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Abstract—JavaScript is the de facto language for implementing
client side Web applications. It is specified in the ECMAScript
standard, a long and complex document written in English that is
updated with every new iteration of the language. Despite its pop-
ularity, JavaScript is not always an easy language to understand
and its dynamic paradigm makes it hard to statically analyse.
ECMAScript reference interpreters are artifacts produced to
reason about the language in a controlled environment. To this
end, we will leverage the ECMA-SL project, a research effort at
IST whose goal is to build an executable version of the standard.
Currently, the ECMA-SL project comes with an interpreter,
ECMARef5, for the 5th version of the standard, which is now
at its 12th version. We plan to assist with the transition of
ECMARef5 to the 6th version of the standard, by aiding in the
implementation effort of the built-in libraries of the ECMAScript
6 Standard. Alongside other strategies employed in the ECMA-
SL project, to guarantee the quality of our implementation we
test it against Test262, the official ECMAScript conformance test
suite.

Index Terms—JavaScript, regular expressions, continuation-
passing style, debuggers

I. INTRODUCTION

JavaScript is one of the most used programming languages
in the world and the most commonly used to develop client-
side Web applications, such as e-mail clients or online banking
platforms, and so the Web has a big dependence on it. Recently
it also has been gaining traction as a language for server-
side scripting, specially with the Node.js [18] runtime, and
even as a language for the development of various desktop
applications, mainly using the Electron framework [11], e.g.
Discord [10] and Visual Studio Code [24]. However, these ap-
plications do not all use the same JavaScript engine. Although
a lot of them do use Google’s V8 [7] JavaScript engine, there
are other alternatives and it is critical that they all behave
in the same manner. Should this not be the case, not only
is it possible that some JavaScript applications do not execute
properly in certain runtime environments, but it could also lead
to critical security flaws. In order to mitigate this possibilities,
it was deemed that a standardization of the JavaScript language
was necessary and so the ECMAScript standard was created.

The ECMAScript standard (ES) [2] consists of the spec-
ification of the ECMAScript language’s syntax and seman-
tics. The following of the standard’s specification by every
JavaScript engine, should mean that they all behave in the
same manner regardless of how they are implemented. This
means that developers that build applications using the EC-
MAScript language can be confident that their application
will behave as expected, independently of the engine it is run
on. The ECMAScript standard is a long document written

in English that describes the behavior of the language as
if it was the pseudo-code of an interpreter, giving detailed
steps on how to interpret each instruction. Over the years it
has evolved substantially, regularly increasing in its size and
detail. Figure 1 illustrates this evolution and shows us that
sometimes the standard can double in size in a single iteration.
Despite the large amount of iterations, the standard is not
easy to maintain or alter, with the process of adding features
being extremely complex, requiring new features to uphold the
invariants of the language’s semantics and maintain backwards
compatibility, guaranteeing that the behaviour of older features
remains unchanged. The document is managed and maintained
by the TC39 committee [22] which is composed of JavaScript
developers, browser representatives, academics, etc. As of
now, the committee has a well established methodology used
to extend and update the standard’s specification called “The
TC39 Process” [23]. This process is divided into 5 stages
going from coming up with ideas of new features for the
ECMAScript language, to selecting the best ideas and what
challenges they may entail, to describing their syntax and
semantics, refining them and eventually adding them to the
standard in a polished state.

Fig. 1. Evolution of the number of pages describing the ECMAScript standard
over time.

Naturally, not all implementations of the ECMAScript lan-
guage follow the standard’s described behavior exactly. They
can be built using different programming languages and it
may be convenient to represent some components of the
standard in a different, although equivalent, manner. Most of
the discrepancies are due to performance reasons. In particu-
lar, the industrial JavaScript implementations use JIT (just-
in-time) compilation to guarantee the performance of their
applications. If the JavaScript implementations do not follow
the standard exactly, then how can it be determined that they
are ECMAScript compliant? Currently, this is done through



exhaustive testing. Alongside the ECMAScript standard, the
TC39 committee also maintains an official test suite called
Test262 [6] whose purpose is to measure the conformity of a
JavaScript interpreter to the official ECMAScript specification.
However, testing is an incomplete method for determining this,
as there have already been multiple bugs found in JavaScript
engines that were not discovered by the test suite [8].

An alternative methodology is to maintain a reference
implementation that follows the standard line-by-line and use
this implementation has an oracle to test the conformity of
other implementations of the language. This could be done
by comparing the behavior of those implementations with the
behavior exhibited by the oracle on concrete programs. In this
sense, multiple academic projects have cropped up with the
intent of producing a reference interpreter for JavaScript [8],
[9], [12], [13], [15], [19], [20]. However, most of these
reference implementations do not support the standard’ built-
in libraries, with those that partially do it only doing it at
a very small scale. In fact, we can fairly say that most
ECMAScript reference interpreters ignore the language’s built-
ins. However, they are an essential part of the language and
their testing alongside the core of the language is critical to
fully understand and reason about JavaScript implementations.

With the goal of filling the void left by the absence of a
complete reference interpreter the ECMA-SL project [14], [16],
[21] was created. The main goal of the project is to maintain
a complete (with built-in support) executable specification of
the standard written in an intermediate language specifically
designed to do so, the ECMA-SL language, which stands
for ECMAScript-Specification Language. The semantics and
algorithms described in the ECMAScript standard are written
as if they were the pseudo-code of a reference interpreter
(executable specification). The ECMA-SL language mimics
this pseudo-code, making the specification of a reference
interpreter, almost a work of copying the semantics already
described in the English standard. From the specification of the
standard in ECMA-SL, it is possible to create numerous other
artifacts, namely a natural language version of the standard
structured as an HTML document, similar to the original.
Currently, the ECMA-SL project includes a full specification
of ES5 [3] and a partial implementation of ES6 [2]. Also
included in the ECMA-SL project, are multiple tools in
development that use the interpreter for many other purposes
as Figure 2 shows. Some of the most relevant of them are
HTML2ECMA-SL [14] and ECMA-SL2English [16], whose
purpose is, respectively, to convert the standard’s HTML
document written in English to ECMA-SL code and to convert
the executable specification of the standard back to its original
form in natural language.

The goal of this paper is to build upon what already exists
in the ECMA-SL project. We will extend the ECMARef6
reference interpreter, the executable specification of ES6,
increasing its coverage of the standard. This will be achieved
through the implementation of Symbol built-in library of
ES6, which introduces an entirely new type of property key,
and its dependencies using a line-by-line strategy to guarantee

Compilation tools

JS2ECMA-SL ECMA-SL2CoreECMA-SL

Reference Interpreters

ECMARef5 ECMARef6

Natural Language Processing

HTML2ECMA-SL ECMA-SL2English

Testing and debugging

Double Debugger

Conformance Test Suite

Static Analysis

CoreECMA-SL Interpreter

Fig. 2. Currently available (green), in development (yellow) and future (red)
tools of the ECMA-SL project. Arrows signify dependency.

that our implementation is correct.
From a technical point of view, the implementation of

this library posed a few challenges. In order to successfully
implement the Symbol library, it was necessary to change the
internal representation of ECMAScript objects in ECMA-SL
as the previous representation was not fit to handle Symbol
property keys.

In order to demonstrate that we attained our goals, we tested
our reference implementation (ECMARef6) against the official
test suite, placing special emphasis on the tests that target the
6th version of the standard and the built-in libraries. Overall,
we obtained a 93.97% pass rate over all the built-in libraries
and 95.44% over the ones we have emphasized. Although
these results are far from 100%, the large majority of the
failing tests, fail due to incomplete features in the core of
the language and not in the built-in implementation.

This paper is structured in the following way: in Section II
we present and discuss other projects related to the work
done in the context of this thesis, including other reference
implementations; in Section III we will present our analysis
of the standard’s specification as well as our implementation in
ECMARef6 of the Symbol built-in library; in Section IV we
present our evaluation methodology in more detail as well as
our results; finally in Section V we go over some conclusions
on the work performed as well as possible future endeavours.

II. RELATED WORK

There have been numerous works on the development of
reference interpreters for JavaScript. We will first look at the
common trends amongst them, their coverage of the standard
and their evaluation results. Then we discuss these works
individually, looking at their most relevant design decisions
and how they compare to the ECMA-SL project.

The need for a viable operation model of JavaScript was
identified in 2008 with the work of Maffeis et al. [17]. Ever
since, multiple other formal models of the JavaScript language
have been written in various diverse languages such as Coq
[1], K [4] and OCaml [5]. As these models appeared and took
ideas from their predecessors, some concepts prevailed:

1) The formal model should be executable;
2) The formal model should pass the tests of the Test262

test suite;
3) A line-by-line strategy should be followed in order for

it to be as identical as possible to the specification.
Consider Table I that compares the various existing formal

models relative to the concepts mentioned above. Here we can



see that more recent models tend to follow the standard line-
by-line, which is a good indicator that this methodology is
effective. More recent models also tend to design their own
DSLs (Domain-Specific Languages), like ECMA-SL, meant
for implementing reference interpreters of the ECMAScript
standard.

Although the wide adoption of these concepts results in
more robust reference interpreters, there are still no mod-
els that offer significant support for the ECMAScript built-
in libraries. However, their implementation is critical, for
example, to reason about or test the implementation of the
built-in libraries of JavaScript engines. Overall, since most
ECMAScript programs use at least some of the libraries,
not implementing them greatly reduces their utility. Table II
compares the various models relative to the built-in libraries
they implement, showing us that they are mostly ignored.

III. SYMBOL ECMASCRIPT SPECIFICATION AND
ECMA-SL IMPLEMENTATION

In this section, we present the ECMAScript specification
and our ECMA-SL implementation of the Symbol built-in
library. The purpose of the Symbol library is to provide
another type of property key besides string values.

A. Examples

To demonstrate the use of Symbol values consider List-
ing 1. In this code-snippet, we see the use of the Symbol
constructor to create two separate Symbol values. Although
the arguments used in their creation were identical, they are
still distinguishable. In line 4 we create an ECMAScript
object using the object literal expression and then use our
Symbol values sym1 and sym2 to add some properties to
the newly created object. We associate the string "xpto"
with the property key sym1. On the left-hand side of the
assignment expression, we use bracket notation, as that is
the only way to use Symbol values. The final instruction of
our code-snippet does another assignment, this time using the
other Symbol value. Since both the Symbol values were
created with the same arguments, one may think that this
last instruction essentially overwrites what was done in the
previous one, by replacing "xpto" with "abc". However,
since Symbol values are always unique from each other, the
last instruction will instead create a new property associated
with the key sym2. In the end, we end up with an object we
two properties: one associated with the sym1 key; and another
associated with the sym2 key.

Listing 1. Example of the creation and use of Symbol values as property
keys.

1 var sym1 = Symbol("example");
2 var sym2 = Symbol("example");
3
4 var obj = {};
5
6 obj[sym1] = "xpto";
7 obj[sym2] = "abc";

1Some reference interpreters focus only on the tests their implementation
covers and therefore have a much higher passing percentage.

B. ECMAScript Specification

The entry point of the Symbol library in the ECMAScript
specification is the Symbol constructor. This constructor
creates Symbol values, which are primitives, unlike most
constructors that create objects. In this subsection we first
explain the difference between Symbol values and objects
and how each is created and used. Afterwards, we present the
Symbol constructor and its named properties, which are the
main contribution of the Symbol library to the ECMAScript
language. Finally, we dive into some of the methods available
to Symbol objects through their prototype object.

a) Symbol Values: A Symbol value is a “primitive value
that represents a unique, non-String Object property key”.
They are immutable and, even though they are not objects,
have an internal property called [[Description]] that can
be either undefined or a string value. In order to visual-
ize their representation consider Figure 3. We start by creating
two Symbol values using the same Symbol("example")
expression. Note that the new keyword is not used when cre-
ating Symbol values and using it will throw a TypeError
exception. Looking at the diagram, they look indistinguishable,
except for the fact that they are two separate identical values.
However, the sym1 !== sym2 comparison in line 3 evalu-
ates to true. This is because the way the specification defines
the comparison of Symbol values is exactly by asserting if
they are the same value, if the sym1 and sym2 variables point
to the same memory addresses.

1 var sym1 = Symbol("example");
2 var sym2 = Symbol("example");
3 sym1 !== sym2; // true

[[Description]]: "example"[[Description]]: "example"

sym1: Symbol sym2: Symbol

Fig. 3. Two Symbol primitive values.

b) Symbol Objects: As we have seen, Symbol values are
primitive values and not the typical objects used in the rest of
the built-in libraries. They have no [[Prototype]] internal
property or named properties, so what is supposed to happen
when the expression Symbol("xpto").toString() is
evaluated? Using dot notation to access a property creates
what is called a Property Reference. These have two
components: (1) the expression before the dot, called the
base; and (2) the expression after the dot, called the refer-
ence name. When the base of a property reference
is not an object, it is converted to one by calling the
ToObject internal operation of the ECMAScript standard.
The ToObject internal operation is the only way to create
Symbol objects. To compare Symbol values and objects,
consider the code-snippet and diagram in Figure 4. In the first
line of code, we create a Symbol value, using the constructor
without the new keyword, with "example" as the value
of [[Description]]. In the second line, we create the
Symbol object by executing a type conversion. While using
the Object constructor with the new keyword creates an



Reference
interpreter

ES
version Exe. # of tests

passed # of tests Pass
Rate

Implementation
Language

L-B-L
Strategy

S5 5 ✓ 8157 11275 72.35% S5 Core Language ✕

JSExplain 5 ✓ >5000 11275 44.35% Subset of OCaml ✓

KJS 5 ✓ 2782 11275 24.67% K ✕

JSRef 5 ✓ 3749 11275 33.25% Coq ✓

JS-2-JSIL 5 ✓ 8797 11275 78.02% JSIL ✓

ECMARef5 5 ✓ 9556 11275 84.75% ECMA-SL ✓

ECMARef6 6 ✓ 18087 21662 83.50% ECMA-SL ✓

JISET 10 ✓ 18064 29878 60.46% IRES ✓

TABLE I
REFERENCE INTERPRETERS AND THEIR ADHESION THE VARIOUS STRATEGIES. (L-B-L SIGNIFIES LINE-BY-LINE)

Reference
Intepreter Object Function Boolean Symbol Error Number Math Date String RegExp Array JSON

KJS ✓ ✓ ✓ ✕ ✓ ✳ ✕ ✕ ✳ ✕ ✳ ✕

JSRef ✓ ✓ ✳ ✕ ✕ ✳ ✕ ✕ ✳ ✕ ✕ ✕

JS-2-JSIL ✓ ✓ ✳ ✕ ✳ ✳ ✕ ✕ ✳ ✕ ✕ ✕

ECMARef5 ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ECMARef6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE II
BUILT-IN SUPPORT BY THE OTHER REFERENCE INTERPRETERS. (✳ SIGNIFIES PARTIAL IMPLEMENTATION)

object, calling it as a function makes it so the argument
is converted to an object by using the ToObject internal
operation. In the diagram, we can see that the conversion to
an object, creates a wrapper that stores the Symbol value in its
[[SymbolData]] internal property. This wrapper is an or-
dinary object that also has a [[Prototype]] property that
allows the Symbol("xpto").toString() expression to
execute successfully.

1 var symValue = Symbol("example");
2 var symObject = Object(sym);

Symbol.prototype

[[Extensible]]: true

[[Prototype]]:

[[SymbolData]]:

symObject: Object

[[Description]]: "example"

symValue: Symbol

Fig. 4. Representation of a Symbol object (left) and Symbol value (right).

c) Symbol Constructor: The Symbol constructor, like
all other constructors, has two important components: (1) the
structure of the object that represents the constructor function
with all its internal and named properties; and (2) the pseudo-
code description of its behaviour. Consider the ES6 excerpt
in Figure 5 that contains the descriptions of the Symbol
constructor function. As we had noted, using the new keyword
will make it so the value of NewTarget is not undefined,
causing a TypeError exception to be thrown. Then the
description argument is converted to a string value
using the ToString internal operation. Finally, the string
is used to create the Symbol value that is returned.

Fig. 5. ES6 description of the Symbol constructor function.

Although the Symbol constructor allows the creating of
new Symbol values, most ECMAScript programs do not
need to create new ones and just use ones that are made
available through the named properties of the constructor.
Consider the object diagram in Figure 6 where the con-
structor is displayed alongside some of its named properties,
namely iterator and toPrimitive. These properties’
descriptors are immutable, as all their properties that are not
[[Value]] are set to false. Their [[Value]] property
points to Symbol values that are created before any EC-
MAScript code is executed. There are 11 of these Symbol
values made available through the named properties of the
constructor Symbol. They do not allow any behavior that
was not possible before, but it makes it unequivocal the type of
property being accessed. For example, the TypedArray pro-
totype object makes an iterator method available through the
TypedArray.prototype[Symbol.iterator] prop-
erty instead of the TypedArray.prototype.iterator
property. But if it did use the iterator string value as
the property key, it would still retain its functionality, changing



only the way it is accessed.

Symbol: Function

prototype:

[[Extensible]]: true

[[Prototype]]:

iterator:

toPrimitive:

...

Descriptor

[[Value]]:

[[Writable]]: false

[[Enumerable]]: false

[[Configurable]]: false

[[Description]]: "Symbol.toPrimitive"

Symbol

Descriptor

[[Value]]:

[[Writable]]:   false

[[Enumerable]]:  false

[[Configurable]]: false

Function.prototype

[[Description]]: "Symbol.iterator"

Symbol

Symbol.prototype

Fig. 6. Representation of the Symbol constructor object.

d) Symbol.prototype Object: Since Symbol values have
no prototype and Symbol objects are only relevant in niche
cases, the Symbol.prototype object does not have many
methods. It has the three following methods:

1) toString - Returns the string value resultant
from the concatentation of "Symbol (", the symbol’s
[[Description]] and ")".

2) valueOf - If the this value is a Symbol object it
returns this.[[SymbolData]]. If the this value
is a Symbol value, it simply returns that value.

3) Symbol.toPrimitive - This method does the exact
same as the valueOf method.

C. ECMA-SL Implementation

We are now in a position to introduce and explain our
implementation of the Symbol built-in library in ECMARef6.
First, we present the internal representation of Symbol values
and objects. To conclude, we explain the changes that needed
to be made to the structure of ECMA-SL objects to support
the use of Symbol values as property keys.

a) Symbol Values: In ECMARef6, Symbol values are
represented using ECMA-SL objects. Contrary to the ECMA-
SL objects used to represent ECMAScript objects, Symbol
values in ECMA-SL do not have a JSProperties prop-
erty. Recall that a characteristic of Symbol values was that
they were unique and compared through their values and
not the value of their [[Description]]. In ECMA-SL,
two Symbol values can be compared correctly using the =
operator. However, it was still necessary for us to add the
ID property to distinguish between Symbol values. The ID
property holds an integer value that is different for every
Symbol value. Why this was necessary, will be addressed
later in this subsection. As an illustration of the structure
just described, consider the object diagram in Figure 7. Here,
the Symbol values created can be distinguished by their ID
property, which has different values.

b) Symbol objects: In the case of Symbol objects, they
now have their own JSProperties property, although it is
not populated. The object structure of Symbol objects can be
seen in Figure 8, where we can see that the SymbolData
property points to an ECMA-SL object that represents a
Symbol value and its Prototype property points to the
Symbol.prototype object.

1 var symValue1 = Symbol("example");
2 var symValue2 = Symbol("example");
3 symValue1 === symValue2; //false

Description: "example"

ID: 1

sym1: Symbol

Description: "example"

ID: 2

sym2: Symbol

Fig. 7. Symbol values are unique and distinguished by their ID property.

1 var symValue = Symbol("example");
2 var symObj = Object(symValue);

Description: "example"

ID: 1

symValue: SymbolSymbolData:

Extensible: true

Prototype:

JSProperties:

symObj: Object

Symbol.prototype

Fig. 8. Internal representation a Symbol object and value.

c) Symbol Values As Property Keys: Of particular impor-
tance is the actual use of symbols. Symbols are meant to be
used as property keys alongside strings. Since the Symbol
built-in library was introduced in ES6, the previous version of
ECMARef, ECMARef5, had no support for Symbol values.
Therefore, it was necessary to adapt the reference interpreter
to accommodate this new property-key type.

ECMA-SL objects are collections of string-value pairs,
meaning that it was not possible to just use the Symbol values
as keys for our internal objects. Our first alternative was to
just use the string value in the Description property
of Symbol values. An example of this configuration can be
seen in Figure 9 where an Object a and a Symbol value
sysValue with Description "example" are created.
In line 4, we assign the value "b" to object a, using the
string value "example" as property key. The effect of this
line can be seen in the JSProperties object, where there is
a property descriptor with value "b" mapped to the
property example. In line 5, we do a similar process but use
symValue as the property key and set the value to "c". We
can see that another property descriptor with Value
"c" is associated with the property Symbol(example).

1 var a = {};
2 var symValue = Symbol("example");
3
4 a.example = "b";
5 a[symValue] = "c";

JSProperties:

Extensible: true

Prototype:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "c"

Object.prototype

Fig. 9. Object property assignment using string and Symbol values.



However, this represents two big problems:

1) how do we distinguish between Symbol value keys with
the same Description value;

2) how can we distinguish between the string
"Symbol(example)" and the a Symbol value
with Description "example" when they are both
used as property keys.

The example in Figure 10 shows this exact scenario where
the assignment done in line 6, is overridden by the ones in
line 7 and 8, which is not the intended behavior. The intended
behavior is that the assignments in lines 6, 7 and 8 all create
their own property descriptors.

1 var a = {};
2 var symValue1 = Symbol("example");
3 var symValue2 = Symbol("example");
4
5 a.example = "b";
6 a[symValue1] = "c";
7 a[symValue2] = "d";
8 a["Symbol(example)"] = "e";

JSProperties:

Extensible: true

Prototype:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "e"

Object.prototype

Fig. 10. Internal property storage design that does not allow for proper
Symbol property keys integration.

In order to solve these issues, a new property called
JSPropertiesSymbols was added to our ECMA-SL rep-
resentation of ECMAScript objects. This property is meant
to hold the named properties of the ECMAScript object that
use Symbol value keys, while JSProperties now holds
only the named properties that use string value keys. This
solves the issue of using string values that match the
Description of Symbol values. However, at this stage,
this solution still suffers from collisions of Symbol values
with identical Description values. To fix this issue, instead
of the properties of the JSPropertiesSymbols object
being the Description of the symbols, they are now the
ID. The ID property of Symbol values is converted to a
string and used as a key (recall that ECMA-SL objects
are string-value pairs) to allow the distinction between all
symbols. This is illustrated in Figure 11, where the a object
now has a JSPropertiesSymbols property that points
to an object that maps the IDs 1 and 2 of the symbols to
the appropriate property descriptors. Although the
current solution is enough to handle any reading or writing
of properties usingSymbol values in objects, an additional
property [[SymbolKeys]] had to be added. This prop-
erty allows the mapping of ID values to the correspondent
Symbol values, enabling the retrieval of both the Symbol
and string property keys of an object when methods like
Object.keys() are called.

1 var a = {};
2 var symValue1 = Symbol("example");
3 var symValue2 = Symbol("example");
4
5 a.example = "b";
6 a[symValue1] = "c";
7 a[symValue2] = "d";
8 a["Symbol(example)"] = "e";

JSProperties:

Extensible: true

Prototype:

JSPropertiesSymbols:

SymbolKeys:

a: Object
example:

Symbol(example):

Descriptor

Value: "b"

Descriptor

Value: "e"

Object.prototype

1:

2:

Descriptor

Value: "c"

Descriptor

Value: "d"

1:

2:

Description: "example"

ID: 1

symValue1: Symbol

Description: "example"

ID: 2

symValue2: Symbol

Fig. 11. Internal property storage design that allows for proper Symbol
property keys integration.

IV. EVALUATION

This chapter presents the evaluation of our implementation
of the ES6 built-in libraries. In a nutshell, we evaluate our
implementation by testing it against Test262, the ECMAScript
official test suite. Even though we focus the evaluation on the
Symbol built-in library discussed in Section III, we present
our testing results for all built-in libraries.

A. Test262

The evaluation process of the ECMARef6 reference inter-
preter is straightforward given the existence of Test262 [6].
Since our main goal is to conform to the ECMAScript standard
and the test suite’s purpose is to test the conformity of an
implementation to the standard, we can evaluate the extent and
correctness of our implementation quantitatively, by checking
the number of passing tests for each implemented library and
contrasting that with the total number of tests for that library.

The tests that compose the Test262 test suite are JavaScript
files with a set of instructions and the necessary assertions to
verify that the state produced by the execution matched the
tests’ expectations.

Figure 12 is an example of a test file, which we can
see is just a JavaScript file. It is also important to note the
three distinct sections of the test file: the copyright section
which has information related to the authors of the test; the
metadata section where some important characteristics of the
test are defined; and the body section where the JavaScript
code resides. When it comes to ES6 tests, the metatadata
section has a key-value structure with following keys:

• es6id: this value refers to the section of the standard
targeted by the test;



• description: a succinct description of the feature
being tested;

• info: information about the specific pseudo-code in-
struction of the standard that captures the core function-
ality being tested;

• includes: a collection of JavaScript files that need to
be evaluated before executing the test code;

• features: the features of the standard that are being
tested.

1 // Copyright (C) 2016 the V8 project authors. All
rights reserved.

2 // This code is governed by the BSD license found in
the LICENSE file.

3 /*---
4 es6id: 22.2.2.2
5 description: >
6 "of" cannot be invoked as a function
7 info: |
8 22.2.2.2 %TypedArray%.of ( ...items )
9

10 ...
11 3. Let C be the this value.
12 4. If IsConstructor(C) is false, throw a TypeError

exception.
13 ...
14 includes: [testTypedArray.js]
15 features: [TypedArray]
16 ---*/
17
18 var of = TypedArray.of;
19
20 assert.throws(TypeError, function() {
21 of();
22 });

Fig. 12. Example of a test file of the Test262 suite.

For instance, the test given in Figure 12 tests the behavior
defined in Section 22.2.2.2 of the standard, which defines the
%TypedArray%.of function. More concretely, the instruc-
tion in the 4th line is supposed to throw a TypeError excep-
tion since ““of” cannot be invoked as a function”. On line 20,
there is an assert object and a call to its throws method
neither of which is defined in the standard and therefore should
not be accessible since they are not defined before line 20. This
means that they are defined somewhere else, more concretely,
the Test262 harness. The harness is a collection of JavaScript
files composed of function and variable definitions, some of
which must be executed before the test, more specifically the
ones mentioned in the includes value of the metadata
section.

1) Test Selection: Although, we use the Test262 suite to
perform our evaluation, some of its tests are meant to target
features of the newer versions of ECMAScript. Naturally,
some tests targeting ES12, the newest version of the standard,
are expected to fail when run against ECMARef6. Including
these tests in our evaluation would pollute our results and
prevent us from getting a clear idea of how well our implemen-
tation performed relative to the version of the standard that we
target. This means that in order to get a correct assessment of
the state of our implementation we need to filter out a portion
of these tests.

Selecting tests is not trivial because not all of them come
annotated with a flag that indicates their version. Up to 2016,
tests included a flag indicating whether they target version 5
(es5id) or version 6 (es6id). These flags have deprecated.
Hence, if a test comes with either the es5id or the es6id
flags, then it should be included. However, the opposite does
not hold. There might be tests without these flags that should
also be included. The test filtering problem is a highly complex
problem that cannot be systematically addressed in the context
of this thesis. Our solution was to filter the unlabeled tests
manually. More concretely, our selection methodology for
unlabeled tests was simple: when testing our implementation,
if the cause of failure of a test was the absence of features
introduced in later versions of the standard, the test was
discarded. Using this methodology, 81 out of 92 possible
Symbol tests were selected.

B. Evaluation Pipeline
The execution pipeline of JavaScript files in ECMA-SL has

4 steps:
1) The abstract syntax tree (AST) of the JavaScript program

is built, via the JS2ECMA-SL tool. The output produced
is an ECMA-SL file, called ast.esl, containing a single
function called buildAST, that will build the JavaScript
program’s AST in the ECMA-SL heap.

2) The ES6 interpreter.esl file that contains the reference
interpreter is imported into the ast.esl file;

3) The next step is to compile this file into the Core
version of ECMA-SL using the ECMA-SL2CoreECMA-
SL tool, generating a CoreECMA-SL file, core.cesl.

4) The final step is to use the CoreECMA-SL interpreter,
built with the OCaml language, to run the core.cesl file.

The test execution pipeline is similar to the one explained
above except that the JavaScript file would be the test that we
intend to run and the output of the CoreECMA-SL interpreter
needs to be evaluated to determine the outcome of the test.
There are 4 possible test outcomes which are determined by
the exit code of the CoreECMA-SL interpreter:

• 0: Ok - the test passed;
• 1: Fail - the test failed because some of the assertions

made in the test file were not true;
• 2: Error - the test failed because there was an internal

error in the ECMARef6 interpreter, such as accessing
a property of an undefined value or calling an internal
function that does not exist or with the incorrect number
of arguments;

• 3: Unsupported - the test failed because it requires some
feature which is currently not implemented, such as one
of the built-in libraries or a language feature like template
literals, and so is expected to fail.

As discussed in Section IV-A, the Test262 harness must
be executed before the body of the test so that the auxiliary
testing functions can be defined. To fulfill this requirement we
simply prepend the harness’s code to the test’s code.

Putting it all together, our testing pipeline, illustrated in
Figure 13, starts with the concatenation of the harness and



test to be executed. That JavaScript file will then be parsed
and compiled to ECMA-SL so that the ECMARef6 interpreter
can be imported into it, creating the out.esl file of the diagram.
This file is then compiled to CoreECMA-SL using the ECMA-
SL2CoreECMA-SL tool, so that the code can be evaluated by
the CoreECMA-SL interpreter and test’s outcome determined.

ast.esl ESX_interpreter.esl

out.esl

core.cesl

JS2ECMA-SL

ECMA-SL2CoreECMA-SLCoreECMA-SL interpreter

0 Ok / 1 Fail / 2 Error / 3 Unsupported

import

test.js

harness.js

Fig. 13. Test execution pipeline.

C. Results

Considering that the measure we are using to evaluate the
results obtained during this thesis is the conformity to the
ECMAScript standard using the Test262 test suite, the various
test outcomes described in Section IV-B can be considered ir-
relevant, as fail, error and unsupported test results all represent
the same result in the evaluation context, that the interpreter
does not conform.

Grouping all the negative test results and looking specifi-
cally at the tests that are related to the built-in libraries, we
can do a proper assessment of the work performed during this
thesis. Consider Table III that summarizes the results across all
the built-in libraries of the ECMAScript standard. Here we can
observe that although we employ strategies to guarantee the
reference interpreter to the specification, there are still some
errors present.

V. CONCLUSIONS

In this thesis we have worked in the context of the ECMA-
SL project with the goal of extending its more up-to-date
reference interpreter (ECMARef6) with support for the built-
in libraries of the 6th version of the ECMAScript standard.
This was done using the ECMA-SL language which was
specifically designed to be similar or identical to the standard’s
pseudo-code. This similarity allowed us to use a line-by-
line strategy, where we matched each pseudo-code instruction
of the specification with an ECMA-SL statement in the
implementation. This strategy gives us confidence that our
implementation can be used as a reference for the ECMAScript
standard, and serve as its own executable specification.

As the complexity of the ECMAScript standard increases,
it becomes progressively more relevant the existence of a
complete reference interpreter that can be used to reason
about other implementations and as a testing mechanism. We
believe ECMARef6 to be the reference interpreter with the
most complete implementation of the built-in libraries of the
standard, making its use as a testing oracle possible, since

the built-in libraries are a large part of the ECMAScript
language and most ECMAScript programs use them during
their execution.

In the journey to attaining we had to extend the ECMA-
SL language itself and change fundamental design decisions
related to the core representation of ECMAScript objects.
More concretely, we needed to extend the ECMA-SL language
with two types, byte and array, and operators to create and
manipulate them. This was necessary as with the previous ver-
sion of the ECMA-SL language, it was impossible to represent
the Data Block type introduced with the ArrayBuffer
library. In the implementation of the Symbol library, we had
to update the internal model of ECMAScript objects to support
the use of Symbol values as property keys.

a) Future Work: As a continuation of the work done
in this thesis, future work could be done to complete the
implementation of the ECMARef6 reference interpreter. Core
language functionality is not yet implemented, such as execu-
tion context switching, which is required for the implementa-
tion of the Generator and GeneratorFunction built-in
libraries. Having a complete reference interpreter opens up a
great many number of other possibilities for future work. The
following are examples of possible projects:

1) A tool capable of generating the HTML document
corresponding to the specification using the reference
interpreter’s code;

2) A tool with the inverse function can be done. It would
use the specification to generate a reference implemen-
tation. A tool that was actually able to perform this
function at a high level would significantly reduce the
implementation time of future reference implementa-
tions, such as ECMARef7, ECMARef8, etc;

3) With a complete reference interpreter one could employ
automatic test generation techniques to automatically
create a conformance test suite, that could potentially
complement Test262 as the official test suite of the
standard.

Even without an automatic translation tool to generate
reference implementations, future work could still be done to
keep updating the current reference interpreters to the more
recent versions of the standard, even if by hand.
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