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Abstract—A vast majority of the current research in the
field of Machine Learning is done using algorithms with strong
arguments pointing to their biological implausibility such as
Backpropagation, deviating the field’s focus from understanding
its original organic inspiration to a compulsive search for optimal
performance. Yet, there have been a few proposed models
that respect most of the biological constraints present in the
human brain and are valid candidates for mimicking some of
its properties and mechanisms. In this paper, we will focus on
guiding the learning of a biologically plausible generative model
called the Helmholtz Machine in complex search spaces using a
heuristic based on the Human Image Perception mechanism. We
hypothesize that this model’s learning algorithm is not fit for Deep
Networks due to its Hebbian-like local update rule, rendering it
incapable of taking full advantage of the compositional properties
that multi-layer networks provide. We propose to overcome
this problem, by providing the network’s hidden layers with
visual queues at different resolutions using a Multi-level Data
representation. The results on several image datasets showed the
model was able to not only obtain better overall quality but
also a wider diversity in the generated images, corroborating
our intuition that using our proposed heuristic allows the model
to take more advantage of the network’s depth growth. More
importantly, they show the unexplored possibilities underlying
brain-inspired models and techniques.

Index Terms—Helmholtz Machine; Biologically-inspired Mod-
els; Deep Learning; Generative Models; Hebbian Learning;
Wake-Sleep.

I. INTRODUCTION

Most recent machine learning models have shown great
effectiveness at solving a wide range of complex cognitive
tasks [1], [2], and back-propagation algorithms seem to be
at the core of the majority of those models, proving it to be
one of the most reliable and fast ways for machines to learn
[3]–[5]. Visual pattern recognition is one of the many fields
in which back-propagation algorithms thrive [2], [6], [7]. The
evolution of these models’ quality has been impressively swift,
but as we get closer to perfection, the possible improvements
get evermore difficult [8]. For some of the more simple visual
tasks like image classification of handwritten digits in the
famous MNIST dataset [9], these models have surpassed the
brain capabilities, performing better than human participants
[8], [10].

The surpassing of the human brain’s accuracy is an amaz-
ing scientific mark and allows for more reliable and robust
technology.

In the midst of this search for better and more powerful
models, grew a firmer and firmer connection between the
two concepts of intelligence and accuracy. We seem to have
been intuitively led to the conclusion that the better a model
performs at a certain task, the more intelligent it is. In a sense,
we deviate from trying to mimic the brain’s biological way of
processing information and focus instead on neural network
models that perform better [4], [11].

Nonetheless, even if there are models that compete with
the human brain at performing specific tasks, there is no
model that comes close to the robustness and flexibility of the
human brain when dealing with general image classification
and pattern recognition problems.

Therefore, a large part of the scientific community is still
focused on the biologically plausible side of machine learning,
proposing new competitive models that remain an arguably
plausible implementation of some human brain mechanisms
and properties [11]–[15].

A. Back-propagation’s Biological Plausibility

Despite the obvious biological inspiration of the Back-
propagation (Backprop) algorithm [4], [16], its biological
plausibility has been questioned very early on from its ap-
pearance [17], [18]. In recent years, although there have been
many attempts to create biologically plausible and empirically
powerful learning algorithms similar to Backprop [3], [11],
[19], there is an overall consensus that some fundamental
properties of back-propagation are too difficult for the human
brain to implement [4], [12].

The first and most relevant argument is related to the fact
that backprop synaptic weight updates depend on computa-
tions and activation on an entire chain of neurons whereas
biological synapses change their connection strength solely
based on local signals. Furthermore, for this Gradient-based
algorithm to work, biological neurons’ updates would have
to be frozen in time waiting for the signal to reach its final
destination where the error comparison is made, and only after
the signal travels backwards the membrane permeability would
be changed in accordance to its success or failure [13].

The second is the fact that back-propagation uses the same
weights when performing forward and backwards passes,
which would require identical bidirectional connections in
biological neurons that are not present in all parts of the brain.



And lastly, the fact backprop networks propagate firing
probabilities, whereas biological neurons only propagate neu-
ron spikes [1].

B. Helmholtz Machines’ Biological Inspiration

We propose to look at an older Generative model called
Helmholtz Machine (HM) [20], which uses the Wake-Sleep
(WS) algorithm [21] (details in Appendix A) instead of Back-
propagation.

The Wake-Sleep is an unsupervised learning algorithm
that uses two different networks to simultaneously learn a
predictive Recognition Model and a generative Generation
Model. Despite not being a completely Hebbian algorithm,
its activation and learning rules are as local as the Hebb rule
[22].

Hebbian learning algorithms respect the original proposition
made by Hebb [23], that learning and memory in the brain
would arise from increased synaptic efficacy, triggered by the
coordinated firing of the pre- and post-synaptic neurons [24],
and more importantly, they solve the previously mentioned
locality problem because the synaptic weight updates only
depend on the previous layer. Thus, the locality of WS also
helps to avoid that problem in a similar way to the Hebbian
rule.

The unsupervised nature of the algorithm, also contributes to
its plausibility, since the human brain’s learning is mostly done
with unsupervised data. And unlike in Back-propagation where
it is very difficult to find an implementation that works by
propagating neuron activations instead of firing probabilities,
the WS algorithm can work effectively with both options,
solving the third mentioned back-propagation implausibility
argument.

Furthermore, the learning algorithm of these machines is
based on the biological idea of being awake and asleep. Its
intuition is that after we experience an event, we also produce
our own variations of those events. This idea can be easily
extrapolated to what happens on a big scale daily, where we
experience reality during our wake phase, and then recreate it
in our sleep, but there is a shorter scale example that perhaps
compares better to the actual behavior of the model that occurs,
for example, in the interaction between the human eyes and
the brain. Our brain receives continuous streams of images
that our eyes are capturing, and while we are receiving them,
we subconsciously try to predict what will happen in the next
frame, and when the reality does not match your expectation,
for example, when a magician pulls a rabbit out of the hat, we
become surprised. The HM network also mimics this behavior,
and after receiving an observation from the world, it will
produce a dream, then the network will adjust its weights in
order to create more plausible dreams, and try to reduce the
surprise when experiencing the next event. Likewise, if you
see the same magic trick performed enough times, you will
learn to expect what was previously unexpected.

This “reduce of surprise” corresponds to minimizing a
quantity very imminent in neuro-scientific research called
Free Energy [25], [26], which is “an information theory

measure that bounds the surprise on sampling some data, given
a generative model” [27]. Thus, the minimization of Free
Energy corroborates the hypothesis that “a biological agent
resists the tendency toward disorder through a minimization
of uncertainty” [24], [27], [28] alluded to in the previous
example.

II. IMPROVING WAKE-SLEEP

In spite of the WS algorithm being interesting from a
neuro-scientific perspective, its’ lack of efficiency [29] and
ability to perform as well as other learning algorithms have
led it to be less and less explored in recent years. One of
its biggest disadvantages is that when the complexity of the
network increases, the algorithm’s performance starts to be
less impressive. If the complexity of the world we are trying
to mimic increases, our model needs to be able to capture
higher-level abstractions and generalize better, which can be
done by increasing the size of its network [30], [31]. However,
by increasing the number of neurons on a model’s network,
the size of the search space also grows. When any model is
searching through the energy surface it can easily get stuck
at a sub-optimal local minima [32], and we believe this is the
main problem of the HM with a large hidden network.

Our proposition to overcome this problem is to provide the
algorithm with a heuristic for it to be more consistently led to
optimal solutions.

Heuristics consist of ways to navigate the search space, that
guide the algorithm to either find a better solution, find a
solution faster, or both. They can be seen as generic rules
that apply to a majority of the cases, allowing the agent to
avoid exploring search paths that seem unpromising.

A. Multi-level Data Representation and Human Image Per-
ception

One thing that might help humans understand what they see
in a better and more structured way, is the ability to evaluate
a given visual image at different scales. Many studies point
to the fact that the human brain processes visual inquiries
at different resolutions [33], [34]. This multi-level biological
visual analysis could be one of the many keys that enable the
human brain to capture the world it perceives in such a robust
and accurate way despite the obvious extreme complexity of
its neural network.

A way to incorporate this multi-level perception into the
HM is by using an Image Pyramid representation of the
dataset [35]. The Image Pyramid is a simple way of having
multi-level data representation that enables models to detect
patterns on different scales. It consists of creating lower-
level representations of the original images in a convolutional
fashion, reducing an image by a factor each time, and creating
a “sequence of copies of an original image in which both
sample density and resolution are decreased in regular steps”
[36], like shown in Fig. 1. Introducing this data representation
to the training of the network would be in accordance with
the high biological plausibility that motivated the interest in
the HM model and by doing so we hope to guide its learning,



Fig. 1. Example of an Image Pyramid representation of a handwritten number
5 generated by continuously downsampling the original image on the left.

Fig. 2. Example of a two-dimensional energy landscape described by a
blue curve. When traveling the energy surface with a non-stochastic gradient
method, our model would move in a way similar to a sphere being dropped
in the said landscape, moved by the force of gravity. We can understand that
the starting configuration of our model, meaning, the starting position on the
landscape, would have a major impact on the absolute value of the minima
achieved. There is in this case an optimal starting zone that we highlighted in
green, where if the initial configuration corresponds to a point in that zone,
the minima reached would be generally better.

in a way that first detects high-level patterns, and then as we
add details to the samples, it would learn more correlations
on different scales, acting as a heuristic to overcome the
exponential increase of the search space that inevitably comes
with the increase of the number of hidden layers.

B. Image Pyramid Heuristic for Helmholtz Machines

One way to guide our model’s training is by configuring
its initial position on the search space, to a zone where we
believe the probability of finding a smaller local minima is
higher like the one highlighted in Fig. 2.

Weight initialization has been known to have a significant
impact on the model’s convergence state when training with
deep neural networks [6], [37]. The idea of the heuristic we
want to apply to the learning of the HM is to initialize the
weights of the network so that the initial configuration contains
queues of the image particularities at different scales.

We propose to create a network with multiple hidden layers,
with increasing sizes from top to bottom where each layer must
correspond to the size of a down-sampled image.

Then we iteratively train the machines layer by layer,
starting from a low-resolution sample of the original world’s
images [38]–[40], and add additional layers while increasing
the images’ resolution as described in Fig. 3. The downsam-
pled images would be equivalent to the idea of a blurred
image where only the global details could be retrieved, and
therefore, the first layer trained would in theory be able to
recognize global features of the world’s distribution. After
learning a good distribution for a certain level of resolution,
the model would then freeze the weights it learned for this
layer, preventing it from losing its global perception when

Fig. 3. Proposed Weight Initialization for a Helmholtz Machine. We use
down-sampled images to train the smaller hidden layer and proceed to freeze
the learned weights, then we up-sample the previously used images and train
a newly added layer, then we freeze the new layer’s weights repeating the
process until we reach the original images’ resolution. This way, information
on all detail levels should be present in the initialization of the weights.

learning with more detailed data. Then we would increase the
resolution and train an additional layer the same way we did
with the previous one.

When we reach the last layer, we should have incorporated
in our machine’s weights the information of all resolution
levels, and after it, we would conventionally train the HM,
with the predetermined initial configuration.

III. RESULTS AND EXPERIMENTS

In this section, we will propose and perform several exper-
iments to confirm our previously stated hypothesis and test if
our proposed heuristic provides significant advantages in the
generative performance of the Helmholtz Machine.

We will first use the MNIST dataset of handwritten digits
[9] to train our models and perform our experiments. This
dataset has a relatively small complexity but still allows us
to compare results for different implementations in a permis-
sive environment and to gather insights that could otherwise
become imperceivable intricacies in more complex domains.
Moreover, results on this dataset motivate future experiments
on more complex datasets and act as a perfect stepping stone
from conception to practical usage of any model.

After performing the proposed experiments on this dataset,
we will test our heuristic on two other datasets, Fashion-
MNIST [41] and CIFAR-10 [42]. Both of these datasets have
higher complexity than the MNIST dataset of handwritten
digits, with CIFAR-10 having the highest complexity of the
three.

A. Is the locality of Wake-Sleep a problem when training Deep
Networks?

One factor that may penalize the Helmholtz Machine’s
performance with deep architectures is the locality of the
Wake-Sleep algorithm.

When adding hidden layers to our model, we are increasing
the number of free parameters, so in theory, we would be
increasing the network’s potential to represent the world’s
data. However, we believe that the HM does not take full



Fig. 4. Accuracy of the LRs trained with different subsets of Helmholtz
Machine’s Recognition Network’s hidden representations of the MNIST
samples, both in the train and test set. The values on each layer correspond
to the usage of the neuron activations on that single layer, while the brackets
correspond to the concatenation of activations on the layers they aggregate.
We can see that most of the class separation is done in the first layers, whereas
layers that are further away from the input layer bear almost no information
about the world’s distribution.

advantage of this augmentation in capacity, due to the fact the
local updates present on the learning rule make the learning
progressively harder to be propagated throughout consecutive
hidden layers.

1) Proposed Experiment: To test this hypothesis, we trained
a Helmholtz Machine with a deep architecture, and used its
recognition layers’ activations as inputs for a simple Logistic
Regression (LR) Model, to see how well the HM’s hidden
representations are able to linearly separate the problem space.
This approach takes advantage of the fact that our model is
simultaneously training a recognition and a generative model.
The quality of the generative model is related to the capability
of our model to generate good lower-level explanations of
the observed samples with its recognition network. So by
testing our model’s input representation at different steps of
the recognition chain, we can see what hidden layers are
responsible for identifying the majority of the learned features.
For this experiment, we chose an architecture with 6 hidden
layers of size 625 (25×25), 484 (22×22), 289 (17×17), 196
(14 × 14), 100 (10 × 10), 16 (4 × 4) starting from the input
layer.

2) Results: From the results described in Fig. 4 we can see
that the majority of the separation of the problem space is
done in the first layer. This suggests that with the local WS
learning rule, as the size of the network increases, a large part
of the information will not be propagated through the network,
and will store most of the information regarding the learned
features at the surface of the deep network, meaning that even
tho we are adding more descriptive power to the model by
increasing its depth, it is incapable of taking advantage from
it.

Fig. 5. Accuracy of the LRs trained with different subsets of Helmholtz Ma-
chine’s Recognition Network’s hidden representations of the MNIST samples,
both in the train and test set. The values on each layer correspond to the usage
of the neuron activations on that single layer, while the brackets correspond to
the concatenation of activations on the layers they aggregate. Image Pyramid
Initialization shows a progressive increase of the class separation capability
as we get closer to the input layer, suggesting a better use of the network as
a whole to define the main features of the samples.

B. Does the Multi-level Data Representation solve this prob-
lem?

1) Proposed Experiment: We repeat the experiment pro-
posed in the previous section, training a HM with the same
architecture as the previously described one, but this time
initialized with the proposed Image Pyramid method.

2) Results: In this experiment, the results presented in Fig.
5 show not only higher overall accuracy values, but more
importantly, a smooth decrease of the layer’s descriptive power
as we reach higher layers, which is expected since the number
of neurons on each layer is smaller as we go up the network.
These results are a good indicator that our heuristic provides an
advantage for the recognition network’s world representation,
rendering it capable of fully using its deep hidden layers to
store meaningful information.

C. Does Multi-level Data Representation provide a generative
advantage?

In the previous section, we focused solely on the evaluation
of the Recognition Network. We presented evidence for our
claim that the Image Pyramid Initialization allows for better
usage of the capacity of the deep network, and hypothesized
that a better Recognition Model would also be translated into
a better Generative one.

Consequentially, we should be able to see a similar im-
provement when testing the Generative Network and prove
that when using Image Pyramid Initialization, we take full
advantage of the network’s increase in size.

1) Proposed Experiment: To test our hypothesis, we will
define an architecture for a Neural Network and create two
different machines with that same architecture. One of the
machines will use the Image Pyramid Initialization (Fig. 6 a),
and the other will use a classic Random Initialization (Fig.



6 b). After, we proceed to train them with a small train set
of size N (e.g. 2 samples) and see if the network is able
to generate it back. To do this, after the machine has been
trained, we generate a large number of samples G, and find
the euclidean distance from a given sample to the train set.
Then, we choose the minimum distance observed, and claim
that the generated sample corresponds to that particular train
set image. We keep the smallest distance observed and the
correspondent train set sample and repeat the same process
for all generated samples. We end up with an array of closest
distances, and an array of the correspondent train set samples.
With the array of distances, we simply calculate the mean,
and with the correspondence array, we first create an array
with the size of the Train Set where each index corresponds
to the representation fraction of the same index train sample in
those G generations, creating a density vector (e.g. following
the previous supposition that we only have 2 samples, x0

and x1, if the model generated 6 samples closer to x0 and 4
samples closer to x1, the corresponding density vector would
be [0.6, 0.4]). From that density vector, we take two different
measures, the first one being the Entropy, and the second the
Number of Unrepresented Samples. The Entropy will be close
to one if the machine generates the same number of samples
for each Train Set image, and closer to zero as the model
starts to replicate some of the world’s images more frequently
than others, so in general this measure relates to how well
the machine is capturing the real world’s distribution. The
Number of Unrepresented Samples shows how many samples
the machine has “forgotten”, meaning that it was unable to
closely replicate a sample present during its training, despite
having generated a large pool of samples. If this measure is 0,
the machine was able to remember all learned samples, but as
the number of samples in the world increases, the machine will
inevitably become unable to represent some of them. With this
measure, we can see the breaking point regarding the world’s
number of samples at which the model becomes unable to
remember all samples seen and can be used as a comparison
measure between different models.

In addition to our initial claim, we also believe that using a
deep network with Image Pyramid Initialization with a certain
number of free parameters has a generative advantage when
compared to a shallow one-layer network with a higher number
of free parameters given the compositional properties that
multi-layer networks allow for. Therefore we include in the
collection of machines an additional large shallow HM with
a hidden layer size equal to the number of neurons of the
two bigger hidden layers of the deep architecture (Fig. 6 c),
assuring it has a higher number of free parameters.

2) Results: The results in Fig. 7 are very promising and
suggest that our initial intuition was true. Regarding the
Number of Unrepresented Samples, we can see that up to
N = 64 all machines can fully represent the dataset, from
128 to 256 the shallow machine starts to be unable to represent
certain samples, while the deeper architectures can still fully
represent them. From 512 to 1024 we can start to see a
difference in the performance of the Random to the Multi-

Fig. 6. Proposed architecture for 3 different Helmholtz Machines. Machines
(a) and (b) have three hidden layers and an equal architecture with a number
of free weights ρ ≈ 64 + 64× 225 + 225× 484 + 484× 784 = 502820,
while machine (a) consists of a single hidden layer machine with ρ ≈ 709+
709 × 784 = 556565. Thus, the descriptive power of the machines should
follow the same order as the number of free parameters ρ(a) = ρ(b) < ρ(c).
Machines (b), and (c) are initialized with random values, whereas machine
(a) is initialized using our proposed multi-level representation method.

Fig. 7. Measures for the three proposed machines regarding Mean Distance,
Entropy, and Number of Unrepresented Samples on the first, second and
third column respectively, with the number of train set samples N increasing
on each row. The multi-level based approach showed better results on both
Entropy and Number of Unrepresented Samples for all N values, while the
shallow network performed worse on all measures for all experiments.



level based initialization, giving an edge to the latter one.
The Image Pyramid machine was able to have a higher
entropy for all N values followed by the deep machine with
Random initialization and lastly the shallow one, suggesting
our approach is able to gather a better generalization of the
world’s distribution. The mean distance is similar in both deep
architectures and consistently better than the shallow machine
for all N values.

The poor performance of the shallow network with a higher
number of free parameters indicates that the compositional
properties of multi-layer can help a generative model capture
the real world’s distribution better.

The edge that machine (a) had over machine (b) when
representing its training dataset suggests that using multi-
level data representation provides advantages to the generative
capabilities.

D. Can we quantify the generative advantage of Multi-level
based Initialization?

From the previous experiment, we saw that the HM was
able to replicate more samples on a given dataset when using
our proposed initialization, which is a good indicator that
the machine can understand the world’s general distribution.
However, we think mimicking a train set is not the goal of a
generative model.

Testing a Generative model’s performance is not a trivial
task [43], and up to this date, there is no perfect definition
of what can be considered a good generation, since different
problems focus on different generative goals. Therefore, there
is also no evaluation method devoid of criticism [44]. With
this in mind, we decided to enumerate what we thought were
the desired attributes our machine’s generation required, in
this particular experiment, with regards to handwritten digits’
image generation. The most important attribute was the quality
of the generated samples, more specifically, how similar the
generated patterns were to real handwritten digits. The second
attribute was diversity in the generated samples. And lastly,
the propensity of generating new patterns. This last attribute
might seem counter-intuitive, but the idea is that if our model
produces completely different images of a digit that it did not
see in the train set, but follow its digits general rules (eg.
for number 8 two circles attached vertically), then our model
effectively learned the core defining features of a digit.

1) Proposed Experiment: We decided to take a common
approach of tweaking the original generative model so that
it can be used as a classification one. With classification, the
model’s performance becomes much easier to quantify, since
we can get concrete measures such as error and accuracy.
The fact that our machine learns with unlabelled data makes
it hard for our model to be used to classify digits, so we
decided to create 10 different machines, one for each digit.
Hopefully, each machine’s generation corresponds solely to
good representations of its designated digit (what we call good
quality) and produce a wide variety of that digit’s possible
representation (what we call variety). Then, we generate a
fixed number of samples from each of the ten machines,

and we end up with an entirely new generated dataset by
combining all samples. After we create the new dataset, we can
associate labels to the generated patterns, since each sample
is associated with a certain digit’s machine. Now, we can
use a simple classification model like a K-Nearest Neighbor
(KNN) trained with the generated dataset to classify the test
set. We decided to use a KNN with k = 1 because of its
simplicity. We believe it is a good choice because the score of
the KNN’s performance is purely related to the quality of the
dataset, and our ultimate goal is not to create the best possible
classifier but to test the quality of the generated dataset. If
our machines can produce a wide range of variations of its
designated digit, we should end up with a dataset that is able
to produce the possible digit variations existent on the test set,
and thus allow the KNN to have better accuracy during the
test phase. We believe this evaluation method favors models
that have the three requirements previously enumerated, but
we can see scenarios where solutions that do not meet all
the requirements still perform significantly well. For example,
a machine generates the pixel distribution of a certain digit’s
class (similar to performing a mean of all the digit’s samples),
despite not having any variability, the KNN would still in
most cases associate a test sample to the correct machine.
To ensure variety amongst the generated samples we decided
to measure the average euclidean distance to the mean of
the newly generated dataset (ADM) similar to variance in a
standard deviation, and to ensure that the generated instances
are different from the training dataset we calculated another
indicator called Novelty, that is obtained through the sum of
the smallest distance of each Train Set sample to the generated
ones.

Lastly, we performed said experiment on three different
initialization methods, Zero Initialization that assigns all initial
weight values to 0, Random Initialization that uses random
values across a standard deviation centered on 0, and the Image
Pyramid Initialization proposed.

2) Overall Results: The accuracy obtained with different
network architectures and with different weight initialization
methods described in Fig. 8, shows a clear advantage for
initialization based on multi-level data representations, having
not only a better average score but also smaller variance.
We believe these results indicate that the Image Pyramid
Initialization guides the networks’ learning in a more robust
way, by starting in an area of the energy surface where the
local minima reached are generally better.

When looking at the variability measures for the same run
of experiences in Fig. 9, the results show that our proposed
method is able to generate samples more different from each
other, and also samples less similar to the training set. This
latter factor is a very promising indicator when combined with
the previous observation that the accuracy performance also
increased. This could indicate that the model not only was able
to produce new images, but those images are viable candidates
for existing in the real world, possibly very similar to the
unseen samples in the Test Set.



Fig. 8. Density function for the train and test set accuracies of 70 randomly
generated architectures trained with Random, Zero, and Image Pyramid
Weight Initialization. Multi-level Representation Initialization shows not only
a higher overall accuracy but also a lower variety, showing not only better
performance but also more robustness.

Fig. 9. Density function of two different variability measures. Novelty
relates to the difference between the generated data samples to the training
samples, whereas ADM relates to variability among the generated samples.
Our proposed Initialization method generated not only instances that were
more different amongst themselves, but also less similar to the observed ones.

Fig. 10. Scatter Plot with a Linear Regression Fit of the accuracy for Random,
Zero, and Image Pyramid Initialization both on the Train and Test Set, plotted
with regards to the number of neurons on the bottom axis on the first row,
and to the number of hidden layers on the second one. Both Random and
Zero Initialization show a progressive accuracy drop with the increase of the
network’s size, while the Image Pyramid’s accuracy remains unchanged.

3) Results regarding dimensionality: When we plot the
accuracy with regards to the complexity of the model (either by
the number of neurons or the number of hidden layers) in Fig.
10 we can see a clear decrease in the accuracy for the random
and zero initialization, whereas the multi-level representation
initialization remains consistent with the complexity increase.
We believe these results show a clear inability for normal HM
to perform well on deeper networks, which can easily be fixed
by adding multi-level image representations to its learning.
However, we expected the Image Pyramid Initialization to see
an increase in accuracy with the increase of the number of
free parameters, which did not happen on a meaningful scale.
One of the reasons for this occurrence might be related to
the small complexity of the dataset. We initially hypothesized
that more free parameters were necessary for describing more
complex worlds, however, if the world’s complexity is small,
there is no need for more free parameters. The MNIST
dataset of handwritten digits is known to have relatively low
complexity, and thus, as we surpass the required number of
free parameters, we should not see any meaningful increases
in the model’s performance.

E. Can a Helmholtz Machine transcend the Train Set?

Encourage by the results mentioned in section III-D2, where
we stated that the Helmholtz Machine using the Multi-level
heuristic was able to produce a wider variety and more creative
samples, we decided to test if a HM was able to generate a
dataset that could surpass the KNN performance of its original
train set. We believe that after learning all digits, if a human
spent an enormous amount of time generating labeled digits
variations, eventually, a simple KNN using that generated data
could almost perfectly classify the unseen MNIST test set.
Likewise, if a HM produced enough samples it could cover a
wider range of possible test set instances.

1) Proposed Experiment: To test this hypothesis, we de-
cided to train three 10-machine’s models with the same
architecture and each initialization method used previously.
The architecture chosen was a 2 hidden layer network with
layer sizes 400 (20×20) and 100 (10×10), while still having
a visible layer of size 784 (28 × 28). We defined a Train
Set of 10000 samples from the MNIST dataset and tested the
performance of the chosen Train Set on the Test Set defining a
threshold for our model to try to surpass. After we trained the
machines with the chosen Train Set, we decided to calculate
the accuracy of a KNN using datasets generated by the 10-
machine model, and see what would happen with the increase
of the size of the generated data, previously denoted as G.

2) Results: From the results in Fig. 11 we can see that
only the model trained with our multi-level heuristic was able
to reach the same accuracy as the original Train Set, even
surpassing its performance by a small margin, which strongly
indicates that the model can generate samples more similar to
the test set than the ones existing on the Train Set.



Fig. 11. Scatter plot of the accuracy in the Train and the Test Set of a 1NN
classifier using datasets generated by the HM models with three different
initialization algorithms, plotted with regards to its number of samples. The
blue horizontal line corresponds to the accuracy of a 1NN classifier using
the same Train set the HM models used for training. We can see that only
the model using the Image Pyramid initialization was able to surpass that
horizontal line.

F. Is the Generative Advantage still present on more complex
Datasets?

To conclude our experiments we believe it is important to
understand if our heuristic still provides advantages in different
and more complex domains. We decided to use the Fashion-
MNIST and the CIFAR-10 datasets for this purpose. In the
CIFAR-10, there are three color channels, and although it is
possible to create a HM architecture to address this, we believe
that changing the architecture of the model for this particular
experiment would ravel the comparison to the other datasets,
so we decided to change the RGB triplet of the images in
CIFAR-10 to a grayscale, allowing us to have similar HM
architectures for all domains.

1) Proposed Experiment: We decided to perform a similar
experiment as we did in section III-D using the 10-machine
model to generate a dataset followed by a KNN using the
generated dataset to classify the Test Set. Since the classifica-
tion task is generally harder as we increase the complexity of
the world, the overall accuracy values obtained will decrease
as the complexity of the world grows. We believe the fairest
comparison measure would not be the total KNN accuracy,
but the accuracy improvement using the generated dataset,
compared to the accuracy obtained using the Train Set. So the
proposed metric to compare the results would be the Accuracy
Improvement Factor, obtained by dividing the accuracy of the
KNN using the generated dataset by the accuracy of the KNN
using the original Train Set.

2) Results: From the results in Fig. 12, we can see that
across all three datasets, each one with a different complexity,
the performance of the model that is using the proposed heuris-
tic was higher, which suggests that the advantages observed in
the simpler domain of the MNIST dataset of handwritten digits
are also present when the complexity of the world increases.

IV. CONCLUSIONS AND FUTURE WORK

Despite the undeniable success of global Gradient-based
algorithms, to understand the underlying mechanisms of bi-

Fig. 12. Accuracy Improvement Factor on the Test Set for the three
Initialization methods in each row, on different Datasets in each column.
There is a clear advantage when using the Multi-level approach compared
to the more classical implementations at all levels of domain complexity.

ological intelligence it is necessary to develop models whose
implementation could be plausible in a biological neural
network. We believe a great candidate for said implementation
is the Helmholtz Machine, due to the biological inspiration and
locality of its training algorithm.

We hypothesize that, unlike gradient algorithms such as
Back-propagation, this local learning algorithm does not per-
form well under deep network architectures, making it difficult
to take advantage of the composition properties that multi-
layer networks provide.

To test this hypothesis, we trained a HM on the MNIST
dataset of Handwritten digits and used a linear classifier
trained with a subset of the hidden representations of the
HM’s recognition model. The results were compliant with
our hypothesis and showed that most of the separation was
concentrated in the first layers, whereas deeper smaller layers
had almost no relevant information regarding the problem
space.

To avoid this limitation of the learning algorithm, we came
up with a heuristic for the initialization of the machine’s
weight vectors by using a multi-level data representation based
on the idea that humans process visual inquiries at different
resolution levels. By iteratively training the smaller layers
with downsampled images of the real dataset, and increasing
the resolution as we increase the size of the new layers, we
believe that the information regarding high abstract levels of
representation is rendered into each layer, obtaining the core
defining features of the correspondent resolution.

Using our proposed solution, and repeating the previous
experiment we saw that the separation of the problem space
was done uniformly throughout the deep network, suggesting
a better usage of the network as a whole in the recognition
model of the HM.

We then saw that the model’s improvement was also im-
minent in the generative model, showing that our proposed
solution was able to take advantage of the compositional
properties that multi-layer networks allow for, being able to
replicate a more complex world than a one-layer network with
a higher number of free parameters and an equal architecture
trained conventionally.

We performed further experiments to test the generative
advantages of adding multi-level information to the training
of the neural network, by using the model’s generated images
to train a simple classifier and concluded that the machine’s
generated samples had not only better quality, since the
classifier performed generally better when using our approach,



but were also more diverse and creative when compared to the
classic implementation.

From the latter experience, we were able to find further
evidence that supports our claim that the WS algorithm is
not fit for Deep Networks, showing a progressive decrease in
performance as the network’s depth increases when using clas-
sical implementation. The same occurrence was not imminent
when using our proposed initialization step.

Encouraged by the creativity measures of our model, we
decided to see if it was able to produce a dataset for training a
classifier that would outperform an equal classifier that learned
on the HM’s initial training set. We saw that a such thing was
possible when generating a large number of data samples but
only with our proposed multi-level heuristic.

Finally, we detected that the Multi-level heuristic still pro-
vides generative advantages in more complex domains, by
performing similar experiments on different datasets.

The results obtained were very promising and showed
the innate potential of the Helmholtz Machine’s generative
model’s capabilities. Moreover, we believe the general heuris-
tic idea can be applied to other local learning algorithms
training on two-dimensional data with similar success.
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APPENDIX

During the HM model’s learning, the WS trains both a
Recognition (R) and a Generative (G) network in two dif-
ferent phases, the Wake-phase and the Sleep-phase.

In the Wake-phase, it updates the generative weights to try
to minimize the Variational Free Energy, which given a pattern
d and hidden-layer activations H is described by:

FR
G (d) = FG(d) +KL[pR(H|d), pG(H|d)]. (1)

And in the Sleep-phase it updates the recognition network
trying to minimize:

F̃R
G (d) = FG(d) + KL [pG(H | d), pR(H | d)] . (2)

Where

FG(d) = −log pG(d) (3)

FG(d) is a function called Free Energy that is inverse to the
probability of d, so will be high when this pattern is unlikely,
and low when it is likely. Thus, this is also referred to as the
“surprise of d”, denoting how surprised the model is when
observing the occurrence of pattern d.

We can see that the Variational Free Energy is the Free
Energy of a pattern plus a KL divergence of the Recognition
and Generative probability distributions. From this we can
understand that the Variational Free Energy is an upper bound
of the Free Energy since the KL divergence is always positive,
so minimizing the Variational Free Energy also minimizes
the Free Energy. Additionally, minimizing the KL divergence
means that some part of the network’s training involves trying
to make the Recognition and Generative networks congruent,
meaning approximate inverses of each other.

The Wake-Sleep algorithm consists of multiple Wake and
Sleep phases that continuously minimize the Variational Free
Energy through a local gradient-based rule.

For a better understanding of the network’s definition and
the learning algorithm, we suggest looking at Kevin G. Kirby’s
tutorial [45], which provides an in-depth, clear, and intuitive
explanation of the HM model.


