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The mass production of technological systems around the world is both
an economic and ecological issue we face today. It is critical that we find
alternate solutions as soon as possible, to contribute to a more sustainable
society. An emerging field that can bring some advancements towards this
goal is that of ad hoc teamwork, which studies how an agent can be integrated
in a new team without prior knowledge of its new teammates. Such agents
would be reusable in future tasks, reducing the need to create such a huge
amount of agents. Recent advances in this field shown that it is possible to
design agents capable of achieving high performance in this task. However,
none of the existing approaches tackled this problem for large domains with
partial observability.

In this paper, we present a new algorithm, Partially Observable Plastic
Policy (POPP), that combines transfer learning with Deep Recurrent Q-
Networks, by having an agent learn policies to play along with different
types of teammates, and reusing that knowledge when faced with new teams.
We chose the Half-Field Offense domain for evaluation. We experiment with
different configurations, with and without partial observability, and with
known and unknown teammates. Finally, we present and discuss our results,
and compare them to non-recurrent approaches, namely Deep Q-Networks
(DQN). We concluded that POPP was able to quickly identify most of the
previously known teams, and surpassed the score rate of a DQN approach
in partially observable scenarios.
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1 INTRODUCTION
With the non-stopping progress in the world of computer science
during the last few decades, a wide variety of systems were de-
signed and deployed. Many of those systems were custom-tailored
to perform a specific task in a specific environment. This means
they cannot be redeployed to perform a different task in a different
environment without a large cost and effort. This includes not only
the agents’ parts and materials (for physical agents), but also the
costs of developing new algorithms for the agents’ behavior in the
new task. Therefore, it would be useful to build a system that was
able to dynamically adapt to different tasks, should its physical ca-
pabilities allow it to do so. However, the design of an agent with
such a generalization capability is not trivial.
A multi-agent scenario brings an additional layer of complexity

to the task, since the other agents’ behavior is itself another source
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of uncertainty. This challenge can be somewhat simplified, though,
if the task is cooperative and the agent has worked previously in
the same task with a different team, since it can try to extrapolate
its prior knowledge when working with the new team.

Ad hoc teamwork is a field of study aiming to determine how an
agent can be integrated in a group of unknown teammates “on the
fly”, i.e., without any prior coordination, and with poor or nonexis-
tent communication protocols. In a teamwork task, the agent can
observe its teammates’ behaviour to determine and adapt to the
task they are solving, without the need for humans to specify it
manually. Nevertheless, the ad hoc teamwork task is, in general,
complex to solve, and there are multiple hindrances which, when
present, can further increase this complexity.
One of them occurs when the environment is only partially ob-

servable, i.e., when the agent does not have access to the full state of
the environment. This is the most realistic scenario, though, since
most physical agents’ sensors are imperfect (i.e., there can be noise
in the data collection), and don’t allow for a full representation of
the world (e.g.: a 2D camera provides an incomplete representation
of a 3D world).
With partial observability comes another problem: if the agent

aims to perform optimally (that is, to determine the optimal policy)
in a partially observable environment, it must choose how to act
considering everything it saw since the beginning of the task, since
the most recent observation is not enough to describe the world
state. This phenomenon is also called history-dependence of the
optimal policy.
A final hazard that adds complexity to the ad hoc teamwork

scenario is the sparsity of the reward signals given to the agent. In
many real-world tasks, only the final result matters (e.g., an agent
exploring a maze), which makes it difficult for the agent to know
whether it is performing well or poorly until the end of the task.

State of the art algorithms in the field of ad hoc teamwork have
been developed to address some of the aforementioned issues. How-
ever, no algorithm has been created that can solve all of these prob-
lems simultaneously.

1.1 ResearchQuestion
With our work, we aim to address an ad hoc teamwork setting which
is missing in previous literature, combining:

(i): complex domains, with a continuous, high dimensional ob-
servation space;

(ii): partial observability, and subsequent history-dependence
of the optimal policy;

(iii): sparse reward signals from the environment.

With this in mind, our research question becomes:

Is it possible to develop an autonomous agent which
performs near-optimally in the ad hoc teamwork problem,
in a complex, partially observable environment with sparse

rewards?
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1.2 Contributions
We contribute to the ad hoc teamwork research field with the devel-
opment of a new algorithm, Partially Observable PLASTIC-Policy
(POPP), which uses the agent’s experience working with past teams
to adapt to previously unseen teammates in a continuous, high
dimensional and partially observable environment with sparse re-
wards. In particular, the partial observability - and inherent history-
dependence of the optimal policy - is dealt with using Recurrent
Neural Networks (RNNs).

2 BACKGROUND
Before delving into our research problem more deeply, we will
describe how we decided to model it. We modeled our problem
as an Multi-agent Partially Observable Markov Decision Process
(MPOMDP), which is a framework to formalize a sequential decision
process under partial observability and uncertainty, targeted to a
multi-agent setting. It can be described as a tuple (𝐼 , 𝑋,𝐴, 𝑃, 𝑍,𝑂, 𝑟, `0),
where:

• 𝐼 is the index set of agents
• 𝑋 is the set of environment states
• 𝐴𝑖 is the set of actions available for agent 𝑖 , and 𝐴 =

>
𝑖∈𝐼 𝐴

𝑖

is the set of joint actions
• 𝑃 : 𝑋 × 𝐴 × 𝑋 → R is the transition probability, with
𝑃 (𝑥, 𝑎, 𝑥 ′) being the probability of the environment evolv-
ing to state 𝑥 ′ when the team executes the joint action 𝑎 on
state 𝑥 ; 𝑃 (𝑥, 𝑎, 𝑥 ′) is more commonly written as 𝑃 (𝑥 ′ | 𝑥, 𝑎)
to highlight its conditional nature
• 𝑍 𝑖 is the set of possible observations for agent 𝑖 and 𝑍 =>

𝑖∈𝐼 𝑍
𝑖 is the set of joint observations

• 𝑂 : 𝑋 × 𝐴 × 𝑍 → R is the observation probability, with
𝑂 (𝑥 ′, 𝑎, 𝑧) being the probability of the team seeing the joint
observation 𝑧 when the execution of the joint action 𝑎 re-
sulted in a transition to state 𝑥 ′;𝑂 (𝑥 ′, 𝑎, 𝑧) is more commonly
written as 𝑂 (𝑧 | 𝑥 ′, 𝑎) to highlight its conditional nature
• 𝑟 : 𝑋 × 𝐴 → R is the immediate reward function, where
𝑟 (𝑥, 𝑎) is the reward for taking the joint action 𝑎 on state 𝑥
• `0 : 𝑋 → [0, 1] is the probability distribution for the initial
environment state 𝑥0

The execution of an MPOMDP is carried out as follows: at each
time step 𝑡 (with the environment state being 𝑥𝑡 , unbeknownst to
the team), each agent 𝑖 sees an observation 𝑧𝑖𝑡 ; then each agent 𝑖
selects an action 𝑎𝑖𝑡 , resulting in the joint action 𝑎𝑡 ; upon execution
of 𝑎𝑡 , the whole team observes a reward 𝑟𝑡 and the environment
evolves to state 𝑥𝑡+1.
In order to select how to act, an agent follows a policy 𝜋 , which

maps the sequence of all transitions since the start of an episode to
an action 𝑎. The goal of the agent is to find a policy that maximizes
its expected reward. A common approach to this problem is Q-
Learning, which computes a value for each state-action pair, using
the update rule

𝑄𝑡+1 (𝑥𝑡 , 𝑎𝑡 ) = 𝑄𝑡 (𝑥𝑡 , 𝑎𝑡 ) + 𝛼𝑡 [𝑟𝑡 + 𝛾 max
𝑎′∈𝐴

𝑄𝑡 (𝑥𝑡+1, 𝑎′) −𝑄𝑡 (𝑥𝑡 , 𝑎𝑡 )]

A more advanced algorithm, which supports states with continu-
ous features is Fitted Q-Iteration (FQI):

Algorithm .1: Fitted Q-Iteration
1 begin
2 𝐷 ← {} // The replay buffer

3 𝑤0,0 ← 0 // The weights 𝑤𝑘,𝑡 for the estimator

at time step 𝑡 of episode 𝑘

4 𝑤⊙ ← 𝑤0,0 // The weights for the target

estimator

5 𝑘 ← 0 // The current episode

6 repeat
7 𝑡 ← 0 // The current time step

8 do
9 Interact with environment and get transition

𝑇𝑘,𝑡 = (𝑥𝑘,𝑡 , 𝑎𝑘,𝑡 , 𝑟𝑘,𝑡 , 𝑥𝑘,𝑡+1)
10 𝐷 ← 𝐷 ∪ {𝑇𝑘,𝑡 }
11 if 𝑡 mod 𝑃 = 0 then
12 𝑁 ← min(𝐵, |𝐷 |)
13 Randomly sample mini-batch

{(𝑥𝑛, 𝑎𝑛, 𝑟𝑛, 𝑥 ′𝑛), 𝑛 = 1, ..., 𝑁 }
14 𝑤𝑘,𝑡+1 ← argmin𝑤∈R𝑀

1
𝑁

∑𝑁
𝑛=1 | |𝑦𝑘,𝑡,𝑛 −

�̂�𝑤 (𝑥𝑛, 𝑎𝑛) | |2
15 where
16 𝑦𝑘,𝑡,𝑛 = 𝑟𝑛 + 𝛾 max𝑎∈𝐴 �̂�𝑤⊙ (𝑥 ′𝑛,𝑎) // The

target estimator

17 𝑡 ← 𝑡 + 1
18 if 𝑡 mod 𝑃⊙ = 0 then
19 𝑤⊙ ← 𝑤𝑘,𝑡

20 while 𝑥𝑘,𝑡 is not terminal
21 𝑤𝑘+1,0 ← 𝑤𝑘,𝑡 // The weights continue to the

next episode

22 𝑘 ← 𝑘 + 1
23 until forever

3 RELATED WORK
In this section we will explore state-of-the-art algorithms used to
solve the ad hoc teamwork task. We will start by exploring the first
works in this field, and find out how they culminated in the cre-
ation of the most important architectures in this field - the Planning
and Learning to Adapt Swiftly to Teammates to Improve Coopera-
tion (PLASTIC) architecture - and its two main implementations -
PLASTIC-Model and PLASTIC-Policy. Then, we will see how more
recent approaches were designed to deal with the partial observabil-
ity problem. We will finish by examining a competitive alternative
to the PLASTIC architecture based on attention networks.

3.1 Early Work
The first work we will address in the field of ad hoc teamwork is by
Stone et al. [Stone et al. 2010] and it was one of the pioneering texts
to recognize the importance of deepening our research on ad hoc
autonomous agent teams. The ad hoc teamwork problem is posed
to the community as: “To create an autonomous agent that is able
to efficiently and robustly collaborate with previously unknown

, Vol. 1, No. 1, Article . Publication date: December 2022.



Ad Hoc Teamwork using Approximate Representations • 3

teammates on tasks to which they are all individually capable of
contributing as team members.” The authors go even deeper, by
stating that a robust ad hoc team agent should be able to:

(1) “Identify the full range of possible teamwork situations that a
complete ad hoc team player needs to be capable of address-
ing.”

(2) “For each such situation, find theoretically optimal and/or
empirically effective algorithms for behavior.”

(3) “Develop methods for identifying and classifying which type
of teamwork situation the agent is currently in, in an online
fashion.”

Furthermore, they propose a performance evaluation method for
an ad hoc autonomous agent based on its capability to replace the
role of a random existing teammate from a cohesive team, while
trying to maximize a certain score measure.

After this, Barrett et al. [Barrett et al. 2011] published a followup
work, in which the first empirical evaluation of an ad hoc team agent
was provided. The domain used was Pursuit.

Two planning algorithms are tested: Value Iteration (VI) and
Monte Carlo Tree Search (MCTS). MCTS is an online planning
algorithm which works by successively performing simulations in
a search tree, to enhance its knowledge about the expected return
of each possible sequence of actions. In order to perform those
simulations, the algorithm needs to model the uncertainty in the
environment, which, in this particular environment, exists both in
the prey and the teammates’ behavior. The prey, however, is known
to act following a uniform distribution over the possible actions. To
main challenge is to model the teammates behavior, which is done
using Bayes’ theorem (assuming the teammates’ possible models
are previously known by the agent). At each time step 𝑡 , to estimate
the posterior probability 𝑃𝑡 (𝑚 | 𝑎𝑡 ) of each model𝑚 given the joint
action 𝑎𝑡 , the likelihood of each joint action given a teammate model,
𝑃𝑡 (𝑎𝑡 |𝑚) is multiplied by the prior distribution over the teammate
models, 𝑃 (𝑚), and divided by 𝑃 (𝑎𝑡 ), which works as a normalization
factor:

𝑃𝑡 (𝑚 | 𝑎𝑡 ) =
𝑃 (𝑎𝑡 |𝑚) ¤𝑃 (𝑚)

𝑃 (𝑎𝑡 )
The evaluation method is adapted from the one in [Stone et al.

2010], with multiple experiments done for different combinations of
the planning algorithm, the teammates’ behavior and the grid size.
The results shown that MCTS allows for efficient planning when
compared to VI given that it has access to a known set of teammate
models, even if these models are faulty, or the actual models being
used by the teammates differ from the ones in the set.
Later, Barrett et al. [Barrett et al. 2012] developed the first ad

hoc team agent capable of autonomously learning its teammates’
models. They describe a novel algorithm based on transfer learn-
ing, adapted to cases where the observations the agent has about
its (potential) teammates are limited. Transfer learning techniques
consist in having an agent store the knowledge it acquired in a
reinforcement learning task to reuse it in a different one.
The authors use, again, the “Pursuit” domain to test their algo-

rithm, and the method defined in [Stone et al. 2010] to evaluate it.
In the construction of the algorithm, they assume the ad hoc agent

knows the representation of both the environment and the prey, but
not that of its teammates.

The planning algorithm used is Upper Confidence bound applied
to Trees (UCT), which is an MCTS algorithm that has been shown
to be effective in complex domains, where the branching factor is
high. To perform each simulation, the agent must make an assump-
tion about its teammates’ models, and it does so using a Bayesian
approach. To select the set of models, multiple approaches are fol-
lowed, but the most relevant for our case is the one where transfer
learning is used. The authors empirically concluded that this trans-
fer learning approach can enhance the ad hoc agent’s performance
even in cases where there is a small amount of data available.

3.2 The PLASTIC architecture
The Planning and Learning to Adapt Swiftly to Teammates to Im-
prove Cooperation (PLASTIC) architecture, by Barrett [Barrett 2015],
is one of the most popular methods for ad hoc teamwork, due to
its robustness to task and teammate diversity, and its capability to
efficiently adapt to those diverse situations. It is an algorithm which
assumes the ad hoc agent has past experience cooperating with
other teammates. When faced with new teammates, the agent tries
to identify the past team with a highest similarity to the current one
and reuses the knowledge it got from the most similar past team to
act upon the domain.

In order to better leverage information from different data sources,
the author introduced a new transfer learning algorithm, “Two-Stage
Transfer” (used by the PLASTIC algorithm), which tries to identify
the best weighing for the importance of each data source.
The author introduces two variants of the PLASTIC architec-

ture, which we will proceed to describe, called PLASTIC-Model and
PLASTIC-Policy.

The PLASTIC-Model algorithm starts by learning transition mod-
els for a set of teammates using a supervised learning approach, i.e.,
an approach where the aim is to predict a target output variable
given an input, after being presented with a sequence of (input,
output) tuples. In PLASTIC-Model’s case, the inputs are the fea-
tures extracted from environment states, and the outputs are the
teammates’ actions. The agent performs this learning offline, thus
representing its past knowledge about these teammates.
Then, these learnt transition models are combined with hand-

coded models from other data sources using their novel “Two-Stage
Transfer” algorithm. The resulting models are then used by the ad
hoc agent’s online planner to plan the best course of action, using
the UCT algorithm we mentioned before.
To select which model is used by the planner, the agent stores

a belief distribution over which of the teammate models is more
likely to be the one the agent is currently working with. Since, in the
presence of previously unseen teammates, this belief distribution
represents, instead, the similarity between the currently observed
model and the known ones, they named it behavior distribution,
which covers both the cases of seen, and unseen teammates.

The behavior distribution for each model𝑚 is then updated using
polynomial weights, as follows:
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𝐿(𝑚, 𝑥, 𝑎, 𝑥 ′) = 1−𝑃 (𝑎 | 𝑥,𝑚, 𝑥 ′)𝑃 (𝑚 | 𝑥, 𝑎, 𝑥 ′) = (1 − [ ∗ 𝐿(𝑚, 𝑥, 𝑎, 𝑥 ′))
𝑐

(1)
where 𝐿(𝑚, 𝑥, 𝑎, 𝑥 ′) is the loss of model𝑚 for observing the transi-

tion (𝑥, 𝑎, 𝑥 ′), [ ≤ 0.5 is a parameter bounding the maximum value
for the loss, and 𝑐 is a normalization constant.
Empirical evaluation shown that PLASTIC-Model can quickly

adapt to previously unseen teammates in simple domains. The two
main weaknesses of this algorithm are (i) that it assumes the agent
has access to its teammates’ actions (since it observes the joint
actions 𝑎), and (ii) that UCT, being a stochastic algorithm, is prone
to learning inaccurate environment models. On the other hand,
more accurate planning algorithms would most likely be way too
ineffective to be used online in larger domains.

3.2.1 PLASTIC-Policy. The second, and last variant we will see is
PLASTIC-Policy.
Instead of learning teammate models, PLASTIC-Policy starts by

directly learning policies to work with a given set of teammates,
removing the hurdle of online planning. PLASTIC-Policy represents
these policies in the form of a matrix of Q-values which is learnt
using an FQI implementation, similar to the one we described. The
estimator used by the author consists in a weighed sum of a set of
binary features 𝑓𝑖 extracted from the environment state:

�̂� (𝑥, 𝑎) =
𝑀∑︁
𝑖=1

𝑤𝑖 𝑓𝑖

where the weights 𝑤𝑖 are learnt by FQI and 𝑀 is the number of
features 𝑓𝑖 . To build the replay buffer for each teammate in the
known set, the agent performs exploratory actions in the domain,
and stores in it the resulting transitions of the form (𝑥, 𝑎, 𝑟, 𝑥 ′). Note
that, since the agent does not need to predict its teammates’ actions,
𝑎 can simply be the agent’s own action.

In parallel to learning the policies, the agent also learns a nearest
neighbor model for each past teammate, which maps states to the
next state whose previous state is the closest to the state to be
mapped. We explain this in more detail in Section 4.
The agent then combines this knowledge with that from other

sources using, again, the “Two-Stage Transfer” algorithm. The re-
sulting policies are then used to act in the environment, and, to
update which policy the agent follows, an analogous approach to
that of PLASTIC-Model is followed.
PLASTIC-Policy was tested by Barrett et al. [Barrett and Stone

2015] in the Half-Field Offense (HFO) domain - the same we used
for our experiments - making this work a very important baseline
for us to follow.
After experimenting in scenarios with 2 attacking versus 2 de-

fending agents and with 4 attacking versus 5 defending agents, the
authors concluded that the algorithm quickly converged to the cor-
rect policy in both scenarios. Due to its scalability, its capability for
quick adaptation to new teammates, and its portability for different
ad hoc teamwork scenarios, PLASTIC-Policy has become one of the
most popular approaches in the field.

3.3 Other architectures for the ad hoc teamwork problem
Chen et al. [Chen et al. 2020] developed an attention network al-
gorithm that surpassed PLASTIC-Policy’s performance in the HFO
domain. The algorithm was named by the authors Achieving the Ad-
hoc Teamwork by Employing the Attention Mechanism (AATEAM)
and, like POPP uses RNN. However, unlike the algorithms we previ-
ously seen, AATEAM is designed to adapt to the ad hoc agent’s new
teammates in real-time, with the aid of attention-based RNN. The
architecture consists of multiple networks, one for each previously
known teammate type, and each network consists, mainly, of two
parts, called an “encoder” and a “decoder”.

The encoder, at each time step, receives a sequence with the most
recent environment states and outputs an encoded value for each
state. Each of these values has in consideration the input from the
few previous states, since the encoder has a layer with a hidden
state. The decoder uses the information outputted by the encoder,
together with its hidden state, to output an action. This description
is only a simplified version of the actual algorithm used in the paper.
Its complete details are out of the scope of this work. Experimental
results shown that AATEAM greatly over-performed PLASTIC-
Policy both with known and unknown teammates.

4 THE PLASTIC-POLICY ARCHITECTURE
In this section, we will present the PLASTIC-Policy architecture in
greater detail, since it will be the basis for our novel architecture.
An overview of PLASTIC-Policy can be found in Figure 1. but here
we present a more thorough explanation.

Fig. 1. Overview of the PLASTIC-Policy algorithm. Source: Adapted
from [Barrett 2015].

?? .2 is divided in three parts: LearnPolicies, LearnNNModels and
ActInDomain. We will proceed to explaining each one of them.

4.1 LearnPolicies
First, the agent learns a set of policies Π to work with the previously
encountered KnownTeammates. It does so using the FQI algorithm,
as explained in ?? .1. We will specify the type of estimator used in
Section 4.4.
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Algorithm .2: The PLASTIC-Policy algorithm. Source:
Adapted from [Barrett and Stone 2015].
1 Procedure PLASTIC-Policy(KnownTeammates):
2 Π ← LearnPolicies (KnownTeammates)
3 𝑀 ← LearnNNModels (KnownTeammates)
4 ActInDomain (KnownTeammates, Π,𝑀)
5

6 Function LearnPolicies(KnownTeammates):
7 Π ← {}
8 foreach teammate 𝛽 ∈ KnownTeammates do
9 Learn policy 𝜋 to cooperate with 𝛽

10 Π ← Π ∪ {𝜋}
11 return Π

12

13 Function LearnNNModels(KnownTeammates):
14 𝑀 ← {}
15 foreach teammate 𝛽 ∈ KnownTeammates do
16 Learn nearest neighbor model𝑚NN of 𝛽
17 𝑀 ← 𝑀 ∪ {𝑚NN}
18 return𝑀

19

20 Procedure ActInDomain(KnownTeammates, Π,𝑀):
21 ` = UniformDistribution(KnownTeammates)
22 Initialize state 𝑥
23 while 𝑥 is not terminal do
24 𝛽 ← argmax `
25 Take action 𝑎 = Π𝛽 (𝑥) and observe 𝑟, 𝑥 ′

26 ` ← UpdateBehaviorDistribution

(KnownTeammates,𝑀 , `, 𝑥 , 𝑎, 𝑥 ′)
27 𝑥 ← 𝑥 ′

28

29 Function
UpdateBehaviorDistribution(KnownTeammates,𝑀 , `,
𝑥 , 𝑎, 𝑥 ′):

30 foreach teammate 𝛽 ∈ KnownTeammates do
31 𝐿(𝑀𝛽 , 𝑥, 𝑎, 𝑥

′) ← 1 − 𝑃 (𝑎 | 𝑥,𝑀𝛽 , 𝑥
′)

32 `𝛽 ← `𝛽 (1 − [𝐿(𝑀𝛽 , 𝑥, 𝑎, 𝑥
′))

33 Normalize `
34 return `

4.2 LearnNNModels
Then, the agent will learn a set of nearest neighbor models 𝑀 for
each teammate in KnownTeammates. Learning a model consists in
interacting with the environment whilst cooperating with a known
teammate 𝛽 , storing tuples of the form (𝑥𝑡 , 𝑥𝑡+1) in𝑀𝛽 .

4.3 ActInDomain
This is the core of the PLASTIC-Policy algorithm. Here, the agent
is placed in an ad hoc scenario, and must cooperate with the new

teammate (which might be known or unknown), leveraging the
previously acquired knowledge. The agent starts by initializing a
behavior distribution vector ` to a uniform distribution over the
known teammates (since in our work, for simplicity, we assume the
teammates follow a uniform distribution). Each entry in this vector
represents how similar the current teammate’s behavior is to each
previously seen teammate. The agent then starts interacting with
the environment, and, at each iteration, starting in state 𝑥 , takes the
action 𝑎 prescribed by the policy corresponding to the previously
encountered teammate with the highest belief distribution (in case
of a tie, it selects one at random among the tied ones), and observes
𝑟 and 𝑥 ′. With this information, it will then proceed to updating the
behavior distribution `, and it does so, using the polynomial weights
update we described in Equation (1). The term 𝑃 (𝑎 | 𝑥,𝑀𝛽 , 𝑥

′) is
computed as we described in Section 3.2.1.

4.4 PLASTIC-Policy with a DQN
In order to compare our performancewith a similar, but non-recurrent
approach, we implemented a version of PLASTIC-Policy using a
DQN as the estimator for the FQI algorithm, and called it Deep
Q-Network - PLASTIC-Policy (DQN-PP).

4.5 Introducing Recurrence in PLASTIC-Policy: POPP
We finally reach the point were we explain our novel algorithm,
POPP. In essence, it consists in an implementation of PLASTIC-
Policy using a Deep Recurrent Q-Network (DRQN) as the estimator
for FQI. But there are some implementation details that are worthy
to note.
Firstly, to choose the action during the LearnPolicies part of the

algorithm, we used an 𝜖-greedy policy, with 𝜖 being an experimental
parameter.
Secondly, we used the replay buffer to store the transitions that

the agent would then use to learn the nearest neighbor models (in
function LearnNNModels). We could only do this, since we realized
the replay buffer was never totally filled up after the end of the
LearnPolicies function. In this way, we saved memory space, by
avoiding the use of an additional buffer to store the (𝑥𝑡 , 𝑥𝑡+1) tuples.

Thirdly, since the environment we chose (HFO) has different valid
actions for different environment states (e.g., an agent can only pass
the ball to a teammate, or shoot the ball if it is currently controlling
it), we changed the agent’s action selection mechanism. When the
agent is selecting a random (exploratory) action, it selects instead a
random action among the valid ones for that state. When the agent
is following the greedy action, it selects the one with the highest
Q-value from among the valid ones. In this way, we prevent the
agent to select invalid actions, which would hinder the learning
process.
Last, but not least, since with partial observability we cannot

access the full state of the environment, we use the observations
𝑧 ∈ 𝑍 , instead of the states 𝑥 ∈ 𝑋 to create the nearest neighbor
model for each teammate.

5 EXPERIMENTAL QUESTIONS
We define a set of questions to be answered based on our experi-
mental results:
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• 1. Can DRQN surpass a non-recurrent (DQN) architecture’s
performance in a complex, totally observable scenario with
sparse rewards?
• 2. Can DRQN surpass a non-recurrent (DQN) architecture’s
performance in a complex, partially observable scenario with
sparse rewards?
• 3. How accurately can POPP identify teams it previously
encountered?
• 4. Can POPP surpass a non-recurrent (DQN-PP) architec-
ture in a complex, partially observable scenario with sparse
rewards?
• 5. How does POPP’s performance change with the level of
similarity between the current and past teammates?
• 6. How does POPP’s performance compare with that of the
original teams?

6 HALF-FIELD OFFENSE
The environment we chose to evaluate our agent was HFO, which
is a task that plays out in the offense half of a soccer field, where a
offense team must coordinate to score a goal before time runs out,
and a defense team must coordinate to prevent the offense team
to score. We used the HFO implementation by Hausknecht et al.
[Hausknecht et al. 2016]. Figure 2 presents a snapshot of an HFO
match.

Fig. 2. Snapshot of a Half-Field Offense ongoing match. The yellow (offense
team) is trying to score against the red and purple (defense) team. Source:
Primary.

An HFO match ends in one of the following terminal states:

• Goal, if the ball enters the defense team’s goal;
• Captured by Defense, if an agent of the defense team man-
ages to get control of the ball;
• Out of Bounds, if the ball leaves the playing field through
one of the four lines limiting it;
• Out of Time, if a set amount of time steps have passed
without any of the previous terminal states being reached.

If the terminal state is “Goal”, the offense team is considered the
winner; otherwise, victory goes to the defense team.

6.1 Environment Parameterization
In HFO there are multiple parameters that impact the way the game
plays out. In Table 1, we listed some of those parameters along with
the values we chose for each of them.

Table 1. Description and chosen values for the parameters of the HFO
environment

Parameter Value
--frames-per-trial 500
--untouched-time 100
--no-sync True

6.2 Environment Model
The HFO environment can be modeled as an MPOMDP (𝐼 , 𝑋,𝐴,
𝑃, 𝑍,𝑂, 𝑟, `0). We will provide a high-level description for each of
its components in the next few sections.

6.2.1 Agents. The index set of agents 𝐼 contains indices represent-
ing all agents from the offense and defense teams. In all experiments
we will present in this work, we considered 2 agents in each team,
so, we have always that |𝐼 | = 4. We can classify the agents in 𝐼

regarding their role, or their policy.
Regarding each agent’s role, we can split 𝐼 in two subsets, such

that 𝐼 = 𝐼𝜔 ∪ 𝐼𝛿 , where 𝐼𝜔 contains the offense agents and 𝐼𝛿 the
defense agents.

Regarding their policies, each agent is from one of the following
types:
• Learning agents (DQN/DRQN), which we will call 𝛾 ;
• Ad hoc agents, which we will call 𝛼 ;
• Agents for which the binary files were made available, which
include those created for the RoboCup 2D Simulation League
2013 (“aut”, “axiom”, “cyrus”, “gliders” and “helios”), and the
type “base” (also known as “Agent2D”), that comes with the
HFO simulator. We will call them binary agents, and index
them as 𝛽𝑘 , 𝑘 ∈ N, since in all our experiments there are
multiple binary agents.

We made three types of experiments:
• Learning + Binary: 𝐼𝜔 = {𝛾, 𝛽2};
• Ad hoc + Binary: 𝐼𝜔 = {𝛼, 𝛽2};
• Binary + Binary: 𝐼𝜔 = {𝛽1, 𝛽2};

In all our experiments, the 2 defense agents (𝐼𝛿 = {𝛽3, 𝛽4}) were of
the binary type “base”.

6.2.2 State. The state of an HFO match is represented by multiple
features, namely the position, velocity and angle of each entity
(agents or the ball), and other minor features like whether each
agent is colliding with a landmark (e.g. a goal post).

6.2.3 Actions. We chose the following set of actions for our custom
agents (learning and ad hoc agents): Intercept, Move, Shoot, Pass and
Dribble. The actions Intercept() and Move() can only be executed
when the agent in unable to kick the ball, whilst Shoot(), Pass(𝑛) and
Dribble() can only be executed when the agent is able to kick the
ball. Whenever an agent selects an action that cannot be executed
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given the current environment state, that action has no effect, being
equivalent to the agent choosing the action NoOp(), which does
nothing.
Due to the sparsity of rewards (only in terminal states), we real-

ized the agents 𝛾 were having trouble learning a policy. Therefore,
we developed a way to reduce the number of time steps the learning
agents see during an episode, by changing the agent’s actions In-
tercept() and Move() to Repeat[Intercept(), 𝑁1] and Repeat[Move(),
𝑁2], which means that, when choosing one of these actions, the
agent will execute them 𝑁1 or 𝑁2 times, respectively, and will not
observe intermediate states.

6.2.4 Transition Probabilities. The transition probability function
𝑃 results from the combination of the physics simulated by HFO
with the join actions chosen by the agents.

We consider that a state transition begins right after an agent
starts executing action, and ends when the agent reaches the next
state after finishing executing its action, or when it reaches a termi-
nal state. Therefore, given a transition (𝑥, 𝑎, 𝑟, 𝑥 ′), starting at time
step 𝑡1 and ending at time step 𝑡2 we have that:

• 𝑥 = 𝑥𝑡1 is the agent’s original state in time step 𝑡1;
• 𝑎 = 𝑎𝑡1 is the action the agent chose at time step 𝑡1, and that
lasted 𝑡2 − 𝑡1 time steps;
• 𝑟 = 𝑟𝑡2−1 is the reward the agent get for transitioning to state
𝑥𝑡2 ;
• 𝑥 ′ = 𝑥𝑡2 is the agent’s new state in time step 𝑡2.

6.2.5 Observations. As we discussed in Section 6.2.3, we chose to
use the High Level State Feature Set as the agents’ observations.
The features in this set include not only simpler values, like each
entity’s position in the field (namely that of all agents and the ball),
but also some complex to compute, but meaningful values, like the
goal opening angle we described before.

For our learning and ad hoc agents, we empirically chose to use the
feature set containing all useful features, plus one Boolean validity
feature per entity (including the ball and excluding the agent itself),
indicating whether or not all of the other entities’ features are valid.
If all features that describe an entity are valid, its corresponding
validity feature takes the value 1, otherwise it takes the value -1.
By default, HFO sets the value of invalid features to -2, but since
that could damage our learning agent’s learning process (since it
could interpret -2 as a valid, but very low value for that variable),
we decided to set invalid features to the value 0, and introduce the
validity features we just described.

6.2.6 Observation Probabilities. Like 𝑃 , the observation probability
function 𝑂 also results from the combination of the physics sim-
ulated by HFO with the joint actions chosen by the agents. For
instance, if an opponent is blocking our agent’s view of the ball
or of other agent, the obstructed entity’s features in our agent’s
observation will be invalid. However, there is an option in the HFO
simulator (--fullstate), that makes agents able to access the correct
values for all features. Yet, since our feature set does not contain the
entities’ velocities, there is still some degree of partial observability
in the experiments we label as “totally observable”.

6.2.7 Reward Function. We empirically chose the following reward
function 𝑟 :
• 0 on all time steps where the state is not terminal;
• 10 on goal;
• -10 otherwise, i.e., if the defending team catches the ball, the
ball goes out of bounds or time runs out.

6.2.8 Distribution of the Initial State. Regarding `0, the offense
agents and the ball start in random positions in the left half of the
playable field; the defender starts in a random position in the right
half of the field; the goalkeeper starts in the center of the goal.

7 LEARNING AGENT CONFIGURATION
In Table 2, we present the parameters we have empirically chosen
for both the DQN and the DRQN agents.

Table 2. Parameters chosen for the DQN and the DRQN

Parameter DQN value DRQN value
Input Size 25 25
Output Size 5 5
Number of Hidden Layers 1 1
Number of Units Per Layer 12 12
Type of Units Linear LSTM
Activation Function ReLU ReLU
Optimizer Adam Adam
Learning Rate 0.00025 0.00025
Initial Exploration Rate 0.5 0.5
Final Exploration Rate 0.05 0.05
Initial Exploration Rate 0.5 0.5
Discount Factor 0.995 0.995
Estimator Update Period 4 4
Target Estimator Update Period 500 500
Replay Buffer Sequence Length – 10

8 PROCEDURE AND METRICS
In this section, we present our evaluation procedure and chosen
metrics for our three types of experiments: Learning + Binary, Ad
hoc + Binary and Binary + Binary.

8.1 Learning + Binary
In this type of experiments, where 𝐼𝜔 = {𝛾, 𝛽1}, we aimed to eval-
uate the learning agent 𝛾 ’s capacity to learn a policy to cooperate
with a binary agent 𝛽1. For each configuration (learning agent type,
teammate type and observability), we ran the agent for 80 rollouts
of 500 training episodes and 50 test episodes each, adding up to a
total of 40,000 train episodes and 4,000 test episodes per experiment.
We ran 3 trials for each configuration.

In the training episodes, 𝛾 learned using the DQN and DRQN
algorithms.
In the test episodes, the agents did not learn, and always chose

greedy actions (the valid actions with the highest Q-values).
At the end of each rollout, we saved the agent’s current neural net-

work weights and replay buffer (to reuse in the ad hoc experiments),
and measured the offense team’s score rate in the test episodes,
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i.e., the fraction of test episodes from the 50 of each rollout that
ended in a goal. The results for these experiments can be found in
Section 9.1.1 and Section 9.1.2.

8.2 Ad hoc + Binary
In this type of experiments, where 𝐼𝜔 = {𝛼, 𝛽1}, we aimed to eval-
uate our novel POPP algorithm. For each configuration (type of
learning agent, type of the teammates the agent will find, observ-
ability), we followed the POPP algorithm as described in Section 4.5:

• we started by the policies learnt when cooperating with each
known teammate (which were generated using the procedure
defined in Section 8.1). Since, during each experiment, we
save the agent’s network and replay buffer, we had to choose
which state to use. In order to achieve a balance between the
policy’s performance and the number of observed time steps,
we chose the state with the highest score rate among the last
5 states;
• we then learnt a nearest-neighbor model for each known
teammate, using the transitions stored in the replay buffer
(which are all of the transitions the agent has seen, since the
replay buffer never exceeded its maximum capacity);
• finally, we tested the agent in an ad hoc scenario, with ei-
ther known, unknown, or both types of teammates. For each
configuration, we ran 1000 trials of 25 episodes each.

The results for these experiments can be found in Section 9.2.

8.3 Binary + Binary
In this type of experiments, where 𝐼𝜔 = {𝛽1, 𝛽2}, we aimed to
determine each binary team’s average score rate, to compare their
performance with that of POPP. We only considered cases where
𝛽1 and 𝛽2 were of the same type, since we wanted to determine the
performance of the original teams.
We ran each team during 1,000 episodes, and calculated their

average score rate over the course of all 1,000 episodes. We also
calculated the average score rate for the set of known teams, for the
set of unknown teams and for the set of all teams. The results for
these experiments can be found in Section 9.2, to be compared with
those for POPP.

9 RESULTS
In this section, we describe the results for the experiments defined
in Section 8. To represent the standard deviation 𝜎 of a sample in
the plots, we used 95% confidence intervals ([` − 1.96𝜎√

𝑛
, ` + 1.96𝜎√

𝑛
],

with 𝑛 being the sample size, and ` the mean value of the sample).

9.1 Learning a Policy in HFO
In this section we present the results for the experiments of the
type “Learning + Binary”. In each plot, each point corresponds to
the average of 9 trials as defined in Section 8.1, 3 for each of the
following teammate types: “aut”, “base” and “helios”.

9.1.1 Total Observability. In Figure 3, we present the experimental
results for the DQN and the DRQN with the --fullstate option of the
HFO set to True.

Fig. 3. Score rate for the DQN and DRQN learning agents playing with
total observability. Source: Primary.

9.1.2 Partial Observability. In Figure 4, we present the experimental
results for the DQN and the DRQN with the --fullstate option of the
HFO set to False.

Fig. 4. Score rate for the DQN and DRQN learning agents playing with
partial observability. Source: Primary.

9.2 Ad hoc teamwork in HFO
In this section, we present the results for our agents playing in
an ad hoc scenario (experiments of the type “Ad hoc + Binary”, as
explained in Section 8.2), and compare them to the binary agents
using their original policy (experiments of the type “Binary + Bi-
nary” Section 8.3). In all experiments, the teams the ad hoc agents
previously knew were “aut”, “base” and “helios”.
In Section 9.2.1 and Section 9.1.2, the score rates presented for

DQN-PP and POPP are the average of the score rates among 1000
trials. In each trial, the agent’s teammate was uniformly chosen
from the following types: “aut”, “base”, “helios”, “axiom”, “cyrus”
and “gliders”. The score rate for the binary agents is the average
of the score rates of the original teams (teams with two identical
agents) for the 6 types the ad hoc agent can encounter, where each
team was run for 1000 trials.

9.2.1 Total Observability. In Figure 5, we present the experimental
results for DQN-PP, POPP and binary agents with the --fullstate
option of the HFO set to True.

9.2.2 Partial Observability. In Figure 6, we present the experimental
results for DQN-PP, POPP and binary agents with the --fullstate
option of the HFO set to False.

9.2.3 Varying Ad Hoc Teammates with Partial Observability. In Fig-
ure 7, we present and compare the results for POPP while playing
with known, and with unknown agents. with the --fullstate option
of the HFO set to False. Each plot corresponds to the average of 1000
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Fig. 5. Score rate for DQN-PP, POPP and binary agents playing with total
observability. Source: Primary.

Fig. 6. Score rate for DQN-PP, POPP and binary agents playing with partial
observability. Source: Primary.

trials. During each trial, the agent paired up with an “aut”, “base”
or “helios” teammate in the “POPP (known teams)” experiment,
and with an “axiom”, “cyrus” or “gliders” teammate in the “POPP
(unknown teams)” one. In each trial, the teammates were chosen
uniformly at random from their sets.

The plots for the “Binary (known teams)” and “Binary (unknown
teams)” represent the average over 1000 trials for the score rates of
the original teams for the 3 types the ad hoc agent encountered in the
“POPP (known teams)” and “POPP (unknown teams)” experiments,
respectively.

Fig. 7. Score rate for POPP playing with known and unknown teammates,
and for the original binary teams. Source: Primary.

We also present Figure 8, which shows how POPP’s behavior
distribution evolved over the course of 25 episodes, averaged over
1000 trials.

(a) Playing with “helios” teammate (b) Playing with “aut” teammate

(c) Playing with “base” teammate

Fig. 8. Behavior distribution for POPPwhen playing with known teammates.
Source: Primary.

10 RESULTS DISCUSSION
Wewill discuss our experimental results by answering the questions
we posed in Section 5.

Question 1. Can DRQN surpass a non-recurrent (DQN) archi-
tecture’s performance in a complex, totally observable scenario
with sparse rewards?

According to the results in Figure 3, the DRQN seems to have an
advantage over the DQNwith full observability, whichwas expected,
since the High Level State Feature Set of the HFO simulator provides
incomplete information (e.g., the agent does not have access to the
ball’s speed, or to its opponent’s orientation in the field). the agents’
observations contain almost all information that could be useful to
decide how to act. It is also possible that the agent’s teammates or
opponents’ policies are non-stationary, which would also give the
DRQN an advantage over the DQN, since the former can observe
the evolution of other entities’ behavior over time. There is still
an intersection of both architectures’ confidence intervals, which
indicates that there might be some specific situations where the
DQN surpasses the DRQN.

Question 2. Can DRQN surpass a non-recurrent (DQN) architec-
ture’s performance in a complex, partially observable scenario
with sparse rewards?

According to the results in Figure 4, the DRQN slightly surpassed
the DQN with partial observability, but there is a significant inter-
section between both networks’ confidence intervals. We expected a
greater advantage for the DRQN with respect to the DQN, similarly
to the totally observable scenario.
To try to find an explanation for this result, we observed the

agents playing in real-time, and noticed that the policies learnt by
both architectures are usually conservative, consisting in passing
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the ball to the teammate whenever possible. In this way, it is dif-
ficult for the team to have effective offense strategies, other than
the cases where the agent’s teammate is well positioned to score
a goal. We believe that this behavior is due to the fact that, under
partial observability, some High Level actions of the HFO simulator
(especially Shoot()) fail very often. This makes sense, since they
implement complex behavior that depends on many features in the
observation, which, when unavailable, prevent the agent from exe-
cuting the action. This makes the agent rely more on its teammates
(who might potentially use lower level actions) than on itself.

The same behavior did not occur when playing with total observ-
ability, most likely because in that case the agent’s actions rarely fail,
allowing it to rely on its own actions, avoiding the need to always
pass the ball to its teammate. Notwithstanding, since the DRQN had
a slightly greater performance than the DQN, with more outstand-
ing performance peaks, we can conclude knowing the history of
the last few states constitutes an advantage for the DRQN.

Question 3. How accurately can POPP identify teams it previ-
ously encountered?

According to Figure 8, there is some variability on how accurately
POPP can identify previously encountered teammates. In Figure 8(b)
and Figure 8(c), after 25 episodes, POPP identifies the correct team
more than half of the times. However, by observing Figure 8(a),
we can see that, when playing with team “helios”, the agent has a
nearly uniform distribution over the three policies even after the 25
episodes. Moreover, it considers team “base” to be the most likely
teammate it is playing with.
We observed the POPP agent playing with the three teams, and

realized that (i) the “base” teammate is very unpredictable, when
compared with the other two, and (ii) the “base” teammate has a
strategy that is more similar to that of the “helios” teammate than
to that of the “aut” teammate. Our realization (ii) might explain why
“base” has a higher behavior distribution than “aut” when playing
with “helios”, but it does not explain why “helios” does not have
the highest behavior distribution. However, due to (i), the “base”
teammate must have spanned a much wider range of environment
transitions during the policy learning process, when compared with
the other two teammates. Thus, when cooperating with “helios”, the
POPP agent has a higher chance of finding a transition previously
encountered when cooperating with “base”.

Question 4. Can POPP surpass a non-recurrent (DQN-PP) archi-
tecture in a complex, partially observable scenario with sparse
rewards?

By observing Figure 4, we can see that POPP clearly surpassed
DQN-PP’s performance. Moreover, their 95% confidence intervals
do not intersect after episode 4, which strongly endorses our claim.

Question 5. How does POPP’s performance change with the level
of similarity between the current and past teammates?

POPP has shown to be resilient to the lack of knowledge about
the teammates it encounters, since, according to Figure 7, its perfor-
mance in the presence of known and unknown teammates is very
similar. In fact, its performance in the presence of unknown team-
mates seems to be slightly higher than in the presence of known
teammates, even though the known teammates’ original policies

had a slightly higher score rate than that of the unknown teammates.
This seems to indicate that the POPP successfully transferred its
learning from previous tasks to new, unseen teamwork situations.

Question 6. How does POPP’s performance compare with that of
the original teams?

POPP performed poorly when compared with the original team-
mates’ policies. We believe that, in part, this is due to original team-
mates having complex policies that use more than the 5 actions
we allowed the POPP agent to use. Adding to that, some teams use
communication protocols (that are available in the HFO simulator),
that render useless when used with our agent, since it does not
support them. Last but not least, the fact that the policies learnt by
the DRQN were too conservative (as we discussed in our answer to
Question 2) also contributed to this poor performance.
With this, we finished answering all 6 questions we posed in

section Section 5. We will now answer our main research question.
Is it possible to develop an autonomous agent which

performs near-optimally in the ad hoc teamwork problem,
in a complex, partially observable environment with sparse

rewards?
Considering the most realistic situation, where the agent can find

either known or unknown teammates (Figure 6), POPP achieved a
performance of about 42% of goals scored, while, in average, the
original teams scored goals in 72% of episodes. This is a large gap,
so, we cannot say that POPP’s performance was near-optimal. Yet,
since we argued that there was still plenty of room for improve-
ment, namely due to the performance gap between POPP and a
more custom-tailored architecture (AATEAM), the issue with some
actions failing very often and the difficulty in identifying the cor-
rect teammate when one of the known teammates spans a wide
range of transitions, we strongly believe it is possible to achieve a
near-optimal performance in this scenario.
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