

Similarly to the approaches by Myronenko and Jiang et al.,
also the approach presented by Wang et al. [45] makes use of
2 parallel branches on a U-Net like architecture. However, the
latter makes use of both for inference and not just one as the
others do. The several input channels are divided among the
two branches and a series of connections are made between
both of them. This approach was awarded second place in
BraTS 2020 challenge, only beaten by a variation of the nnU-
Net [46] presented by the original authors. This variation
focuses especially on data augmentation and an increase in
training batch size.

Aside from U-Net architectures, other approaches have
been proved relevant for Brain Tumor Segmentation among
them the H2NF -Net [47]. This 2 stage approach makes use
of 2 networks composed of several fully connected residual
networks to process the input images on several resolutions.
The outputs of the final stage are then merged using a special
module. This has also been awarded second place in BraTS
2020 competition. Also McKinley et al. [48] proposed a non-
U-Net architecture, making use of residual connections and
Attention Gates. One of the interesting characteristics of this
approach is the outputs of the network: besides the pixels’
classes prediction, it also outputs the prediction that a certain
classification disagrees with the Ground Truth. This enables
the formulation of a novel loss function, that combines the
output classification, the output disagreement probability and
the ground truth.

2) Discussion: Encoder-decoder architectures with skip
connections (such as the U-Net) are dominant in the image seg-
mentation field. The use of extra skip connections [28], [49] or
auxiliary decoder branches [42]–[45] have been widely studied
and the results have been satisfactory. Different encoders have
also been proposed based on state-of-the-art convolutional
frameworks, such as ResNet [27], [41] or DenseNet [12],
[31]. However, EfficientNet has not been yet very explored
in the encoder-decoder segmentation procedures, despite the
good performance it shows on the original paper as a feature
extraction network. To my knowledge, the only approach
that used EfficientNet for medical image segmentation was
EfficientUNet++ [32], which has shown promising results.
Other approaches make use of Attention Mechanisms [30],
[48], [49], which also performed well.

nnU-Net is undoubtedly the most influential work on state-
of-the-art biomedical image segmentation works. A vast ma-
jority of recent approaches make use of it either for pre-
processing or as a baseline network for their architectures.

III. ARCHITECTURE

Some works show that U-Net and similar architectures
can be successfully modified to work with different feature
extraction operations in the encoder path [12], [27], [31],
[41]. Given that the EfficientNet family is currently one of the
state-of-the-art image classification networks, and being it yet
under-explored as an encoder in encoder-decoder architectures,
during this work several modified EfficientNet and Efficient-
NetV2 variations were extensively tested as an encoder in the
nnU-Net framework. Moreover, given that this architectural
family use an inferior number of computational resources
in comparison to other state-of-the-art algorithms, it makes
sense to apply it to high-resolution 3D images. Furthermore,
a novel decoder was developed based on the MBConv blocks
[13]–[15], [18].

This work focuses exclusively on the 3D model of the nnU-
Net framework.

A. EfficientNet as an encoder
One of the challenges to integrating classification architec-

tures into the U-Net is to divide them into resolution stages
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Fig. 7. EfficientNet-b0 encoder. Skip connections are marked with a bent arrow. Different color tonality means different EfficientNet stage. Note that each
encoder stage may contain convolutions from different EfficientNet stages.

so that they may be inserted into the encoder. To this end,
some changes were made to the original proposed EfficientNet
model. Firstly, the initial convolution proposed in the original
EfificentNet publication suggests a fixed-size input strided
convolution (whose input size changes among EfificientNet
variations). However, as the first stage of the U-Net requires
a feature map with the exact resolution as the input but wider
(with more channels), the stride of this first convolution was
changed to 1. Also, the input to the first convolution was
made variation agnostic, and always fixed to the patch size. To
compensate for the stride change, the first MBConv block is
implemented with stride 2. The last stage from the EfficientNet
is pruned, as we don’t need to output a mapping, only the latent
map created by the convolutions.

Despite the change of the encoder, some of the nnU-Net’s
Inferred Parameters are followed. For the KiTS dataset, nnU-
Net determines a patch size of 128×128×128 and therefore it
proposes to perform 5 downsamples in the encoder, as the rule
of the nnU-Net is to perform downsamples until the shape is
4×4×4. We can observe in Figure 7 that this verifies for the
proposed encoder. As the EfficientNet family is invariant on
the number of downsampling operations, this condition verifies
for every encoder belonging to the family.

A similar approach was followed for the EfficientNetV2.
This newer variant is very similar to the original EfficientNet,
but makes use of Fused-MBConv blocks, already covered in
section II.

B. Implementation of a novel decoder

Trying to further explore the powerful capacities of MB-
Convs [13]–[15], [18], a novel decoder was developed, replac-
ing the generic convolutions proposed by the nnU-Net with
MBConvs. These blocks are repeated twice each stage, such
as proposed by the original nnU-Net, and have kernel sizes
also defined by the nnU-Net inferred parameters. Squeeze-
excitation is applied with a ratio similar to the one in the
encoder (0.25) and the expanding ratio of the MBConv is 6.

As shown in Figure 8, the block from the deeper level of
the encoder is upsampled using the transposed convolution
proposed in the original nnU-Net implementation. It is impor-
tant to note that the concatenated volume may not contain the
same number of channels as the upsampled one: whereas the

Fig. 8. The FullyEfficient decoder. The yellow block corresponds the
concatenation from the skip connection. The transposed convolution remains
unchanged from the nnU-Net implementation. MBConvs are the main building
block.

original encoder follows the rule of duplicating the number
of channels for each level, the EfficientNet does not follow
a similar pattern. Therefore, besides the fact that the encoder
and decoder are asymmetric in the number of channels, the
block originated from the concatenation of the two varies in
shape among different variations of the EfficientNet encoder.
This new decoder was named FullyEfficient-UNet.

IV. MODEL TRAINING METHODOLOGY

A. Overview

The nnU-Net paper [29] proposes to use batch learning
with 5-fold cross-validation for training. However, due to the
excessive training time, it was unfeasible to follow the same
strategy. Also, as the ground-truth of the test set of the KiTS
dataset is not publicly accessible, the training set was split into
train, validation and test sets.

Every model was trained using an NVIDIA®Tesla®V100S
with 32GB VRAM.

The loss function, hyperparameters and preprocessing are
the same as the proposed by the nnU-Net Blueprint and
Inferred parameters and will be addressed in the chapter.

B. Loss Function

As suggested in the nnU-Net original paper, the loss func-
tion that was used was the sum of Generalized Dice Loss and



Cross Entropy Loss:

L = LDice + LCE (2)

1) Soft Dice Loss: The DSC (Dice Similarity Coefficient)
can be used to measure the similarity between the predicted
segmentation masks of each class and the corresponding
ground truth mask. As the output is a set of probabilities,
and not the mask itself, the Soft Dice Metric can be used,
where instead of using thresholding to get the predicted mask
and intersect with the ground-truth mask, we can make use of
the probabilities to make a weighted mask. Hence, the used
metric is given by:

D =
2TP

2TP + FP + FN
=

2
∑N

n p̂n ∗ yn
2
∑N

n p̂n ∗ yn + p̂n ∗ (1− yn) + (1− p̂n) ∗ yn

(3)

where p̂ is the output probability matrix, y is the ground-truth
and ∗ represents the element-wise multiplication operation.
This metric is calculated for each class and then averaged.

Note that these coefficients are always between 0 and 1,
with values close to 1 indicating that the predicted map is
very close to the segmentation ground-truth. As the goal is to
approximate the function’s maximum, the loss function must
be the negative coefficient:

LDice = −D (4)

2) Cross-entropy Loss: As Dice loss may lose accuracy
with batch-based learning and does not deal well with class
oversampling [29], authors of nnU-Net empirically note that
these hitches may be overcome by combining it with cross-
entropy loss. This loss is used in many deep learning tasks
and is given by:

LCE = −
N∑
n

yn · log p̂n (5)

C. Hyperparameters

Most of the hyperparameters are decided on the nnU-Net
pipeline, as explained in section II. During learning, each batch
comprises two 128×128×128 patches. Patches are randomly
sampled from training cases, assuring that one-third of them
contains foreground voxels.

nnU-Net also proposes to train the models for 1000 epochs.
Each epoch comprises 250 training iterations, each composed
of a forward and backward pass of a mini-batch. The learning
rate is initialized at 0.01 (with a Nesterov momentum of 0.99)
and decayed using the polyLR policy.

However, this strategy could not always be followed, as
covered in the next chapter.

V. EXPERIMENTAL RESULTS

A. Overview

As explained in section IV, nnU-Net proposes training
during 1000 epochs with an initial learning rate of 0.01,
which is decayed following the polyLR policy. However,
some architectures were revealed to be untrainable with these
settings, due to gradient explosion. The evaluation metrics
are the ones proposed by the challenges that provide the
datasets and these are the metrics used for comparison between
different architectures.

B. Metrics

The metrics used for evaluation are the ones proposed by
the organizations of the challenges the datasets were obtained
from. These are the metrics used for ranking and the most fair
for comparison among different models.

KiTS challenge proposes an evaluation that comprises sep-
arate evaluations of different foreground classes: kidney, cysts
and tumours. However, these are not evaluated individually.
Aiming to avoid double penalization in some cases, the
evaluation is performed on hierarchical classes:

• Kidney and Masses (Kidney + Tumour + Cyst)
• Kidney Mass (Tumour + Cyst)
• Tumor
Each of these hierarchical classes is evaluated with the

DSC (presented in section IV) and sDSC (surface Dice
Similarity Coefficient) [50]. The latter firstly analyzes the
multiple different segmentation groundtruths to calculate the
”acceptable deviation”, a distance that defines the limit to
classify the predicted segmentation’s surface as ”acceptable or
”unacceptable”. This limit corresponds to the 95th percentile
of the distances of those segmentations done by professionals.
For KiTS this metric is viable, given that for each case there
are 3 different annotations done by different professionals.

C. Performance Analysis

When training the EfficientNet-b1 and over encoders with
the original nnU-Net decoder, the gradient exploded and
training was unfeasible to be made with the riginal hyperpa-
rameters. Although decreasing the learning rate and increasing
the number of epochs would be a naive way to solve this
problem, these architectures were not evaluated due to time
constraints and the need to evaluate every network with
the same conditions. When plugging the novel FullyEfficient
decoder with these encoders, however, the gradient would
not explode and the training would become possible. Other
networks were left aside also due to the time constraints of
this work. The trained and tested architectures were Generi-
cUNet (baseline), FullyEfficient GenericUNet, EfficientUNet-
b0 , EfficientUNetV2-s, EfficientUNetV2-m, EfficientUNetV2-
l, FullyEfficientUNet-b0, FullyEfficientUNet-b4, FullyEfficien-
tUNet-b7, FullyEfficientUNetV2-s and FullyEfficientUNetV2-l.

As it is possible to notice in Figure 9, every trained
architecture executes fewer FLOPs than the original nnU-
Net network (depicted in a filled grey circle), maintaining
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Fig. 9. Comparison of DSC of different encoder-decoder combinations as a function of the number of the number of FLOPS. Architectures with the EfficientNet
encoder are represented in blue, whereas architectures with the EfficientNetV2 encoder are represented in red. Original encoder is depicted in gray. Filled
circles and open circumferences represent the original and the novel decoder, respectively.

the results very similar: score metrics only vary at most 0.04
among different architectures.

For the whole kidney segmentation (9(a), 9(d)), the baseline
network is clearly the most performative. Among more effi-
cient architectures, EfficientNetV2 is the family that performs
the best. However, an odd event occurs with these encoders:
smaller networks perform better than larger ones. This can be
explained with overfitting, due to the great number of param-
eters these networks comprise, as shown in the section A.

Notably, the smaller the region to be segmented, the better
the results of efficient architectures in comparison with the
baseline. For masses segmentation (9(b), 9(e)) and tumour seg-
mentation (9(c), 9(f)), Efficient-UnetV2-S shows very similar
results to the baseline executing 40% less FLOPs. Moreover,
FullyEfficientUNetV2-L shows better results than the baseline
in the tumour segmentation task, with 18% less FLOPs.

The impact of the FullyEfficient decoder is not clear. In
conjunction with the EfficientNet encoder, despite the lack of
results with the original decoder due to the gradient problem
previously approached, both FullyEfficientNet-b0 and Fully-
EfficientNet-b1 have shown better results than EfficientNet-
b0 on almost all the tasks. However, for the EfficientNetV2
encoder family results are not so clear: despite the novel
decoder worsening results in the kidney segmentation task,
the most performative architecture for tumour segmentation is
the FullyEfficientNetV2-L.

In spite of the reduced number of FLOPs, efficient archi-

tectures comprise a large number of parameters. The largest
networks from both the EfficientNet and EfficientNetV2 fam-
ilies require even a greater number of parameters than the
baseline. This is due to the fact that MBConv blocks have more
parameters than original convolutional blocks and are repeated
more times on each encoder level. Although a larger number
of parameters may be a cause of overfitting, this phenomenon
is not clearly visible, as networks with more parameters are
able to achieve better results than the baseline on some tasks.

Another important metric is the inference time. Contrary to
expectations, a reduction of the number of FLOPs was not
directly linked to a reduction in the inference time. This fact
could be related to the larger umber of covolutions introduced
by the efficient architectures, which made the algorithm less
parallelizable.

VI. DISCUSSION

This work aimed to contribute to the efficiency of med-
ical image segmentation algorithms. Most existing state-of-
the-art approaches, although already very accurate, lack in
efficiency, requiring a large number of FLOPs to execute and,
consequently, a longer inference time. To achieve efficiency,
multiple encoders and decoders have been comprehensively
tested and attached to the nnU-Net, a popular biomedical
image segmentation framework.

The architectures proposed in this work revealed to require
less FLOPs than the original one, in spite of the fact that this



relation is not directly related to a decrease in inference time
or in the number of parameters. In fact, some architectures
with an EfficientNet backbone have shown to require more
parameters than the original network, but this didn’t lead to
overfit, possibly due to the residual connections comprised in
MBConvs and Fused-MBConvs. Actually, for the masses seg-
mentation and tumour segmentation tasks, EfficientUNetV2-L
and FullyEfficientUNetV2-L performed better than the original
nnU-Net despite having more parameters and less FLOPs than
the latter.

EfficientUnetV2-S, with 30% less FLOPs than the original
nnU-Net and also a lower inference time is able to achieve very
similar results to the baseline. For masses segmentation, this
architecture achieves a DSC of 0.868 and a sDSC of 0.7409,
very near to the 0.8722 and 0.7433 achieved by the baseline.
For the tumour segmentation, EfficientUnetV2-S reaches a
DSC of 0.8368 and a sDSC of 0.7111, against the 0.8388 and
0.7132 achieved by the baseline. The best score for the tumour
segmentation task was achieved by the FullyEfficientUNetV2-
L, with an achieved DSC of 0.8442 and sDSC of 0.7278.
This architecture requires less FLOPs to run, despite its larger
inference time.

For a future work, it would be important to validate the find-
ings of this work on other datasets, as other segmentation tasks
could may require improved efficiency. Also, more architecture
variations should be addressed, such as the introduction of a
VAE in parallel with the decoder to regularize encoder training
[19]. Discarded networks for gradient explosion should also be
addressed in the future, with a reduced learning rate.
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[24] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik,
Hypercolumns for object segmentation and fine-grained
localization, 2014. DOI: 10.48550/ARXIV.1411.5752.
[Online]. Available: https://arxiv.org/abs/1411.5752.

[25] M. Seyedhosseini, M. Sajjadi, and T. Tasdizen, “Image
segmentation with cascaded hierarchical models and
logistic disjunctive normal networks,” in 2013 IEEE
International Conference on Computer Vision, IEEE,
Dec. 2013. DOI: 10 . 1109 / iccv . 2013 . 269. [Online].
Available: https://doi.org/10.1109/iccv.2013.269.
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