
Efficient Algorithms for Medical Image Segmentation

José Miguel Ferreira Henriques de Oliveira Martinho

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Arlindo Manuel Limede de Oliveira

Examination Committee

Chairperson: Prof. David Manuel Martins de Matos
Supervisor: Prof. Arlindo Manuel Limede de Oliveira

Member of the Committee: Prof. Ana Catarina Fidalgo Barata

October 2022

I declare that this document is an original work of my own authorship and
that it fulfills all the requirements of the Code of Conduct and Good Practices

of the Universidade de Lisboa.

Acknowledgments

In the first place, I would like to thank Professor Arlindo Oliveira for all the advice and the opportunity

to work with him. I would also like to express gratitude to Instituto Superior Técnico for these years and

to INESC-ID for providing all the necessary conditions to carrying out this work.

Last but not least, I would like to thank my family, my friends and all the people close to me who gave

me the right support whenever I needed.

i

Abstract

With the growth in cancer cases and the increasing expenditures in the healthcare system, it is neces-

sary to automate processes, aiming for a faster diagnostic and decrease in expenses. Although current

technologies enable to capture high-resolution 3D images of organs, manual segmentation of organs

and tumours is still a complex process that requires high expertise.

State-of-the-art algorithms are already very accurate. However, they are very compute-intensive

tasks, leading to the need for expensive hardware and energy wasting. Coupling state-of-the-art efficient

feature extraction algorithms to the nnUNet segmentation framework, this work proposes novel efficient

architectures for medical image segmentation. For some tasks, similar results were achieved using

around 30% less Floating Point Operations (FLOPs) than the baseline nnUNet, also decreasing the

inference time. Morevover, a better performance then nnUNet was achieved using architectures with

slightly longer inference time.

Keywords

Deep Learning; Medical Imaging; Segmentation; Efficiency.

iii

Resumo

Com o crescimento do número de casos de cancro e com o aumento dos gastos no sistema de saúde,

é necessário automatizar processos, com vista a tornar mais rápido o diagnóstico e a diminuir gastos.

Apesar de as tecnologias mais recentes permitirem a captura de imagem médica 3D de alta resolução,

a segmentação manual de órgão e tumores a partir dessas imagens continua a ser um processo que

requer muito tempo e qualificações.

Os algoritmos do estado da arte da segmentação através de algoritmos de Aprendizagem Profunda

são já bastante exatos. No entanto, consomem muitos recursos, levando à necessidade de hardware

caro e desperdı́cios energéticos. Juntando algoritmos eficientes do estado da arte de extração de fea-

tures (ou caracterı́sticas) à conhecida framework de segmentação de imagem médica nnUNet, este tra-

balho apresenta novos algoritmos mais eficientes para segmentação de imagem medica. Para algumas

tarefas, foram alcançados resultados semelhantes aos da rede original, usando 30% menos Floating

Point Operations (FLOPs), também diminuindo o tempo de inferência. Foram também alcançados re-

sultados melhores do que a nnUNet original, com um tempo de inferência ligeiramente superior.

Palavras Chave

Aprendizagem Profunda; Imagem médica; Segmentação; Eficiência.

v

Contents

1 Introduction 1

1.1 Problem Statement and Motivation . 3

1.2 Approach . 5

1.3 Thesis structure . 5

2 Related Work 7

2.1 Convolutional Neural Networks . 9

2.2 CNN Architectures for Image Segmentation . 13

2.3 Medical Image Segmentation . 18

2.3.1 nnU-Net . 19

2.3.2 State-of-the-Art Tumor Segmentation Techniques 20

2.4 Discussion . 22

3 Architecture Implementation 23

3.1 Overview . 25

3.2 EfficientNet as an encoder . 25

3.3 Implementation of a novel decoder . 27

3.4 VAE normalization . 28

3.5 Computational Comparison . 28

4 Model Training Methodology 29

4.1 Overview . 31

4.2 Loss Function . 31

4.2.1 Soft Dice Loss . 31

4.2.2 Cross-entropy Loss . 32

4.3 Hyperparameters . 32

4.4 Data Preprocessing and Augmentation . 33

5 Experimental Results 35

5.1 Overview . 37

5.2 Challenges . 37

vii

5.3 Metrics . 38

5.4 Performance Analysis . 39

5.4.1 FLOPs vs. performance tradeoff . 41

5.4.2 Number of parameters . 41

5.4.3 Inference Time . 42

6 Conclusions 45

6.1 Discussion . 47

6.2 Summarized Contributions . 47

6.3 Future Work . 48

Bibliography 49

Glossary 57

A Encoders 59

B Number of Parameters Comparison 63

C Complete Comparison 65

viii

List of Figures

1.1 Percentage of deaths caused by cancer, in Portugal. 3

1.2 Absolute number of deaths caused by kidney cancer in Portugal. 4

2.1 Architecture of LeNet-5 . 9

2.2 Convolution operation . 10

2.3 Evolution of graphics cards’ transistor density over the years 10

2.4 ResNet ’s residual connection . 11

2.5 EfficientNet architecture . 12

2.6 MBConv block . 12

2.7 Fused MBConv block . 13

2.8 Semantic, instance and panoptic segmentation . 14

2.9 The ”convolutionalization” operation . 15

2.10 U-Net architecture . 16

2.11 V-Net architecture . 17

2.12 U-Net++ architecture . 18

2.13 nnU-Net ’s pipeline . 19

2.14 Architecture proposed by Myronenko . 21

3.1 EfficientNet-b0 encoder . 26

3.2 FullyEfficient decoder . 27

4.1 Learning Rate as a function of the epoch number . 32

5.1 Training of EfficientUNet-b4 and FullyEfficientUNet-b4 . 37

5.2 Visual representation of surface Dice Score (sDSC) . 38

5.3 Comparison of different encoder-decoder combinations as a function of the number of the

number of Floating Point Operations (FLOPs) . 40

5.4 Inference time comparison for different architectures, in milliseconds 43

ix

A.1 Original nnUNet encoder . 60

A.2 EfficientNet-b0 encoder . 61

A.3 EfficientNetV2-S encoder . 62

B.1 Comparison of different encoder-decoder combinations as a function of the number of the

number of parameters . 64

x

List of Tables

3.1 Changes made to the EfficientNet-b0 classification architecture to create the EfficientNet-

b0 encoder . 26

3.2 Number of TeraFLOPs required by a forward pass for batch of 2 128 × 128 × 128 volume

of the U-Net with different encoders . 28

C.1 Complete comparison of different networks . 66

xi

xii

Acronyms

CNN Convolutional Neural Network

ILSVRC ImageNet Large Scale Visual Recognition Challenge

KiTS Kidney Tumour Segmentation

BraTS Brain Tumour Segmentation

FCN Fully-Convolutional Network

MICCAI Medical Image Computing and Computer Assisted Intervention Society

RoI Region of Interest

GPU Graphics Processing Unit

VAE Variational AutoEncoder

DSC Dice Similarity Coefficient

sDSC surface Dice Score

CT Computed Tomography

FLOP Floating Point Operation

xiii

xiv

1
Introduction

Contents

1.1 Problem Statement and Motivation . 3

1.2 Approach . 5

1.3 Thesis structure . 5

1

2

1.1 Problem Statement and Motivation

Tumours are masses of tissue formed by cells that grow and divide more than they should. When

malignant (also called cancer), tumours may invade and spread into nearby tissues or other parts of the

body. According to PORDATA©1, malignant tumours are a relatively growing cause of death in Portugal,

being the second greatest in this country. In fact, data from the World Health Organization (WHO),

indicates that 1 in 6 world deaths is due to cancer [1].

1970 1980 1990 2000 2010 2020

12

14

16

18

20

22

24

26

year

C
an

ce
rd

ea
th

s
(%

)

Figure 1.1: Percentage of deaths caused by cancer, in Portugal. Data by PORDATA©

According to some studies and oncologic reports [2], [3], the survival rate of cancer is increasing at

a good pace since the 70s and was in 2010 fixed at an average of 70.5% for a 1-year survival period,

while 54.3% patients survived for at least 5 years. In Portugal, the mortality rate of cancer was near 27%

in 2018.

Despite these advances in medicine, Figure 1.1 shows that the deaths caused by cancer do not stop

growing each year, and represent now about 1/4 of deaths in Portugal. Trivially, we can conclude that

the number of cancer cases is growing. This growth is mainly explained by the ageing population [4].

This demographic problem is making health expenses grow each year and cancer treatment represents

around 6% of the total Portuguese Health Service expenditure [5].

Early diagnosis of tumours plays a significant role in the treatment of malignant tumours and in-

creases the survival rate of patients [6]. To this end, medical images should be acquired through ra-

1www.pordata.pt

3

www.pordata.pt

diological means and analyzed, with the goal of extracting information about the clinical situation of

the patient. Cancer screening images are generally acquired through a computational process called

Computed Tomography (CT). This process consists of X-Rays and computational operations and out-

puts highly detailed 3-dimensional images of a specific part of the body. One of the most essential

steps in acquiring valid information from these medical images is image segmentation. This process

transforms original raw medical images of parts of the human body into meaningful spatially structured

information that can be used by doctors and medical assistants [7]. Since the segmentation of tumour

areas is a truly specialized and time-consuming task requiring a fair amount of expertise, the automation

of this process is considered advantageous.

This field of computer vision is in extensive development and the advances are evident every year.

However, frequently, improvement is related to the increase of computational resources needed to eval-

uate each image. These computing operations, apart from representing excessive energy consumption,

are not always available for health institutions.

1990 2000 2010 2020

200

250

300

350

400

450

500

year

K
id

ne
y

ca
nc

er
de

at
hs

Figure 1.2: Absolute number of deaths caused by kidney cancer in Portugal. Data by INE (Portuguese Statistics
Insitute)

It is, therefore, crucial to automate cancer segmentation, aiming at early detection of this disease

as well as decreasing the specialized human resources needed, reducing costs. The goal of this dis-

sertation project is to go through an extensive study in order to improve the performance of current

algorithms, as well as decrease the computing power needed for them to evaluate each image. The

chosen dataset was Kidney Tumour Segmentation (KiTS), an open database of kidney cancer CTs and

4

annotations done by specialists. Kidney tumours are among the top 10 most frequent cancers in men [3]

and have a survival rate near the average cancer [2]. The growing trend follows the general malignant

tumour growth already covered in this section, as shown in Figure 1.2.

1.2 Approach

Looking at the leaderboard from the main image segmentation challenges, one can observe that most of

the state-of-the-art approaches consist of convolutional neural network architectures divided into the en-

coder and decoder stages. The encoder is responsible for transforming the input into a series of features

(also called the ”latent space”) and the decoder uses these features to obtain the final segmentation.

Using state-of-the-art computationally efficient feature extraction algorithms, the goal of this project

is to try to improve a baseline encoder-decoder network (U-Net), by comparing the performance and re-

source consumption of different encoder-decoder combinations. For this assessment, the KiTS dataset

is being used. This dataset will be used for training and evaluation of the developed algorithms.

1.3 Thesis structure

• Chapter 2 - Overview of state-of-the-art scientific work on the area of image segmentation, in

specific on medical imaging.

• Chapter 3 - Detailed explanation of the implementation of the different architectures that were

implemented, in specific the encoders and decoders that were used and developed. Resource

consumption of each network is also assessed.

• Chapter 4 - Analysis of the training decisions and methodologies that were used, specifically, the

loss function, hyperparameters and data preprocessing.

• Chapter 5 - Comprehensive comparison between all the architectures that were implemented.

They will be evaluated by their Floating Point Operations (FLOPs) requirements as well as the

number of parameters and inference time. Counterintuitively, these 3 metrics were revealed not to

be directly related among them.

• Chapter 6 - Discussion about the contributions and proposal of future work to be developed.

5

6

2
Related Work

Contents

2.1 Convolutional Neural Networks . 9

2.2 CNN Architectures for Image Segmentation . 13

2.3 Medical Image Segmentation . 18

2.4 Discussion . 22

7

8

2.1 Convolutional Neural Networks

Deep learning is a branch of machine learning that tries to imitate the human brain’s neurons in order

to learn the structure and meaning of data through algorithms. These algorithms, called artificial neural

networks, have been the subject of intense research since the mid-20th century [8], [9]. With the growing

development of technology and the increase in the quantity and quality of data worldwide, the accuracy

of these algorithms and the data to be processed has grown over the years.

Figure 2.1: Architecture of LeNet-5. This network consists of alternated convolutions (represented in red) and
subsampling operations (in black), followed by several fully-connected layers, for the inference. Adapted
from Lecun et al. [10]

Convolutional Neural Networks (CNNs) are a specific type of deep learning algorithms targeted at

spatially structured data, such as images. Quickly these algorithms turned into the state-of-the-art ar-

chitecture family for visual tasks. Trying to simulate the visual perception process of living beings, CNNs

learn small details during the first stages and use those details to learn more high-level features and out-

put valid information, such as segmentation, classification or other semantic characteristics of the input.

Inspired by Fukushima’s Neocognitron [11] that emerged in 1980, the first scientists to introduce the con-

cept of convolutional neural networks were Lecun et al. [10] in 1998, with their acclaimed LeNet, which

is the first notable work about this kind of networks. The name makes reference to the mathematical

convolution operation, the basis for the feature extraction operations used by these networks. In general,

CNNs are composed of various convolutional layers, alternated with pooling layers and non-linear acti-

vation functions. Convolutional layers comprehend various kernels, which will learn different features of

their input. Let I be the input of the convolution, O be its output and k be the N ×N convolution kernel.

The convolution operation is expressed by:

O[m,n] = (I ∗K)[m,n] =

N∑
l

N∑
j

K[l, j]× I[m− l, n− j] (2.1)

Convolutions may be seen as the weighted sum of neighbour pixels of an image, whose weights are the

kernel and are learned through back-propagation. An example convolution is visually represented on

Figure 2.2. Subsequent pooling layers help reduce the complexity of the network, maintaining computa-

9

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗

1 0 1

0 1 0

1 0 1

 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I K O = I ∗K

Figure 2.2: Convolution operation

tional efficiency, by decreasing the resolution of the input to the following layers.

1996 2000 2004 2008 2012 2016 2020
0

10

20

30

NV45
G71

G92

GF110 - AlexNet

GK104
GM200

TU102

year

tra
ns

is
to

rd
en

si
ty

(M
/m

m
2
)

Figure 2.3: AlexNet emerged during a period of intense development of the graphics card industry

The continuous research on CNNs only took steps further more than a decade later, with the increase

of the computational power of Graphics Processing Units (GPUs). One of the first GPU-based CNNs

used in such tasks was presented in 2012, by Krizhevsky et al. [12], making them win the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC). Their proposed AlexNet consisted of a sequence

of 5 convolutional and 3 fully connected layers. The main particularity of their approach is the paralleliza-

tion technique used. Aiming to be able to run the model in low memory GPUs, they divided the kernels

between 2 processing units, which shared outputs among them only on certain layers.

Further research was made during the following years. The increasing of computational power of

existent hardware paved the way for the emergence of more and more complex algorithms. This com-

plexity, however, brings some drawbacks: besides the need for powerful hardware and the increase in

inference and training time, the increase in complexity does not always mean an increase in perfor-

mance. Hence, scientific works on CNNs started to make an effort to amortize these hitches.

In 2015, Szegedy et al. [13] introduced the Inception modules. These modules consisted of a set of

10

convolutions with different kernel sizes, whose outputs were concatenated with others’. This architecture

would enable the network to extract features at different dimensions, being able to scale the network

without blowing up in computational complexity. The developed network, GoogLeNet, made up of these

modules, was able to perform state-of-the-art results on ILSVRC 2014 with a top-5 error rate of 6.67%.

Comparing the performance of shallow with deeper networks, He et al. [14] realised that deeper

layers in deep networks hardly learn identity mapping. This leads to the possibility of shallow networks

performing better than their deeper counterparts in the case of the first layers being optimal for the

problem. Aiming to combat this degradation problem, they introduced in 2016 the ResNet, a remarkable

deep learning framework that learns residual functions. In order to do this, outputs from early layers

are directly summed to outputs from deeper layers, through residual connections. Mathematically, while

classical stacked layers have to learn a mapping H(x), where x is the input to the first layer, in residual

networks that mapping is given by H(x) = R(x)+x, where R(x) is called the residual and is the learnable

function of that network. In extreme cases, the residual would be pushed to zero, which proved to be

easier to learn than identity mapping. Using this technique, a 152-layer architecture was developed,

which achieved state-of-the-art performance on the ImageNet dataset, with a 4.49% top-5 error rate,

using considerably less computational resources than previous architecture as the GoogLenet [13].

x

Conv1×1, 64channels

Conv3×3, 64channels

Conv1×1, 256channels

+

H(x)

R(x)

Figure 2.4: Building block of the ResNet architecture. The input is summed to the output and stacked layers aim to
learn the residual function R(x) = H(x)− x

Given the success of residual learning, aiming to further exploring this concept, Huang et al. [15] pro-

posed in 2017 the DenseNet. This architecture makes use of residual connections to connect every layer

to every following layer. This approach proved to reduce the vanishing gradient problem, strengthen fea-

ture propagation and also reduce the number of parameters. This architecture enabled the researchers

to achieve state-of-the-art performance on CIFAR, SVHN and ILSVRC datasets while using a smaller

number of parameters than ResNet [14].

11

x

C
on

v 3
×
3

M
B
C
on

v
1
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
5
×
5

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
x
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

C
on

v 1
×
1

P
oo
li
n
g

F
u
ll
y
C
on

n
ec
te
d

y

1+ conv. blocks with stride 2 (downscale) in the first one

1+ conv. blocks with stride 1

Figure 2.5: EfficientNet architecture. This network comprises 9 phases, that consist of a first convolution, followed
by 7 MBConv blocks and a final mapping phase. The number of repetitions of each MBConv block, their
number of channels and the input resolution are scaled following the method proposed by the authors
[16]

Recently, in 2020, motivated by the need of creating scaling criteria for CNNs, Tan et al. presented

the EfficientNet [16]. The proposed method combines width (number of channels), depth (number

of convolutions) and resolution scaling to adapt the size of the networks to the usage requirements.

Besides applying this method to existing architectures (such as the MobileNets [17], [18] and ResNet

[14]), authors have also proposed their own series of CNNs (a baseline and its scaled variations), which

achieved state-of-the-art results on the ImageNet dataset, using at least 4 times fewer FLOPs and 2

times fewer parameters than previous state-of-the-art architectures, such as the ResNet [14], DenseNet

[13] AmoeabNet [19]. Heavily influenced by the MobileNets [17], [18], this architecture comprises an

initial 3×3 convolution used to expand the number of channels, followed by 7 scalable phases composed

of MBConv blocks, and the final output phase, as we can observe in Figure 2.5. The resolution, number

of channels and number of convolutions used in each MBconv phase are determined by the scale factor,

which varies in each EfficientNet variation.

x

C
on

v 1
×
1

bn

S
w
is
h

D
ep
th
w
is
eC

on
v

bn

S
w
is
h

S
qu

ee
z
e
−

E
x
ci
ta
ti
on

C
on

v 1
×
1

bn + y

Figure 2.6: MBConv block

12

The main building blocks of the EfficientNet are MBConvs. These are convolutional blocks originally

presented by Sandler et al. [18], characterized by their inverted residual shape. Firstly, an optional 1× 1

convolution is applied to increase the number of channels, creating a wide intermediary shape. Due to

this feature map’s great number of channels, a ”normal” convolution would be too computationally expen-

sive, therefore a depthwise convolution is applied instead. At the end of the block, a Squeeze-Excitation

module [20] is applied to the output of the depthwise convolution. This latter module comprehends a

first convolution that decreases the number of channels to a very small number, followed by a second

convolution that increases the number of channels to the same as the input of the block. A final convo-

lution is applied and the output is then added to the input of the block, as with the Resnet [14]. Every

convolutional operation is followed by a batch normalization layer and a swish [21] activation function.

x

C
on

v 3
×
3

bn

S
w
is
h

S
qu

ee
z
e
−

E
x
ci
ta
ti
on

C
on

v 1
×
1

bn + y

Figure 2.7: Fused MBConv block

Later, in 2021, the same authors [22] proposed an improved model of this network, EfficientNetv2.

The main architectural difference relative to the former is the use of an alternative building block: the

Fused-MBConv. This convolutional block switches the first expanding convolution and the depthwise

convolution by an expanding 3x3 convolution. EfficientNetV2 was able to reduce the computational

complexity in comparison to its original counterpart, maintaining comparable accuracy.

2.2 CNN Architectures for Image Segmentation

Image segmentation is the process of assigning a class to each pixel of an image, creating different

regions of pixels that ideally correspond to different objects or different classes of objects. There are

different types of image segmentation: semantic segmentation (where objects of the same class are

assigned the same label), instance segmentation (where different objects of the same class are assigned

different labels), and panoptic segmentation (a combination of the previous two).

13

(a) input image (b) semantic segmen-
tation

(c) instance segmen-
tation

(d) panoptic segmen-
tation

Figure 2.8: Different segmentation tasks. Semantic segmentation (b) aims to label each pixel with the class of
object that it belongs to. Every pixel that belongs to a cat will be given the same label. Instance
segmentation (c) labels separately instances of a specific class, cats are given distinct labels. Panoptic
segmentation (d) aims to perform instance segmentation on the target class and to perform semantic
segmentation on the rest of the ”stuff”.

Image segmentation has umpteen use cases, such as autonomous vehicles, medical image analysis

and digital marketing [23], making it a very important problem in the computer vision field.

The first approaches to image segmentation originated in the 1980s, being divided in three cate-

gories: thresholding, edge-based and region-based [24]. Thresholding techniques chose the class of

each pixel based on whether its intensity was greater or less than that threshold. Edge-based segmen-

tation consisted of applying a filter on the image (such as Prewitt’s filter) to detect edges that would be

used to segment the image. Finally, region-based segmentation groups pixels that have similar charac-

teristics. Later, some more complex techniques emerged, such as the usage of Markov Random Fields

[25], Bayesian Classifiers [26], clustering [27]–[29] or image registration [30].

Following the success of CNNs on image feature extraction, and motivated by the relevancy of image

segmentation in some fields of science such as medicine, this technique rapidly become standard for

semantic tasks of this kind.

The first authors to present relevant work in this field were Ciresan et al. [31]. The proposed approach

consisted of a ”classical” CNN, composed of convolutional and max pooling Layers, followed by several

fully connected layers. The inference and training were done to the neighbouring region (patch) of a

pixel and the output represented the class that each pixel belongs to, from among 2 classes. Although

disruptive, this network has shown some drawbacks. Firstly, as the network must be run in a different

patch for each pixel, it can make the inference quite slow and complex. Moreover, larger patches mean

more max-pooling layers, which reduce localization accuracy, whilst small patches mean a loss of context

of the image [32].

Aiming to increase the segmentation accuracy of the method proposed by Ciresan et al. [31], the first

Fully-Convolutional Networks (FCNs) have surfaced [33]. Given the success of convolutions, authors

modified some existing classification network architectures, such as AlexNet [12], VGG16 [34] and

14

Figure 2.9: Conversion of state-of-the-art classification neural networks into fully convolutional ones (”convolution-
alization”). The fully connected layers are discarded to give place to convolutional ones, enabling a
space-aware output map and decreasing inference times.

GoogLeNet [13]. Originally, these networks comprise convolutional layers followed by fully connected

ones for classification. This latter type of layer makes the network be limited to a specific input resolution

and to lose the spatial information. Through a process they called ”convolutionalization” (Figure 2.9),

the authors propose to remove the fully connected networks, replacing them with convolutional ones.

This makes the networks resolution-agnostic and enables them to output a spatial output map, making

them fit for segmentation problems. Moreover, the computation is highly amortized over the overlapping

regions of input patches. As an example, AlexNet [12] took 1.2ms to infer classification in an image,

its fully convolutional version was proven to take 22ms to produce a 10 × 10 grid of outputs, which is 5

times faster, taking in account the number of outputs. Although this method works, the results were not

satisfactory, which motivated the same authors to propose a novel network architecture, that introduced

skip connections to combine coarse with finer information.

Based on the work on FCNs [33] and other scientific papers that suggested to combine finer with

coarser feature maps to produce the output [35], [36], Ronneberger et al. [32] came up with one of

the most relevant works on image segmentation, the U-Net (Figure 2.10). Originally conceived to be

applied to biomedical imaging, it is now the basis for the vast majority of state-of-the-art works on

semantic segmentation. This architecture consists of two branches: a contractive and an expansive

path. The former (also known as the encoder) follows a typical convolutional network architecture. It is

a sequence of blocks of two convolutions followed by max pooling for down-sampling. At each down-

sampling step, the number of feature maps is doubled. The expansive path (also known as the decoder)

15

Figure 2.10: The U-Net architecture consists of a contractive and an expansive path, where feature maps’ dimen-
sions are halved and doubled respectively, while the number of feature maps increases in the former
and decreases in the latter. Also, the contractive path’s feature maps are concatenated with their
expansive path counterpart to recover spatial information.

consists of the inverse operations: transposed convolutions to perform the up-sampling, followed by

convolutions used to halve the feature map size. At the end of the decoder, a 1×1 convolution is applied

in order to map each pixel to the desired class. At each level of the encoder, there is a ”skip connection”

to the corresponding decoder resolution step. These connections consist of the concatenation of the

feature maps in the contraction path to the corresponding ones in the up-sampling path. This process

enables the decoder to recover the spatial information that may have been lost during the contraction

step. To overcome the problem of the scarcity of data in biomedical problems, the authors apply data

augmentation, specifically random elastic deformations following a Gaussian distribution. Moreover, a

dropout layer exists at the end of the contracting path, which works as implicit data augmentation. U-Net

outperformed state-of-the-art architectures in several biomedical imaging datasets, such as PhC-U373

and DIC-HeLa. Prompted by the good results that U-Net has shown, many scientific works have used it

as a base to improve and explore.

Although the U-Net has been implemented for 2D image segmentation, nowadays many biomedical

images are tridimensional. Hence, some 3D variants have been proposed [37] [38]. The main idea

16

Figure 2.11: V-Net architecture [37]. 2-dimensional convolutions are replaced by 3-dimensional ones and residual
connections [14] are introduced

behind these approaches is to substitute normal convolutions for 3D ones, instead of processing slices

of the image. The V-Net model [37] goes even further, by implementing residual connections [14] in the

encoder path of the architecture. Aiming to overcome the difficulty of labelling 3D human images slice

by slice, the approach by Çiçek et al. [38] is able to learn 3D segmentation with annotated 2D slices.

In 2018, Oktay, Schlemper, Folgoc, et al. introduced attention gates (AG) to the U-Net ’s skip connec-

tions [39]. The aim of this technique is to suppress feature responses in irrelevant background regions,

in order to reduce false positives. These gates consist of weighted sums of each encoder layer with its

decoder counterpart’s immediately lower layer, the result of which is piece-wise multiplied by the origi-

nal input. This model was revealed to be much more accurate than the original U-Net, although being

computationally more expensive.

A different approach is followed by UNet++ [40]. The authors propose introducing an expansive path

for each contractive level, creating as many full-resolution feature maps as the number of down-sampling

operations. This enables deep supervision to be used on every full-resolution feature map. This way, at

inference time, this network can be pruned in order to use only the smaller encoder-decoder paths (fast

inference) or an average of all of them (more accurate). It is important noticing that every feature at a

certain resolution level is concatenated with the other feature maps at the same level. This architecture

17

Figure 2.12: U-Net++ architecture [40]. Every feature map is connected to the others, through skip connections.

has shown big improvements in comparison to U-Net, even when deep supervision was not used.

Aiming to overcome data scarcity, in addition to the aforementioned, the error function is also adjusted

to handle class imbalance (background is often more frequent than foreground labels). Çiçek et al. [38]

propose a weighted cross entropy error, whereas Milletari et al. [37] suggests to maximize the Dice

Coefficient Function. Other approaches apply a combination of both binary cross-entropy loss and dice

coefficient [7], [40].

The encoder-decoder model used by the U-net has been the target of extensive studies and improve-

ments. While the V-net [37] uses residual connections in the encoder convolutions, improving learning

speed and achieving better results than state-of-the-art architectures, Jegou et al. [41] propose the sub-

stitution of the encoder convolutions for DenseNets [15]. This showed promising results in different

datasets. On the other hand, Lourenço-Silva et al. proposed to apply a bottleneck architecture similar to

EfficientNet [16] at both the encoder and the decoder of the Unet++, creating the EfficientUnet++ [42].

2.3 Medical Image Segmentation

Compared to natural images, medical images require a much greater level of accuracy. Otherwise,

automatic segmentation it can lead to poor user experience [40]. Medical datasets feature many charac-

teristics that differentiate them from other datasets, such as the low number of classes [43], data scarcity

[44] or class imbalance [37]. Other factors make these tasks challenging, such as the variation in the

appearance of certain organs and medical images and the pollution of medical images with artefacts

and distortions [37].

The U-Net has undoubtedly played a crucial role in medical imaging segmentation. We can clearly

18

note this by looking at the leaderboard of the 2019 edition of KiTS, one of the biggest segmentation chal-

lenges hosted by the Medical Image Computing and Computer Assisted Intervention Society (MICCAI):

all the 15-top methods are U-Net like architectures [7]. Throughout this section, I will present some

state-of-the-art methods for Medical Imaging Segmentation, presented at some worldwide challenges.

I will give emphasis to a specific model, the nnU-Net, which has obtained promising results on many

different datasets and has been used by a large variety of authors.

2.3.1 nnU-Net

In 2018, the second place on the Brain Tumour Segmentation (BraTS) (Brain Tumor Segmentation)

Challenge’s leaderboard went to a CNN model proposed by Isensee, Kickingereder, Wick, et al., called

No New-Net [45]. This model assumes that a well trained U-Net or 3D U-Net [32], [38] is more dataset

agnostic and may show better results than other U-Net variations (such as residual connections [14],

[37], dense connections [15], [41] or attention gates [39]). Later on, the same authors proposed the nnU-

net [7], a self configuring deep learning method for medical image segmentation. The self-configuration

enables less experienced users to train the network without great knowledge and ensures the best

approach for each dataset. The key idea behind this approach is to capture the dataset fingerprint,

which describes the dataset used for training and to elaborate the pipeline fingerprint based on it.

The pipeline fingerprint consists of 3 types of parameters: Blueprint Parameters, Inferred Parameters

and Empirical Parameters. Blueprint Parameters are key network choices, that won’t change among

different datasets. It features key details about the network architecture and training parameters. Inferred

Parameters are variable depending on the dataset. On data preprocessing, they specify the target

spacing desired for the training samples and normalization and resampling techniques to be applied to

the training set. They also adjust batch and patch size to fit hardware limitations, as well as the number

of downsampling/upsampling steps to be performed by the encoder/decoder. A 2D U-Net, a 3D U-Net

and a cascade 3D U-Net are then trained and the best ensemble is chosen by cross-validation. This

ensemble constitutes the Empirical Parameters.

Figure 2.13: The nnU-Net ’s parameters consists of Inferred Parameters (inferred through the data fingerprint),
Blueprint Parameters (key choices) and Empirical Parameters (chosen by cross-validation)

19

For training, the authors propose deep supervision at every but the two lowest resolutions and as a

loss function, the sum of cross-entropy and Dice loss is proposed.

nnU-net proved to be very impactful on medical imaging segmentation research. Many applications

and variations of this approach have been proposed both by the same authors as well as by other

researchers.

2.3.2 State-of-the-Art Tumor Segmentation Techniques

KiTS and BraTS are MICCAI’s biggest segmentation challenges and hence can be regarded as the state

of the art in medical image segmentation. Editions from the last years of these two competitions will be

in focus throughout this section.

A large portion of KiTS 2019 and 2021’s approaches is based on the successful nnU-Net and its

variants. Hou et al. [46] propose to use the nnU-Net on a 3 stage approach: after the pre-processing, first

and second stage use a nnU-Net in order to localize and segment the kidney. The tumour segmentation

is then performed using a custom-made 3D U-Net. Other similar 2-stage approaches have also been

followed [47], [48], where they take advantage of 2 nnU-Nets in order to first localize the kidneys and

then segment the tumour. The approach from Zhao et al. [49] goes even further, using 4 distinct nnU-

Nets: one for firstly segment the Region of Interest (RoI) of the kidney and then the other 3 to finely

segment the kidney, the tumour and the mass, respectively. The latter 2 receive as input both the RoI

and the finely segmented kidney. The authors also propose a novel loss function, the Surface Dice Loss,

based on the Surface Dice Coefficient. This loss penalizes the model based on the distance between

the wrongly classified pixels and the boundary of the ground-truth region. Golts, Khapun, Shats, et al.

[50] also use the nnU-Net architecture, and propose a loss function that penalizes the output of a pixel

based on its neighbouring pixels. On the other hand, Yang et al. [51] propose to train a model on a large

medical imaging dataset and then use the best weights to initialize the training on the KiTS dataset. All

the datasets are pre-processed with the methods suggested by the nnU-Net and the model used for

training is a U-Net with residual connections.

Despite the predominance of the use of nnU-Net by the top places in this challenge, other promising

approaches are worth noting. Myronenko et al. [52] presented an encoder-decoder architecture consist-

ing of a larger encoder and a smaller decoder, with a series of convolutions and residual connections.

The output of the decoder is concatenated with the output of a parallel boundary stream, which consists

of a series of convolutions and attention gates, similar to the approach proposed by Oktay et al. [39].

In 2019, the same author proposed another asymmetrical encoder-decoder architecture with two

parallel decoders. Here, besides UNet’s classic decoder that outputs the segmentation mask, an auxil-

iary Variational AutoEncoder (VAE) decoder is implemented in the other branch and used during training

only, trying to reconstruct the original, ”regularizing” the learning process of the encoder. The novel loss

20

function presented is a weighted sum of VAE loss and segmentation loss and is given by:

L = Ldice + 0.1× LL2 + 0.1LKL (2.2)

where Ldice is the dice loss of the output segmentation, LL2 is the L2 loss of the VAE output and LKL is

the KL divergence between the estimated distribution N (µ, σ2) and a prior distribution N (0, 1).

This approach has won the first place in BraTS 2018, outperforming the original nnU-Net [45].

Figure 2.14: Architecture proposed by Myronenko [53]. Two different decoders are attached at the end of the
encoder: One for performing the segmentation and a VAE branch for ”regularizing” encoder training.

A similar architecture is implemented by Jiang et al. [54]. They propose a two-stage segmentation

approach, where the first stage is performed by a U-Net with a larger encoder and the second stage is

performed by a similar network, but with a double decoder, one of which is only used during training.

This way, the loss function and the gradient can be applied based on 2 decoders instead of just one.

This was awarded first place in BraTS 2019 challenge.

Another asymmetric U-Net is presented by Yuan [55]. In this architecture, classical convolution

blocks are replaced by residual connections with squeeze-and-excitation [20] modules. Another singu-

larity about this network is that skip connections are done from every encoder level onto every decoder

level, by a Scale Attention Block.

Similarly to the approaches by Myronenko and Jiang et al., also the approach presented by Wang et

al. [56] makes use of 2 parallel branches on a U-Net like architecture. However, the latter makes use of

both for inference and not just one as the others do. The several input channels are divided among the

two branches and a series of connections are made between both of them. This approach was awarded

second place in BraTS 2020 challenge, only beaten by a variation of the nnU-Net [57] presented by

the original authors. This variation focuses especially on data augmentation and an increase in training

batch size.

Aside from U-Net architectures, other approaches have been proved relevant for Brain Tumor Seg-

21

mentation among them the H2NF -Net [58]. This 2 stage approach makes use of 2 networks composed

of several fully connected residual networks to process the input images on several resolutions. The

outputs of the final stage are then merged using a special module. This has also been awarded second

place in BraTS 2020 competition. Also McKinley et al. [59] proposed a non-U-Net architecture, making

use of residual connections and Attention Gates. One of the interesting characteristics of this approach

is the outputs of the network: besides the pixels’ classes prediction, it also outputs the prediction that

a certain classification disagrees with the Ground Truth. This enables the formulation of a novel loss

function, that combines the output classification, the output disagreement probability and the ground

truth.

2.4 Discussion

Encoder-decoder architectures with skip connections (such as the U-Net) are dominant in the image

segmentation field. The use of extra skip connections [40], [55] or auxiliary decoder branches [52]–[54],

[56] have been widely studied and the results have been satisfactory. Different encoders have also been

proposed based on state-of-the-art convolutional frameworks, such as ResNet [37], [51] or DenseNet

[15], [41]. However, EfficientNet has not been yet very explored in the encoder-decoder segmenta-

tion procedures, despite the good performance it shows on the original paper as a feature extraction

network. To my knowledge, the only approach that used EfficientNet for medical image segmentation

was EfficientUNet++ [42], which has shown promising results. Other approaches make use of Attention

Mechanisms [39], [55], [59], which also performed well.

nnU-Net is undoubtedly the most influential work on state-of-the-art biomedical image segmentation

works. A vast majority of recent approaches make use of it either for pre-processing or as a baseline

network for their architectures.

22

3
Architecture Implementation

Contents

3.1 Overview . 25

3.2 EfficientNet as an encoder . 25

3.3 Implementation of a novel decoder . 27

3.4 VAE normalization . 28

3.5 Computational Comparison . 28

23

24

3.1 Overview

As the previous chapter has shown, the nnU-Net [7] has been established as a reference framework for

the implementation of U-Net based 3D image segmentation architectures. Its powerful dataset analysis

enables it to apply a solid pre-processing pipeline and hyperparameter estimation. Moreover, its modular

implementation makes it a perfect fit for building upon it and for the development of novel U-Net-like

architectures.

Also, some works show that U-Net and similar architectures can be successfully modified to work

with different feature extraction operations in the encoder path [15], [37], [41], [51]. Given that the Ef-

ficientNet family is currently one of the state-of-the-art image classification networks, and being it yet

under-explored as an encoder in encoder-decoder architectures, during this work several modified Effi-

cientNet and EfficientNetV2 variations were extensively tested as an encoder in the nnU-Net framework.

Moreover, given that this architectural family use an inferior number of computational resources in com-

parison to other state-of-the-art algorithms, it makes sense to apply it to high-resolution 3D images.

Furthermore, a novel decoder was developed based on the MBConv blocks [16]–[18], [22].

This work focuses exclusively on the 3D model of the nnU-Net framework.

3.2 EfficientNet as an encoder

The original U-Net [32] proposes for the encoder a series of classical convolutions on each resolution

stage, followed by a max-pooling layer for the downsizing for the next stage. At each stage, the resolution

is half of the previous one and the number of channels is doubled. However, the nnU-Net framework

suggests performing the inter-stage downsampling with strided convolutions instead. Specifically, each

stage in both the encoder and the decoder comprises 2 convolutional blocks, each block followed by an

instance normalization layer and leaky ReLU activation function. The nnU-Net ’s encoder architecture

for its 3D U-Net to be applied on the KiTS dataset is depicted in Figure A.1.

One of the challenges to integrating classification architectures into the U-Net is to divide them into

resolution stages so that they may be inserted into the encoder. To this end, some changes were

made to the original proposed EfficientNet model. Firstly, the initial convolution proposed in the original

EfificentNet publication suggests a fixed-size input strided convolution (whose input size changes among

EfificientNet variations). However, as the first stage of the U-Net requires a feature map with the exact

resolution as the input but wider (with more channels), the stride of this first convolution was changed

to 1. Also, the input to the first convolution was made variation agnostic, and always fixed to the patch

size. To compensate for the stride change, the first MBConv block is implemented with stride 2. The

last stage from the EfficientNet is pruned, as we don’t need to output a mapping, only the latent map

created by the convolutions.

25

Stage Operator #Channels #Layers Stride

1 Conv3×3 32 1 21
2 MBConv13x3 16 1 12
3 MBConv63x3 24 2 2
4 MBConv65x5 40 2 2
5 MBConv63x3 80 3 2
6 MBConv65x5 112 3 1
7 MBConv65x5 192 4 2
8 MBConv63x3 320 1 1
9 Conv1x1&Pooling&FC 1280 1 -

Table 3.1: Changes made to the EfficientNet-b0 classification architecture to create the EfficientNet-b0 encoder.
The strides from the first and second stages were changed, and the last output stage was pruned.

With these changes made, it is now possible to divide this architecture into several resolution stages

to match the U-Net ’s architecture. The first stage corresponds to the first convolution, which will expand

the input into more channels. After that, each encoder stage corresponds to the EfficientNet block or

sequence of blocks until the last convolution before the resolution is halved. Each encoder stage does

not necessarily correspond to one EfficientNet stage. The EfficientNet-b0 encoder is explicitly depicted

in Figure 3.1 and replicated in Figure A.2, in a more visually intuitive version.

I
m
a
g
e

C
on

v 3
×
3

M
B
C
on

v
1
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
x
3

M
B
C
on

v
6
3
x
3

M
B
C
on

v
6
3
x
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

D
E

C
O

D
E

R

Figure 3.1: EfficientNet-b0 encoder. Skip connections are marked with a bent arrow. Different color tonality means
different EfficientNet stage. Note that each encoder stage may contain convolutions from different
EfficientNet stages.

Despite the change of the encoder, some of the nnU-Net ’s Inferred Parameters are followed. For the

KiTS dataset, nnU-Net determines a patch size of 128× 128× 128 and therefore it proposes to perform

5 downsamples in the encoder, as the rule of the nnU-Net is to perform downsamples until the shape is

4 × 4 × 4. We can observe in Figure 3.1 that this verifies for the proposed encoder. As the EfficientNet

family is invariant on the number of downsampling operations, this condition verifies for every encoder

belonging to the family.

A similar approach was followed for the EfficientNetV2, whose architecture is depicted in Appendix A,

for legibility due to its high dimension. This newer variant is very similar to the original EfficientNet, but

26

makes use of Fused-MBConv blocks, already covered in Chapter 2 and represented in Figure A.3 as

FMBConv.

3.3 Implementation of a novel decoder

Trying to further explore the powerful capacities of MBConvs, proven by the EfficientNets [16], [22] and

MobileNets [17], [18], a novel decoder was developed, replacing the generic convolutions proposed by

the nnU-Net with MBConvs. These blocks are repeated twice each stage, such as proposed by the

original nnU-Net, and have kernel sizes also defined by the nnU-Net inferred parameters.

Figure 3.2: FullyEfficient decoder. The yellow block corresponds the concatenation from the skip connection. The
transposed convolution remains unchanged from the nnU-Net implementation. MBConvs are the main
building block.

As we can observe in Figure 3.2, the block from the deeper level of the encoder is upsampled

using the transposed convolution proposed in the original nnU-Net implementation. It is important to

note that the concatenated volume may not contain the same number of channels as the upsampled

one: whereas the original encoder follows the rule of duplicating the number of channels for each level,

the EfficientNet does not follow a similar pattern. Therefore, besides the fact that the encoder and

decoder are asymmetric in the number of channels, the block originated from the concatenation of the

two varies in shape among different variations of the EfficientNet encoder. This new decoder was named

FullyEfficient-UNet.

27

3.4 VAE normalization

A strategy similar to the one followed by Myronenko [53] has also been implemented. A VAE decoder

was attached at the end of the encoder and is used during training to regularize the training of the

encoder. The loss function is described in Chapter 2.

However, due to the time constraints of this dissertation, aggravated by the excessive amount of time

taken by network training, hyperparameters were not finetuned and the results are not included in this

work.

3.5 Computational Comparison

TFLOPs
Encoder UNet FullyEfficient-UNet

Original 0.958 0.861
EficientNet− b0 0.608 0.507
EficientNet− b1 0.610 0.509
EficientNet− b2 0.611 0.510
EficientNet− b3 0.655 0.553
EficientNet− b4 0.690 0.588
EficientNet− b5 0.701 0.599
EficientNet− b6 0.749 0.647
EficientNet− b7 0.797 0.695

EficientNetV 2− S 0.678 0.576
EficientNetV 2−M 0.724 0.622
EficientNetV 2− L 0.924 0.822

Table 3.2: Number of TeraFLOPs required by a forward pass for batch of 2 128 × 128 × 128 volume of the U-Net
with different encoders

Aiming to measure the computational impact of these encoders in the network, the open-source

tool fvcore1 was used. This tool, besides many other features, includes a powerful flop counter for

machine learning algorithms. As expected, the architectures using EfficientNet use fewer computa-

tional resources than the baseline. Moreover, the novel FullyEfficient-UNet decoder also decreases the

number of FLOPs. This is due to the efficiency of MBConvs in comparison to sequences of classical

convolutions.

1https://github.com/facebookresearch/fvcore

28

https://github.com/facebookresearch/fvcore

4
Model Training Methodology

Contents

4.1 Overview . 31

4.2 Loss Function . 31

4.3 Hyperparameters . 32

4.4 Data Preprocessing and Augmentation . 33

29

30

4.1 Overview

The nnU-Net original paper [7] proposes to use batch learning with 5-fold cross-validation for training.

However, due to the excessive training time, it was unfeasible to follow the same strategy. Also, as the

ground-truth of the test set of the KiTS dataset is not publicly accessible, the training set was split into

train, validation and test sets.

Every model was trained using an NVIDIA®Tesla®V100S with 32GB VRAM.

The loss function, hyperparameters and preprocessing are the same as the proposed by the nnU-Net

Blueprint and Inferred parameters and will be addressed in the chapter.

4.2 Loss Function

As suggested in the nnU-Net original paper, the loss function that was used was the sum of Generalized

Dice Loss and Cross Entropy Loss:

L = LDice + LCE (4.1)

4.2.1 Soft Dice Loss

In 2016, Milletari et al. [37] proposed to use the Dice Similarity Coefficient (DSC) as an objective function

for segmentation, along with a 3D U-Net, which they called V-Net. This coefficient is a statistical score

to measure the similarity between two sets A and B:

DSC =
|A ∩B|
|A|+ |B|

(4.2)

This metric can be used to measure the disparity between the predicted segmentation masks of

each class and the corresponding ground truth mask. As the output is a set of probabilities and not the

mask itself, the Soft Dice Metric can be used, where instead of using thresholding to get the predicted

mask and intersect with the ground-truth mask, we can make use of the probabilities to make a weighted

mask. Hence, the used metric is given by:

D =
2TP

2TP + FP + FN
=

2
∑N

n p̂n ∗ yn
2
∑N

n p̂n ∗ yn + p̂n ∗ (1− yn) + (1− p̂n) ∗ yn
(4.3)

where p̂ is the output probability matrix, y is the ground-truth and ∗ represents the element-wise multi-

plication operation. This metric is calculated for each class and then averaged.

Note that these coefficients are always between 0 and 1, with values close to 1 indicating that the

predicted map is very close to the segmentation ground-truth. As the goal is to approximate the function’s

31

maximum, the loss function must be the negative coefficient:

LDice = −D (4.4)

4.2.2 Cross-entropy Loss

As Dice loss may lose accuracy with batch-based learning and does not deal well with class oversam-

pling [7], authors of nnU-Net empirically note that these hitches may be overcome by combining it with

cross-entropy loss. This loss is used in many deep learning tasks and is given by:

LCE = −
N∑
n

yn · log p̂n (4.5)

4.3 Hyperparameters

Most of the hyperparameters are decided on the nnU-Net pipeline, as explained in Chapter 2. During

learning, each batch comprises two 128×128×128 patches. Patches are randomly sampled from training

cases, assuring that one-third of them contains foreground voxels.

nnU-Net also proposes to train the models for 1000 epochs. Each epoch comprises 250 training

iterations, each composed of a forward and backward pass of a mini-batch. The learning rate is initialized

at 0.01 (with a Nesterov momentum of 0.99) and decayed using the polyLR policy. This policy generates

a decaying learning rate given by:

lr = lr0 ∗ (1− epoch/maxepoch)0.9 (4.6)

where lr0 is the initial learning rate (0.01) and maxepoch is the last epoch. Figure 4.1 shows the learning

rate variation over the epochs.

Figure 4.1: Learning Rate as a function of the epoch number

32

However, this strategy could not always be followed, as covered in the next chapter.

4.4 Data Preprocessing and Augmentation

One of the most useful properties of the nnU-Net is its preprocessing planning and pipeline. Two main

operations are performed during nnU-Net ’s preprocessing pipeline: intensity normalization and resam-

pling.

For CT images, which is the case of KiTS, the strategy proposed by the nnU-Net ’s authors, and

followed in this work is to use the 0.5 and 0.95 percentiles of the foreground voxels for clipping and then

normalizing using the global foreground mean and standard deviation:

I ′ =
I − µforeground

σforeground
(4.7)

where I is the original, clipped intensity, I ′ is the normalized intensity and µforeground and σforeground

are the foreground mean and foreground standard deviation of all images, respectively. The usage of the

global mean and standard deviation is due to the fact that the voxels’ intensity reflects tissue properties

in CT images and hence images shouldn’t be independently normalized.

For resampling, third-order spline interpolation is used to resample images to the target spacing

defined in nUNet ’s Inferred parameters. Target spacing corresponds to the median of all spacings found

in the dataset, which for KiTS corresponds to 0.789. In some images where there is a high discrepancy

between the highest and lowest resolution axis, resampling on the lowest resolution one(s) is performed

with nearest-neighbour interpolation. For the ground-truth segmentation mask, linear interpolation is

used.

Data augmentation is done on the fly during training and is dataset-independent. The following

augmentations are applied:

• Rotation

• Scaling

• Gaussian Noise

• Gaussian Blur

• Brightness

• Contrast

• Simulation of low resolution

33

• Gamm augmentatin

• Mirroring

Every detail about preprocessing and augmentation is described in the original nnU-Net paper [7].

34

5
Experimental Results

Contents

5.1 Overview . 37

5.2 Challenges . 37

5.3 Metrics . 38

5.4 Performance Analysis . 39

35

36

5.1 Overview

As explained in Chapter 4, nnU-Net proposes training during 1000 epochs with an initial learning rate

of 0.01, which is decayed following the polyLR policy. However, some architectures were revealed to

be untrainable with these settings, due to gradient explosion. The evaluation metrics are the ones

proposed by the challenges that provide the datasets and these are the metrics used for comparison

between different architectures. In this chapter, all the challenges that had to be overcome during the

training of the networks will be addressed and the results of different architectures will be assessed.

5.2 Challenges

0 100 200 300 400 500 600 700 800

−0.5

0

0.5

1

(a) Training loss during training of EfficientUNet

−100 0 100 200 300 400 500 600 700 800 900 1,000

−0.5

0

(b) Training loss during training of FullyEfficientUNet

Figure 5.1: Gradient explosion during the training of EfficientUNet-b4. When the decoder is replaced with the novel
decoder, originating the FullyEfficientUNet-b4, this problem disappears.

As already mentioned, during the training process of some architectures, gradients and weights

exploded, which made the training non-viable with the original parameters. This happened when Effici-

37

enNet-b1 and over replaced the original encoder maintaining the original decoder. If the initial learning

rate were decreased to 0.001, this problem would disappear. However, it is important to perceive the

extra training epochs that it would take to train models until convergence with a reduced learning rate.

Another problem that was faced was the excessive training time. As each epoch could take up to 15

minutes, the training process with 1000 epochs could take up to more than one week. For architectures

with a double decoder (where a VAE is implemented to regularize the encoder training, as mentioned in

Chapter 3) each epoch could last up to around 30 minutes. The excessive training time was a conse-

quence not only of the forward passes, but also because of on-the-fly data access and augmentation.

If the number of epochs were increased, the models’ learning time would grow to amounts unfeasible

for the short time that was available for this work. Hence, the decision to train the networks with the

original parameters has been taken and is the explanation for not including results of networks that led

to this phenomenon in Chapter 5.

With the novel decoder, presented on Chapter 3, however, the exploding gradient problem disap-

pears, and was also a way to overcome this hitch.

5.3 Metrics

The metrics used for evaluation are the ones proposed by the organizations of the challenges the

datasets were obtained from. These are the metrics used for ranking and the most fair for compari-

son among different models.

Figure 5.2: Visual representation of surface Dice Score (sDSC). Contours of the predicted segmentation whose
distance to the groundtruth is greater than a threshold are considered ”unacceptable”. This metric
measures the relation between the ”unacceptable” surface and the whole groundtruth.

38

KiTS challenge proposes an evaluation that comprises separate evaluations of different foreground

classes: kidney, cysts and tumours. However, these are not evaluated individually. Aiming to avoid

double penalization in some cases, the evaluation is performed on hierarchical classes:

• Kidney and Masses (Kidney + Tumour + Cyst)

• Kidney Mass (Tumour + Cyst)

• Tumor

Each of these hierarchical classes is evaluated with the DSC (presented in Chapter 4) and sDSC [60].

The latter (Figure 5.2) firstly analyzes the multiple different segmentation groundtruths to calculate the

”acceptable deviation”, a distance that defines the limit to classify the predicted segmentation’s surface

as ”acceptable or ”unacceptable”. This limit corresponds to the 95th percentile of the distances of those

segmentations done by professionals. For KiTS this metric is viable, given that for each case there are

3 different annotations done by different professionals.

5.4 Performance Analysis

Due to time constraints, not every developed architecture was evaluated. Besides the baseline, the

evaluated networks were the following:

• EfficientUNet-b0

• EfficientUNetV2-s

• EfficientUNetV2-m

• EfficientUNetV2-l

• FullyEfficientUNet-b0

• FullyEfficientUNet-b4

• FullyEfficientUNet-b7

• FullyEfficientUNetV2-s

• FullyEfficientUNetV2-l

Graphs of Figure 5.3 and B.1 show the results of different encoder-decoder combinations as a func-

tion of the number of FLOPs performed in a forward pass and its number of parameters, respectively.

39

0 0.2 0.4 0.6 0.8 1

0.94

0.96

0.98

FLOPS

(a) Kidney segmentation DSC

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

FLOPS

(b) Kidney segmentation sDSC

0 0.2 0.4 0.6 0.8 1

0.84

0.86

0.88

FLOPS

(c) Masses segmentation DSC

0 0.2 0.4 0.6 0.8 1
0.7

0.72

0.74

FLOPS

(d) Masses segmentation sDSC

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

FLOPS

(e) Tumour segmentation DSC

0 0.2 0.4 0.6 0.8 1

0.66

0.68

0.7

0.72

0.74

FLOPS

(f) Tumour segmentation sDSC

Figure 5.3: Comparison of different encoder-decoder combinations as a function of the number of the number of
FLOPs. Architectures with the EfficientNet encoder are represented in blue, whereas architectures with
the EfficientNetV2 encoder are represented in red. Original encoder is depicted in gray. Filled circles
and open circumferences represent the original and the novel decoder, respectively.

40

5.4.1 FLOPs vs. performance tradeoff

As it is possible to notice in Figure 5.3, every trained architecture executes fewer FLOPs than the original

nnU-Net network (depicted in a filled grey circle), maintaining the results very similar: score metrics only

vary at most 0.04 among different architectures.

For the whole kidney segmentation (5.3(a), 5.3(b)), the baseline network is clearly the most perfor-

mative. Among more efficient architectures, EfficientNetV2 is the family that performs the best. However,

an odd event occurs with these encoders: smaller networks perform better than larger ones. This can

be explained with overfitting, due to the great number of parameters these networks comprise, as shown

in Figure B.1.

Notably, the smaller the region to be segmented, the better the results of efficient architectures

in comparison with the baseline. For masses segmentation (5.3(c), 5.3(d)) and tumour segmentation

(5.3(e), 5.3(f)), EfficientUNetV2-S shows very similar results to the baseline executing 40% less FLOPs.

Moreover, FullyEfficientUNetV2-L shows better results than the baseline in the tumour segmentation

task, with 18% less FLOPs.

The impact of the FullyEfficient decoder is not clear. In conjunction with the EfficientNet encoder,

despite the lack of results with the original decoder due to the gradient problem presented in Section 5.2,

both FullyEfficientUNet-b0 and FullyEfficientUNet-b1 have shown better results than EfficientUNet-b0 on

almost all the tasks. However, for the EfficientNetV2 encoder family results are not so clear: despite the

novel decoder worsening results in the kidney segmentation task, the most performative architecture for

tumour segmentation is the FullyEfficientUNetV2-L.

Analysing every graph, the main highlight is possibly the EfficientUNetV2-S architecture, which with

less FLOPs and a similar number of parameters is able to achieve similar results to the original nnU-Net.

5.4.2 Number of parameters

The number of parameters is a metric used often when comparing different deep learning models and

addressing efficiency. However, the number of parameters is not directly linked with efficiency. As a

naive example, let’s imagine a specific layer from two similar CNNs, with kernels of the same size. The

first network applies a convolution with a stride of 2 and the second one applies the same convolution

but with a stride of 1. It is trivial to realise that despite having the same number of parameters (kernels

were of the same size), the number of FLOPs will be higher in the latter architecture.

The number of parameters may however be related to overfitting [14], [61]. It is straightforward to

think that the larger the number of parameters, the more the model can be shaped to a particular set of

data, not generalizing for other samples.

Graphs that show the performance of each network as a function of the number of parameters are

41

depicted in Appendix B. Results are not so favourable to the efficient architectures. fvcore allows devel-

opers to analyze whole networks in order to discern the regions of the network which are using more

parameters and requiring more FLOPs. As shown in C.1, the required FLOPs and number of parame-

ters in the decoder remains the same among different encoder variations (which counter-intuitively may

not be trivial, due to skip connections). Then, the discrepancy in the number of FLOPs comes from the

encoder. As an example, the second level of the encoder of the EfficientUNetV2-M comprises 5 MB-

Conv blocks. On average, each of these blocks was composed of around 220k parameters and required

around 14 GFLOPs. On the other side, the original nnU-Net network’s second level of the encoder

comprised only 2 convolutional blocks with 83k parameters and 43.5 FLOPs each, on average. As each

MBConv block has more parameters than the original convolutional ones and is repeated more than the

former, the number of parameters will rapidly grow for efficient architectures, even though this does not

correspond to an increase in the number of FLOPs required.

As far as overfitting is concerned, there were no symptoms of it on tasks that envolved the segmen-

tation of smaller volumes, as some architectures with a large number of parameters have shown better

results at some tasks than the original nnU-Net on masses and tumour segmentation tasks. The ab-

sence of overfitting may be due to MBConv ’s residual architecture, that has already proved in the past

to hinder this common problem [14], [16]–[18], [22].

5.4.3 Inference Time

Figure 5.4 depicts a comparison of the time different architectures take to execute a forward pass of a

single 128 × 128 × 128 volume on an NVIDIA® Tesla V100S. The simulations were run 500 times and

averaged, in order to obtain a great level of accuracy.

Contrary to expectations, the decrease in the number of FLOPs does not linearly correspond to a

decrease in inference time. Although there is no evident explanation for this, the discrepancy between

the variation in the number of FLOPs and the variation of inference time may be explained by varioations

on the efficiency of the hardware. As shown in Figure A.3 and Figure 3.1, the introduced encoders

comprise more layers than the original one. Although these layers are more compute-efficient than

the original ones, as each layer’s operations are dependent on the output of the previous layer, the

”parallelizability” of the network tends to decrease. This could explain the fact that EfficientUNetV2-M

and EfficientUNetV2-L show a larger inference time than the baseline despite their smaller number of

required FLOPs.

However, the novel decoder apparently also increases the running time while reducing the number

of parameters and FLOPs. This can also be explained by the fact that MBConv blocks perform more

sequential operations than the original convolutional blocks. This significant disparity may have other

causes, out of the scope of this work.

42

G
en

er
ic

U
N

et
Fu

lly
E

ffi
ci

en
tG

en
er

ic
U

ne
t

E
ffi

ci
en

tU
N

et
-b

0
Fu

lly
E

ffi
ci

en
tU

N
et

-b
0

Fu
lly

E
ffi

ci
en

tU
N

et
-b

4
Fu

lly
E

ffi
ci

en
tU

N
et

-b
7

E
ffi

ci
en

tU
N

et
V

2-
S

E
ffi

ci
en

tU
N

et
V

2-
M

E
ffi

ci
en

tU
N

et
V

2-
L

Fu
lly

E
ffi

ci
en

tU
N

et
V

2-
S

Fu
lly

E
ffi

ci
en

tU
N

et
V

2-
L

80

100

120

140

160

180

102.09

152.07

81.79

119.54

145.54

184.79

92.09

106.66

129.44
133.48

170.12

In
fe

re
nc

e
tim

e
(m

s)

Figure 5.4: Inference time comparison for different architectures, in milliseconds. The time represented corre-
sponds to the time that each network takes to perform a forward pass of a single 128 × 128 × 128
volume. As in Figure 5.3, filled bars represent architectures with the novel decoder, whereas filled ones
represent networks with the original decoder. Colours also correspond to previously used ones

43

44

6
Conclusions

Contents

6.1 Discussion . 47

6.2 Summarized Contributions . 47

6.3 Future Work . 48

45

46

6.1 Discussion

This thesis aimed to contribute to the efficiency of medical image segmentation algorithms. Most existing

state-of-the-art approaches, although already very accurate, lack in efficiency, requiring a large number

of FLOPs to execute and, consequently, a longer inference time. To achieve efficiency, multiple encoders

and decoders have been comprehensively tested and attached to the nnU-Net, a popular biomedical

image segmentation framework.

Every developed architecture revealed to require less FLOPs than the original one, although this

is not directly related to a decrease in inference time or in the number of parameters. In fact, some

architectures with an EfficientNet backbone have shown to require more parameters than the original

network, but this didn’t lead to overfit, possibly due to the residual connections comprised in MBConvs

and Fused-MBConvs. Actually, for the masses segmentation and tumour segmentation tasks, Efficien-

tUNetV2-L and FullyEfficientUNetV2-L performed better than the original nnU-Net despite having more

parameters and less FLOPs than the latter.

EfficientUNetV2-S, with 30% less FLOPs than the original nnU-Net and also a lower inference time is

able to achieve very similar results to the baseline. For masses segmentation, this architecture achieves

a DSC of 0.868 and a sDSC of 0.7409, very near to the 0.8722 and 0.7433 achieved by the baseline. For

the tumour segmentation, EfficientUNetV2-S reaches a DSC of 0.8368 and a sDSC of 0.7111, against

the 0.8388 and 0.7132 achieved by the baseline. The best score for the tumour segmentation task was

achieved by the FullyEfficientUNetV2-L, with an achieved DSC of 0.8442 and sDSC of 0.7278. This

architecture requires less FLOPs to run, despite its larger inference time.

6.2 Summarized Contributions

Summing up, the contributions of this thesis were:

1. Assessment of several architectures with a greater level of computational efficiency than the base-

line nnU-Net without great loss of accuracy

2. Development of an architecture with better results than the baseline nnU-Net at some segmenta-

tion tasks, requiring a smaller number of FLOPs

3. Proposal of a new U-Net decoder that reduces the number of FLOPs and achieves better results

in some cases.

4. Thorough comparison of different encoder-decoder architectures with respect to the required FLOPs,

the number of parameters and inference time.

47

6.3 Future Work

Due to time constraints, some models that were aimed to be trained and tested were not assessed. One

of the techniques that performed well in previous works is the VAE regularization [23]. The introduction

of a VAE in parallel with the decoder in order to regularize the encoder’s training radically increases

training time but is able to produce more accurate gradients in order to optimize the encoder. As the

VAE is only used during training time, the inference time and the number of FLOPs would remain the

same.

Also, more encoder-decoder combinations should be addressed. As it has been shown in this dis-

sertation, architectures that led to gradient explosion have been discarded, because decreasing the

learning rate would result in more epochs to achieve convergence and, hence, longer training.

It is also of interest to validate these experiments on other datasets. Other tasks related to medical

image segmentation and even other image segmentation may require efficiency and the architectures

presented in this work may also be a pathway to achieve it

Finally, this research segment is in rapid development with new algorithms emerging every day,

specifically classification architectures that may be used as segmentation backbones. Hence, the as-

sessment of these novel technologies is of interest for the development of segmentation algorithms.

48

Bibliography

[1] F. de Almeida Fernandes, “Cancro mata mais do que sida, malária e tuberculose juntas,” Diário

de Notı́cias, Feb. 4, 2021. [Online]. Available: https://www.dn.pt/sociedade/cancro-mata-

mais-do-que-sida-malaria-e-tuberculose-juntas-13312922.html (visited on 02/04/2021).

[2] M. Quaresma, M. P. Coleman, and B. Rachet, “40-year trends in an index of survival for all cancers

combined and survival adjusted for age and sex for each cancer in england and wales, 1971-

2011: A population-based study,” The Lancet, vol. 385, no. 9974, pp. 1206–1218, Mar. 2015. DOI:

10.1016/s0140-6736(14)61396-9. [Online]. Available: https://doi.org/10.1016/s0140-

6736(14)61396-9.

[3] A. da Costa Miranda, A. Mayer-da-Silva, L. Glória, and C. Brito, “Registo oncológico nacional

de todos os tumores na população residente em portugal, em 2018,” 2020. [Online]. Available:

https://ron.min-saude.pt/media/2196/2021-0518_publica%C3%A7%C3%A3o-ron_2018.pdf.

[4] Risk factors: Age, Mar. 2021. [Online]. Available: https://www.cancer.gov/about- cancer/

causes-prevention/risk/age.

[5] J. M. Lopes, F. Rocha-Gonçalves, M. Borges, P. Redondo, and J. Laranja-Pontes, “Custo do trata-

mento do cancro em portugal,” 2017. [Online]. Available: https://ecancer.org/en/journal/

article/765-the-cost-of-cancer-treatment-in-portugal/pdf/pt.

[6] D. Crosby, S. Bhatia, K. M. Brindle, et al., “Early detection of cancer,” Science, vol. 375, no. 6586,

Mar. 2022. DOI: 10.1126/science.aay9040. [Online]. Available: https://doi.org/10.1126/

science.aay9040.

[7] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnU-net: A self-

configuring method for deep learning-based biomedical image segmentation,” Nature Methods,

vol. 18, no. 2, pp. 203–211, Feb. 2021, ISSN: 1548-7105. DOI: 10.1038/s41592-020-01008-z.

[8] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, Dec. 1943. DOI: 10.1007/

bf02478259. [Online]. Available: https://doi.org/10.1007/bf02478259.

49

https://www.dn.pt/sociedade/cancro-mata-mais-do-que-sida-malaria-e-tuberculose-juntas-13312922.html
https://www.dn.pt/sociedade/cancro-mata-mais-do-que-sida-malaria-e-tuberculose-juntas-13312922.html
https://doi.org/10.1016/s0140-6736(14)61396-9
https://doi.org/10.1016/s0140-6736(14)61396-9
https://doi.org/10.1016/s0140-6736(14)61396-9
https://ron.min-saude.pt/media/2196/2021-0518_publica%C3%A7%C3%A3o-ron_2018.pdf
https://www.cancer.gov/about-cancer/causes-prevention/risk/age
https://www.cancer.gov/about-cancer/causes-prevention/risk/age
https://ecancer.org/en/journal/article/765-the-cost-of-cancer-treatment-in-portugal/pdf/pt
https://ecancer.org/en/journal/article/765-the-cost-of-cancer-treatment-in-portugal/pdf/pt
https://doi.org/10.1126/science.aay9040
https://doi.org/10.1126/science.aay9040
https://doi.org/10.1126/science.aay9040
https://doi.org/10.1038/s41592-020-01008-z
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259

[9] A. G. Ivakhnenko and V. G. Lapa, Cybernetic Predicting Devices. CCM Information Corporation,

1965.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. DOI: 10.1109/5.

726791.

[11] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern

recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, Apr.

1980. DOI: 10.1007/bf00344251. [Online]. Available: https://doi.org/10.1007/bf00344251.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neu-

ral networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. J. C. Burges,

L. Bottou, and K. Q. Weinberger, Eds., vol. 25, Curran Associates, Inc., 2012. [Online]. Available:

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-

Paper.pdf.

[13] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2015. DOI: 10.1109/cvpr.2015.

7298594. [Online]. Available: https://doi.org/10.1109/cvpr.2015.7298594.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016. DOI:

10.1109/cvpr.2016.90. [Online]. Available: https://doi.org/10.1109/cvpr.2016.90.

[15] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional net-

works,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul.

2017. DOI: 10.1109/cvpr.2017.243. [Online]. Available: https://doi.org/10.1109/cvpr.2017.

243.

[16] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,”

arXiv:1905.11946 [cs, stat], Sep. 11, 2020. arXiv: 1905.11946. [Online]. Available: http://arxiv.

org/abs/1905.11946 (visited on 10/06/2021).

[17] A. G. Howard, M. Zhu, B. Chen, et al., Mobilenets: Efficient convolutional neural networks for

mobile vision applications, 2017. DOI: 10.48550/ARXIV.1704.04861. [Online]. Available: https:

//arxiv.org/abs/1704.04861.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals

and linear bottlenecks,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, IEEE, Jun. 2018. DOI: 10.1109/cvpr.2018.00474. [Online]. Available: https://doi.org/

10.1109/cvpr.2018.00474.

50

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2015.7298594
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/cvpr.2017.243
https://doi.org/10.1109/cvpr.2017.243
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://doi.org/10.48550/ARXIV.1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1109/cvpr.2018.00474

[19] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, Autoaugment: Learning augmentation

policies from data, 2018. DOI: 10.48550/ARXIV.1805.09501. [Online]. Available: https://arxiv.

org/abs/1805.09501.

[20] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, IEEE, Jun. 2018. DOI: 10.1109/cvpr.2018.00745.

[Online]. Available: https://doi.org/10.1109/cvpr.2018.00745.

[21] P. Ramachandran, B. Zoph, and Q. V. Le, Searching for activation functions, 2017. DOI: 10.48550/

ARXIV.1710.05941. [Online]. Available: https://arxiv.org/abs/1710.05941.

[22] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster training,” 2021. DOI: 10.48550/

ARXIV.2104.00298. [Online]. Available: https://arxiv.org/abs/2104.00298.

[23] NVIDIA. “Image segmentation.” (2021), [Online]. Available: https://catalog.ngc.nvidia.com/

orgs/nvidia/collections/imagesegmentation (visited on 09/09/2022).

[24] C. A. Glasbey and G. Horgan, Image analysis for the biological sciences, en, ser. Wiley Series in

Statistics in Practice. Chichester, England: John Wiley & Sons, Mar. 1995.

[25] A. Şengür, İ. Türkoğlu, and M. C. İnce, “Unsupervised image segmentation using markov random

fields,” in Artificial Intelligence and Neural Networks, Springer Berlin Heidelberg, 2006, pp. 158–

167. DOI: 10.1007/11803089_19. [Online]. Available: https://doi.org/10.1007/11803089_19.

[26] T. Kapur, W. Eric, L. Grimson, R. Kikinis, and W. M. Wells, “Enhanced spatial priors for segmenta-

tion of magnetic resonance imagery,” in Medical Image Computing and Computer-Assisted Inter-

vention — MICCAI’98, Springer Berlin Heidelberg, 1998, pp. 457–468. DOI: 10.1007/bfb0056231.

[Online]. Available: https://doi.org/10.1007/bfb0056231.

[27] G. Coleman and H. Andrews, “Image segmentation by clustering,” Proceedings of the IEEE,

vol. 67, no. 5, pp. 773–785, 1979. DOI: 10.1109/PROC.1979.11327.

[28] J. C. Bezdek, L. O. Hall, and L. P. Clarke, “Review of MR image segmentation techniques using

pattern recognition,” Medical Physics, vol. 20, no. 4, pp. 1033–1048, Jul. 1993. DOI: 10.1118/1.

597000. [Online]. Available: https://doi.org/10.1118/1.597000.

[29] Z. Liang, J. MacFall, and D. Harrington, “Parameter estimation and tissue segmentation from mul-

tispectral MR images,” IEEE Transactions on Medical Imaging, vol. 13, no. 3, pp. 441–449, 1994.

DOI: 10.1109/42.310875. [Online]. Available: https://doi.org/10.1109/42.310875.

[30] J. Maintz and M. A. Viergever, “A survey of medical image registration,” Medical Image Analysis,

vol. 2, no. 1, pp. 1–36, Mar. 1998. DOI: 10.1016/s1361-8415(01)80026-8. [Online]. Available:

https://doi.org/10.1016/s1361-8415(01)80026-8.

51

https://doi.org/10.48550/ARXIV.1805.09501
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1805.09501
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.48550/ARXIV.1710.05941
https://doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/ARXIV.2104.00298
https://doi.org/10.48550/ARXIV.2104.00298
https://arxiv.org/abs/2104.00298
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/imagesegmentation
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/imagesegmentation
https://doi.org/10.1007/11803089_19
https://doi.org/10.1007/11803089_19
https://doi.org/10.1007/bfb0056231
https://doi.org/10.1007/bfb0056231
https://doi.org/10.1109/PROC.1979.11327
https://doi.org/10.1118/1.597000
https://doi.org/10.1118/1.597000
https://doi.org/10.1118/1.597000
https://doi.org/10.1109/42.310875
https://doi.org/10.1109/42.310875
https://doi.org/10.1016/s1361-8415(01)80026-8
https://doi.org/10.1016/s1361-8415(01)80026-8

[31] D. Ciresan, A. Giusti, L. Gambardella, and J. Schmidhuber, “Deep neural networks segment neu-

ronal membranes in electron microscopy images,” in Advances in Neural Information Processing

Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25, Curran As-

sociates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/paper/2012/file/

459a4ddcb586f24efd9395aa7662bc7c-Paper.pdf.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image

segmentation,” in Lecture Notes in Computer Science, Springer International Publishing, 2015,

pp. 234–241. DOI: 10.1007/978-3-319-24574-4_28. [Online]. Available: https://doi.org/10.

1007/978-3-319-24574-4_28.

[33] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”

in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2015.

DOI: 10.1109/cvpr.2015.7298965. [Online]. Available: https://doi.org/10.1109/cvpr.2015.

7298965.

[34] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recogni-

tion, 2014. DOI: 10.48550/ARXIV.1409.1556. [Online]. Available: https://arxiv.org/abs/1409.

1556.

[35] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, Hypercolumns for object segmentation and

fine-grained localization, 2014. DOI: 10.48550/ARXIV.1411.5752. [Online]. Available: https:

//arxiv.org/abs/1411.5752.

[36] M. Seyedhosseini, M. Sajjadi, and T. Tasdizen, “Image segmentation with cascaded hierarchi-

cal models and logistic disjunctive normal networks,” in 2013 IEEE International Conference on

Computer Vision, IEEE, Dec. 2013. DOI: 10.1109/iccv.2013.269. [Online]. Available: https:

//doi.org/10.1109/iccv.2013.269.

[37] F. Milletari, N. Navab, and S.-A. Ahmadi, V-net: Fully convolutional neural networks for volumetric

medical image segmentation, 2016. arXiv: 1606.04797 [cs.CV].

[38] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: Learning dense

volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-

Assisted Intervention — MICCAI 2016, Springer International Publishing, 2016, pp. 424–432. DOI:

10.1007/978-3-319-46723-8_49. [Online]. Available: https://doi.org/10.1007/978-3-319-

46723-8_49.

[39] O. Oktay, J. Schlemper, L. L. Folgoc, et al., “Attention U-Net: Learning Where to Look for the

Pancreas,” arXiv:1804.03999 [cs], May 2018, arXiv: 1804.03999. [Online]. Available: http://

arxiv.org/abs/1804.03999 (visited on 12/14/2021).

52

https://proceedings.neurips.cc/paper/2012/file/459a4ddcb586f24efd9395aa7662bc7c-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/459a4ddcb586f24efd9395aa7662bc7c-Paper.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.48550/ARXIV.1411.5752
https://arxiv.org/abs/1411.5752
https://arxiv.org/abs/1411.5752
https://doi.org/10.1109/iccv.2013.269
https://doi.org/10.1109/iccv.2013.269
https://doi.org/10.1109/iccv.2013.269
https://arxiv.org/abs/1606.04797
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
https://doi.org/10.1007/978-3-319-46723-8_49
http://arxiv.org/abs/1804.03999
http://arxiv.org/abs/1804.03999

[40] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture

for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal

Learning for Clinical Decision Support, Springer International Publishing, 2018, pp. 3–11. DOI:

10.1007/978-3-030-00889-5_1. [Online]. Available: https://doi.org/10.1007/978-3-030-

00889-5_1.

[41] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The one hundred layers tiramisu:

Fully convolutional DenseNets for semantic segmentation,” in 2017 IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), IEEE, Jul. 2017. DOI: 10.1109/cvprw.

2017.156. [Online]. Available: https://doi.org/10.1109/cvprw.2017.156.

[42] J. Lourenço-Silva, M. N. Menezes, T. Rodrigues, B. Silva, F. J. Pinto, and A. L. Oliveira, “Encoder-

decoder architectures for clinically relevant coronary artery segmentation,” in Computational Ad-

vances in Bio and Medical Sciences, Springer International Publishing, 2022, pp. 63–78. DOI:

10.1007/978-3-031-17531-2_6. [Online]. Available: https://doi.org/10.1007/978-3-031-

17531-2_6.

[43] T. J. Jun, J. Kweon, Y.-H. Kim, and D. Kim, “T-net: Nested encoder–decoder architecture for the

main vessel segmentation in coronary angiography,” Neural Networks, vol. 128, pp. 216–233,

Aug. 2020, ISSN: 0893-6080. DOI: 10.1016/j.neunet.2020.05.002. [Online]. Available: http:

//dx.doi.org/10.1016/j.neunet.2020.05.002.

[44] D. C. Castro, I. Walker, and B. Glocker, “Causality matters in medical imaging,” Nature Commu-

nications, vol. 11, no. 1, Jul. 2020. DOI: 10.1038/s41467- 020- 17478- w. [Online]. Available:

https://doi.org/10.1038/s41467-020-17478-w.

[45] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “No new-net,” in Brain-

lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International Pub-

lishing, 2019, pp. 234–244. DOI: 10.1007/978-3-030-11726-9_21. [Online]. Available: https:

//doi.org/10.1007/978-3-030-11726-9_21.

[46] X. Hou, C. Xie, F. Li, and Y. Nan, “Cascaded Semantic Segmentation for Kidney and Tumor,” in

Submissions to the 2019 Kidney Tumor Segmentation Challenge: KiTS19, University of Minnesota

Libraries Publishing, 2019. DOI: 10.24926/548719.002. [Online]. Available: https://kits.lib.

umn.edu/cascaded-semantic-segmentation-for-kidney-and-tumor/ (visited on 12/21/2021).

[47] Y. Zhang, Y. Wang, F. Hou, et al., “Cascaded volumetric convolutional network for kidney tumor

segmentation from CT volumes,” in Submissions to the 2019 Kidney Tumor Segmentation Chal-

lenge: KiTS19, University of Minnesota Libraries Publishing, 2019. DOI: 10.24926/548719.004.

[Online]. Available: https://doi.org/10.24926/548719.004.

53

https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/cvprw.2017.156
https://doi.org/10.1109/cvprw.2017.156
https://doi.org/10.1109/cvprw.2017.156
https://doi.org/10.1007/978-3-031-17531-2_6
https://doi.org/10.1007/978-3-031-17531-2_6
https://doi.org/10.1007/978-3-031-17531-2_6
https://doi.org/10.1016/j.neunet.2020.05.002
http://dx.doi.org/10.1016/j.neunet.2020.05.002
http://dx.doi.org/10.1016/j.neunet.2020.05.002
https://doi.org/10.1038/s41467-020-17478-w
https://doi.org/10.1038/s41467-020-17478-w
https://doi.org/10.1007/978-3-030-11726-9_21
https://doi.org/10.1007/978-3-030-11726-9_21
https://doi.org/10.1007/978-3-030-11726-9_21
https://doi.org/10.24926/548719.002
https://kits.lib.umn.edu/cascaded-semantic-segmentation-for-kidney-and-tumor/
https://kits.lib.umn.edu/cascaded-semantic-segmentation-for-kidney-and-tumor/
https://doi.org/10.24926/548719.004
https://doi.org/10.24926/548719.004

[48] Y. George, “A coarse-to-fine 3d u-net network for semantic segmentation of kidney CT scans,” in

Lecture Notes in Computer Science, Springer International Publishing, 2022, pp. 137–142. DOI:

10.1007/978-3-030-98385-7_18. [Online]. Available: https://doi.org/10.1007/978-3-030-

98385-7_18.

[49] Z. Zhao, H. Chen, and L. Wang, “A coarse-to-fine framework for the 2021 kidney and kidney tumor

segmentation challenge,” in Lecture Notes in Computer Science, Springer International Publishing,

2022, pp. 53–58. DOI: 10.1007/978-3-030-98385-7_8. [Online]. Available: https://doi.org/

10.1007/978-3-030-98385-7_8.

[50] A. Golts, D. Khapun, D. Shats, Y. Shoshan, and F. Gilboa-Solomon, “An ensemble of 3d u-net

based models for segmentation of kidney and masses in CT scans,” in Lecture Notes in Computer

Science, Springer International Publishing, 2022, pp. 103–115. DOI: 10.1007/978-3-030-98385-

7_14. [Online]. Available: https://doi.org/10.1007/978-3-030-98385-7_14.

[51] X. Yang, J. Zhang, J. Zhang, and Y. Xia, “Transfer learning for KiTS21 challenge,” in Lecture Notes

in Computer Science, Springer International Publishing, 2022, pp. 158–163. DOI: 10.1007/978-

3-030-98385-7_21. [Online]. Available: https://doi.org/10.1007/978-3-030-98385-7_21.

[52] A. Myronenko and A. Hatamizadeh, “3D Kidneys and Kidney Tumor Semantic Segmentation using

Boundary-Aware Networks,” arXiv:1909.06684 [cs, eess], Sep. 2019, arXiv: 1909.06684. [Online].

Available: http://arxiv.org/abs/1909.06684 (visited on 12/21/2021).

[53] A. Myronenko, “3d MRI brain tumor segmentation using autoencoder regularization,” in Brainle-

sion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International Pub-

lishing, 2019, pp. 311–320. DOI: 10.1007/978-3-030-11726-9_28. [Online]. Available: https:

//doi.org/10.1007978-3-030-11726-9_28.

[54] Z. Jiang, C. Ding, M. Liu, and D. Tao, “Two-Stage Cascaded U-Net: 1st Place Solution to BraTS

Challenge 2019 Segmentation Task,” en, in Brainlesion: Glioma, Multiple Sclerosis, Stroke and

Traumatic Brain Injuries, A. Crimi and S. Bakas, Eds., ser. Lecture Notes in Computer Science,

Cham: Springer International Publishing, 2020, pp. 231–241, ISBN: 978-3-030-46640-4. DOI: 10.

1007/978-3-030-46640-4_22.

[55] Y. Yuan, “Automatic brain tumor segmentation with scale attention network,” in Brainlesion: Glioma,

Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International Publishing, 2021,

pp. 285–294. DOI: 10.1007/978-3-030-72084-1_26. [Online]. Available: https://doi.org/10.

1007/978-3-030-72084-1_26.

[56] Y. Wang, Y. Zhang, F. Hou, et al., “Modality-pairing learning for brain tumor segmentation,” in

Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International

54

https://doi.org/10.1007/978-3-030-98385-7_18
https://doi.org/10.1007/978-3-030-98385-7_18
https://doi.org/10.1007/978-3-030-98385-7_18
https://doi.org/10.1007/978-3-030-98385-7_8
https://doi.org/10.1007/978-3-030-98385-7_8
https://doi.org/10.1007/978-3-030-98385-7_8
https://doi.org/10.1007/978-3-030-98385-7_14
https://doi.org/10.1007/978-3-030-98385-7_14
https://doi.org/10.1007/978-3-030-98385-7_14
https://doi.org/10.1007/978-3-030-98385-7_21
https://doi.org/10.1007/978-3-030-98385-7_21
https://doi.org/10.1007/978-3-030-98385-7_21
http://arxiv.org/abs/1909.06684
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1007978-3-030-11726-9_28
https://doi.org/10.1007978-3-030-11726-9_28
https://doi.org/10.1007/978-3-030-46640-4_22
https://doi.org/10.1007/978-3-030-46640-4_22
https://doi.org/10.1007/978-3-030-72084-1_26
https://doi.org/10.1007/978-3-030-72084-1_26
https://doi.org/10.1007/978-3-030-72084-1_26

Publishing, 2021, pp. 230–240. DOI: 10.1007/978-3-030-72084-1_21. [Online]. Available: https:

//doi.org/10.1007/978-3-030-72084-1_21.

[57] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnU-net for brain tumor

segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,

Springer International Publishing, 2021, pp. 118–132. DOI: 10.1007/978-3-030-72087-2_11.

[Online]. Available: https://doi.org/10.1007/978-3-030-72087-2_11.

[58] H. Jia, W. Cai, H. Huang, and Y. Xia, “H2nf-net for brain tumor segmentation using multimodal MR

imaging: 2nd place solution to BraTS challenge 2020 segmentation task,” in Brainlesion: Glioma,

Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International Publishing, 2021,

pp. 58–68. DOI: 10.1007/978-3-030-72087-2_6. [Online]. Available: https://doi.org/10.

1007/978-3-030-72087-2_6.

[59] R. McKinley, M. Rebsamen, R. Meier, and R. Wiest, “Triplanar Ensemble of 3D-to-2D CNNs with

Label-Uncertainty for Brain Tumor Segmentation,” en, in Brainlesion: Glioma, Multiple Sclerosis,

Stroke and Traumatic Brain Injuries, A. Crimi and S. Bakas, Eds., ser. Lecture Notes in Computer

Science, Cham: Springer International Publishing, 2020, pp. 379–387, ISBN: 978-3-030-46640-4.

DOI: 10.1007/978-3-030-46640-4_36.

[60] S. Nikolov, S. Blackwell, A. Zverovitch, et al., Deep learning to achieve clinically applicable seg-

mentation of head and neck anatomy for radiotherapy, 2018. DOI: 10.48550/ARXIV.1809.04430.

[Online]. Available: https://arxiv.org/abs/1809.04430.

[61] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, Understanding deep learning requires

rethinking generalization, 2016. DOI: 10.48550/ARXIV.1611.03530. [Online]. Available: https:

//arxiv.org/abs/1611.03530.

55

https://doi.org/10.1007/978-3-030-72084-1_21
https://doi.org/10.1007/978-3-030-72084-1_21
https://doi.org/10.1007/978-3-030-72084-1_21
https://doi.org/10.1007/978-3-030-72087-2_11
https://doi.org/10.1007/978-3-030-72087-2_11
https://doi.org/10.1007/978-3-030-72087-2_6
https://doi.org/10.1007/978-3-030-72087-2_6
https://doi.org/10.1007/978-3-030-72087-2_6
https://doi.org/10.1007/978-3-030-46640-4_36
https://doi.org/10.48550/ARXIV.1809.04430
https://arxiv.org/abs/1809.04430
https://doi.org/10.48550/ARXIV.1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

56

Glossary

EfficientUNet

U-Net architecture with the EfficientNet encoder and the original nnUNet decoder ix, 37, 39, 41, 43, 66

EfficientUNetV2

U-Net architecture with the EfficientNetV2 encoder and the original nnUNet decoder 39, 41–43, 47, 63, 65, 66

FullyEfficientGenericUnet

U-Net architecture with the original nnUNet encoder and the novel FullyEfficient decoder 43, 66

FullyEfficientUNet

U-Net architecture with the EfficientNet encoder and the novel FullyEfficient decoder ix, 37, 39, 41, 43, 66

FullyEfficientUNetV2

U-Net architecture with the EfficientNetV2 encoder and the novel FullyEfficient decoder 39, 41, 43, 47, 65, 66

GenericUNet

Original nnUNet network. 43, 66

57

58

A
Encoders

This appendix aims to give a visual representation of the architecture of the different encoders that were

tested along with the nnU-Net. Only the smallest variation of each encoder is depicted, as the others

are very similar, only changing the number of convolutions, in most cases. As described in Chapter 3,

EfficientNet and EfficientNetV2 encoders consist of the EfficientNet and EfficientNetV2 networks with

some small changes: the first convolution is done without downsizing (stride 1), in order to fit in the first

encoder layer; the second convolutional block is performed with stride 2 and not 1, to compensate for

the first convolution; and the last convolutional block is pruned, because it is used is for classification

purposes only.

It is impportant to notice that different EfficientNet and EfficientNetV2 stages do not necessarily cor-

respond to different encoder stages in the U-Net. This happens because there are some EfficientNet ’s

levels without downsizing and therefore there isn’t a change of encoder level.

59

I
m
a
g
e

C
on

v 3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

C
on

v
B
lo
ck

3
×
3

D
E

C
O

D
E

R

Figure A.1: Original nnUNet encoder. Skip connections are marked with a bent arrow. The first convolutional block
of each encoder level has stride 2. Each convolutional block corresponds to 2 convolutions followed by
a dropout normalization layer and a ReLU activation function.

60

I
m
a
g
e

C
on

v 3
×
3

M
B
C
on

v
1
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

D
E

C
O

D
E

R

Figure A.2: EfficientNet-b0 encoder, as also depicted on Figure 3.1. Skip connections are marked with a bent
arrow. The first convolutional block of each encoder level has stride 2. Different colour tonalities means
distinct EfficientNet stages. Note that each encoder stage may contain convolutions from different
EfficientNetV2 stages. The main building blocks are MBConvs.

61

I
m
a
g
e

C
on

v 3
×
3

F
M

B
C
on

v
1
3
×
3

F
M

B
C
on

v
1
3
×
3

F
M

B
C
on

v
4
3
×
3

F
M

B
C
on

v
4
3
×
3

F
M

B
C
on

v
4
3
×
3

F
M

B
C
on

v
4
3
×
3

F
M

B
C
on

v
6
3
×
3

F
M

B
C
on

v
6
3
×
3

F
M

B
C
on

v
6
3
×
3

F
M

B
C
on

v
6
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
4
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

M
B
C
on

v
6
3
×
3

D
E

C
O

D
E

R

Figure A.3: EfficientNetV2-S encoder. Skip connections are marked with a bent arrow. The first convolutional block
of each encoder level has stride 2, Different colour tonalities means distinct EfficientNetV2 stages. Note
that each encoder stage may contain convolutions from different EfficientNetV2 stages. This encoder
comprises MBConv blocks as well as Fused-MBConv ones.

62

B
Number of Parameters Comparison

Notably, a considerable part of the efficient architectures have more parameters than the original nnUNet

network. This happens because MBConv blocks comprise a large number of parameters and moreover

are repeated many times. For example, the EfficientNetV2-M encoder is composed of 57 MBConv

blocks, a lot more than the 12 convolutional blocks used in the original nnUNet. Specifically, the second

level of the encoder of the EfficientUNetV2-M comprises 5 MBConv blocks. On average, each of these

blocks is composed of around 220k parameters and required around 14 GFLOPs. On the other side, the

original nnUNet network’s second level of the encoder comprised only 2 convolutional blocks with 83k

parameters and 43.5 FLOPs each, on average. As each MBConv block has more parameters than the

original convolutional ones and is repeated more than the former, the number of parameters will rapidly

grow for efficient architectures, even though this does not correspond to an increase in the number of

FLOPs required.

Although sometimes an excessive number of parameters may lead to overfitting, the only situation

where that scenario may have been the reality is with the EfficientUNetV2 family, on the kidney segmen-

tation task, where accuracy degrades with more parameters.

63

50 100 150

0.94

0.96

0.98

Number of parameters

(a) Kidney segmentation DSC

50 100 150
0.9

0.92

0.94

Number of parameters

(b) Kidney segmentation sDSC

50 100 150

0.84

0.86

0.88

Number of parameters

(c) Masses segmentation DSC

50 100 150
0.7

0.72

0.74

Number of parameters

(d) Masses segmentation sDSC

50 100 150
0.8

0.82

0.84

Number of parameters

(e) Tumour segmentation DSC

50 100 150

0.66

0.68

0.7

0.72

0.74

Number of parameters

(f) Tumour segmentation sDSC

Figure B.1: Comparison of different encoder-decoder combinations as a function of the number of the number of
parameters. Architectures with the EfficientNet encoder are represented in blue, whereas architectures
with the EfficientNetV2 encoder are represented in red. Original encoder is depicted in gray. Filled
circles and open circumferences represent the original and the novel decoder, respectively.

64

C
Complete Comparison

This appendix contains the complete comparison of the different networks on the KiTS dataset. The

FullyEfficientUNetV2-L and EfficientUNetV2-L are more performative than the baselineon the tumour

segmentation task, despite the lower number of FLOPs required.

65

Name # FLOPs # Parameters Inference
Time

Performance (DSC) Performance (sDSC)

Network Network Enc. Dec. Network Enc. Dec. Network Kidney Masses Tumour Kidney Masses Tumour

GenericUNet 0.958T 0.279T 0.663T 31.196M 14.025M 15.349M 102.09s 0.9689 0.8722 0.8388 0.9418 0.7433 0.7132
FullyEfficientGenericUnet 0.861T 0.279T 0.565T 28.246M 14.025M 12.399M 152.07s 0.9634 0.8554 0.8239 0.9276 0.7273 0.6973

EfficientUNet-b0 0.608T 9.658G 0.581T 19.408M 5.969M 11.617M 81.79s 0.9437 0.8366 0.8041 0.9103 0.706 0.6747
EfficientUNet-b1 0.61T 11.926G 0.581T 22.165M 8.727M 11.617M - - - - - - -
EfficientUNet-b2 0.611T 12.503G 0.582T 23.768M 10.124M 11.741M - - - - - - -
EfficientUNet-b3 0.655T 17.916G 0.62T 27.509M 13.595M 11.928M - - - - - - -
EfficientUNet-b4 0.69T 23.469G 0.65T 35.753M 21.406M 12.198M - - - - - - -
EfficientUNet-b5 0.701T 32.024G 0.652T 47.829M 33.097M 12.419M - - - - - - -
EfficientUNet-b6 0.749T 42.989G 0.689T 61.875M 46.697M 12.702M - - - - - - -
EfficientUNet-b7 0.797T 59.897G 0.721T 86.96M 71.32M 12.999M - - - - - - -

FullyEfficientUNet-b0 0.507T 9.658G 0.481T 15.201M 5.969M 7.41M 119.54s 0.9531 0.8377 0.8179 0.9106 0.705 0.6924
FullyEfficientUNet-b1 0.509T 11.926G 0.481T 17.958M 8.727M 7.41M - - - - - - -
FullyEfficientUNet-b2 0.51T 12.503G 0.481T 19.574M 10.124M 7.547M - - - - - - -
FullyEfficientUNet-b3 0.553T 17.916G 0.519T 23.344M 13.595M 7.763M - - - - - - -
FullyEfficientUNet-b4 0.69T 23.469G 0.65T 35.753M 21.406M 12.198M 145.54s 0.954 0.8496 0.8268 0.9139 0.7241 0.7025
FullyEfficientUNet-b5 0.599T 32.024G 0.55T 43.756M 33.097M 8.346M - - - - - - -
FullyEfficientUNet-b6 0.647T 42.989G 0.587T 57.874M 46.697M 8.702M - - - - - - -
FullyEfficientUNet-b7 0.695T 59.897G 0.618T 83.044M 71.32M 9.083M 184.79s 0.9581 0.855 0.8307 0.9214 0.7344 0.7148

EfficientUNetV2-S 0.678T 94.991G 0.567T 38.267M 24.321M 12.287M 92.094s 0.9618 0.868 0.8368 0.9297 0.7409 0.7111
EfficientUNetV2-M 0.724T 0.139T 0.568T 74.065M 59.216M 12.536M 106.66 0.9594 0.8574 0.8275 0.9271 0.7319 0.7055
EfficientUNetV2-L 0.924T 0.327T 0.58T 0.143G 0.128G 13.131M 129.44s 0.9591 0.8644 0.8437 0.9265 0.742 0.7207

FullyEfficientUNetV2-S 0.576T 94.991G 0.465T 34.163M 24.321M 8.183M 133.48s 0.9533 0.8527 0.8273 0.9149 0.7138 0.6943
FullyEfficientUNetV2-M 0.622T 0.139T 0.466T 70.008M 59.216M 8.48M - - - - - - -
FullyEfficientUNetV2-L 0.822T 0.327T 0.478T 0.139G 0.128G 9.244M 170.12s 0.9571 0.8626 0.8442 0.9202 0.739 0.7278

Table C.1: Complete comparison of different networks. Missing data is due to lack of time or gradient explosion. Every network was trained during 1000 epochs
with an initial training rate of 0.01.

66

67

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Problem Statement and Motivation
	1.2 Approach
	1.3 Thesis structure

	2 Related Work
	2.1 Convolutional Neural Networks
	2.2 CNN Architectures for Image Segmentation
	2.3 Medical Image Segmentation
	2.3.1 nnU-Net
	2.3.2 State-of-the-Art Tumor Segmentation Techniques

	2.4 Discussion

	3 Architecture Implementation
	3.1 Overview
	3.2 EfficientNet as an encoder
	3.3 Implementation of a novel decoder
	3.4 VAE normalization
	3.5 Computational Comparison

	4 Model Training Methodology
	4.1 Overview
	4.2 Loss Function
	4.2.1 Soft Dice Loss
	4.2.2 Cross-entropy Loss

	4.3 Hyperparameters
	4.4 Data Preprocessing and Augmentation

	5 Experimental Results
	5.1 Overview
	5.2 Challenges
	5.3 Metrics
	5.4 Performance Analysis
	5.4.1 FLOPs vs. performance tradeoff
	5.4.2 Number of parameters
	5.4.3 Inference Time

	6 Conclusions
	6.1 Discussion
	6.2 Summarized Contributions
	6.3 Future Work

	Bibliography
	Glossary
	A Encoders
	B Number of Parameters Comparison
	C Complete Comparison

