
Ad hoc teamwork using approximate representations

Filipe Miguel Gomes de Sousa

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Prof. Francisco António Chaves Saraiva de Melo
Prof. José Alberto Rodrigues Pereira Sardinha

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Francisco António Chaves Saraiva de Melo

Member of the Committee: Prof. Pedro Manuel Urbano de Almeida Lima

November 2022

Declaration

I declare that this document is an original work of my own authorship and that it fulfills
all the requirements of the Code of Conduct and Good Practices of the Universidade
de Lisboa.

Declaração

Declaro que o presente documento é um trabalho original da minha autoria e que
cumpre todos os requisitos do Código de Conduta e Boas Práticas da Universidade
de Lisboa.

Acknowledgments

I would like to give my thanks to my supervisors, Francisco Melo and Alberto Sardinha, for proposing

this interesting and innovative dissertation topic, helping me find the best sources of information and

suggesting the best courses of action at each phase of the project. I would also like to thank them for

supporting me during my learning curve working with the complex Half-Field Offense domain. I would

also like to thank João Ribeiro for the time and attention he dedicated helping me better understand the

algorithms I used and the model training and evaluation processes, and for providing me with his agents

framework.

I would also like to acknowledge Matthew Hausknecht, and all those who contributed to the devel-

opment of the Half-Field Offense environment – although not the easiest to learn, it is a very powerful

tool! Additionally, I would like to thank Pedro Santos, Francisco Delgado, João Pirralha and Inês Loução

Vieira for sharing their experience and tips on how to work with this environment, and for providing me

with their code and other useful resources.

On a more personal side, I would like to thank all my friends and family members who contributed

to shaping who I am today. I would like to give a special thank you to my brother, for always setting

high standards and working hard to achieve them, and to my parents, for all the practical and emotional

support they have always lent me.

Thank you, everyone.

i

Abstract

The mass production of technological systems around the world is both an economic and ecological

issue we face today. It is critical that we find alternate solutions as soon as possible, to contribute to

a more sustainable society. An emerging field that can bring some advancements towards this goal is

that of ad hoc teamwork, which studies how an agent can be integrated in a new team without prior

knowledge of its new teammates. Such agents would be reusable in future tasks, reducing the need to

create such a huge amount of agents. Recent advances in this field shown that it is possible to design

agents capable of achieving high performance in this task. However, none of the existing approaches

tackled this problem for large domains with partial observability.

In this paper, we present a new algorithm, Partially Observable Plastic Policy (POPP), that combines

transfer learning with Deep Recurrent Q-Networks, by having an agent learn policies to play along with

different types of teammates, and reusing that knowledge when faced with new teams. We chose

the Half-Field Offense domain for evaluation. We experiment with different configurations, with and

without partial observability, and with known and unknown teammates. Finally, we present and discuss

our results, and compare them to non-recurrent approaches, namely Deep Q-Networks (DQN). We

concluded that POPP was able to quickly identify most of the previously known teams, and surpassed

the score rate of a DQN approach in partially observable scenarios.

Keywords

Ad Hoc Teamwork ; Multi-agent Systems; Transfer Learning; Function Approximation; Recurrent Neural

Networks

iii

Resumo

A produção em massa de sistemas tecnológicos por todo o mundo é uma questão não só económica,

mas também ecológica da nossa atualidade. É fundamental que encontremos soluções alternativas o

mais rápido possı́vel, para contribuir para uma sociedade mais sustentável. Uma área emergente que

pode trazer alguns avanços nesse sentido é a do trabalho em equipa ad hoc, que estuda a integração

de um agente numa nova equipa, sem conhecer previamente os seus novos colegas de equipa. Este

agente seria reutilizável em tarefas futuras, reduzindo assim a necessidade de produzir uma quantidade

tão volumosa de agentes. Com os recentes avanços nesta área, é possı́vel criar agentes capazes de

alcançar um elevado desempenho nesta tarefa. No entanto, nenhuma das abordagens existentes tratou

este problema em domı́nios de elevada dimensão com observabilidade parcial.

Neste artigo, apresentamos um novo algoritmo, Partially Observable Plastic Policy (POPP), que com-

bina aprendizagem por transferência com Deep Recurrent Q-Networks, em que um agente aprende

polı́ticas para cooperar com diferentes tipos de colegas de equipa, e reutiliza esse conhecimento

quando confrontado com novas equipas. Escolhemos o domı́nio Half-Field Offense para avaliação. Ex-

perimentamos diferentes configurações, com e sem observabilidade parcial, e com colegas de equipa

conhecidos e desconhecidos. Finalmente, apresentamos e discutimos os nossos resultados e comparamo-

los com abordagens não recorrentes, como Deep Q-Networks (DQN). Concluı́mos que o POPP foi

capaz de identificar rapidamente a maioria das equipas conhecidas anteriormente e superou a percent-

agem de golos marcados de uma abordagem DQN em cenários parcialmente observáveis.

Palavras Chave

Trabalho em Equipa Ad Hoc; Sistemas Multi-agente; Aprendizagem por Transferência; Aproximação de

Funções; Redes Neuronais Recorrentes

v

Contents

1 Introduction 1

1.1 Research Question . 4

1.2 Contributions . 4

1.3 Document Outline . 4

2 Background 5

2.1 Probability Theory . 7

2.1.1 Expected value . 7

2.1.2 Conditional expected value . 7

2.2 Reinforcement Learning . 8

2.2.1 Decision-theoretic frameworks . 8

2.2.1.A POMDP . 8

2.2.1.B MPOMDP . 9

2.2.2 History . 10

2.2.3 Belief . 10

2.2.4 Policy . 10

2.2.5 Gain . 11

2.2.6 Optimal policy . 11

2.2.7 Value functions . 11

2.2.7.A State-value function . 12

2.2.7.B Action-value function . 12

2.2.7.C Computing value functions . 12

2.2.8 MDP solution methods . 12

2.2.8.A Value Iteration . 13

2.2.8.B Q-Learning . 14

2.2.9 Exploration vs. Exploitation . 14

2.2.10 Function Approximation . 15

2.2.11 Fitted Q-iteration . 16

vii

2.3 Deep Learning . 17

2.3.1 Artificial Neuron . 17

2.3.2 Artificial Neural Network . 18

2.3.3 Recurrent Neural Network . 19

2.3.4 Deep Q-Network . 21

2.3.5 Deep Recurrent Q-Network . 22

3 Related Work 25

3.1 Ad hoc teamwork . 27

3.1.1 Early Work . 27

3.1.2 The PLASTIC architecture . 29

3.1.2.A PLASTIC-Model . 30

3.1.2.B PLASTIC-Policy . 31

3.1.3 Introducing partial observability in ad hoc teamwork settings 32

3.1.4 Other architectures for the ad hoc teamwork problem 34

3.1.5 Conclusion . 35

4 POPP 37

4.1 The PLASTIC-Policy Architecture . 39

4.1.1 LearnPolicies . 40

4.1.2 LearnNNModels . 40

4.1.3 ActInDomain . 40

4.1.4 PLASTIC-Policy with a DQN . 40

4.2 Introducing Recurrence in PLASTIC-Policy: POPP . 40

5 Experimental evaluation 43

5.1 Half-Field Offense . 45

5.1.1 Environment Parameterization . 46

5.1.2 Environment Model . 47

5.1.2.A Agents . 47

5.1.2.B State . 47

5.1.2.C Actions . 48

5.1.2.D Transition Probabilities . 49

5.1.2.E Observations . 50

5.1.2.F Observation Probabilities . 50

5.1.2.G Reward Function . 51

5.1.2.H Distribution of the Initial State . 51

5.2 Learning agent configuration . 51

viii

5.3 Procedure and Metrics . 52

5.3.1 Learning + Binary . 52

5.3.2 Ad hoc + Binary . 52

5.3.3 Binary + Binary . 53

5.4 Results . 53

5.4.1 Learning a Policy in HFO . 53

5.4.2 Ad hoc teamwork in HFO . 53

5.4.2.A Varying the level of observability . 54

5.4.2.B Varying ad hoc teammates with partial observability 55

5.5 Discussion . 56

5.5.1 Question 1 . 56

5.5.2 Question 2 . 57

5.5.3 Question 3 . 58

5.5.4 Question 4 . 58

5.5.5 Question 5 . 59

5.5.6 Question 6 . 59

5.5.7 Comparing POPP to other architectures . 59

5.5.8 Answering the research question . 60

6 Conclusion 61

6.1 Limitations . 63

6.2 Future Work . 64

Bibliography 65

A Half-Field Offense Details 69

A.1 High Level State Feature Set . 70

B Experimental Details 71

B.1 DRQN Parameter Tuning . 72

B.1.1 Action set . 73

B.1.2 Number of 1 vs. 1 train episodes . 74

B.1.3 Reward function . 74

B.1.4 Observation feature sets . 75

B.1.5 Number of units per layer of the DRQN . 76

B.1.6 Number of hidden layers of the DRQN . 76

ix

x

List of Figures

2.1 Simple representations of an artificial neuron (a) and an artificial neural network with one

hidden layer (b). Source: Adapted from [1]. 18

2.2 Compact (left) and unfolded (right) circuit diagrams of a simple RNN. Source: Adapted

from [2]. 20

2.3 Simple representation of a DQN with one hidden layer. Source: Primary. 22

3.1 The “Pursuit” domain. In this scenario, four predators (red circles) must coordinate to

surround the prey (green square). The agent being evaluated is marked with a star.

Source: Adapted from [3]. 28

3.2 Phases of the Monte Carlo tree search algorithm. A search tree, rooted at the current

state, is grown through repeated application of the above four phases. Source: Adapted

from [4]. 29

3.3 Overview of the Planning and Learning to Adapt Swiftly to Teammates to Improve Coop-

eration (PLASTIC)-Model algorithm. Source: Adapted from [5]. 30

3.4 Overview of the PLASTIC-Policy algorithm. Source: Adapted from [5]. 31

3.5 Simplified description of the attention network used by AATEAM. Source: Adapted from [6].

. 35

3.6 Performance of AATEAM with known teammates (on the left) and unknown teammates

(on the right). Source: Adapted from [6]. 35

5.1 Snapshot of a Half-Field Offense ongoing match. The yellow (offense team) is trying to

score against the red and purple (defense) team. Source: Primary. 45

5.2 Score rate for the Deep Recurrent Q-Network (DRQN) and Deep Q-Network (DQN) learn-

ing agents playing with total observability. Source: Primary. 54

5.3 Score rate for the DRQN and DQN learning agents playing with partial observability.

Source: Primary. 54

xi

5.4 Score rate for Partially Observable PLASTIC-Policy (POPP), Deep Q-Network - PLASTIC-

Policy (DQN-PP) and the original binary teams, playing with total observability. Source:

Primary. 55

5.5 Score rate for POPP, DQN-PP and the original binary teams, playing with partial observ-

ability. Source: Primary. 55

5.6 Score rate for POPP playing with known and unknown teammates, and for the original

binary teams. Source: Primary. 56

5.7 Behavior distribution for POPP when playing with known teammates. Source: Primary. . . 57

B.1 Score rate for the DRQN with different action sets. Source: Primary. 73

B.2 Score rate for the DRQN with different durations for the pre-training phase. Source: Pri-

mary. 74

B.3 Score rate for the DRQN with different reward functions. Source: Primary. 75

B.4 Score rate for the DRQN with different observation feature sets. Source: Primary. 76

B.5 Score rate for the DRQN with different amounts of units per layer. Source: Primary. . . . 77

B.6 Score rate for the DRQN with different numbers of hidden layers. Source: Primary. . . . 77

xii

List of Tables

2.1 Frameworks for sequential decision processes in the face of uncertainty. 8

5.1 Description and chosen values for the parameters of the Half-Field Offense (HFO) envi-

ronment . 46

5.2 Parameters chosen for the DQN and the DRQN . 51

A.1 High Level State Feature Set for HFO; T represents the number of teammates (T =

|Iω| − 1) and O the number of opponents (O = |Iδ|) . 70

B.1 Initial parameters for the DRQN . 72

xiii

xiv

List of Algorithms

2.1 Fitted Q-Iteration . 17

4.1 The PLASTIC-Policy algorithm. Source: Adapted from [7]. 39

xv

xvi

Acronyms

AATEAM Achieving the Ad-hoc Teamwork by Employing the Attention Mechanism

ATPO Ad hoc Teamwork under Partial Observability

BOPA Bayesian Online Prediction for Ad hoc teamwork

DQN Deep Q-Network

DQN-PP Deep Q-Network - PLASTIC-Policy

DRQN Deep Recurrent Q-Network

FQI Fitted Q-Iteration

HFO Half-Field Offense

LSTM Long Short-Term Memory

MCTS Monte Carlo Tree Search

MDP Markov Decision Problem

MMDP Multi-agent Markov Decision Problem

MPOMDP Multi-agent Partially Observable Markov Decision Problem

MSE Mean Squared Error

PLASTIC Planning and Learning to Adapt Swiftly to Teammates to Improve Cooperation

POMDP Partially Observable Markov Decision Problem

POPP Partially Observable PLASTIC-Policy

ReLU Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

UCT Upper Confidence bound applied to Trees

VI Value Iteration

xvii

xviii

1
Introduction

Contents

1.1 Research Question . 4

1.2 Contributions . 4

1.3 Document Outline . 4

1

2

With the non-stopping progress in the world of computer science during the last few decades, a wide

variety of systems were designed and deployed. Many of those systems were custom-tailored to perform

a specific task in a specific environment. This means they cannot be redeployed to perform a different

task in a different environment without a large cost and effort. This includes not only the agents’ parts

and materials (for physical agents), but also the costs of developing new algorithms for the agents’

behavior in the new task. Therefore, it would be useful to build a system that was able to dynamically

adapt to different tasks, should its physical capabilities allow it to do so. However, the design of an agent

with such a generalization capability is not trivial.

A multi-agent scenario brings an additional layer of complexity to the task, since the other agents’

behavior is itself another source of uncertainty. This challenge can be somewhat simplified, though, if

the task is cooperative and the agent has worked previously in the same task with a different team, since

it can try to extrapolate its prior knowledge when working with the new team.

Ad hoc teamwork is a field of study aiming to determine how an agent can be integrated in a group of

unknown teammates “on the fly”, i.e., without any prior coordination, and with poor or nonexistent com-

munication protocols. In a teamwork task, the agent can observe its teammates’ behaviour to determine

and adapt to the task they are solving, without the need for humans to specify it manually. Nevertheless,

the ad hoc teamwork task is, in general, complex to solve, and there are multiple hindrances which,

when present, can further increase this complexity.

One of them occurs when the environment is only partially observable, i.e., when the agent does not

have access to the full state of the environment. This is the most realistic scenario, though, since most

physical agents’ sensors are imperfect (i.e., there can be noise in the data collection), and don’t allow

for a full representation of the world (e.g.: a 2D camera provides an incomplete representation of a 3D

world).

With partial observability comes another problem: if the agent aims to perform optimally (that is, to

determine the optimal policy) in a partially observable environment, it must choose how to act consider-

ing everything it saw since the beginning of the task, since the most recent observation is not enough to

describe the world state. This phenomenon is also called history-dependence of the optimal policy.

A final hazard that adds complexity to the ad hoc teamwork scenario is the sparsity of the reward

signals given to the agent. In many real-world tasks, only the final result matters (e.g., an agent exploring

a maze), which makes it difficult for the agent to know whether it is performing well or poorly until the

end of the task.

State of the art algorithms in the field of ad hoc teamwork have been developed to address some of

the aforementioned issues. However, no algorithm has been created that can solve all of these problems

simultaneously.

3

1.1 Research Question

With our work, we aim to address an ad hoc teamwork setting which is missing in previous literature,

combining:

(i): complex domains, with a continuous, high dimensional observation space;

(ii): partial observability, and subsequent history-dependence of the optimal policy;

(iii): sparse reward signals from the environment.

With this in mind, our research question becomes:

Is it possible to develop an autonomous agent which performs near-optimally in the ad hoc

teamwork problem, in a complex, partially observable environment with sparse rewards?

1.2 Contributions

We contribute to the ad hoc teamwork research field with the development of a new algorithm, Partially

Observable PLASTIC-Policy (POPP), which uses the agent’s experience working with past teams to

adapt to previously unseen teammates in a continuous, high dimensional and partially observable envi-

ronment with sparse rewards. In particular, the partial observability - and inherent history-dependence

of the optimal policy - is dealt with using Recurrent Neural Networks (RNNs).

1.3 Document Outline

This thesis is is organized as follows:

Chapter 2: Overview of the theoretical background related to Reinforcement Learning (RL), and

how deep learning techniques can help solving reinforcement learning problems (Deep Q-Learning).

Chapter 3: Analysis and discussion of past work in the ad hoc teamwork research field.

Chapter 4: Description of POPP - our novel algorithm - and how it extends a state-of-the art algo-

rithm to partially observable domains using Deep Recurrent Q-Networks (DRQNs).

Chapter 5: Experimental evaluation of POPP in the Half-Field Offense (HFO) domain, and compar-

ison of its results with non-recurrent architectures, in totally and partially observable settings.

Chapter 6: Discussion of our results, how they contributed to the field of ad hoc teamwork, and what

room there is for further improvements or additional research.

4

2
Background

Contents

2.1 Probability Theory . 7

2.2 Reinforcement Learning . 8

2.3 Deep Learning . 17

5

6

In this section, we will define some concepts and notation, and explain the lexicon we will use in the

next sections, which will give us a better understanding of multi-agent systems, ad hoc teamwork and

function approximation.

2.1 Probability Theory

Here, we define preliminary concepts that will be useful to formalize the concept of uncertainty that is

so central in RL problems. We assume the reader is familiar with the concepts of random variables,

probability, probability distribution and conditional probability.

2.1.1 Expected value

For a discrete, real-valued, random variable X with domain D, the expected value of X is defined as

E[X] =
∑
x∈D

xP (X = x)

2.1.2 Conditional expected value

For two discrete, real-valued, random variables X (with domain D) and Y , the conditional expected

value of X given that Y is equal to y is defined as

E[X | Y = y] =
∑
x∈D

xP (X = x | Y = y)

Sometimes we want to express the conditional expected value of a random variable X, but the

condition that changes its probability distribution not that a certain random variable Y takes a certain

value y. In general, for a random Boolean variable B, we can define the conditional expected value of

X given that B is true as

E[X | B] =
∑
x∈D

xP (X = x | B)

For instance, if we want to represent the expected value of X given that Y is greater than y, we can

write

E[X | Y > y] =
∑
x∈D

xP (X = x | Y > y)

7

2.2 Reinforcement Learning

2.2.1 Decision-theoretic frameworks

Multiple frameworks exist to represent dynamical systems where an agent must sequentially decide on

an action to take on each time step, and the result of such actions is bound by some form of uncertainty.

The frameworks we we will focus our attention on are Markov Decision Problems (MDPs) and its variants,

depending on whether there is one or multiple agents (in which case the process is prefixed with ”Multi-

agent”) and on whether the agent can totally observe the environment states, or only partially (in which

case the process is prefixed with ”Partially Observable”).

Thus, apart from MDPs, there are Multi-agent Markov Decision Problems (MMDPs), Partially Ob-

servable Markov Decision Problems (POMDPs) and Multi-agent Partially Observable Markov Decision

Problems (MPOMDPs). Each framework’s characteristics are described in Table 2.1.

Total observability Partial observability
1 agent MDP POMDP
>1 agent MMDP MPOMDP

Table 2.1: Frameworks for sequential decision processes in the face of uncertainty.

We will present the definition for POMDPs and MPOMDPs only, as they are the most relevant ones

for this work, and the other two can be seen as specializations of these ones.

2.2.1.A POMDP

A POMDP is a framework to formalize a sequential decision process with a single autonomous agent

under partial observability and uncertainty (i.e., given that an action is executed, there’s more than one

possible next state).

It can be described as a tuple (X,A,P, Z,O, r, µ0), where:

• X is the set of environment states

• A is the set of actions

• P : X × A × X → R is the transition probability, with P (x, a, x′) being the probability of the

environment evolving to state x′ when the agent executes action a on state x; P (x, a, x′) is more

commonly written as P (x′ | x, a) to highlight its conditional nature

• Z is the set of possible observations

• O : X × A × Z → R is the observation probability, with O(x′, a, z) being the probability of the

agent seeing the observation z when the execution of action a resulted in a transition to state x′;

O(x′, a, z) is more commonly written as O(z | x′, a) to highlight its conditional nature

8

• r : X ×A→ R is the immediate reward function, where r(x, a) is the reward for taking action a on

state x

• µ0 : X → [0, 1] is the probability distribution for the initial environment state x0 (sometimes referred

to as the initial belief)

The execution of a POMDP is carried out as follows: at each time step t (with the environment state

being xt, unbeknownst to the agent), the agent sees an observation zt; then, the agent executes an

action at, observes a reward rt and the environment evolves to state xt+1.

2.2.1.B MPOMDP

Similarly, an MPOMDP is also a framework to formalize a sequential decision process under partial

observability and uncertainty, but targeted to a multi-agent setting. It can be described as a tuple

(I,X,A, P, Z,O, r, µ0), where:

• I is the index set of agents

• X is the set of environment states

• Ai is the set of actions available for agent i, and A =×i∈I
Ai is the set of joint actions

• P : X × A × X → R is the transition probability, with P (x, a, x′) being the probability of the

environment evolving to state x′ when the team executes the joint action a on state x; P (x, a, x′) is

more commonly written as P (x′ | x, a) to highlight its conditional nature

• Zi is the set of possible observations for agent i and Z =×i∈I
Zi is the set of joint observations

• O : X ×A× Z → R is the observation probability, with O(x′, a, z) being the probability of the team

seeing the joint observation z when the execution of the joint action a resulted in a transition to

state x′; O(x′, a, z) is more commonly written as O(z | x′, a) to highlight its conditional nature

• r : X × A → R is the immediate reward function, where r(x, a) is the reward for taking the joint

action a on state x

• µ0 : X → [0, 1] is the probability distribution for the initial environment state x0 (sometimes referred

to as the initial belief)

Note that the fact that the action space (A) and the observation space (Z) are indexed by agent

reflects many real world scenarios, where different agents can have different actuators and sensors.

The execution of an MPOMDP is carried out as follows: at each time step t (with the environment

state being xt, unbeknownst to the team), each agent i sees an observation zit; then each agent i selects

9

an action ait, resulting in the joint action at; upon execution of at, the whole team observes a reward rt

and the environment evolves to state xt+1.

In the cases where there is total observability (MDPs and MMDPs), the observation space (Z) and

probabilities (O) are not necessary, nor is the probability distribution of the initial state (µ0), as at each

time step t, the agents know the current environment state xt.

2.2.2 History

An important concept in the context of sequential decision frameworks is that of history. It represents

the sequence of state-action pairs since the start of the decision process, up to the current time step t.

So, the history at time step t is represented as ht = {x0, a0, ..., xt−1, at−1, xt}. In a partially observable

scenario, since the agents are unable to access the environment state, the history uses the observations

instead (ht = {z0, a0, ..., zt−1, at−1, zt}).

2.2.3 Belief

For partially observable environments, as the environment state is not accessible by the agent, it is

useful to define a belief, which is a probability distribution over the environment states, which is updated

every time step. It is represented as µt : X → [0, 1] and can be computed using the expression

µt(x) = P (xt = x | ht, x0 ∼ µ0)

, i.e., it is the probability of being in state x at time step t given the observation/action history ht, and the

probability distribution µ0 of the initial state.

2.2.4 Policy

Another core concept of sequential decision frameworks is that of policy, which represents the criteria

the agents use to decide on which action to choose. It is defined as π : H → ∆(A), i.e., it maps a history

to a probability distribution over joint actions, and π(at = a | ht) represents the probability of the agents

choosing joint action a ∈ A at time step t given the history up to that point, ht.

If, at every time step t, the history ht unequivocally determines the chosen action at, the policy π is

said to be deterministic; otherwise, it is said to be stochastic. Additionally, if the current state xt or the

current observation zt are enough to describe π, it is said to be stationary, and it can be simply written

as π(a | x) for totally observable scenarios, or π(a | z) for partially observable ones; if we also allow π to

access the size of the history up to that point (|ht|) it is said to be a Markov policy; if further information

about the history is required to compute π, it is said to be history-dependent.

10

In partially observable environments, it is common for policies to be history-dependent, and to receive

a belief as input, instead of an observation, i.e., π(a | µt), since µt can summarize the agent’s learning

about its current state since the beginning of the interaction.

We also define the expected reward of a state x given that the agent follows a policy π as

rπ(x) = E[r(x, a) | a ∼ π]

and the probability of transitioning from state x to x′ given that the agent follows a policy π as

Pπ(x
′ | x) = P (x′ | x, a ∼ π)

2.2.5 Gain

In an RL scenario, we would ideally like to learn how to act in a way that yields the maximum possible

reward. Specifically, we would like to maximize the total reward (or gain) GT over the course of the whole

interaction:

GT =

T∑
t=1

γtrt

where rt = r(xt−1, at−1) and T is the duration of the interaction.

2.2.6 Optimal policy

The agents should, therefore, learn a policy π∗, known as the optimal policy for the decision problem,

that maximizes the expected gain. We can write

E∗
π[GT] = sup

π∈Π
Eπ[GT]

where Eπ[GT] is the expected value of GT if the agent follows policy π, and Π is the set of all possible

policies for the decision problem.

2.2.7 Value functions

In order to simplify the notation for the upcoming sections, it is useful for us to define two functions, the

state-value function Vπ(x) and the action-value function Qπ(x, a).

11

2.2.7.A State-value function

The state-value function Vπ(x) represents the expected gain of the agent during its whole interaction

with the environment given that its initial state is x, and that it follows policy π. It can be defined as

Vπ(x) = Eπ[GT | x0 = x]

2.2.7.B Action-value function

The action-value function (or Q-function) Qπ(x, a) represents the expected gain of the agent during its

whole interaction with the environment given that its initial state is x, its first action is a and that it follows

policy π for the remainder of the interaction. It can be defined as

Qπ(x, a) = Eπ[GT | x0 = x, a0 = a]

2.2.7.C Computing value functions

To compute Vπ(x), a recursive solution exists:

Vπ(x) = rπ(x) + γ
∑
x′∈X

Pπ(x
′ | x)Vπ(x

′)

To compute Qπ(x, a) first note that it can be obtained directly from Vπ(x):

Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ | x, a)Vπ(x
′) (2.1)

Similarly, we can obtain Vπ(x) from Qπ(x, a)

Vπ(x) =
∑
a∈A

π(x, a)Qπ(x, a) (2.2)

Putting together 2.1 and 2.2 we obtain a recursive solution for Qπ(x, a):

Qπ(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ | x, a)
∑
a′∈A

π(x′, a′)Qπ(x
′, a′) (2.3)

2.2.8 MDP solution methods

In this section we will see how we can solve MDPs. We will discuss solutions for POMDPs later, in

Section 2.3.5.

12

Since the goal of RL is to train an agent so it maximizes the expected gain GT , we would like the

agent to follow the optimal policy π∗. There are three main categories of methods for computing it:

Model-based methods , where the agent either builds an increasingly accurate model of the deci-

sion problem, estimating r and P , or has direct access to the model, and uses it to compute V or Q,

and finally π∗;

Value-based methods , where the agent builds increasingly accurate estimates for V or Q and uses

them to compute π∗, skipping the need to estimate r or P ;

Policy-based methods , where the agent builds an increasingly accurate estimate for π∗ skipping

the need to estimate r, P , V and Q.

Value-based and policy-based methods are also included in a category commonly known as model free

methods, since they neither require the agent to have access to the environment model, nor to estimate

it. Now, we cover some of those methods, which will be used in works we will describe from chapter 3

onward. We will cover the variants of these algorithms designed for MDPs only since they have simpler

notation.

2.2.8.A Value Iteration

Value Iteration (VI) is a model-based method for solving MDPs which requires the transition probabilities

P and the reward function r to be known by the agent a priori. The model is used to compute increasingly

accurate estimates of either Q or V . Since most algorithms we will address in this work focus on the

action-value (Q) function, that is the variant of VI we will see here. The goal of this algorithm is, then, to

compute the optimal Q-function, given by

Q∗(x, a) = Qπ∗(x, a) = sup
π∈Π

Q(x, a)

In order to do so, we use the Bellman equation of optimality for the action-value function, which states

that

Q∗(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ | x, a)max
a′∈A

Q∗(x′, a′) (2.4)

With this, we can get increasingly accurate estimates for Q∗(x, a) by setting every entry of Q0(x, a) to an

arbitrary value (commonly zero) and iteratively applying the following update rule:

Qk+1(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ | x, a)max
a′∈A

Qk(x
′, a′) (2.5)

13

The algorithm stops once the variation in every entry in the Q-function between two consecutive itera-

tions is lesser than a given threshold ϵ, i.e., when the following condition is true:

max
x∈X,a∈A

|Qk+1(x, a)−Qk(x, a)| < ϵ (2.6)

The optimal policy can be then computed by

π∗(a | x) =

{
1
nx

, if Qk+1(x, a) = maxa′∈A Qk+1(x, a
′)

0, otherwise
(2.7)

where nx = | argmaxa∈A Qk+1(x, a)|.

Note that the agent does not need to interact with the environment in order to run VI, since it has

direct access to P and r. It solely computed a policy to be used in a future interaction. For this reason,

VI is also classified as a planning algorithm.

2.2.8.B Q-Learning

Unlike VI, Q-Learning [8] is a value-based method, thus not requiring the agent to model the MDP.

Instead, the agent relies on the data it gets from interacting with the environment to approximate Q∗.

The agent starts at time step 0 in state x0, and initializes Q0 with arbitrary values (commonly zero).

Then, at every time step t, the agent executes an action at, observes a reward rt and reaches a next

state xt+1. With that information, the agent then computes

Qt+1(xt, at) = Qt(xt, at) + αt[rt + γmax
a′∈A

Qt(xt+1, a
′)−Qt(xt, at)]

and sets all the remaining entries (x, a) of Qt+1 to Qt(x, a). Computationally, this means we can store a

single matrix Q, and update a single entry (xt, at) of Q per iteration.

αt is a positive value known as the learning rate, and has a great impact in the rate of convergence

of Q-Learning. There are multiple approaches to choose at.

The algorithm stops when Equation (2.6) holds (treating the iteration k as the time step t), and

Watkins [8] shown that for properly chosen values of αt, Q-Learning is guaranteed to converge (i.e., for

every positive value of ϵ there exists a time step T where Equation (2.6) holds).

2.2.9 Exploration vs. Exploitation

In RL we are often faced with the problem of choosing whether to choose the action that, according to

our current knowledge, will yield a best long-term gain (i.e., to exploit that action), or to choose one that

allows us to improve our knowledge about the environment (i.e. to explore it). This problem is often

14

known as the exploration vs. exploitation trade-off.

A common approach that tries to balance this trade-off is the ϵ-greedy policy, which selects an

exploratory action with probability ϵ and exploits the best action with probability 1 − ϵ. For instance, for

the Q-Learning algorithm, the ϵ-greedy policy at time step t would be

πϵ
t (a | x) =

{
ϵ

|A| +
1−ϵ
nx

, if Qt(x, a) = maxa′∈A Qt(x, a
′)

ϵ
|A| , otherwise

(2.8)

where nx = | argmaxa∈A Qt(x, a)|.

2.2.10 Function Approximation

Suppose that a given MDP has a finite set of discrete actions A and a finite set of discrete states X. Our

Q-function in the algorithms we have seen will be a |X| × |A| matrix. If |X|, |A|, or both are too large,

the computations may become intractable. Even worse, if the states in X are, instead, continuous, we

cannot write Q(x, a) in matrix form, and thus we cannot use these methods.

A possible approach to solve this problem is to use function approximation, a field that studies how

we can find functions from a simpler class that best approximate a more complex (target) function. An

important result in this field is that equations of the form

E[F (x)− θ̂] = 0 (2.9)

can be addressed using stochastic approximation algorithms, with the update rule

θ̂k+1 = θ̂k + α(F (x)− θ̂) (2.10)

For instance, suppose we want to estimate the optimal Q-function for a given policy π, Q∗(x, a). We

know from Equation (2.4) that

Q∗(x, a) = r(x, a) + γ
∑
x′∈X

P (x′ | x, a)max
a′∈A

Q∗(x′, a′)

But, by the definition of conditional expected value (Section 2.1.2), we have

∑
x′∈X

P (xt+1 = x′ | xt = x, at = a)max
a′∈A

Q∗(x′, a′) = Eπ∗ [max
a′∈A

Q∗(xt+1, a
′) | xt = x, at = a]

15

Therefore

Q∗(x, a) = r(x, a) + γEπ∗ [max
a′∈A

Q∗(xt+1, a
′) | xt = x, at = a]

= Eπ∗ [r(xt, at) + γmax
a′∈A

Q∗(xt+1, a
′) | xt = x, at = a]

which is equivalent to

Eπ∗ [r(xt, at) + γmax
a′∈A

Q∗(xt+1, a
′)−Q∗(xt, at) | xt = x, at = a] = 0 (2.11)

Since Equation (2.11) is in the form 2.9, we can approximate it using the update rule 2.10.

2.2.11 Fitted Q-iteration

We can, therefore, use the method outlined in Section 2.2.10 to estimate the optimal Q-function in

complex domains. Fitted Q-Iteration (FQI) is a batch RL method, since it stores the experience it collects

while interacting with the environment in a buffer, and uses them later update its estimation of our

usual functions. In contrast, Q-Learning is an online method, since it updates its estimations right after

collecting the data, skipping the need to store it in a buffer.

However, one of the main problems of Q-Learning is that its updates are not independent of one

another, since they come from consecutive time steps. In the more recent versions of FQI (which are

the ones we will describe here), the updates are done in mini-batches of size N , by uniformly selecting

N time steps from the replay buffer, and using the to update its estimation of the Q-function, which

ensures independent updates, resulting in better convergence properties.

FQI also uses what is called a target estimator, apart from its current estimation of the Q-function. It

does so because we do not have access to Q∗ to compute our target (πr(xt, at)+γmaxa′∈A Q∗(xt+1, a
′)

in Equation (2.11)), since Q∗ is what we are trying to estimate. If we always used our current estimate

of Q∗ to update our next estimation, we would be chasing a moving target, as we are trying to get closer

and closer to an ever-changing target Q∗. The target estimator is then used to store an estimate for Q∗

that is updated only every P⊙ time steps, to minimize this problem.

FQI is described in Algorithm 2.1, with B being the mini-batch size, M the size of the weights’ vector,

P the update period of the estimator, and P⊙ the update period for the target estimator. Note that, in the

algorithm, the update

wk,t+1 = argmin
w∈RM

1

N

N∑
n=1

||yk,t,n − Q̂w(xn, an)||2

consists of minimizing the Mean Squared Error (MSE), which is a standard error measure for estimators,

16

given by

MSE =
1

N

N∑
n=1

(Xn − X̂n)
2

where X is a data sample of size N and X̂ is a vector with the predicted values.

Algorithm 2.1: Fitted Q-Iteration
1 begin
2 D ← {} // The replay buffer

3 w0,0 ← 0 // The weights wk,t for the estimator at time step t of episode k
4 w⊙ ← w0,0 // The weights for the target estimator

5 k ← 0 // The current episode

6 repeat
7 t← 0 // The current time step

8 do
9 Interact with environment and get transition Tk,t = (xk,t, ak,t, rk,t, xk,t+1)

10 D ← D ∪ {Tk,t}
11 if t mod P = 0 then
12 N ← min(B, |D|)
13 Randomly sample mini-batch {(xn, an, rn, x

′
n), n = 1, ..., N}

14 wk,t+1 ← argminw∈RM
1
N

∑N
n=1 ||yk,t,n − Q̂w(xn, an)||2

15 where
16 yk,t,n = rn + γmaxa∈A Q̂w⊙(x′

n,a)
// The target estimator

17 t← t+ 1
18 if t mod P⊙ = 0 then
19 w⊙ ← wk,t

20 while xk,t is not terminal
21 wk+1,0 ← wk,t // The weights continue to the next episode

22 k ← k + 1

23 until forever

2.3 Deep Learning

2.3.1 Artificial Neuron

An artificial neuron is a simple computational unit which has its origins in neurobiology, as its design

intends to resemble the functioning of a biological neuron. It takes as input a real-valued vector (x), and

outputs a single real value (o). The computation done by the neuron consists in computing a weighted

sum of the input values, using a configurable weights vector (w) and applying an activation function (f)

to the result, as illustrated by Fig. 2.1 (a). The weighted sum (net, as in “net value”), can be calculated

as

net = w · x =

n∑
k=1

wkxk

17

where n is the size of the input vector x. Regarding the activation function, many exist, but the simplest

one is the step function

f(net) = I[net ≥ θ] =

{
1 if net ≥ θ

0 otherwise

where θ is the threshold. Alternatively, and also very often done both in the literature and in practice, we

can add a bias term to the net value (net = w ·x+b) and set the activation function to f(net) = I[net ≥ 0].

Other commonly used activation functions include the sigmoid function, the tanh function, Rectified

Linear Unit (ReLU) and the softmax function (the last one is used more often for the output layer).

Figure 2.1: Simple representations of an artificial neuron (a) and an artificial neural network with one hidden layer
(b). Source: Adapted from [1].

2.3.2 Artificial Neural Network

An artificial neural network is a network composed by several artificial neurons, where the outputs of

some of them are connected to the inputs of others. One of the most basic architectures is the multi-

layered neural network. It has an input layer, one or more hidden layers, and an output layer (Fig. 2.1

(b)).

To compute the output for a given input, each layer of neurons executes its own local computation

process as described in the previous section, and outputs a value which can be used by the neurons on

the next layer. This is known as forward propagation, and it can be parallelized, as neurons on the same

layer do not depend on each other’s computation to perform their own.

The weights of each neuron in the network can be trained, or manually adjusted, so that each input

produces the desired output. One of the most standard algorithms used for the training process is

backpropagation. In short, it consists in computing the gradient of the error/loss function in respect to

the weights and subtracting from them that derivative multiplied by a constant (η, known as the learning

rate) from the weights, resulting in the updated weights. One of the most commonly used loss functions

18

is the MSE

L(w, b) =
1

n

n∑
k=1

(yk − ok)
2

for a multi-layered network with n output neurons, with ok being the output of the kth neuron and yk being

the desired output for that same neuron. The derivative of this error function is then used to update the

weights:

wnew = wold − η∇wL(w, b) (2.12)

bnew = bold − η∇bL(w, b) (2.13)

Note that this update rule is for the weights associated with a single neuron. To represent the weights

of a full layer of the network (with m neurons), we can use a matrix (and a vector for the bias):

W = [w1 w2 . . . wm]T

b = [b1 b2 . . . bm]T

Since the derivative of the error function depends on the outputs, the first layers depend on the

derivatives computed in the last layers (hence the name “backpropagation”). However, as in forward

propagation, neurons in the same layer can compute their own derivatives in parallel, since there are no

dependencies between neurons in the same layer.

Backpropagation when used in the circumstances we described is also known as Stochastic Gradient

Descent (SGD). However, more efficent methods than SGD were invented since it first appeared, namely

one known as Adam, which is one of the most popular backpropagation algorithms (also known as

optimizers) nowadays. Its implementation is out of the scope of this work.

2.3.3 Recurrent Neural Network

Another popular artificial neural network architecture is the RNN. This family of neural networks is

designed to extract information from sequential data [2]. A simple representation of an RNN is shown in

Fig. 2.2. The input data comes in the form x(1)x(2) . . .x(t), where each x(t) is the input vector at time

step t. Here, the index t could have a meaning other than time. For instance, it could represent the index

of a letter in a word or the index of a word in a sentence, but, for our purposes, we will assume the inputs

are indexed by their time step.

The main novelty about RNNs is that they feature a vector h(t), called the hidden state, which stores

information between time steps. This state includes information from all previous time steps, but the

most recent ones contribute more to its value than the older ones, which is analogous to the idea of

19

Figure 2.2: Compact (left) and unfolded (right) circuit diagrams of a simple RNN. Source: Adapted from [2].

short-term memory. Unlike regular neural networks, RNNs can get time-dependent information, like the

direction an object is moving and its speed (by analyzing the changes to its position in the last few time

steps).

Another difference between RNNs and regular neural networks is that they use a greater amount of

weight matrices: U, between the input layer and the hidden state, V, between the hidden state and the

output layer (or a hidden layer, in the case of multi-layered RNNs) and W, between hidden states in two

consecutive time steps.

The forward propagation algorithm has the following steps:

• The input at the current time step, x(t), and the hidden state of the previous time step, h(t−1), are

multiplied with their weight matrices (U and W, respectively) and added to a bias vector, b:

a
(t)
1 = U · x(t) +W · h(t−1) + b

• An activation function, f1 (e.g., the ReLU function), is applied to the result, yielding the new hidden

state:

h(t) = f1(a
(t)
1)

• The new hidden state is multiplied with another weight matrix, V, and added to another bias vector,

c:

a
(t)
2 = V · h(t) + c

• Another activation function, f2 (e.g., the softmax function), is applied to the result, yielding the

20

network’s output for this time step, o(t):

o(t) = f2(a
(t)
2)

As in the regular neural networks, learning can be done using the backpropagation algorithm. The

procedure is the same as what we have seen before, by readjusting the weights in the opposite direction

of the partial derivative of the loss function in respect to themselves. The only difference is that these

steps must be repeated for the 3 weight matrices (U, V and W) and for the 2 bias vectors (b and c):

unew = uold − η∇uL(u,v,w, b, c)

vnew = vold − η∇vL(u,v,w, b, c)

wnew = wold − η∇wL(u,v,w, b, c)

bnew = bold − η∇bL(u,v,w, b, c)

cnew = cold − η∇cL(u,v,w, b, c)

The vanilla RNN implementation, although effective in theory has a practical problem. The informa-

tion the RNN stores in a given iteration is almost totally forgotten after a certain number of iterations of

the forward and backpropagation algorithms. This works well if we only need to memorize the last few

data points, but if we want to remember something that happened a long time ago, we need to use a

different approach. To solve that problem, a new kind of units to replace standard recurrent units was

developed, called Long Short-Term Memory (LSTM), which show a much better capacity of keeping

useful knowledge from past time steps. The implementation details for these units are out of the scope

of this work.

2.3.4 Deep Q-Network

The Deep Q-Network (DQN) [9] is an RL method that takes advantage of the properties of deep neural

networks to estimate the Q-values more efficiently. Essentially, it consists in the FQI algorithm as we

described in Section 2.2.11 using neural networks for both the estimator and the target estimator.

One of the main advantages of the DQN is that can be used in problems where the state space is

continuous. Figure 2.3 provides an overview of its architecture, supposing there is one hidden layer.

When the DQN is provided with an environment state x ∈ X ⊆ RM , it is multiplied by the first weights

matrix W1 and added to the first bias vector b1, generating the first net value net1. An activation

function (ReLU, in our example) is applied to the net value, and the result is passed on to the next layer.

The process repeats until the output layer is reached, where the net value corresponds directly to the

estimated Q-values, Q̂, without the need to apply any activation function.

21

Figure 2.3: Simple representation of a DQN with one hidden layer. Source: Primary.

Additionally, DQN does not compute the full optimization described in line 13 of Algorithm 2.1. In-

stead, it performs a single step of the backpropagation algorithm, as in Equation (2.12), where the loss

function L used is the MSE:

W1,k,t+1 = W1,k,t − η∇W1L(W1,b1,W2,b2)

b1,k,t+1 = b1,k,t − η∇b1
L(W1,b1,W2,b2)

W2,k,t+1 = W2,k,t − η∇W2
L(W1,b1,W2,b2)

b2,k,t+1 = b2,k,t − η∇b2
L(W1,b1,W2,b2)

2.3.5 Deep Recurrent Q-Network

Like the DQN, the aim of the DRQN [10] is also to solve RL problems using deep learning techniques.

However, it features RNNs, instead of regular neural networks. This allows it to extract sequential

information from the succession of environment states, as we discussed in Section 2.3.3. This property

makes it a good candidate for solving POMDPs, since partial observability makes the optimal policy be

history-dependent.

The DRQN algorithm is very similar to the DQN algorithm. Here we present the main changes when

we introduce recurrence:

Both the estimator and target estimator for the DRQN are RNNs instead of regular neural networks;

The items pushed to the replay buffer in the DRQN are sequences of transitions of a fixed length S:

D ← D ∪ {Tk,t′ = (xk,t′ , ak,t′ , rk,t′ , xk,t′+1), t
′ = t, ..., t+ S − 1}

We discuss in more detail the parameterization of the DRQN, when we describe our novel algorithm,

22

in Section 4.2.

23

24

3
Related Work

Contents

3.1 Ad hoc teamwork . 27

25

26

3.1 Ad hoc teamwork

In this section we will explore state-of-the-art algorithms used to solve the ad hoc teamwork task. We

will start by exploring the first works in this field, and find out how they culminated in the creation of the

most important architectures in this field - the Planning and Learning to Adapt Swiftly to Teammates to

Improve Cooperation (PLASTIC) architecture - and its two main implementations - PLASTIC-Model and

PLASTIC-Policy. Then, we will see how more recent approaches were designed to deal with the partial

observability problem. We will finish by examining a competitive alternative to the PLASTIC architecture

based on attention networks.

3.1.1 Early Work

The first work we will address in the field of ad hoc teamwork is by Stone et al. [11] and it was one

of the pioneering texts to recognize the importance of deepening our research on ad hoc autonomous

agent teams. The ad hoc teamwork problem is posed to the community as: “To create an autonomous

agent that is able to efficiently and robustly collaborate with previously unknown teammates on tasks to

which they are all individually capable of contributing as team members.” The authors go even deeper,

by stating that a robust ad hoc team agent should be able to:

1. “Identify the full range of possible teamwork situations that a complete ad hoc team player needs

to be capable of addressing.”

2. “For each such situation, find theoretically optimal and/or empirically effective algorithms for be-

havior.”

3. “Develop methods for identifying and classifying which type of teamwork situation the agent is

currently in, in an online fashion.”

Furthermore, they propose a performance evaluation method for an ad hoc autonomous agent based

on its capability to replace the role of a random existing teammate from a cohesive team, while trying to

maximize a certain score measure.

After this, Barrett et al. [12] published a followup work, in which the first empirical evaluation of an ad

hoc team agent was provided. The domain used was Pursuit (Fig. 3.1). This environment consists of a

square grid where four agents (the predators) must coordinate to capture a fifth agent (the prey), which

moves randomly. The four predators cannot communicate with each other, and they do not learn, which

means that each one of them is known to have a fixed policy (i.e., one that does not change over the

course of the simulation).

The authors had the ad hoc agent play as one of the four predators, while its three teammates can

follow one from a wide range of possible behaviors - some known, and others unknown by the agent a

27

priori.

Two planning algorithms are tested: VI, which we have seen before, and Monte Carlo Tree Search

(MCTS). MCTS is an online planning algorithm which works by successively performing simulations

in a search tree, as shown in Fig. 3.2, to enhance its knowledge about the expected return of each

possible sequence of actions. In order to perform those simulations, the algorithm needs to model

the uncertainty in the environment, which, in this particular environment, exists both in the prey and

the teammates’ behavior. The prey, however, is known to act following a uniform distribution over the

possible actions. To main challenge is to model the teammates behavior, which is done using Bayes’

theorem (assuming the teammates’ possible models are previously known by the agent). At each time

step t, to estimate the posterior probability Pt(m | at) of each model m given the joint action at, the

likelihood of each joint action given a teammate model, Pt(at | m) is multiplied by the prior distribution

over the teammate models, P (m), and divided by P (at), which works as a normalization factor:

Pt(m | at) =
P (at|m)Ṗ (m)

P (at)

The evaluation method is adapted from the one in [11], with multiple experiments done for different

combinations of the planning algorithm, the teammates’ behavior and the grid size. The results shown

that MCTS allows for efficient planning when compared to VI given that it has access to a known set of

teammate models, even if these models are faulty, or the actual models being used by the teammates

differ from the ones in the set.

Figure 3.1: The “Pursuit” domain. In this scenario, four predators (red circles) must coordinate to surround the prey
(green square). The agent being evaluated is marked with a star. Source: Adapted from [3].

Later, Barrett et al. [3] developed the first ad hoc team agent capable of autonomously learning its

teammates’ models. They describe a novel algorithm based on transfer learning, adapted to cases

where the observations the agent has about its (potential) teammates are limited. Transfer learning

techniques consist in having an agent store the knowledge it acquired in an RL task to reuse it in a

different one.

The authors use, again, the “Pursuit” domain to test their algorithm, and the method defined in [11] to

evaluate it. In the construction of the algorithm, they assume the ad hoc agent knows the representation

28

of both the environment and the prey, but not that of its teammates.

The planning algorithm used is Upper Confidence bound applied to Trees (UCT), which is an MCTS

algorithm (Fig. 3.2) that has been shown to be effective in complex domains like large POMDPs and GO,

where the branching factor is high. To perform each simulation, the agent must make an assumption

about its teammates’ models, and it does so using a Bayesian approach. To select the set of models,

multiple approaches are followed, but the most relevant for our case is the one where transfer learning

is used, as the models used in Bayesian Online Prediction for Ad hoc teamwork (BOPA) and Ad hoc

Teamwork under Partial Observability (ATPO) (as we will see in Section 3.1.3) could be seen as a

byproduct of interactions with former teammates. The authors empirically concluded that this transfer

learning approach can enhance the ad hoc agent’s performance even in cases where there is a small

amount of data available.

Figure 3.2: Phases of the Monte Carlo tree search algorithm. A search tree, rooted at the current state, is grown
through repeated application of the above four phases. Source: Adapted from [4].

3.1.2 The PLASTIC architecture

The PLASTIC architecture, by Barrett [5], is one of the most popular methods for ad hoc teamwork, due

to its robustness to task and teammate diversity, and its capability to efficiently adapt to those diverse

situations. It is an algorithm which assumes the ad hoc agent has past experience cooperating with

other teammates. When faced with new teammates, the agent tries to identify the past team with a

highest similarity to the current one and reuses the knowledge it got from the most similar past team to

act upon the domain.

In order to better leverage information from different data sources, the author introduced a new

transfer learning algorithm, “Two-Stage Transfer” (used by the PLASTIC algorithm), which tries to identify

the best weighing for the importance of each data source.

29

The author introduces two variants of the PLASTIC architecture, which we will proceed to describe,

called PLASTIC-Model and PLASTIC-Policy.

3.1.2.A PLASTIC-Model

The first variant we will see is PLASTIC-Model, which functions as schematized in Figure 3.3.

Figure 3.3: Overview of the PLASTIC-Model algorithm. Source: Adapted from [5].

The PLASTIC-Model algorithm starts by learning transition models for a set of teammates using a

supervised learning approach, i.e., an approach where the aim is to predict a target output variable given

an input, after being presented with a sequence of (input, output) tuples. In PLASTIC-Model’s case, the

inputs are the features extracted from environment states, and the outputs are the teammates’ actions.

The agent performs this learning offline, thus representing its past knowledge about these teammates.

Then, these learnt transition models are combined with hand-coded models from other data sources

using their novel “Two-Stage Transfer” algorithm. The resulting models are then used by the ad hoc

agent’s online planner to plan the best course of action, using the UCT algorithm we mentioned before.

To select which model is used by the planner, the agent stores a belief distribution over which of the

teammate models is more likely to be the one the agent is currently working with. Since, in the presence

of previously unseen teammates, this belief distribution represents, instead, the similarity between the

currently observed model and the known ones, they named it behavior distribution, which covers both

the cases of seen, and unseen teammates.

The behavior distribution for each model m is then updated using polynomial weights, as follows:

30

L(m,x, a, x′) = 1− P (a | x,m, x′)P (m | x, a, x′) =
(1− η ∗ L(m,x, a, x′))

c
(3.1)

where L(m,x, a, x′) is the loss of model m for observing the transition (x, a, x′), η ≤ 0.5 is a parameter

bounding the maximum value for the loss, and c is a normalization constant.

Empirical evaluation shown that PLASTIC-Model can quickly adapt to previously unseen teammates

in simple domains. The two main weaknesses of this algorithm are (i) that it assumes the agent has ac-

cess to its teammates’ actions (since it observes the joint actions a), and (ii) that UCT, being a stochastic

algorithm, is prone to learning inaccurate environment models. On the other hand, more accurate plan-

ning algorithms would most likely be way too ineffective to be used online in larger domains.

3.1.2.B PLASTIC-Policy

The second, and last variant we will see is PLASTIC-Policy, which functions as schematized in Fig-

ure 3.4.

Figure 3.4: Overview of the PLASTIC-Policy algorithm. Source: Adapted from [5].

Instead of learning teammate models, PLASTIC-Policy starts by directly learning policies to work

with a given set of teammates, removing the hurdle of online planning. PLASTIC-Policy represents

these policies in the form of a matrix of Q-values which is learnt using an FQI implementation, similar to

the one we described in Section 2.2.11. The estimator used by the author consists in a weighed sum of

31

a set of binary features fi extracted from the environment state:

Q̂(x, a) =

M∑
i=1

wifi

where the weights wi are learnt by FQI and M is the number of features fi. To build the replay buffer

for each teammate in the known set, the agent performs exploratory actions in the domain, and stores

in it the resulting transitions of the form (x, a, r, x′). Note that, since the agent does not need to predict

its teammates’ actions, a can simply be the agent’s own action.

In parallel to learning the policies, the agent also learns a nearest neighbor model for each past

teammate, which maps states to the next state whose previous state is the closest to the state to be

mapped. We explain this in more detail in Section 4.1.

The agent then combines this knowledge with that from other sources using, again, the “Two-Stage

Transfer” algorithm. The resulting policies are then used to act in the environment, and, to update which

policy the agent follows, an analogous approach to that of PLASTIC-Model is followed, where the agent

keeps a behavior distribution over the known policies, and updates it using Equation (3.1), where m

is now a nearest-neighbor model mNN. Since the agent now does not have access to its teammates’

behavioral models, it instead estimates P (a | x,m, x′) = P (a | x,mNN, x
′) by finding the state x̂ in mNN

closest to x, and computing the similarity between x′ and x̂ (the next state for x̂). The similarity can be

computed by |x′−x̂′|
D , assuming that all states x have bounded values and are normalized, being D a

normalization constant.

PLASTIC-Policy was tested by Barrett et al. [7] in the HFO domain - the same we used for our

experiments - making this work a very important baseline for us to follow.

After experimenting in scenarios with 2 attacking versus 2 defending agents and with 4 attacking

versus 5 defending agents, the authors concluded that the algorithm quickly converged to the correct

policy in both scenarios. Due to its scalability, its capability for quick adaptation to new teammates, and

its portability for different ad hoc teamwork scenarios, PLASTIC-Policy has become one of the most

popular approaches in the field.

3.1.3 Introducing partial observability in ad hoc teamwork settings

The approaches we have seen until now assume the agent can totally observe the state of the environ-

ment, which is usually not true in practice. We will now see two examples, one with total and other with

partial observability, and learn how that difference impacts the choice of architecture.

First, we have the one from Ribeiro et al. [13] where the algorithm BOPA is presented. This algorithm

is designed for simple, totally observable domains with a random reward function, where an ad hoc agent

must cooperate with its teammates, who know the optimal policy for the underlying MMDP. The ad hoc

32

agent, however, does not know that policy, and must therefore extract information from its teammates’

behaviour.

The algorithm uses a Bayesian approach to select the action with the highest likelihood, by computing

the sum of the optimal policies for each task (defined by its reward function), weighed by the probability

of each task:

πt(a
α | xt) = P [Aα

t = aα | Xt = xt] =

M∑
m=1

πm(aα | xt) pt(m)

where pt(m) is computed iteratively by using the state transition probabilities Pm:

pt(m) = P [R = rm | Ht = ht] =
1

Z
Pm(xt | xt−1, a

α
t−1) pt−1(m)

with Z being a normalization constant.

The authors tested their algorithm both in a simulated and in a real-world scenario, and it was able

to effectively identify and solve the correct task in both scenarios. Since in the simulated environment

the algorithm performed well for different problem sizes, the authors claim the algorithm is also scalable.

However, they only experimented with relatively small problem sizes, so, this might not be the case for

much larger domains.

Following the work of Ribeiro et al., Martinho [14] presented an extension of BOPA for environments

with partial observability, named ATPO. Like BOPA, ATPO also follows a Bayesian approach. The

author assumes there is a random task M that an ad hoc agent has to perform in cooperation with other

teammates, and defines

pt(mk) = P [M = mk | Ht = ht]

as the probability that the task M being performed is mk given the action-observation history ht. At each

time step, the algorithm selects the action with the highest likelihood, computing the sum of the optimal

policies for each task, weighed by the probability of each task:

πt(a
α | ht) = P [Aα

t = aα | Ht = ht] =

K∑
k=1

π̂k(a
α | bk,t) pt(mk)

The core of the ATPO algorithm is in the update of the probabilities of each task and of the beliefs over the

states, where it takes into account not only the observation (Ok) and state transition (Pk) probabilities,

but also the policy πt computed earlier:

pt+1(mk) =
1

ρ

∑
x,y∈χk

Ok(zt+1 | y, aαt) Pk(y | x, aαt) bk,t(x) πt(a
α | ht) pt(mk)

bk,t+1(y) =
1

ρ

∑
x∈χk

bk,t(x) Pk(y | x, aαt) Ok(zt+1 | y, aαt)

33

where ρ is a normalization constant.

The algorithm is tested in the “Pursuit” domain, and compared against agents that use optimal or

near-optimal policies. Multiple experiments were conducted, namely for cases where the agent does not

know its teammates’ behaviour, and for cases where the agent does not know the correct capture task.

The author concluded that ATPO performed:

• Near-optimally when trying to identify the teammates’ behaviour, “being 9.67% slower than the

optimal policy”

• “39% slower than the optimal policy” when trying to identify the capture task

• “57% slower than the optimal policy” when trying to identify both the teammates’ behaviour and

the correct capture task.

Although the results for the case where the agent does not know the correct capture task are not perfect,

the ones for the case where it does not know its teammates’ behaviour are very close to being optimal,

which is very encouraging, since this problem’s formulation is very similar to ours, with the most striking

difference being that we will consider a larger, continuous state space.

3.1.4 Other architectures for the ad hoc teamwork problem

Chen et al. [6] developed an attention network algorithm that surpassed PLASTIC-Policy’s performance

in the HFO domain. The algorithm was named by the authors Achieving the Ad-hoc Teamwork by Em-

ploying the Attention Mechanism (AATEAM) and, like POPP uses RNNs. However, unlike the algorithms

we previously seen, AATEAM is designed to adapt to the ad hoc agent’s new teammates in real-time,

with the aid of attention-based RNNs. The architecture consists of multiple networks like the one in Fig.

3.5, one for each previously known teammate type, and each network consists, mainly, of two parts,

called an “encoder” and a “decoder”.

The encoder, at each time step, receives a sequence with the most recent environment states and

outputs an encoded value for each state. Each of these values has in consideration the input from the

few previous states, since the encoder has a layer with a hidden state. The decoder uses the information

outputted by the encoder, together with its hidden state, to output an action. This description is only a

simplified version of the actual algorithm used in the paper. Its complete details are out of the scope of

this work.

The results shown that AATEAM clearly over-performed PLASTIC-Policy both with known and un-

known teammates. As we can see in Fig. 3.6, AATEAM (in blue) always achieved a higher scoring rate

than PLASTIC-Policy (in yellow). The difference between the two was always higher than 1%, except for

two teammate types, “gliders” (known) and “ubc” (unknown), for which AATEAM only slightly surpassed

PLASTIC-Policy.

34

Figure 3.5: Simplified description of the attention network used by AATEAM. Source: Adapted from [6].

Figure 3.6: Performance of AATEAM with known teammates (on the left) and unknown teammates (on the right).
Source: Adapted from [6].

3.1.5 Conclusion

We have started by exploring how the research in the ad hoc teamwork field began, and how it became

so relevant nowadays, that it prompted the development of innovative and effective approaches to tackle

the ad hoc teamwork task.

We have seen that Bayesian approaches are able to identify the correct task for an ad hoc team-

work scenario in low-dimensional, discrete domains, under total (BOPA) or partial (ATPO) observability.

We have also seen how transfer learning techniques can be very effective in generalizing teamwork

experiences, both in simple (Barrett et al. [3]) and complex (Barrett [5] and Chen et al. [6]) domains.

In particular, the PLASTIC-Policy architecture has become the de facto standard for ad hoc team-

work, despite having been surpassed by AATEAM, a more custom-tailored approached for the HFO

domain, due to the former being able to adapt to a great variety of tasks and teammates, and especially

for doing so very efficiently.

35

36

4
POPP

Contents

4.1 The PLASTIC-Policy Architecture . 39

4.2 Introducing Recurrence in PLASTIC-Policy: POPP . 40

37

38

4.1 The PLASTIC-Policy Architecture

In this section, we will present the PLASTIC-Policy architecture in greater detail, since it will be the

basis for our novel architecture. An overview of PLASTIC-Policy can be found in the previous chapter

(Figure 3.4), but here we present a more thorough explanation.

Algorithm 4.1: The PLASTIC-Policy algorithm. Source: Adapted from [7].
1 Procedure PLASTIC-Policy(KnownTeammates):
2 Π← LearnPolicies (KnownTeammates)
3 M ← LearnNNModels (KnownTeammates)
4 ActInDomain (KnownTeammates, Π, M)

5

6 Function LearnPolicies(KnownTeammates):
7 Π← {}
8 foreach teammate β ∈ KnownTeammates do
9 Learn policy π to cooperate with β

10 Π← Π ∪ {π}
11 return Π

12

13 Function LearnNNModels(KnownTeammates):
14 M ← {}
15 foreach teammate β ∈ KnownTeammates do
16 Learn nearest neighbor model mNN of β
17 M ←M ∪ {mNN}
18 return M

19

20 Procedure ActInDomain(KnownTeammates, Π, M):
21 µ← UniformDistribution(KnownTeammates)
22 Initialize state x
23 while x is not terminal do
24 β ← argmaxµ
25 Take action a = Πβ(x) and observe r, x′

26 µ← UpdateBehaviorDistribution (KnownTeammates, M , µ, x, a, x′)
27 x← x′

28

29 Function UpdateBehaviorDistribution(KnownTeammates, M , µ, x, a, x′):
30 foreach teammate β ∈ KnownTeammates do
31 L(Mβ , x, a, x

′)← 1− P (a | x,Mβ , x
′)

32 µβ ← µβ(1− ηL(Mβ , x, a, x
′))

33 Normalize µ
34 return µ

Algorithm 4.1 is divided in three parts: LearnPolicies, LearnNNModels and ActInDomain. We will

proceed to explaining each one of them.

39

4.1.1 LearnPolicies

First, the agent learns a set of policies Π to work with the previously encountered KnownTeammates. It

does so using the FQI algorithm, as explained in Section 2.2.11. We will specify the type of estimator

used in Section 4.1.4.

4.1.2 LearnNNModels

Then, the agent will learn a set of nearest neighbor models M for each teammate in KnownTeammates.

Learning a model consists in interacting with the environment whilst cooperating with a known teammate

β, storing tuples of the form (xt, xt+1) in Mβ .

4.1.3 ActInDomain

This is the core of the PLASTIC-Policy algorithm. Here, the agent is placed in an ad hoc scenario, and

must cooperate with the new teammate (which might be known or unknown), leveraging the previously

acquired knowledge. The agent starts by initializing a behavior distribution vector µ to a uniform distri-

bution over the known teammates (since in our work, for simplicity, we assume the teammates follow

a uniform distribution). Each entry in this vector represents how similar the current teammate’s behav-

ior is to each previously seen teammate. The agent then starts interacting with the environment, and,

at each iteration, starting in state x, takes the action a prescribed by the policy corresponding to the

previously encountered teammate with the highest belief distribution (in case of a tie, it selects one at

random among the tied ones), and observes r and x′. With this information, it will then proceed to up-

dating the behavior distribution µ, and it does so, using the polynomial weights update we described in

Equation (3.1). The term P (a | x,Mβ , x
′) is computed as we described in Section 3.1.2.B.

4.1.4 PLASTIC-Policy with a DQN

In order to compare our performance with a similar, but non-recurrent approach, we implemented a

version of PLASTIC-Policy using a DQN, and called it Deep Q-Network - PLASTIC-Policy (DQN-PP).

The DQN algorithm is explained in Section 2.3.4.

4.2 Introducing Recurrence in PLASTIC-Policy: POPP

We finally reach the point were we explain our novel algorithm, POPP. In essence, it consists in an

implementation of PLASTIC-Policy using a DRQN (as explained in Section 2.3.5) as the estimator. But

there are some implementation details that are worthy to note.

40

Firstly, to choose the action during the LearnPolicies part of the algorithm, we used an ϵ-greedy

policy (explained in Equation (2.8)), with ϵ being an experimental parameter.

Secondly, we used the replay buffer to store the transitions that the agent would then use to learn

the nearest neighbor models (in function LearnNNModels). We could only do this, since we realized the

replay buffer was never totally filled up after the end of the LearnPolicies function. In this way, we saved

memory space, by avoiding the use of an additional buffer to store the (xt, xt+1) tuples.

Thirdly, since the environment we chose (HFO) has different valid actions for different environment

states (e.g., an agent can only pass the ball to a teammate, or shoot the ball if it is currently controlling it),

we changed the agent’s action selection mechanism. When the agent is selecting a random (exploratory)

action, it selects instead a random action among the valid ones for that state. When the agent is following

the greedy action, it selects the one with the highest Q-value from among the valid ones. In this way, we

prevent the agent to select invalid actions, which would hinder the learning process.

Last, but not least, since with partial observability we cannot access the full state of the environment,

we use the observations z ∈ Z, instead of the states x ∈ X to create the nearest neighbor model for

each teammate.

41

42

5
Experimental evaluation

Contents

5.1 Half-Field Offense . 45

5.2 Learning agent configuration . 51

5.3 Procedure and Metrics . 52

5.4 Results . 53

5.5 Discussion . 56

43

44

In this chapter, we describe our evaluation procedure and results. We start by describing the chosen

environment, HFO, in Section 5.1. After that, we proceed to analyzing how well DQN and DRQN agents

perform with total (??) and partial (??) observability. We then describe the evaluation procedure for our

ad hoc team agent, the POPP agent, and its performance with different levels of environment observ-

ability and of similarity between past and present teammates. Finally, based on our results, we provide

answers to the questions:

1. Can DRQN surpass a non-recurrent (DQN) architecture’s performance in a complex, totally ob-

servable scenario with sparse rewards?

2. Can DRQN surpass a non-recurrent (DQN) architecture’s performance in a complex, partially

observable scenario with sparse rewards?

3. How accurately can POPP identify teams it previously encountered?

4. Can POPP surpass a non-recurrent (DQN-PP) architecture in a complex, partially observable

scenario with sparse rewards?

5. How does POPP’s performance change with the level of similarity between the current and past

teammates?

6. How does POPP’s performance compare with that of the original teams?

5.1 Half-Field Offense

The environment we chose to evaluate our agent was HFO, which is a task that plays out in the offense

half of a soccer field, where a offense team must coordinate to score a goal before time runs out, and a

defense team must coordinate to prevent the offense team to score. We used the HFO implementation

by Hausknecht et al. [15]. Figure 5.1 presents a snapshot of an HFO match.

Figure 5.1: Snapshot of a Half-Field Offense ongoing match. The yellow (offense team) is trying to score against
the red and purple (defense) team. Source: Primary.

45

An HFO match ends in one of the following terminal states:

• Goal, if the ball enters the defense team’s goal;

• Captured by Defense, if an agent of the defense team manages to get control of the ball;

• Out of Bounds, if the ball leaves the playing field through one of the four lines limiting it;

• Out of Time, if a set amount of time steps have passed without any of the previous terminal states

being reached.

If the terminal state is “Goal”, the offense team is considered the winner; otherwise, victory goes to the

defense team.

We chose this environment for multiple reasons:

• It is a multi-agent system, including both cooperating (teammates) and adversarial (opponents)

agents;

• It is a complex domain, with a continuous state space;

• It supports total and partial observability;

• It has sparse rewards;

• There is a wide range of teammate implementations available to use;

• It was used on previous works, allowing us to better compare results.

5.1.1 Environment Parameterization

In HFO there are multiple parameters that impact the way the game plays out. In Table 5.1, we listed

some of those parameters along with the values we chose for each of them.

Table 5.1: Description and chosen values for the parameters of the HFO environment

Parameter Value Description

--frames-per-trial 500 Number of frames (time steps) the offense team has
for scoring, before time runs out and they lose the match.

--untouched-time 100 If the offense team does not touch the ball for this
amount of (consecutive) frames, they lose the match.

--no-sync True

If True, there are no restrictions to how long agents take
to choose their actions. If False, the match is played in
real-time, and agents have a fixed amount of time to
choose their actions; if they take more than the time limit,
no action is performed in that time step.

46

5.1.2 Environment Model

The HFO environment can be modeled as an MPOMDP (I,X,A, P, Z,O, r, µ0). We will provide a high-

level description for each of its components in the next few sections.

5.1.2.A Agents

The index set of agents I contains indices representing all agents from the offense and defense teams.

In all experiments we will present in this work, we considered 2 agents in each team, so, we have always

that |I| = 4. We can classify the agents in I regarding their role, or their policy.

Regarding each agent’s role, we can split I in two subsets, such that I = Iω ∪ Iδ, where Iω contains

the offense agents and Iδ the defense agents.

Regarding their policies, each agent is from one of the following types:

• Learning agents (DQN/DRQN), which we will call γ;

• Ad hoc agents, which we will call α;

• Agents for which the binary files were made available, which include those created for the RoboCup

2D Simulation League 2013 (“aut”, “axiom”, “cyrus”, “gliders” and “helios”), and the type “base”

(also known as “Agent2D”), that comes with the HFO simulator. We will call them binary agents,

and index them as βk, k ∈ N, since in all our experiments there are multiple binary agents.

We made three types of experiments:

• Learning + Binary: Iω = {γ, β2};

• Ad hoc + Binary: Iω = {α, β2};

• Binary + Binary: Iω = {β1, β2};

In all our experiments, the 2 defense agents (Iδ = {β3, β4}) were of the binary type “base”.

5.1.2.B State

The HFO simulator makes available two list of features: the Low Level State Feature Set and the High

Level State Feature Set. Those feature sets represent what information each agent will get about the

state on each time step, so, they represent the agents’ observations, and not the state itself. Therefore,

in this section, we try to estimate the number of features that define a state of a HFO match.

The Low Level State Feature Set contains a total of 50 + 9|I| = 86 features. However, some of the

features in that set are redundant for defining the environment state since they either:

• (i) do not change throughout the whole match (uniform numbers) - a total of |I| − 1 = 3 features;

47

• (ii) simply indicate whether an agent’s perception of another feature is valid - a total of 4 features;

• (iii) can be deduced from other features - a total of 33 features.

There are also 7(|I| − 1) = 21 features that contribute to defining the environment state, but are unavail-

able in the feature set of a given agent (e.g. other agents’ stamina or whether they are able to kick the

ball).

Therefore, we conjecture that a state of a HFO match can be fully described by |X| = 15|I|+ 7 = 67

features. The features are all either Boolean (in {−1, 1}), or real (floating point) numbers (in [−1, 1]).

These features represent the position, velocity and angle of each entity (agents or the ball), and other

minor features like whether each agent is colliding with a landmark (e.g. a goal post).

We will describe the High Level State Feature Set in greater detail (in Section 5.1.2.E), since it is the

one we chose for agents to have access to.

5.1.2.C Actions

HFO features 3 types of actions:

• Low Level actions, which represent simple, primitive movements (e.g. Turn(angle), Kick(power,

angle)), and have continuous parameters;

• Mid Level actions, which implement higher level behavior (e.g. Intercept(), DribbleTo(x, y)), having

almost all of them continuous parameters;

• High Level actions, which implement strategic behavior (e.g. Move(), DefendGoal()), and are dis-

crete.

We chose to use the High Level actions and the Mid Level action Intercept(), mainly due to being

discrete, allowing us to directly apply the DQN/DRQN algorithm. The full list of actions we considered

for our custom agents (learning and ad hoc agents) is:

Intercept() : Moves the agent so as to intercept the ball’s movement, taking its speed into account.

Move() : Moves the agent in order to implement a strategy (that of the “helios” team).

Shoot() : Takes a shot facing the direction with the highest possible opening angle (i.e., the angle

between two obstacles, which can be opponents or goal posts).

Pass(n) : Passes the ball to the teammate with uniform number n, if the agent can see teammate n.

Otherwise, it does nothing.

Dribble() : Executes a chain of short kicks and moves in order to advance the ball towards the goal.

The actions Intercept() and Move() can only be executed when the agent in unable to kick the ball, whilst

Shoot(), Pass(n) and Dribble() can only be executed when the agent is able to kick the ball. Whenever

48

an agent selects an action that cannot be executed given the current environment state, that action has

no effect, being equivalent to the agent choosing the action NoOp(), which does nothing.

Due to the sparsity of rewards (only in terminal states), we realized the agents γ were having trouble

learning a policy. Therefore, we developed a way to reduce the number of time steps the learning agents

see during an episode. Since, most of the time, the agent does not control the ball, most of the time

steps the agent is just executing the actions “Intercept()” or “Move()”, and sometimes alternating between

both, resulting in a poor performance. So, we decided to introduce repeated actions, which consist in

actions that, when selected by an agent, are repeatedly executed for a fixed number of time steps, or

when the agent regains control of the ball. Moreover, during the execution of this action, the agent

does not get any observation or reward - that only happens when the repeated action ends. Thus, we

were able to increase our agent’s performance by changing the agent’s actions Intercept() and Move() to

Repeat[Intercept(), 5] and Repeat[Move(), 15], respectively, where the number of repeats of each action

was chosen empirically.

With this said, the action sets for the learning (Aγ) and ad hoc (Aα) agents are always Repeat[

Intercept(), 5], Repeat[Move(), 15], Shoot(), Pass(nβ2), Dribble(), where nβ2 is the uniform number of the

agent’s only binary teammate β2. So, |Aγ | = |Aα| = 5. We do not have access to the implementation

of the binary agents, so we assume Aβi can contain every Low, Mid or High Level action (except for the

actions that are exclusive to defensive agents).

The joint action set is therefore A =×i∈I
Ai, with each set Ai as described above.

5.1.2.D Transition Probabilities

The transition probability function P results from the combination of the physics simulated by HFO with

the join actions chosen by the agents.

We consider that a state transition begins right after an agent starts executing action, and ends when

the agent reaches the next state after finishing executing its action, or when it reaches a terminal state.

Therefore, given a transition (x, a, r, x′), starting at time step t1 and ending at time step t2 we have that:

• x = xt1 is the agent’s original state in time step t1;

• a = at1 is the action the agent chose at time step t1, and that lasted t2 − t1 time steps;

• r = rt2−1 is the reward the agent get for transitioning to state xt2 ;

• x′ = xt2 is the agent’s new state in time step t2.

49

5.1.2.E Observations

As we discussed in Section 5.1.2.C, we chose to use the High Level State Feature Set as the agents’

observations. We made this choice mainly due to its features being, in general more straightforward

for the agent to use in its decision process, especially if used in conjunction with the High/Mid Level

actions. For instance, one of the High Level features is the goal opening angle, which indicates the

largest possible angle the agent has to shoot the ball towards the goal, taking into account obstacles

(opponents and goal posts). The High Level action Shoot() shoots the ball towards the direction with the

highest possible goal opening angle. Therefore, the agent could use the goal opening angle feature to

decide when to use the action Shoot().

The High Level State Feature Set has a total of 6+ 6|Iω|+3|Iδ| = 24 features, but Iω − 1+ Iδ = 3 of

them are uniform numbers. Therefore, there are 7+5|Iω|+2|Iδ| = 21 features which can aid the agents

in their decision process. These features include not only simpler values, like each entity’s position in the

field (namely that of all agents and the ball), but also some complex to compute, but meaningful values,

like the goal opening angle we described before. A detailed list of all High Level features can be found

in Table A.1.

For our learning and ad hoc agents, we empirically chose to use the feature set containing all 7 +

5|Iω| + 2|Iδ| = 21 useful features, plus one Boolean validity feature per entity (including the ball and

excluding the agent itself), indicating whether or not all of the other entities’ features are valid. If all

features that describe an entity are valid, its corresponding validity feature takes the value 1, otherwise it

takes the value -1. By default, HFO sets the value of invalid features to -2, but since that could damage

our learning agent’s learning process (since it could interpret -2 as a valid, but very low value for that

variable), we decided to set invalid features to the value 0, and introduce the validity features we just

described.

With this said, we have that |Zγ | = |Zα| = 7 + 6|Iω| + 3|Iδ| = 25. The binary agents (including the

defense agents) have access to all |Zβi | = 24 default features, but, in practice, they only use the 21

useful ones.

The joint observation set is therefore Z =×i∈I
Zi, with each set Zi as described above.

5.1.2.F Observation Probabilities

Like P , the observation probability function O also results from the combination of the physics simulated

by HFO with the joint actions chosen by the agents. For instance, if an opponent is blocking our agent’s

view of the ball or of other agent, the obstructed entity’s features in our agent’s observation will be

invalid. However, there is an option in the HFO simulator (--fullstate), that makes agents able to access

the correct values for all features. Yet, since our feature set does not contain the entities’ velocities, there

is still some degree of partial observability in the experiments we label as “totally observable”.

50

5.1.2.G Reward Function

We empirically chose the following reward function r:

• 0 on all time steps where the state is not terminal;

• 10 on goal;

• -10 otherwise, i.e., if the defending team catches the ball, the ball goes out of bounds or time runs

out.

5.1.2.H Distribution of the Initial State

Regarding µ0, the offense agents and the ball start in random positions in the left half of the playable

field; the defender starts in a random position in the right half of the field; the goalkeeper starts in the

center of the goal.

5.2 Learning agent configuration

In Table 5.2, we present the parameters we have empirically chosen for both the DQN and the DRQN

agents. A detailed explanation of the parameter selection process for the DRQN can be found in Ap-

pendix B.

Table 5.2: Parameters chosen for the DQN and the DRQN

Parameter DQN value DRQN value
Input Size 25 25
Output Size 5 5
Number of Hidden Layers 1 1
Number of Units Per Layer 12 12
Type of Units Linear LSTM
Activation Function ReLU ReLU
Optimizer Adam Adam
Learning Rate 0.00025 0.00025
Initial Exploration Rate 0.5 0.5
Final Exploration Rate 0.05 0.05
Initial Exploration Rate 0.5 0.5
Discount Factor 0.995 0.995
Estimator Update Period 4 4
Target Estimator Update Period 500 500
Replay Buffer Sequence Length – 10

51

5.3 Procedure and Metrics

In this section, we present our evaluation procedure and chosen metrics for our three types of experi-

ments: Learning + Binary, Ad hoc + Binary and Binary + Binary.

5.3.1 Learning + Binary

In this type of experiments, where Iω = {γ, β1}, we aimed to evaluate the learning agent γ’s capacity to

learn a policy to cooperate with a binary agent β1. For each configuration (learning agent type, teammate

type and observability), we ran the agent for 80 rollouts of 500 training episodes and 50 test episodes

each, adding up to a total of 40,000 train episodes and 4,000 test episodes per experiment. We ran 3

trials for each configuration.

In the training episodes, γ learned using the DQN and DRQN algorithms we explained in Sec-

tion 2.3.4 and Section 2.3.5, respectively.

In the test episodes, the agents did not learn, and always chose greedy actions (the valid actions

with the highest Q-values).

At the end of each rollout, we saved the agent’s current neural network weights and replay buffer

(to reuse in the ad hoc experiments), and measured the offense team’s score rate in the test episodes,

i.e., the fraction of test episodes from the 50 of each rollout that ended in a goal. The results for these

experiments can be found in Section 5.4.1.

5.3.2 Ad hoc + Binary

In this type of experiments, where Iω = {α, β1}, we aimed to evaluate our novel POPP algorithm. For

each configuration (type of learning agent, type of the teammates the agent will find, observability), we

followed the POPP algorithm as described in Section 4.2:

• we started by the policies learnt when cooperating with each known teammate (which were gen-

erated using the procedure defined in Section 5.3.1). Since, during each experiment, we save the

agent’s network and replay buffer, we had to choose which state to use. In order to achieve a

balance between the policy’s performance and the number of observed time steps, we chose the

state with the highest score rate among the last 5 states;

• we then learnt a nearest-neighbor model for each known teammate, using the transitions stored in

the replay buffer (which are all of the transitions the agent has seen, since the replay buffer never

exceeded its maximum capacity);

• finally, we tested the agent in an ad hoc scenario, with either known, unknown, or both types of

teammates. For each configuration, we ran 1000 trials of 25 episodes each.

52

The results for these experiments can be found in Section 5.4.2.

5.3.3 Binary + Binary

In this type of experiments, where Iω = {β1, β2}, we aimed to determine each binary team’s average

score rate, to compare their performance with that of POPP. We only considered cases where β1 and

β2 were of the same type, since we wanted to determine the performance of the original teams.

We ran each team during 1,000 episodes, and calculated their average score rate over the course

of all 1,000 episodes. We also calculated the average score rate for the set of known teams, for the

set of unknown teams and for the set of all teams. The results for these experiments can be found in

Section 5.4.2, to be compared with those for POPP.

5.4 Results

In this section, we describe the results for the experiments defined in Section 5.3. To represent the

standard deviation σ of a sample in the plots, we used 95% confidence intervals ([µ − 1.96σ√
n
, µ + 1.96σ√

n
],

with n being the sample size, and µ the mean value of the sample).

5.4.1 Learning a Policy in HFO

In this section we present the results for the experiments of the type “Learning + Binary”. In each plot,

each point corresponds to the average of 9 trials as defined in Section 5.3.1, 3 for each of the following

teammate types: “aut”, “base” and “helios”.

In Figure 5.2, we present the experimental results for the DRQN and the DQN with the --fullstate

option of the HFO set to True.

In Figure 5.3, we present the experimental results for the DRQN and the DQN with the --fullstate

option of the HFO set to False.

5.4.2 Ad hoc teamwork in HFO

In this section, we present the results for our agents playing in an ad hoc scenario (experiments of the

type “Ad hoc + Binary”, as explained in Section 5.3.2), and compare them to the binary agents using

their original policy (experiments of the type “Binary + Binary” Section 5.3.3). In all experiments, the

teams the ad hoc agents previously knew were “aut”, “base” and “helios”.

53

Figure 5.2: Score rate for the DRQN and DQN learning agents playing with total observability. Source: Primary.

Figure 5.3: Score rate for the DRQN and DQN learning agents playing with partial observability. Source: Primary.

5.4.2.A Varying the level of observability

In Figure 5.4 and Figure 5.5, the score rates presented for DQN-PP and POPP are the average of

the score rates among 1000 trials. In each trial, the agent’s teammate was uniformly chosen from the

following types: “aut”, “base”, “helios”, “axiom”, “cyrus” and “gliders”. The score rate for the binary agents

is the average of the score rates of the original teams (teams with two identical agents) for the 6 types

the ad hoc agent can encounter, where each team was run for 1000 trials.

In Figure 5.4, we present the experimental results for POPP, DQN-PP and binary agents with the

--fullstate option of the HFO set to True.

In Figure 5.5, we present the experimental results for POPP, DQN-PP and binary agents with the

--fullstate option of the HFO set to False.

54

Figure 5.4: Score rate for POPP, DQN-PP and the original binary teams, playing with total observability. Source:
Primary.

Figure 5.5: Score rate for POPP, DQN-PP and the original binary teams, playing with partial observability. Source:
Primary.

5.4.2.B Varying ad hoc teammates with partial observability

In Figure 5.6, we present and compare the results for POPP while playing with known, and with unknown

agents, with the --fullstate option of the HFO set to False. Each plot corresponds to the average of 1000

trials. During each trial, the agent paired up with an “aut”, “base” or “helios” teammate in the “POPP

(known teammates)” experiment, and with an “axiom”, “cyrus” or “gliders” teammate in the “POPP (un-

known teammates)” one. In each trial, the teammates were chosen uniformly at random from their sets.

The plots labeled “Binary (known teammates)” and “Binary (unknown teammates)” represent the av-

erage over 1000 trials for the score rates of the original teams for the 3 types the ad hoc agent encoun-

tered in the “POPP (known teammates)” and “POPP (unknown teammates)” experiments, respectively.

For the experiments with known teammates, we also present in Figure 5.7 the evolution of POPP’s

behavior distribution over the course of 25 episodes, averaged over 1000 trials.

55

Figure 5.6: Score rate for POPP playing with known and unknown teammates, and for the original binary teams.
Source: Primary.

5.5 Discussion

We will discuss our experimental results by answering the questions we posed at the beginning of this

chapter.

5.5.1 Question 1

Can DRQN surpass a non-recurrent (DQN) architecture’s performance in a complex, totally observable

scenario with sparse rewards?

According to the results in Figure 5.2, the DRQN seems to have an advantage over the DQN with

full observability, which was expected, since the High Level State Feature Set of the HFO simulator

provides incomplete information (e.g., the agent does not have access to the ball’s speed, or to its

opponent’s orientation in the field). the agents’ observations contain almost all information that could

be useful to decide how to act. It is also possible that the agent’s teammates or opponents’ policies

are non-stationary, which would also give the DRQN an advantage over the DQN, since the former

can observe the evolution of other entities’ behavior over time. There is still an intersection of both

architectures’ confidence intervals, which indicates that there might be some specific situations where

the DQN surpasses the DRQN.

56

(a) Playing with “helios” teammate (b) Playing with “aut” teammate

(c) Playing with “base” teammate

Figure 5.7: Behavior distribution for POPP when playing with known teammates. Source: Primary.

5.5.2 Question 2

Can DRQN surpass a non-recurrent (DQN) architecture’s performance in a complex, partially observable

scenario with sparse rewards?

According to the results in Figure 5.3, the DRQN slightly surpassed the DQN with partial observabil-

ity, but there is a significant intersection between both networks’ confidence intervals. We expected a

greater advantage for the DRQN with respect to the DQN, similarly to the totally observable scenario.

To try to find an explanation for this result, we observed the agents playing in real-time, and noticed

that the policies learnt by both architectures are usually conservative, consisting in passing the ball to the

teammate whenever possible. In this way, it is difficult for the team to have effective offense strategies,

other than the cases where the agent’s teammate is well positioned to score a goal. We believe that

this behavior is due to the fact that, under partial observability, some High Level actions of the HFO

57

simulator (especially Shoot()) fail very often. This makes sense, since they implement complex behavior

that depends on many features in the observation, which, when unavailable, prevent the agent from

executing the action. This makes the agent rely more on its teammates (who might potentially use lower

level actions) than on itself.

The same behavior did not occur when playing with total observability, most likely because in that

case the agent’s actions rarely fail, allowing it to rely on its own actions, avoiding the need to always

pass the ball to its teammate.

Notwithstanding, since the DRQN had a slightly greater performance than the DQN, with more out-

standing performance peaks, we can conclude knowing the history of the last few states constitutes an

advantage for the DRQN.

5.5.3 Question 3

How accurately can POPP identify teams it previously encountered?

According to Figure 5.7, there is some variability on how accurately POPP can identify previously

encountered teammates. In Figure 5.7(b) and Figure 5.7(c), after 25 episodes, POPP identifies the

correct team more than half of the times. However, by observing Figure 5.7(a), we can see that, when

playing with team “helios”, the agent has a nearly uniform distribution over the three policies even after

the 25 episodes. Moreover, it considers team “base” to be the most likely teammate it is playing with.

We observed the POPP agent playing with the three teams, and realized that (i) the “base” teammate

is very unpredictable, when compared with the other two, and (ii) the “base” teammate has a strategy

that is more similar to that of the “helios” teammate than to that of the “aut” teammate. Our realization

(ii) might explain why “base” has a higher behavior distribution than “aut” when playing with “helios”, but

it does not explain why “helios” does not have the highest behavior distribution. However, due to (i), the

“base” teammate must have spanned a much wider range of environment transitions during the policy

learning process, when compared with the other two teammates. Thus, when cooperating with “helios”,

the POPP agent has a higher chance of finding a transition previously encountered when cooperating

with “base”, due to its wider range of transitions.

5.5.4 Question 4

Can POPP surpass a non-recurrent (DQN-PP) architecture in a complex, partially observable scenario

with sparse rewards?

By observing Figure 5.5, we can see that POPP clearly surpassed DQN-PP’s performance. More-

over, their 95% confidence intervals do not intersect after episode 4, which strongly endorses our claim.

58

5.5.5 Question 5

How does POPP’s performance change with the level of similarity between the current and past team-

mates?

POPP has shown to be resilient to the lack of knowledge about the teammates it encounters, since,

according to Figure 5.6, its performance in the presence of known and unknown teammates is very

similar. In fact, its performance in the presence of unknown teammates seems to be slightly higher

than in the presence of known teammates, even though the known teammates’ original policies had a

slightly higher score rate than that of the unknown teammates. This seems to indicate that the POPP

successfully transferred its learning from previous tasks to new, unseen teamwork situations.

5.5.6 Question 6

How does POPP’s performance compare with that of the original teams?

POPP performed poorly when compared with the original teammates’ policies. We believe that, in

part, this is due to original teammates having complex policies that use more than the 5 actions we

allowed the POPP agent to use. Adding to that, some teams use communication protocols (that are

available in the HFO simulator), that render useless when used with our agent, since it does not support

them. Last but not least, the fact that the policies learnt by the DRQN were too conservative (as we

discussed in our answer to Question 2) also contributed to this poor performance.

With this, we finished answering all 6 questions we posed at the beginning of this chapter.

5.5.7 Comparing POPP to other architectures

We will now comment on the performance of POPP and DQN-PP under total observability when com-

pared to an approach with a very similar environment setup as ours - AATEAM, by Chen et al. [6].

Comparing our results to those of to Barrett et al. [7] would be unreliable, since they used a different

defense team (they used “helios”, whilst we used “base”). Under total observability, POPP achieved

a maximum score rate of about 54.2%, and DQN-PP about 56.5%. AATEAM achieved a much higher

performance of 76.5%, even surpassing the performance of the “axiom” and “yushan” original teams

(i.e., an AATEAM playing with an “axiom”/“yushan” teammate achieves better performance than two “ax-

iom”/“yushan” agents playing together). We believe this discrepancy is mainly due to the following two

factors:

• AATEAM features a much more complex, custom-tailored and fine-tuned network than that of

PLASTIC-Policy (used by POPP and DQN-PP), which is designed to being reusable for many

different environments;

59

• Chen et al. define a simpler state transition model than ours, considering only transitions where, in

the start state, the agent has control over the ball, and, consequently, only actions that are usable

in that situation (Dribble(), Pass() and Shoot()). Whenever the agent does not control the ball, it

does not observe state transitions, and it always chooses the action Move(), which implements

the moving strategy of the high-performance “helios” agent. We also tried this approach when

learning the policies for the DQN and DRQN and, in fact, it usually resulted in higher score rates

than our current approach. However, that approach would not allow us to test the DRQN (and thus

POPP) in a situation that could put it into an advantage over non-recurrent architectures, since the

agent would not observe intermediate states that could contain hidden, important information for

its decision process.

5.5.8 Answering the research question

We will now answer our main research question.

Is it possible to develop an autonomous agent which performs near-optimally in the ad hoc

teamwork problem, in a complex, partially observable environment with sparse rewards?

Considering the most realistic situation, where the agent can find either known or unknown team-

mates (Figure 5.5), POPP achieved a performance of about 42% of goals scored, while, in average, the

original teams scored goals in 72% of episodes. This is a large gap, so, we cannot say that POPP’s

performance was near-optimal. Yet, since we argued that there was still plenty of room for improvement,

namely due to the performance gap between POPP and a more custom-tailored architecture (AATEAM),

the issue with some actions failing very often and the difficulty in identifying the correct teammate when

one of the known teammates spans a wide range of transitions, we strongly believe it is possible to

achieve a near-optimal performance in this scenario.

60

6
Conclusion

Contents

6.1 Limitations . 63

6.2 Future Work . 64

61

62

We have seen the importance of the study and development of ad hoc team agents in our current

world, and how this field of knowledge has experienced great progress recently, from BOPA to ATPO,

and from PLASTIC algorithms to AATEAM. We have also seen how PLASTIC-Policy still thrives as a

state of the art algorithm in the field, even though it was surpassed in performance by AATEAM, due it’s

simplicity, adaptability and scalability.

Nevertheless, we found a gap in the literature, by realizing none of the existing approaches tackle a

scenario with complex domains and partial observability. To that, we added the sparsity of the rewards

due to its plausibility in real-life scenarios.

We presented a novel ad hoc teamwork algorithm POPP, designed to deal with these constraints,

by combining PLASTIC-Policy with DRQNs. We performed several experiments to assess the learning

process of the DRQN, and the performance of POPP in ad hoc circumstances.

We tested our algorithm in the HFO domain and concluded that, although it did not achieve a near-

optimal performance, POPP successfully generalized its knowledge from working with past teams to

its new teammates, even achieving a higher performance in the presence of unknown than of known

teammates. Our approach was also able to quickly identify two out of the three previously known teams.

Moreover, it surpassed the score rate of its non-recurrent variant, DQN-PP whenever the observability

was partial.

6.1 Limitations

As we have noted before, there are still multiple avenues to explore, if we wish to surpass POPP’s

performance.

Although one of the main goals of ad hoc teamwork is adaptability to diverse tasks and situations,

the implementation of a more fine-tuned and custom-tailored architecture like that of AATEAM could be

a possible way to improve POPP’s performance in the HFO domain.

Regarding the issue of policy with very unpredictable or diverse behavior being preferentially followed

by POPP, a possible solution could be having the nearest neighbor models compute the similarities

between the seen observation and the next observations for the N closest observations to the previous

observation in the model, with N > 1, ensuring the selected model witnessed multiple similar transitions

to the observed one. Alternatively, an (unsupervised) clustering approach could be explored, where the

measure to choose a the best transition would take into account both the similarity between the predicted

and real observations and a weight for the predicted observation, that was higher if that observation was

in a more dense cluster, and lower for outliers.

To deal with the issue of some actions failing very often, an option could be to use more reliable

actions (e.g., Mid Level actions), but that would also require some parameter tuning, since, apart from

63

Intercept(), all Low and Mid Level actions are parameterized.

Also, due to lack of availability of computational resources, we only trained the DQN and DRQN

agents for 40, 000 episodes, whilst other authors ([6], [7]) trained their agents for 100, 000 episodes.

6.2 Future Work

We tested POPP for only 25 episodes per trial to more easily compare our results to those of previous

approaches which had chosen that value, yet, we noticed that POPP’s behavior distribution over the cor-

rect team was still increasing after the 25th episode, so it would be interesting to see how the distributions

evolve during a longer time span. This, together with testing POPP in other environments, and with a

higher number of teammates would contribute to the reliability of our results, since our work considered

HFO with 6 specific teams.

Developing architectures that could tackle the ad hoc teamwork task with parameterized actions,

would also be an interesting path to explore, since it would avoid the need to convert them to discrete

actions by fixing their parameters. This would mimic the real-life scenario, where agents might need to

choose specific parameters for each specific situation, especially in tasks where a great level of precision

is required.

64

Bibliography

[1] G. Goos, J. Hartmanis, J. van Leeuwen, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mat-

tern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. P. Rangan, and B. Steffen, “Lecture Notes in Com-

puter Science,” in 16th International Conference Athens, Greece, September 2006 Proceedings,

Part I. Athens, Greece: Springer, Sep. 2006.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, Nov. 2016, google-Books-ID:

omivDQAAQBAJ.

[3] S. Barrett, P. Stone, S. Kraus, and A. Rosenveld, “Learning Teammate Models for Ad

Hoc Teamwork,” in AAMAS Adaptive Learning Agents (ALA) Workshop. Citeseer, 2012, pp.

57–63. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.6384&

rep=rep1&type=pdf

[4] S. James, G. Konidaris, and B. Rosman, “An Analysis of Monte Carlo Tree Search,” in Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, USA, Feb.

2017.

[5] S. Barrett, Making Friends on the Fly: Advances in Ad Hoc Teamwork, ser. Studies in

Computational Intelligence. Cham: Springer International Publishing, 2015, vol. 603. [Online].

Available: http://link.springer.com/10.1007/978-3-319-18069-4

[6] S. Chen, E. Andrejczuk, Z. Cao, and J. Zhang, “AATEAM: Achieving the Ad Hoc Teamwork

by Employing the Attention Mechanism,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 05, pp. 7095–7102, Apr. 2020, number: 05. [Online]. Available:

https://ojs.aaai.org/index.php/AAAI/article/view/6196

[7] S. Barrett and P. Stone, “Cooperating with Unknown Teammates in Complex Domains: A Robot

Soccer Case Study of Ad Hoc Teamwork,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 29, no. 1, Feb. 2015. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/

article/view/9428

65

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.6384&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.6384&rep=rep1&type=pdf
http://link.springer.com/10.1007/978-3-319-18069-4
https://ojs.aaai.org/index.php/AAAI/article/view/6196
https://ojs.aaai.org/index.php/AAAI/article/view/9428
https://ojs.aaai.org/index.php/AAAI/article/view/9428

[8] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292, May

1992. [Online]. Available: https://doi.org/10.1007/BF00992698

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:

http://www.nature.com/articles/nature14236

[10] M. Hausknecht and P. Stone, “Deep Recurrent Q-Learning for Partially Observable MDPs,” in 2015

AAAI Fall Symposium Series, Sep. 2015. [Online]. Available: https://www.aaai.org/ocs/index.php/

FSS/FSS15/paper/view/11673

[11] P. Stone, G. Kaminka, S. Kraus, and J. Rosenschein, “Ad Hoc Autonomous Agent

Teams: Collaboration without Pre-Coordination,” Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 24, no. 1, pp. 1504–1509, Jul. 2010. [Online]. Available:

https://ojs.aaai.org/index.php/AAAI/article/view/7529

[12] S. Barrett, P. Stone, and S. Kraus, “Empirical Evaluation of Ad Hoc Teamwork in the Pursuit Do-

main,” in Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2011),

Taipei, Taiwan, May 2011, pp. 567–574.

[13] J. G. Ribeiro, M. Faria, A. Sardinha, and F. S. Melo, “Helping People on the Fly: Ad Hoc

Teamwork for Human-Robot Teams,” in Progress in Artificial Intelligence, G. Marreiros, F. S. Melo,

N. Lau, H. Lopes Cardoso, and L. P. Reis, Eds. Cham: Springer International Publishing, 2021,

vol. 12981, pp. 635–647, series Title: Lecture Notes in Computer Science. [Online]. Available:

https://link.springer.com/10.1007/978-3-030-86230-5 50

[14] C. Martinho, “Ad Hoc Teamwork under Partial Observability,” Master’s thesis, Universidade de Lis-

boa, Nov. 2021.

[15] M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and P. Stone, “Half field of-

fense: An environment for multiagent learning and ad hoc teamwork,” in AAMAS Adaptive Learning

Agents (ALA) Workshop, vol. 3. sn, 2016.

66

https://doi.org/10.1007/BF00992698
http://www.nature.com/articles/nature14236
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673
https://ojs.aaai.org/index.php/AAAI/article/view/7529
https://link.springer.com/10.1007/978-3-030-86230-5_50

67

68

A
Half-Field Offense Details

69

In this appendix, we present in more detail each of the features in the High Level State Feature Set

of the HFO simulator.

A.1 High Level State Feature Set

Table A.1: High Level State Feature Set for HFO; T represents the number of teammates (T = |Iω| − 1) and O the
number of opponents (O = |Iδ|)

Feature Count Range Description

X Position 1 [-1, 1] Agent’s x position on the field, with -1 being the
leftmost position, and 1 the rightmost one.

Y Position 1 [-1, 1] Agent’s y position on the field, with -1 being the
topmost position, and 1 the bottommost one.

Orientation 1 [-1, 1] An angular value that represents the agent’s
orientation on the field.

Ball X 1 [-1, 1] The ball’s x position on the field.
Ball Y 1 [-1, 1] The ball’s y position on the field.
Able to Kick 1 {-1, 1} Whether or not the agent is able to kick the ball.

Goal Center Proximity 1 [-1, 1] Distance between the agent and the center of
the goal.

Goal Center Angle 1 [-1, 1] Distance between the agent and the center of
the goal.

Goal Opening Angle 1 [-1, 1]
Amplitude of the largest open angle the agent
has to shoot the ball towards the goal, taking
into account other entities’ positions.

Proximity to Opponent 1 [-1, 1] Distance between the agent and the closest
opponent.

Teammate i’s Goal Opening Angle T [-1, 1]
Amplitude of the largest open angle teammate i
has to shoot the ball towards the goal, taking
into account other entities’ positions.

Proximity of Teammate i to Opponent T [-1, 1] Distance between teammate i and the closest
opponent.

Teammate i’s Pass Opening Angle T [-1, 1]
Amplitude of the largest open angle the agent
has to pass the ball to teammate i, taking into
account other entities’ positions.

Teammate i’s X Position T [-1, 1] Teammate i’s x position in the field.
Teammate i’s Y Position T [-1, 1] Teammate i’s y position in the field.

Teammate i’s Uniform Number T {1, ..., 11} Number in teammate i’s soccer uniform. Every
teammate has a different uniform number.

Opponent i’s X Position O [-1, 1] Opponent i’s x position in the field.
Opponent i’s Y Position O [-1, 1] Opponent i’s y position in the field.

Opponent i’s Uniform Number O {1, ..., 11} Number in opponent i’s soccer uniform. Every
opponent has a different uniform number.

Last Action’s Success Possible 1 {-1, 1} Whether or not it is possible that the last action
the agent executed was successful.

Stamina 1 {-1, 1}
Resource that is spent when the agent executes
actions, and which recovers over time. A low
value slows down the agent’s movement.

70

B
Experimental Details

71

In this appendix, we present the results for the experiments we conducted to determine the best

parameters for the DRQN.

B.1 DRQN Parameter Tuning

To determine the optimal parameters for the DRQN, we departed from the configuration in Table B.1 and

we conducted several experiments to successively find the optimal value for a given parameter while

fixing the others. When we decided the best value for a given parameter, we would use than value for

that parameter in further experiments.

Table B.1: Initial parameters for the DRQN

Parameter Value
Observation feature set PLASTIC-Policy’s features + Ball’s coordinates + Able to Kick
Action set {Dribble(), Pass(), Shoot(), Repeat[Move(), 15]}
Number of Hidden Layers 1
Number of Units Per Layer 12
Type of Units LSTM
Activation Function ReLU
Optimizer Adam
Learning Rate 0.00025
Initial Exploration Rate 0.5
Final Exploration Rate 0.05
Initial Exploration Rate 0.5
Discount Factor 0.995
Estimator Update Period 4
Target Estimator Update Period 500
Replay Buffer Sequence Length 10
Reward function Victory: 100, Defeat: −100, Non-terminal time steps: 0
Number of 1 vs. 1 train episodes 20000

While this does not guarantee that the final parameter configuration is optimal, it allows us to find a

reasonable set of parameters without having to try all possible combinations, which would be unfeasible,

since the number of combinations grows exponentially with the number of parameters. The parameters

we varied (typed in bold in B.1) were the following:

• Action set (Section B.1.1)

• Number of 1 vs. 1 train episodes (Section B.1.2)

• Reward function (Section B.1.3)

• Observation feature set (Section B.1.4)

• Number of units per layer of the DRQN (Section B.1.5)

72

• Number of hidden layers of the DRQN (Section B.1.6)

For each of these 6 experiments, we conducted 3 trials per parameter. The presented score rates

are the average score rates over the 3 trials. Before each experiment, we also conducted a pre-training

phase where the agent would first play alone against the goalkeeper (1 vs. 1 mode). The pre-training

episodes are represented in the plots using negative values. The 2 vs. 2 train episodes always begin at

episode 0.

B.1.1 Action set

For the DRQN agent’s action set, we fixed the set of actions the agent can execute while controlling the

ball as {Dribble(), Pass(), Shoot()}, and varied only the actions that it can execute while not controlling

the ball, since the latter were executed much more frequently than the former, having a greater impact

in the agent’s learning process. We tested the following sets of actions to be executed without ball

possession (Intercept() is represented as INT():

• {Repeat[Move(), 15]} (represented as “MOVE(15)” in Figure B.1)

• {Repeat[Move(), 15], Repeat[Intercept(), 5]} (represented as “MOVE(15), INTERCEPT(5)” in Fig-

ure B.1)

• {Repeat[Move(), 15], Repeat[Intercept(), 10]} (represented as “MOVE(15), INTERCEPT(5)” in Fig-

ure B.1)

Figure B.1: Score rate for the DRQN with different action sets. Source: Primary.

Based on the results in Figure B.1, we selected {Repeat[Move(), 15], Repeat[Intercept(), 5]} as the

optimal action set (without ball possession).

73

B.1.2 Number of 1 vs. 1 train episodes

As we mentioned at the beginning of this appendix, we conducted a pre-training phase in a 1 vs. 1

scenario before having the agent play in the 2 vs. 2 scenario. We tested the following values for the

number of 1 vs. 1 train episodes in the pre-training phase:

• 0 (represented as “0 1v1 episodes” in Figure B.2)

• 10000 (represented as “10k 1v1 episodes” in Figure B.2)

• 20000 (represented as “20k 1v1 episodes” in Figure B.2)

• 30000 (represented as “30k 1v1 episodes” in Figure B.2)

Figure B.2: Score rate for the DRQN with different durations for the pre-training phase. Source: Primary.

Based on the results in Figure B.1, and using the Ockham’s Razor principle (since the results with 0

and 30000 episodes are very similar) we selected 0 as the optimal value for this parameter. Therefore,

all of the following plots will begin at 0, since there is no pre-training phase.

B.1.3 Reward function

We tested the following reward functions for the DRQN agent:

• Victory: 10, Defeat: −10, Non-terminal time steps: 0 (represented as “step=0, end=10” in Fig-

ure B.3)

• Victory: 100, Defeat: −100, Non-terminal time steps: 0 (represented as “step=0, end=100” in

Figure B.3)

• Victory: 1000, Defeat: −1000, Non-terminal time steps: 0 (represented as “step=0, end=1000” in

Figure B.3)

74

• Victory: 1000, Defeat: −1000, Non-terminal time steps: −1 (represented as “step=-1, end=1000”

in Figure B.3)

Figure B.3: Score rate for the DRQN with different reward functions. Source: Primary.

Based on the results in Figure B.3, we selected “Victory: 10, Defeat: −10, Non-terminal time steps:

0” as the optimal reward function.

B.1.4 Observation feature sets

The original PLASTIC-Policy algorithm [5], [7] was empirically tested in the HFO domain using the fol-

lowing features:

• X Position

• Y Position

• Orientation

• Goal Opening Angle

• Proximity to Opponent

• Teammate i’s Goal Opening Angle

• Proximity of Teammate i to Opponent

• Teammate i’s Pass Opening Angle

• Teammate i’s X Position

• Teammate i’s Y Position

75

In our work, we tested the following observation feature sets for the DRQN agent:

• PLASTIC-Policy’s features + Ball’s coordinates + Able to Kick (represented as “PP-Extended” in

Figure B.4)

• PLASTIC-Policy’s features (represented as “PLASTIC-Policy” in Figure B.4)

• All High-Level State features (except for uniform numbers) (represented as “All features” in Fig-

ure B.4)

To each of these feature sets, we also added validity features for all entities, and set invalid values to

0 before passing them to the DRQN, as we described in Section 5.1.2.E.

Figure B.4: Score rate for the DRQN with different observation feature sets. Source: Primary.

Based on the results in Figure B.4, we selected All High-Level State features (except for uniform

numbers) as the optimal feature set.

B.1.5 Number of units per layer of the DRQN

We tested the following values for the number of units per layer of the DRQN: 12, 36, 108.

Based on the results in Figure B.5, and using the Ockham’s Razor principle (since all results are very

similar) we selected 12 as the optimal number of units per layer of the DRQN.

B.1.6 Number of hidden layers of the DRQN

We tested the following values for the number of hidden layers layer of the DRQN: 1, 2, 3.

Based on the results in Figure B.6, and using the Ockham’s Razor principle (since all results are very

similar) we selected 1 as the optimal number of hidden layers of the DRQN.

76

Figure B.5: Score rate for the DRQN with different amounts of units per layer. Source: Primary.

Figure B.6: Score rate for the DRQN with different numbers of hidden layers. Source: Primary.

77

78

79

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms

	1 Introduction
	1.1 Research Question
	1.2 Contributions
	1.3 Document Outline

	2 Background
	2.1 Probability Theory
	2.1.1 Expected value
	2.1.2 Conditional expected value

	2.2 Reinforcement Learning
	2.2.1 Decision-theoretic frameworks
	2.2.1.A POMDP
	2.2.1.B MPOMDP

	2.2.2 History
	2.2.3 Belief
	2.2.4 Policy
	2.2.5 Gain
	2.2.6 Optimal policy
	2.2.7 Value functions
	2.2.7.A State-value function
	2.2.7.B Action-value function
	2.2.7.C Computing value functions

	2.2.8 MDP solution methods
	2.2.8.A Value Iteration
	2.2.8.B Q-Learning

	2.2.9 Exploration vs. Exploitation
	2.2.10 Function Approximation
	2.2.11 Fitted Q-iteration

	2.3 Deep Learning
	2.3.1 Artificial Neuron
	2.3.2 Artificial Neural Network
	2.3.3 Recurrent Neural Network
	2.3.4 Deep Q-Network
	2.3.5 Deep Recurrent Q-Network

	3 Related Work
	3.1 Ad hoc teamwork
	3.1.1 Early Work
	3.1.2 The PLASTIC architecture
	3.1.2.A PLASTIC-Model
	3.1.2.B PLASTIC-Policy

	3.1.3 Introducing partial observability in ad hoc teamwork settings
	3.1.4 Other architectures for the ad hoc teamwork problem
	3.1.5 Conclusion

	4 POPP
	4.1 The PLASTIC-Policy Architecture
	4.1.1 LearnPolicies
	4.1.2 LearnNNModels
	4.1.3 ActInDomain
	4.1.4 PLASTIC-Policy with a DQN

	4.2 Introducing Recurrence in PLASTIC-Policy: POPP

	5 Experimental evaluation
	5.1 Half-Field Offense
	5.1.1 Environment Parameterization
	5.1.2 Environment Model
	5.1.2.A Agents
	5.1.2.B State
	5.1.2.C Actions
	5.1.2.D Transition Probabilities
	5.1.2.E Observations
	5.1.2.F Observation Probabilities
	5.1.2.G Reward Function
	5.1.2.H Distribution of the Initial State

	5.2 Learning agent configuration
	5.3 Procedure and Metrics
	5.3.1 Learning + Binary
	5.3.2 Ad hoc + Binary
	5.3.3 Binary + Binary

	5.4 Results
	5.4.1 Learning a Policy in HFO
	5.4.2 Ad hoc teamwork in HFO
	5.4.2.A Varying the level of observability
	5.4.2.B Varying ad hoc teammates with partial observability

	5.5 Discussion
	5.5.1 Question 1
	5.5.2 Question 2
	5.5.3 Question 3
	5.5.4 Question 4
	5.5.5 Question 5
	5.5.6 Question 6
	5.5.7 Comparing POPP to other architectures
	5.5.8 Answering the research question

	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	Bibliography
	A Half-Field Offense Details
	A.1 High Level State Feature Set

	B Experimental Details
	B.1 DRQN Parameter Tuning
	B.1.1 Action set
	B.1.2 Number of 1 vs. 1 train episodes
	B.1.3 Reward function
	B.1.4 Observation feature sets
	B.1.5 Number of units per layer of the DRQN
	B.1.6 Number of hidden layers of the DRQN

