GameCourse - The Next Level

CATARINA GONCALVES, Instituto Superior Técnico, Portugal

Gamification can be defined as the use of game elements and game design
elements in non-game contexts. Throughout the years, this concept became
increasingly popular due to its benefits when it comes to motivating stu-
dents to be active in a course. The Multimedia Content Production (MCP)
course at Instituto Superior Técnico uses GameCourse, a platform that aims
to motivate students through gamification. The current system has a va-
riety of game-like components that make the experience more engaging,
encouraging students to learn the course content. To award these game
elements, the system relies on rules that specify what are the requirements
to give a certain award. However, the system had some performance issues
related to the rules that needed to be dealt with and new game elements that
could be integrated. The purpose of this thesis is to improve the system’s
performance, and increase game element diversity in the system. Three
new modules were created: Streaks, Teams and Virtual Currency. This also
included creating a new type of leaderboard, suitable for teams. From the
results obtained from user testing, we concluded that we were successful
in implementing and integrating the new modules. Additionally, we were
able to find relevant bugs and collect feedback from the students enrolled
in MPC 2021/2022, which rated these new game elements to be positive for
their learning experience. Finally, the results of the performance tests made
show that we improved the the system’s performance.

Additional Key Words and Phrases: Gamification; Education; Learning; Tai-
lored Gamification; Player Profiling; Game Elements.

1 INTRODUCTION

Education has an enormous and powerful impact on one’s life. How-
ever, as important as it may be, students’ lack of interest and mo-
tivation is still a big and ongoing concern. To improve students’
engagement and performance and, consequently, overcome this
struggle, teachers have been trying to adapt their teaching methods.
With this need, the concept of Gamification emerged and became
increasingly popular throughout the years.

Gamification can be defined as “the use of game elements and
game design elements in non-game contexts” [Deterding et al. 2011].
Studies have shown that, in comparison to non-gamified systems,
students become more engaged and motivated in courses that use
gamified systems [Zainuddin et al. 2020]. There are several examples
of successful applications of gamification in learning environments.
One example is the Multimedia Content Production (MCP) course
at Instituto Superior Técnico, University of Lisbon. This gamified
MSc course rewards students with Experience Points (XP) for the
accomplishment of certain tasks such as skills concluded or badges
earned. Each student can earn up to 20000 XP and, at the end of the
course, the amount of XP accumulated is converted into a 0 to 20
score. Moreover, MCP has been the main focus of several studies and
theses since it uses GameCourse, a platform that has been developed
and improved throughout its years in use.

This gamified platform contains several game elements that con-
tribute to a more engaging experience. Furthermore, to escape the
common “one-size-fits-all” approach [Pratt 2002] and be able to
take into consideration each user’s preferences and needs, a way of
profiling users was implemented and incorporated into the system

Author’s address: Catarina Gongalves, Instituto Superior Técnico, Lisboa, Portugal,
catarina.q.goncalves@tecnico.ulisboa.pt.

with the intent of assigning them to a specific player profile. This
new feature allows the existence of an adaptive gamified system
where we can adapt the way each student profile views a certain
parts of the system.

GameCourse was already a well-accomplished system with sev-
eral functionalities that allows users to freely interact with it, how-
ever there still is room for improvement. As such, our goal is to
polish the system by solving bugs and performance issues the sys-
tem has, and incorporate new game elements that can improve the
gamified experience and increase game element diversity.

2 RELATED WORK

Gamification, defined as “the use of game elements and game de-
sign elements in non-game contexts” [Deterding et al. 2011], has
become increasingly popular throughout the years due to its posi-
tive impacts and potential to improve motivation, engagement, and
social influence. It may pass unnoticed, but teachers rewarding their
students with stickers after completing a certain task or even com-
panies or supermarkets giving out stamps for their clients to collect
to achieve a certain prize, counts as the use of gamification.

The exponential increase in the interest in gamification, particu-
larly in the fields of education, wellness and business, has been the
catalyzer to the making of several studies regarding this topic. In
all contexts, the use of gamification has shown to be an advantage
in increasing user engagement [Zainuddin et al. 2020], improving
behavior [Metwally et al. 2021] and knowledge retention [Putz et al.
2020]. When it comes to education and learning, the goal is to moti-
vate students to engage and be active in a course to maximize their
success. This is usually done by implementing a system of rewards or
providing feedback by indicating their level of performance [Furdu
et al. 2017].

Nearly all gamified platforms are built on the use of rewards as
its main dynamic by awarding game elements like badges, trophies,
and points to their users after they achieve a certain goal or finish
a certain task. These achievement-related features [Xi and Hamari
2019] are visual displays of the users’ progress which gives them
immediate feedback [Krath et al. 2021; Kyewski and Kramer 2018],
helping them assess their performance and accomplishments. In
addition, to allow users to keep track of their own progress as well
as their peers, gamified platforms usually incorporate levels and
leaderboards, the latter considered one of the most engaging game
elements [Garone and Nesteriuk 2019] since it positively impacts
social comparison between users [Krath et al. 2021]. Furthermore,
to promote cooperation, collective game elements are also imple-
mented. Teams and, subsequently, team leaderboards, have shown to
have many positive benefits, promoting social connection amongst
users, making them engage in strong social connectivity via compe-
tition and comparison of points and scores [Chang and Wei 2016].

There are several examples of well-succeeded educational gam-
ified applications, such as Class-Dojo, Duolingo, Kahoot!, Khan
Academy and SoloLearn. Each one of these systems uses different
game elements that further motivate its users to be active and stay

2 « C.Gongalves

engaged. Duolingo, for instance, was created with the intent of pro-
viding the best universally available online education so that its
users can learn a new language while having fun. To keep users
motivated and engaged with the courses, Duolingo takes advantage
of the use of game elements such as leaderboards, levels, points,
progress bars, streaks and lingots (in-game currency). With a stag-
gering total of 500 million users and around 40 million monthly
active users, this approach can be, without a doubt, considered
extremely successful. Other implementations concerning gamifica-
tion follow a similar design, focusing on a single and generalized
approach in which the game elements used are the same for all
users.

Taking into consideration that individual needs are a major and
crucial factor in gamification, they are, at the same time, one of the
main causes for its applications to fail. As such, identifying user
needs and preferences and discovering the best ways to use this
information as an advantage in the implementation of gamified
systems could help create a more inclusive version of gamification.

2.1 Tailored Gamification

The current gamified applications are designed based on a “one-size-
fits-all” idea. However, studies have indicated that treating individu-
als as a homogeneous group is not an optimal design approach since
everyone has its own preferences and needs. Researchers concluded
that using personalized gamified learning experiences helps raise
students’ performance, achievements, and gamefulness experiences
[Metwally et al. 2021].

Tailored gamification emerged as a means to improve the effec-
tiveness of gamification [Rodrigues et al. 2020]. It can be described
as the personalization of gameful design elements, the interaction
mechanics, the tasks, or the game rules for each user, according to
their preferences [Tondello and Nacke 2020]. This personalization
can be achieved by customization, allowing the user to select the
elements to be used, or by adaptation, where the system selects the
elements for each user.

One particular promising approach to adaptation is understand-
ing the relationship between player types and personality types and
traits in relation to game elements and mechanics. This can lead
to more appropriate and meaningful choices for gamified systems.
Therefore, researchers became interested in implementing models
that have the potential to improve the gamified experience, by au-
tomatically tailoring it to each individual. For that effect several
models have been developed and tested.

Some of the conducted studies tested several models and found
that, for each one, certain game elements are better suited for a
particular trait or type of player. This means that all personalized
gamified experiences depend on player profiling focusing either
on player type models such as Hexad or Bartle’s or on personality-
based models such as the Five Factor Model (FFM), also known has
the “Big Five” Model.

2.2 Player Profiling

Classifying users into groups that best fit their characteristics as
players can help in tailoring the system and discarding the “one-size-
fits-all” approach. This can be achieved by taking into consideration

the users’ personality traits or the player type of a specific model
the users are assigned to.

The importance of personality traits has been widely acknowl-
edged since it has a significant impact in daily tasks like working,
learning [Codish et al. 1989] and, consequently, on academic achieve-
ment. The FFM, the most used model when it comes to personality,
characterizes individuals based on their personality traits. This is a
complete model that provides a coherent taxonomy [Buckley and
Doyle 2017], being extremely helpful with player profiling. Due to
its popularity, newer and revised versions of the FFM have been
developed, for instance, the Ten Item Personality Measure (TIPI).
However, since TIPI is a briefer measure, it is considered less reliable.

When it comes to player types, most studies rely on player or user
typologies like BrainHex, Hexad and Bartle’s player type model,
one of the oldest and most frequently used. Bartle’s player typology
was created based on a specific game type, the Multi-User Dungeon
(MUD), and divides users into eight player. However, this model
provides a way to specifically classify MUDs’ players which can
have some application limitations since it may not work in other
contexts. Another well-known player model is BrainHex, a top-
down approach based on neurobiological insights [Nacke et al. 2014].
It categorizes users into seven player types: Achiever, Conqueror,
Daredevil, Mastermind, Seeker, Socializer, and Survivor, each with
distinct motivations.

Finally, Marczewski [Marczewski 2015] introduced the Hexad
typology, specifically developed for gamification. This model was
initially based on the self-determination theory (SDT) since the
proposed user types differ based on how they can be motivated by
either intrinsic (which refers to “[...] doing something because it is
inherently interesting or enjoyable [...]” [Ryan and Deci 2000]) or
extrinsic motivation (which refers to “[...] doing something because
it leads to a separable outcome” [Ryan and Deci 2000] like receiving
rewards).

Studies that employed player profiling was concluded that gami-
fication is more effective when the interests and needs of its users
are put into consideration. Regarding the relation between player
typologies and game elements, results with Hexad were the most
consistent with the definitions of its user types, and that its types
had more influence on the perceived user motivation than those
from previously discussed models [Hallifax et al. 2019]. It was also
concluded that tailored gamification leads to higher performance
than generic gamification. Thus, tailoring the experience to each
type of player is an advantage when it comes to engaging users and
improving their performance.

Concerning game elements, studies found that players that are
motivated by extrinsic rewards enjoy leaderboards as well as virtual
economy while players that wish to excel in the gamified system
prefer levels, challenges and time pressure. Moreover, signposting,
competition and guilds were suggested for players that enjoy inter-
acting with others [Klock et al. 2020; Tondello et al. 2019]. However,
most gamified systems and studies made use the same game ele-
ments leaving others unexplored.

There are several works that focused only on the most popular and
common gamified components, such as badges, levels, leaderboards

and points. Thus, there are strong conclusions regarding these el-
ements whilst there is little evidence for others, like teams, sign-
posting or easter eggs [Klock et al. 2020], that could be particularly
beneficial to use in gamification. When it comes to leaderboards, for
instance, results showed that most students enjoyed the competitive
environment it creates. However, a small group of the participants
did not enjoy them which can suggest that the implementation of
different types of leaderboards, including one for teams, could be
an advantage [Aldemir et al. 2017]. On the other hand, Streaks, a
not so commonly used game element in the existing literature, have
shown promising results for Duolingo, Kahoot! and other gamified
systems [Jiang 2018]. Kahoot!, for example, introduced a streak that
rewards users for consecutive correct answers with the intent of
preventing them from randomly clicking on answers just to get the
next question. They found out that users cared more about their
streak than overall score in points [Jiang 2018].

3 GAMECOURSE

GameCourse is a framework that courses can use to provide a gam-
ified environment to their students. Its architecture is composed
of several components that support its features, such as Course,
CourseUser, Role, Modules and Views. Each user in the system is
referred to as GameCourseUser and they have can have different
Roles within a Course, the default ones being "Teacher”, "Student”
and "Watcher” but custom ones can be created. Moreover, Game-
CourseUsers can authenticate through Fénix, Google, Facebook or
LinkedIn. A GameCourseUser can have Admin permissions which
allows them to create new Courses, activate or deactivate users, and
change Admin permissions.

The system also offers a repository with several Modules (Figure
1) that enable game elements, like Skills and Badges, and important
tools, like retrieving data from external sources. All modules use the
same vocabulary, that we refer to as Expression Language (EL)
that enables semantic operations within the system. Additionally,
when created, each module has its own library containing specific
functions and variables that is stored in a global Dictionary. Each
module can be enabled or disabled within a specific Course following
some dependencies that may exist. It is important to note that every
module in GameCourse depends on the Views module.

Enablea Enabled Enabled Enabled Gisabled

Fig. 1. Modules Page.

GameCourse - The Next Level « 3

Views are the contents displayed to users, and they can be dis-
played differently for students with different Roles. For instance,
within GameCourse, there are two types of Leaderboard, each being
displayed to specific Roles. Additionally, modules can have view
parts associated to them that are integrated in the system when
they are enabled. Example of this is are the Leaderboard module
that incorporates the Leaderboard Page, and the Skills Module that
incorporates the Skill Tree, that displays the several skills students
can complete.

Furthermore, through the Plugin Module, GameCourse is able to
support the functionality of retrieving data from external sources,
like Moodle, GoogleSheets and ClassCheck. This data is inserted as
Participations, and is later transformed into awards by the compo-
nent responsible for running the established rules, the Rule System.

Rules are a text-based rule written in Python with when and
then clauses (Figure 2) that are run for the students that made new
Participations within a course. In the when clauses are the precon-
ditions that, when met, will make the actions in the then clause to
be performed when the system runs. The rules can be created to
perform any action the user might need and they may vary depend-
ing on the course. Consequently, they are stored in different text
files according to their context and course. In MCP, for instance,
there is a file for each game element for which rules are needed,
one for badge-related and another for skill-related rules. Due to
the rules-related dependability some modules may have, the Rule
System also provides the automatic generation of rules based on a
given template. However, this is only available for the Skills Module
and only happens when a user creates a skill. As such, if a skill is
edited, no change will happen to its rule.

rule: Quiz Grade
give grades from quizzes
when:
logs = GC.participations.getParticipations(target, "quiz grade")
flogs = filter_quiz(logs, "Dry Run")
len(flogs) > 0

then:
award_grade(target, "Quiz", flogs)

Fig. 2. Example of a rule.

Additionally, GameCourse offers a Rule Editor that allows users
to perform multiple actions related to the rules. In the Rules page,
the users views a list of the existent rules within the course. In a
rule’s editing page, the user can establish the name and description
of the rule and then write it. The page also contains a mechanism
that provides tailored suggestions to the user. This is done in three
different ways: by automatically suggesting a function while the
user types, which is an autocomplete functionality that displays all
the suggestions that match the syntax typed, by displaying those
same suggestions on the function suggestion box to the right of the
page and by listing the available metadata variables.

Another important mechanism within the Rule System is the
logging mechanism. It is responsible for writing into individual files,
one for each of the existing courses in GameCourse, the dates at
which the rule system started and finished running as well as any
errors that might have occurred while the Rule System was running.

4 «+ C.Gongalves

Considering that this system can crash or return incomplete results
due to any errors that can appear, this logging mechanism has
proven to be extremely helpful since it allows us to understand the
cause and locate the root of an error that occurred while the rule
system was running.

4 IMPROVING GAMECOURSE

Our work started with the Plugin Module that, as previously men-
tioned, allowed multiple sources of information to be automatically
included on GameCourse. However, since all the data sources were
contained in single module, enabling it would include all of them in
the system, even if the user did not require them all. Additionally,
there were no visual indicators of what were the different sources
that can be enabled for their data to be included in the system. To
find out, a user had to first enable the module and then visit its
configuration page.

As such, we divided this module into four new ones, each corre-
sponding to a different data source. The configuration pages of these
new modules were also revised to have a cleaner look and improve
understandability. Code-wise, each data source was already being
handled individually, having a script responsible for retrieving the
data in question. However, the functions responsible for storing and
editing the variables of each data source were all within the same
file, which we had to compartmentalize.

Google Sheats Moodle Class Check
Google Sheets Moodle Class Check
Module Module Module
Google Sheets Moadle Class Check

source plugin source plugin source plugin

GameCourse
QR Module

QR source

QR Module ———» =
plugin

1l

Relational
Database

Fig. 3. GameCourse’s data sources new architecture.

The page where the modules are displayed also lacked organiza-
tion since all the available modules appeared in alphabetical order.
As a consequence, to separate game element modules from data
source modules, two sections were created in the Modules page. In
order for the system to know which section each module belongs
to, changes in the modules’ creation were made. Now, when cre-
ating a new module, its type needs to be specified: "DataSource”
or "GameElement”. Later on, we decided to add a new type called
*Tools” since modules like Fenix, Profiling or Notifications, did not
really fit in any of the already existing types. Now, the Modules Page

within GameCourse has three different sections, as seen in Figure 4,
which culminated into a better organization of the modules.

o v osanen ey

Fig. 4. New Modules Page.

4.1 New Game Elements

We implemented and integrated a total of three new game elements
to the system: Virtual Currency and Streaks, both used in MCP
2021/2022, and Teams. To do so, we had to create the respective
modules that would encapsulate their functionalities. When it comes
to their actual implementation, there are three commonPrequire-
ments that must be met. As such, for each module, we created a
configuration page to support its functionalities, added the neces-
sary tables in the database, and created all the rules that allow these
new modules to have the desired effects, including the functions
needed for the rule.

4.1.1 Virtual Currency. The first game element implemented
was the Virtual Currency. We wanted to create a concept similar to
shopping where students could earn tokens after completing a task
that would then be saved on their wallet and could later be spent
to perform certain tasks. Since this game element was going to be
used for MCP 2021/2022, our first approach was to understand how
the course professors intended on using it and how the students
would earn and spend their tokens.

Students would earn them by peer-grading their colleagues as
well as completing Streaks, a new game element that we discuss
later in Section 4.1.2. Furthermore, they could only spend tokens
on retrying a skill or unlocking a wildcard, a type of skill that is
not bound to dependencies or levels. In addition, it should also be
possible for them to exchange their tokens at the end of the course.

First, we created a prototype of how the this new module was
going to be displayed for the students. The total number of tokens
a students possesses is shown next to the student’s number and in
the Profile Page (Figure 5). Additionally, the cost of a skill and the
total number of attempts made are shown right next to it, as can be
seen in Figure 6.

Then, five tables were added to the database allowing the system
to store all the meaningful information related to this module. One
of the tables stores the general attributes, like the name of the tokens
and tokens-to-XP ratio. The others store each student’s total number

game
u

c. ourse Leaderboard Profile Users Course Settings ~ °

MULTIMEDIA CONTENT PRODUCTION

' Profile

ﬁ Catarina Gongalves - 90709

Latest Awards

' XP Overview

co® ¥

W xPEvolution |W Leaderboard Evolution

Fig. 5. Virtual Currency Prototype - Total amount of tokens.

Attempts done: 2

Cost to retry: 7

Podcast

Attempts done: 0

Cost to try: 1

Fig. 6. Virtual Currency Prototype - Currency in the Skill Tree.

of tokens, the specific Participations they performed that cost them
tokens, and the Participations the system should award or remove
tokens. An example of the latter is, for instance, if the Professors
of a course want to award the students each time they perform a
peer-grade assessment or participate in a lecture. To finalize, we
created all the functions responsible for inserting and updating this
data in the tables.

Finally, we created functions in the Rule System that are respon-
sible for awarding or removing tokens and updating a student’s
wallet. This allowed the creation of rules responsible for performing
these changes in the system.

4.1.2 Streaks. In order to keep track of the tendency towards
consecutive behaviors and awarding students for it, the Streaks
module was implemented. Similar to the Virtual Currency module,
our work began with understanding how this new addition was
going to be used for MCP 2021/2022 including what was required
be displayed within the module’s configuration page and within the
system.

Nonetheless, Streaks are more complex than an in-game currency.
For a streak to be properly implemented, specific information must
be stored. First, each streak should have a name and description so

GameCourse - The Next Level « 5

that a user can easily understand its goal and requirements. Then, an
accomplishment count must be stored so that the system knows
when to award it as well as a counter of valid Participations for each
student, representing the progression made to complete a streak.
Finally, streaks can be time-based, repetition-based, or both. As such,
this should also be stored, including the periodicity that must be
respected, so that the system can perform the correct verifications.

o Streaks (125 XP, 0 Gold)

Constant Gardener

Do five skills with no more than five days between 150 XP 100
them extra credit

Dsofar]

Grader Extraordinaire M W2 / / 10 XP 40
Do the next five peer-reviews assigned to you ~ axtra et

o so far]

Lab Stalker / / 10 XP 40
Attend six consecutive laboratorial classes extracredic

R2sofar]

Fig. 7. Streaks within a student’s Profile page.

In the configuration page of this module, there is a section for the
general attributes and below that another containing a detailed list
of all the existing streaks in the course. Here the user can perform
a set of actions, such as creating a streak, editing, duplicating, or
removing an existing one as well as importing and exporting the
streaks. In the creating and editing streak dialog, a user can establish
all the information mentioned above as well as the streak’s color
and the amount of XP or tokens that should be given to a student
once the streak is completed.

Once this was done, we implemented the functionality required
for the module to work as expected, including the addition of four
new tables in the database. Two of them are responsible for storing
the general attributes of the module and all of the streaks with the
information mentioned above. In the other two, the progression and
Participations made for each streak and student are stored.

This was followed by a crucial part of this module’s development,
its integration in the Rule System. For the streaks to be correctly
awarded, new rules were created. However, there were no functions
in the Rule System that could perform the verifications needed. As
previously mentioned, streaks could be time-based, repetition-based
or both. A repetition-based streak checks for consecutive behaviors,
like attending four consecutive lectures, while a time-based streak
performs time-verifications between behaviors, like doing a total of
three submissions, one every five hours. Additionally, the streaks can
also be awarded repeatedly, which means that once an award for
that streak is given to a student, the streak resets to zero. Therefore,
we created functions responsible for validating, according to the
type of streak and its attributes, the participations each student
made.

The functions created cover all the cases of streaks that were used
in MCP 2021/2022 and other possible verifications that could be used
in future. When it comes to time-verifcations the functions cover the
comparison of timestamps for minutes, hours, days and weeks, only
checking if the participations made respect the streak’s established

6 « C.Gongalves

periodicity. On the other hand, for repetition-based streaks, we
had to be more careful and understand how this information is
stored in the database since each external data source inserts data
in the system with specific information. For instance, to check for
consecutive lab or lecture attendance, we have to use the description
column since it holds the number of the lab/lecture (1, 2, 3, and so
on), as can be seen in Figure 8 . Furthermore, a function responsible
for awarding a streak to a student was also created.

| attended lecture

| attended lecture

| attended lecture (late) | NULL | 2022-06-17 2

| attended lab | NULL | 2022-06-09 1

| attended lab (late) | NULL | 2022-06-13 1.

| NULL | 2022-06-16 2:

| NULL | 2022-66-10 13:

| attended lab

| quiz grade

| a grade
ade

Fig. 8. Examples of consecutive Participations.

4.1.3 Teams. Last but not least, the Teams Module was created.
Implementing a collaborative game element was bound to improve
the diversity of elements in GameCourse since most of them are for
individual practices like skills, streaks and badges. As such, students
can now be assigned to a team and perform evaluations as one.
Using MCP as an example, a course that supports group evaluation,
there is the group presentation, but there are also certain laboratory
classes where the evaluation needs to be done by the whole group.
This grade is given individually to each student but, it can now be
awarded to the team as well.

In the configuration page, a user is able establish the maximum
number of elements a team can have as well as allow teams to
have a name. Creating teams can either be done manually or by
importing a Comma-Separated Values (CSV) file with a specific
format. Additionally, the create or editing page of a team contains a
search bar that where a user can write the name of a student. Below
that, there is a section that lists all the course users that are not yet
inserted in a team and, if anything is typed by the user, that list
will be filtered accordingly. Since there is a maximum number of
elements per team, once that maximum is reached, a warning will
appear on the create/edit team modal while the button to add an
element will disappear (Figure 9). This way the user will not be able
to add any other elements to the team.

X
Edit Team:

2

Select Members:

Fig. 9. Edit Team Modal.

The teams and respective team members are stored in the two
distinct tables in the database. Additionally, we created two other
tables where the total amount of XP and tokens a team possesses
are stored, the teams_xp and teams_wallet, respectively.

To finalize the integration of this new module in the system,
we implemented rule system functions that could be needed in
the future and wrote template rules to be used as references. One
of them takes into consideration MCP and its group presentation,
awarding the XP earned to each team. Nevertheless, new rules can
be easily written due to the suggestion mechanisms of the Rule
Editor or they can also be written based on the existing rules that
award prizes, grades or game elements to users individually.

Additionally, when enabled, this module allows the existence of
a leaderboard specifically for teams. As it can be seen, the Teams
Leaderboard displays the team members as well as the team’s num-
ber, total XP and current level.

"
course b Teams Leaderboard h ’

Teams Leaderboard

Fig. 10. Team Leaderboard.

4.2 Rule System Improvements

Our work within the Rule System began while the MCP 2021/2022
course was being taught. Once students started to do skills that had
dependencies, the rule system would not award them even if all
the preconditions of the respective rule were met or it would crash
trying. For instance, to unlock the “reTrailer” Skill, a student must
first unlock both the "Looping GIF” and "Publicist” Skills. Using
this example, to award a dependant skill like "reTrailer”, its rule
checks, through the rule_unlocked function, if the rules responsible
for awarding the "Looping GIF” and “Publicist” Skills have been
unlocked since this would mean that the awards for those skills
were given.

However, even though this function had worked in the previous
iteration of the course, it no longer did. As such, the system would
not award any skill with dependencies which was a big concern
considering there were 18 different dependent skills in the Skill Tree.
To fix this, we implemented a new function to replace the existing
one that accesses the award table to check if the skills in question
had been awarded to that user.

While exploring the system to check if there were any other bugs,
we discovered that when a game element, like a badge or skill, is
deactivated, its respective rule is not. This meant that the rules of

the deactivated game elements would still be run by the system,
which should not happen. A rule is not active when it contains the
word INACTIVE right below its name, as explained in Section 3.
Furthermore, rules are grouped and stored into separate files, each
for a specific game element. There are also rules that do not belong
in these files, performing other actions that are not to award a game
element, and, as such, are stored in a different file. This organization
allows us to easily find where the rule is stored according to its
purpose.

At this stage, the rule name had to match the one of the game
element so that the system was able to correctly retrieve the rule.
Therefore, we created a function that receives as arguments the
type of the game element (badge, skill, streak, and so on) and the
status the rule should have, i.e., active or not. This way the system
is able to open and read the correct rule file and change the rule
in question. This function is called when the user clicks the toggle
button responsible for activating or deactivating the game element,
which adds or removes the INACTIVE tag from the rule.

4.2.1 Performance Improvements . During MCP 2021/2022, we
also observed a poor performance in the Rule System, more specif-
ically, the time it took to run. With more data being inserted into
the database every time it ran, this problem would aggravate, and
as we got closer to the end of the course, the system would take at
least an hour to finish running or would crash trying. We started
by deactivating the rules that were no longer needed to decrease
the number of verifications done each iteration, thus, decreasing
the time it took. Once the course ended, we began exploring the
problem and found three main issues:

e Autogame would not restart on its own if an error was
thrown. This meant that when it crashed it would remain
stuck in an unsuccessful loop of trying to run until a user
manually fixed this problem.

e A connection to the database per function in the RuleSys-
tem. As such, each time the Rule System ran, several connec-
tions would be made which can be extremely time consuming.

e Repeated MySQL queries executed throughout the code
that, even when their results remain unchanged during the
system’s execution.

Nevertheless, using the Python time and logging modules, we
measured the time each rule and its functions would take to run
for a single student. We discovered that the Dictionary functions
responsible for retrieving data were taking the longest to execute,
with some of them taking almost five seconds. These functions are
stored in specific libraries and the system retrieves them through a
socket, which could be the reason they were taking so much time. In
addition, the functions responsible for awarding a particular game
element, grade, or prize were also very time-consuming, with the
award skill and award streak taking the longest. These functions
are of extreme importance to the system since most rules within a
course rely on them to gather all the specific logs of a certain target
and produce the desired and expected outcome like, for instance,
awarding a streak after its requirements are met. As a consequence,
rules that were dependent of these functions ended up taking almost
eight seconds in total to execute which, for a course with around
100 users, would culminate in an excessive amount of time to run

GameCourse - The Next Level « 7

the Rule System, something that we had already experienced in
MCP 2021/2022.

To fix this, we replaced the functions in question with new ones
that access the database directly to retrieve data according to the
arguments given. We also performed a refactor of the functions
responsible for awarding the game elements, grades or other prizes.
The award_skill and award_streak functions had a lot of conditional
statements that should be done in a different function and called as
a precondition in the rules. After their implementation, we ran the
Rule System once more to measure the time these new functions
took. A notable difference difference in times was observed with
some rules taking, approximately, one-fifth of the time they did
before.

Then, we replaced all the connections to the database that were
made and closed in each function by a single connection made once
the Rule System starts that is closed once the system finishes run-
ning. Additionally, we created a data broker to store queries and its
results. The data broker consists of two nested Python dictionar-
ies, one for course-related queries and the other for students. We
chose to use dictionaries over the other data structures since they
are faster, having a constant time complexity O(1) for most of the
operations to be performed. As such, a query whose results remain
unchanged throughout the Rule System’s execution are stored in
the data broker as a key-value pair and the system only needs to
retrieve the result, avoiding unnecessary query executions.

To conclude, we fixed the issues related with AutoGame not
restarting on its own taking advantage of the logging mechanism.
Each time something is written to the log file of a course, a separator
before and after is added. As such, when the Rule System finishes
running, the file ends with the separator, as can be seen in Figure 11.
However, when an error occurs this does not happen. This allows
us to check whether an error as occurred or not. Consequently, we
created a function responsible for reading the last line of the file
and, if it did not contain the separator, the Rule System needed to
be restarted.

[2022/04/29 16:03 1] AutoGame finished running.

Autogame ran for the following targets:
[130, 209, 368]

[130, 209, 368]

Fig. 11. Log file section separator.

4.2.2 Automatically Generated Rules . Another important im-
plementation made and integrated in the system was the auto-
matic generation of rules. This functionality, although already im-
plemented for the Skills, was incomplete and faulty. When a user
created a new Skill, the system was able to create the respective rule
that would award it. However, if a user edited a skill, the rule would
remain unchanged. As a consequence, the results of firing this rule

8 « C.Gongalves

would most likely be wrong and produce, for instance, unwanted
awards.

The automatic generation of rules requires the creation of tem-
plates for the system to use. To create rule templates for a game
element, we need to understand what information they should hold
and how many are needed. For instance, for skills, there are two
templates where the preconditions vary: one is for skills that have
normal dependencies and the other for skills that depend on wild-
cards.

As such, we created the necessary templates for the only remain-
ing game elements that need rules, which are badges and streaks.
Then, the functions responsible for using and changing the tem-
plates according to the element were created. Now, when a user
creates a new game element, its rule is automatically created, and, if
a game element is changed, the respective modifications are made
to the rule. Additionally, we decided to keep a record of the changes
made to the rule by commenting what is going to be changed and
writing the updated version below. This allows a user to know what
was changed.

Furthermore, if the Virtual Currency module is enabled, some
rules would need to be updated to include currency-related func-
tions. However, even though these functions are implemented in a
way that does not require any changes to be made, we cannot guar-
antee that the user would want these functions. As a consequence,
we decided to keep them commented within each template to allow
the users to freely decide whether to include it or not.

rule: reTrailer
when:

#CHANGED:
#combol = rule_unlocked("Course Logo", target) and rule_unlocked("Movie Poster”, target)
#combo2 = rule_unlocked("Album Cover", target) and rule unlocked("Publicist”, target)
#combol or combo2
wildcard = GC.skillTrees.wildcardAvailable("<skill-name>", "<tier-name>", target)
combol = rule unlocked("Publicist", target) and rule unlocked("Album Cover", target)
combo2 = wildcard and rule_unlocked("Course Logo", target)
combol or combo2

skill _based = combol

use_wildcard = False if skill based else True

logs = GC.participations.getskillParticipations(target, "reTrailer")
rating = get_rating(logs)

rating >= 3

NOTE:
Virtual Currency Enabled ? Uncomment code below : Delete

valid_attempts = get_valid attempts(target, "reTrailer")
valid_attempts >

(new_total, removed) = get_new_total(target, valid_attempts, rating)
new_total >= 0

then:
#CHANGED:
#award_skill(target, "reTrailer", rating, logs)

award_skill(target, 'reTrailer", rating, logs, use wildcard, "Wildcard")
update_wallet(target, new_total, removed, logs)

Fig. 12. reTrailer Rule after changing the skill dependencies.

Finally, since there are rules that require a participation type to
be specified, once game element is created or edited, the user is
redirected from the current page to the editing page in the Rule
Editor, displaying the rule. This way, a user can check if the rule
was correctly written and perform any changes needed.

5 EVALUATION

The Streaks and Virtual Currency modules were developed and
integrated within GameCourse in time for them to be used during
the Multimedia Content Production 2021/2022 course. During the
seven- week period in which the course was taught, we were able
to gather feedback and improve the developed functionalities by

fixing any relevant bugs that were found. Before the course began,
we created a GameCourse test environment where we could test
the modules beforehand to guarantee they were properly working.
This was done by testing if the changes made within the configura-
tion pages were having the proper effect in the database as well as
verifying whether the new rules were correctly implemented and
awarding streaks and tokens.

We were able to find and fix a few bugs, most of them related
to the time verifications for time-based streaks. Since the streak-
related rules are complex and of extreme importance, it was clear
that manually populating the database and running the Rule System
to test them was not an optimal approach. As such, we created a
PHP script that covers eight different streaks and that the users
can simply run to check if the streaks are properly working. So
that a user does not have to worry about the database, the script is
responsible for both populating the database to set up for the tests
as well as cleaning up afterward, which guarantees that it starts
with a clean environment every time it is run. After setting up the
environment, the script makes a call to the function that runs the
Rule system so that the necessary rules are fired. Afterwards, it
checks if the correct awards were given.

Even though we tried to cover all the possible error scenarios,
some streak-related bugs within the Rule System functions appeared
throughout the course and were pointed out to us by the students
discovered. The first bug that appeared was related to the streaks’
progression: if a student only had one valid Participation for a streak,
it was not being counted as a Participations for the progression.
This was due to the fact that, within the code, the system would
iterate through the received Participations in pairs. Therefore, in the
beginning of the functions responsible of their validation, we added
a verification regarding the number of Participations received as
argument. If there was only one, we would add it to the progression
of the streak since the first Participation is the one used for the first
comparison and, as such, is always valid.

Another bug that was caught during MCP was that the rules were
being fired for professors that had previously been students in a
different course within the system. IN MCP 2021/2022, there were
two professors that were enrolled as students in MCP 2020/2021,
a course that, although inactive, still existed in GameCourse and,
subsequently, in the database. We detected that rules were being
fired for those two Professors. The root of this problem was that
the queries responsible for retrieving the Rule System targets did
not take into consideration the existence of several courses within
the system. As such, it would just retrieve users with the Student
role without specifying the course. To fix this, we had to filter the
results by course, adding this verification to the query.

5.1 User Tests

To evaluate the success of our implementation regarding the new
game elements, we resorted to user testing since we could observe
real users attempt to complete a set of tasks. This allowed us to
comprehend if the new modules were easily understood by the
users and, if not, what the sources of confusion were. We came up
with a set of 14 tasks that covered all three modules. Before giving
out the list of tasks to the users, we randomized its order for each

user to assure that there was no influence caused by the learning
curve.

We conducted tests with 21 participants, which is a number above
the minimum number required for a summative analysis. The most
common age range of the participants was 21 to 25 years old. How-
ever, there were some participants’ were between the ages of 16 to
20, 36 to 40, and 56 to 60. Six participants had previously used Game-
Course as students while the remaining fifteen were not acquainted
with the system.

Once a participant was ready to start a task, we would start the
timer. After the task was complete, the participants were asked to
rate that task in a scale of 1 (Very Difficult) to 7 (Very Easy) and
also had to answer a questionnaire whose answers would allow us
to calculate the NASA Task Load Index. Finally, once the all the
tasks were done, the participants had to answer a final questionnaire
where they were asked about their overall experience and if they
had any suggestions to improve the system.

As it can be seen in Table 1, participants did not have difficulty in
performing 12 out of 14 of the defined tasks. On the other hand, tasks
number 5 and 6 had a success rate of 76,19% and 47,62%, respectively.
We can also observe that the largest number of errors occurred in
tasks 5, 6, 12, 13 and 14, two of them having the lowest success rate.
These tasks either required the creation of two distinct streaks, each
with different properties, or required the creation, modification or
import of a teams into the system. Additionally, when it comes to
the time each participant spent of a task, we can conclude that tasks
5 and 6, the ones with the lowest success rate, were the most time
consuming.

Additionally, we calculated the NASA-TLX so that we could better
understand the amount of mental and physical effort the users had
to apply to perform each task. The average score obtained was
18.04, which is a relatively low score considering it can go from 0
to 100. Consequently, this reflects that the users’ perceived mental
workload when performing the tasks was low. Moreover, at the end
of the questionnaire given to the users, all the 10 questions of the
System Usability Scale (SUS) were asked so that we could calculate
the system’s overall SUS score. After calculating the sum of all the
individual scores, we obtained a 89.88 average SUS score, which is
considered an excellent result.

5.2 Performance Testing

Finally, performance testing was conducted to allow us to compre-
hend if the changes made in the Rule System had indeed improved
its performance. We had already tested out the time each function
and rule took to individually run for a single student, however, we
had to apply it to several students firing a rule for each one, which
resulted in awards being given.

We performed tests for 20, 40, 60, 80, and 100 students, awarding a
game element per student. Since the rules responsible for awarding
streaks and skills had proven to be the most time-consuming and
were the main focus of the changes made in the Rule System, we
only fired those specific rules (one for each student). We can observe,
in Figure 13, the execution times of the oldest and newest versions
of the Rule System took to fire the same rules for a different number
of students. As can be seen, for smaller groups of students the

GameCourse - The Next Level « 9

Table 1. Success Rate, mean (x) and standard deviation (o) values of the
information collected from each task.

Task Success Time (s) | Nr. of Clicks | Nr. of Errors
Rate (%) x o x o x o

1 90.48 20.0 | 6.5 3 0.45 0.10 | 0.30

2 100 31.4 | 16.5 | 6.86 | 0.57 0 0

3 100 27.6 | 11.0 | 5.24 | 0.44 0 0

4 100 6.4 5.5 2 0 0 0

5 76.19 50.4 | 15.7 | 8.76 | 0.94 0.29 | 0.56

6 47.62 429 | 209 | 9.86 | 1.62 0.71 | 0.85

7 100 23.6 | 11.9 | 481 | 0.75 0 0

8 100 7.8 10.7 | 2.14 | 0.65 0.05 | 0.22

9 100 4.2 3.8 1.38 | 0.80 0 0

10 100 6.5 6.5 1.19 | 0.60 0 0

11 100 114 | 8.2 2 0 0 0

12 100 253193 6.33 | 0.66 0.76 | 0.46

13 95.24 19.6 | 10.8 | 5.10 | 0.70 0.17 | 0.51

14 100 21.7 | 4.6 5.05 | 1.02 0.33 | 0.48

differences between the execution times are smaller. Nonetheless,
the new version is indeed faster than the old one, and, for groups
with more than 40 students, it takes less than half the time the old
version took, which is a significant improvement.

450

400

350

N N w
=3 @ <}
S o S

Execution Time (seconds)

-
@
5

100

50

] 20 40 60 80 100
Number of Students

—=—New Version Old Version

Fig. 13. Rule System execution times by number of students.

10 « C.Gongalves

The results from these tests were positive since the execution
times for different users and awards given had significantly de-
creased, which matched our expectations.

6 CONCLUSIONS AND FUTURE WORK

Even though GameCourse offers several functionalities that con-
tribute to a better gamified experience, our work aimed to improve
the existing ones as well as implement and integrate new modules
to increase game element diversity. Additionally, we also intended
to improve the Rule System’s performance, a crucial part of Game-
Course, that was taking a long time to execute.

With those goals in mind, our work, GameCourse - The Next
Level, added three new game elements, Streaks, Teams and Virtual
Currency. The use of the Streaks and Virtual Currency Modules in
MCP 2021/2022 revealed some vulnerabilities in their implementa-
tions that we did not forsee, but were able to quickly fix. Additionally,
the feedback obtained from the students at the end of the course,
allowed us to conclude that, between these two new game elements,
Streaks were considered more engaging. Although there is still room
for improvement, we can conclude that these new game elements
were valuable additions to GameCourse.

Additionally, to understand if the new modules were correctly
integrated, and were of easy understandability for a user, we con-
ducted user tests with 21 participants. The tests gave us the needed
insights regarding any areas of confusion and weaknesses of our
work. Overall, the user tests allowed us to further improve the
modules’ functionalities and usability.

Lastly, we improved the Rule System’s performance by tackling
the four main issues identified. To evaluate what were the effects of
our work in the system’s performance, we conducted performance
tests. The results of the tests performed showed that the new version
takes less than half the time the old version took, which is a signif-
icant improvement. This allowed us to confirm that we improved
the poor performance of the Rule System, achieving our goals.

However, there still is room for improvements. When it comes
to the Teams module, a way of automatically generating teams
and randomly assigning students to them should be explored and
implemented since it may suit certain courses better. In addition,
the system could be further improved to allow a more complete
integration of the teams since the whole system is extremely tailored
to individual Participations. This means replicating how the users
data is dealt with and applying it to teams.

In addition, regarding the Rule System, there are changes that
can be made. The connector module could be separated into files,
each containing the functions used in the same context, which
would culminate in a better organization of this part of the system.
Additionally, the automatic generation of the rules should be a global
functionality that each module can simply use. As of now, if a user
wants to have this functionality within a new module, it needs to
replicate the existing code to then apply it to the module.

Moreover, the Rule Editor could have a highlight functionality
that could, for instance, give a specific color to a certain part of
the rules like what is done in text editors. This would be extremely
advantageous for users to be able to visually differentiate from the

actual parts of the rule that are going to be run and the ones that
are commented.

REFERENCES

Tugce Aldemir, Berkan Celik, and Goknur Kaplan. 2017. A Qualitative Investigation of
Student Perceptions of Game Elements in a Gamified Course. Computers in Human
Behavior 78 (10 2017). https://doi.org/10.1016/j.chb.2017.10.001

Patrick Buckley and Elaine Doyle. 2017. Individualising gamification: An investigation
of the impact of learning styles and personality traits on the efficacy of gamification
using a prediction market. Computers & Education 106 (2017), 43-55.

Jen-Wei Chang and Hung-Yu Wei. 2016. Exploring engaging gamification mechanics
in massive online open courses. Journal of Educational Technology & Society 19, 2
(2016), 177-203.

David Codish, Israel Beer-Sheba, and Gilad Ravid. 1989. PERSONALITY BASED GAMIFI-
CATION: HOW DIFFERENT PERSONALITIES PERCIVE GAMIFICATION Research
in Progress. No. Davis 2012 (1989).

Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. 2011. From game
design elements to gamefulness: defining" gamification”. In Proceedings of the 15th
international academic MindTrek conference: Envisioning future media environments.
9-15.

Tulian Furdu, Cosmin Tomozei, and Utku Kose. 2017. Pros and cons gamification and
gaming in classroom. arXiv preprint arXiv:1708.09337 (2017).

Priscilla Garone and Sérgio Nesteriuk. 2019. Gamification and learning: A compara-
tive study of design frameworks. In International Conference on Human-Computer
Interaction. Springer, 473-487.

Stuart Hallifax, Audrey Serna, Jean-Charles Marty, Guillaume Lavoué, and Elise Lavoué.
2019. Factors to consider for tailored gamification. In Proceedings of the Annual
Symposium on Computer-Human Interaction in Play. 559-572.

Tiffany Jiang. 2018. Research: In-game streaks. https://blog.prototypr.io/research-in-
game-streaks-92bfb229e776

Ana Carolina Tomé Klock, Isabela Gasparini, Marcelo Soares Pimenta, and Juho Hamari.
2020. Tailored gamification: A review of literature. International Journal of Human-
Computer Studies 144 (2020), 102495.

Jeanine Krath, Linda Schiirmann, and Harald FO von Korflesch. 2021. Revealing the
theoretical basis of gamification: A systematic review and analysis of theory in
research on gamification, serious games and game-based learning. Computers in
Human Behavior 125 (2021), 106963.

Elias Kyewski and Nicole C Kramer. 2018. To gamify or not to gamify? An experimental
field study of the influence of badges on motivation, activity, and performance in
an online learning course. Computers & Education 118 (2018), 25-37.

Andrzej Marczewski. 2015. Even Ninja Monkeys like to play. London: Blurb Inc (2015).

Ahmed Hosny Saleh Metwally, Lennart E Nacke, Maiga Chang, Yining Wang, and
Ahmed Mohamed Fahmy Yousef. 2021. Revealing the hotspots of educational
gamification: An umbrella review. International Journal of Educational Research 109
(2021), 101832.

Lennart E Nacke, Chris Bateman, and Regan L Mandryk. 2014. BrainHex: A neurobio-
logical gamer typology survey. Entertainment computing 5, 1 (2014), 55-62.

Daniel Pratt. 2002. Good Teaching: One Size Fits All? New Directions for Adult and
Continuing Education 2002 (03 2002), 5 - 16. https://doi.org/10.1002/ace.45

Lisa-Maria Putz, Florian Hofbauer, and Horst Treiblmaier. 2020. Can gamification help
to improve education? Findings from a longitudinal study. Computers in Human
Behavior 110 (2020), 106392.

Luiz Rodrigues, Armando M Toda, Paula T Palomino, Wilk Oliveira, and Seiji Isotani.
2020. Personalized gamification: A literature review of outcomes, experiments,
and approaches. In Eighth International Conference on Technological Ecosystems for
Enhancing Multiculturality. 699-706.

Richard M Ryan and Edward L Deci. 2000. Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychology 25, 1 (2000),
54-67.

Gustavo F Tondello, Alberto Mora, Andrzej Marczewski, and Lennart E Nacke. 2019.
Empirical validation of the gamification user types hexad scale in English and
Spanish. International Journal of Human-Computer Studies 127 (2019), 95-111.

Gustavo F Tondello and Lennart E Nacke. 2020. Validation of user preferences and
effects of personalized gamification on task performance. Frontiers in Computer
Science 2 (2020), 29.

Nannan Xi and Juho Hamari. 2019. Does gamification satisfy needs? A study on the rela-
tionship between gamification features and intrinsic need satisfaction. International
Journal of Information Management 46 (2019), 210-221.

Zamzami Zainuddin, Samuel Kai Wah Chu, Muhammad Shujahat, and Corinne Jacque-
line Perera. 2020. The impact of gamification on learning and instruction: A system-
atic review of empirical evidence. Educational Research Review 30 (2020), 100326.

https://doi.org/10.1016/j.chb.2017.10.001
https://blog.prototypr.io/research-in-game-streaks-92bfb229e776
https://blog.prototypr.io/research-in-game-streaks-92bfb229e776
https://doi.org/10.1002/ace.45

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tailored Gamification
	2.2 Player Profiling

	3 GameCourse
	4 Improving GameCourse
	4.1 New Game Elements
	4.2 Rule System Improvements

	5 Evaluation
	5.1 User Tests
	5.2 Performance Testing

	6 Conclusions and Future Work
	References

