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Abstract—Due to the intermittent and variable nature of
wind, Wind Power Generation Forecast (WPGF) has become
an essential task for power system operators, who are looking
for a reliable wind penetration into the electric grid. Since there
is a need to forecast wind power generation accurately, the main
contribution of this thesis is the development, implementation and
comparison of WPGF methods to be used by Distribution System
Operators (DSOs). The methodology applied comprised five
stages, pre-processing, feature selection, forecasting models, post-
processing and validation; using historical wind power generation
data (measured at secondary substations) of 20 wind farms
connected to the Medium Voltage (MV) distribution network of
Portugal.

After comparing the accuracy of eight different models in
terms of their Relative Root Mean Square Error (RRMSE),
Extreme Gradient Boosting (XGBOOST) appeared as the best-
suited forecasting method for wind power generation. The best
average RRMSE achieved by the proposed XGBOOST model
for 1 year training (JAN-DEC of 2020) and 6 months forecast
(JAN-JUN of 2021) corresponds to 13.48%, outperforming the
predictions of the Portuguese DSO by more than 20%.

Index Terms—Medium Voltage Distribution Network, Short-
Term Forecasting, Wind Power Generation Forecast, Extreme
Gradient Boosting (XGBOOST)

I. INTRODUCTION

Nowadays, the world is going through an energy transition
process from fossil fuels to renewable energies, that aims
to reduce the environmental impact of the energy sector. To
increase the penetration rate of Renewable Energy Sources
(RES) in power systems, significant incentive schemes and
policies have been considered by governments. The European
Union (EU) under the 2030 climate and energy framework for
the period 2021-2030 is part of the ambitious European Green
Deal. The framework commits the EU to reduce greenhouse
emissions at least 40% (as compared to 1990 levels), to
increase the amount of renewable energy in the energy mix
by at least 32% and to improve energy efficiency by at least
32.5% [1]. To achieve those targets, a high penetration of RES
like solar, wind, hydropower, geothermal, biomass, biofuels,
waves or tidal is necessary.

Out of all the available RES, Solar Photovoltaic (PV)
and wind are considered now the most abundant, developed,
economically viable and commercially accepted worldwide
[2]. Without considering hydropower, wind has the higher
installed capacity of the renewables and according to the

Global Wind Report 2021, year 2020 was the best year in
history for the global wind industry.

Since supply and demand should be equal at all times but
wind power generation depends on the availability of wind,
that is a weather dependent source, the integration into the
existing electricity supply system brings some challenges at
the level of secondary substations that need to be addressed
by DSOs of power networks. The challenges include system
stability and reliability, due to grid congestion or intermittency
of supply; system balance, that requires a strong information
exchange between the DSO and the Transmission System
Operator (TSO) or flexibility services (voltage support and
demand-side response) to ensure that the network is stabilized
amid the varying energy generation and consumption [3].

Here is where WPGF appears as one of the most efficient
ways to overcome some of these problems and to help the
power system operators to reduce the risk of unreliable elec-
tricity supply. The development of new techniques to improve
understanding of wind power generation, through simulation,
forecasting, distribution curve fitting, filtering and modeling,
allows making better decisions about expansion of the wind
sector and better management of the electricity system [4].

Thus, this thesis intends to develop and implement a
framework with several forecasting models for wind power
generation in wind farms connected to the MV distribution
network of Portugal. Specifically Persistence, Auto-Regressive
(AR), Auto-Regressive with Exogenous Variable (ARX), Long
Short-Term Memory (LSTM) neural network, XGBOOST,
Random Forest (RF), Decision Trees (DT) and Support Vector
Machine (SVM) models are developed and tested using real
data measured at the secondary substations and provided by
the Portuguese DSO.

This data covers seven years of information (2015-2021) of
power generated by 20 wind farms in Portugal mainland. It
also includes the DSO predictions for the years 2020 and 2021,
that are used to compared with our models results (through an
error metric). Different meteorological parameters that might
influence the forecast results like temperature, radiation, wind
speed or wind direction are also considered into the models
and that weather data comes from the Instituto Português do
Mar e da Atmosfera (IPMA). Two years of meteorological
data are available for the analysis, specifically 2020 and 2021.
The main goal of this work is then to improve the DSO
performance by reducing the error as much as possible.



The remainder of the thesis is organized as follows: Section
II presents a literature review related to wind power and
wind speed forecasting. Section III explains systematically
how the work was done. Section IV shows the forecast results
obtained for each method and the comparison in terms of error
performance between them and also with the DSO predictions
provided. This section also includes the different tests or
improvements performed to the final method chosen. Finally,
Section V summarizes the main outcomes of the thesis, the
limitations encountered in the process and suggests future
work related to the topic.

II. LITERATURE REVIEW

Wind power generation forecast have been a topic of in-
terest for many researchers during the recent years, due to
importance of integrating RES to the power system and all
the implications that it brings. Hence, this section presents a
review of regression and Artificial Intelligence (AI) forecasting
methods and a general overview of different publications and
studies related to WPGF.

A. Wind Forecast Classification
A forecast system is characterized by its time horizon,

which is the future time period for which the wind generation
will be predicted. Based on [5] wind forecasting can be sep-
arated according to the prediction horizon, into the following
categories:

• Very-short-term forecasting: Few seconds to 30 minutes
ahead.

• Short-term forecasting: 30 minutes to 6 hours ahead.
Mainly useful for operational purposes (economic load
dispatch planning, load increase/decrease decisions).

• Medium-term forecasting: 6 hours to 1 day ahead. Aim
to increase operational security of day ahead electricity
markets and corroborate online/offline decisions.

• Long-term forecasting: Multiple days ahead to 1 year
or more. Provide information for power system risk
assessment and also to identify potential for wind power
generation in specific areas, providing valuable data for
energy planners [4].

B. Wind Forecast Methods
Based on the analysis of the literature, wind forecast meth-

ods can be divided into six overall groups: Persistence method,
physical methods, statistical methods, Artificial Neural Net-
works (ANN) based models, hybrid methods and new models.

Persistence method uses the simple assumption that the
value at a certain future time will be the same as it is
when the forecast is made. It is based on the assumption
of a high correlation between present and future values and
produces accurate predictions for very-short term forecasts [6].
As expected, the accuracy of this model degrades rapidly with
the increasing prediction lead time [7], so it is normally used as
a reference to evaluate the performance of advanced methods.

Physical methods use forecast values from a Numerical
Weather Prediction (NWP) model as an input to calculate the
wind power generation based on the power curve.

Statistical methods are based on training with measured
data (time series). They are easy to model, capable to provide
timely prediction [7] and mostly used for short-term forecast-
ing. Several types of time series models may be considered,
but the most popular are AR and its variants ARX, ARMA
and ARIMA.

ANN can identify the non-linear relationships between input
features and output data. ANN are typically composed of
nodes (or neurons) that are distributed across different layers,
namely input, hidden and output layers. Each node in a layer is
linked to the ones in the next by means of a weight parameter
that measures the strength of that connection [8]. There are
several kinds of ANN but the most common neural networks
used for WPGF are: Feed Forward Neural Network (FFNN),
Back-Propagation Neural Network (BPNN) and Recurrent
Neural Network (RNN), which also includes a more advanced
version called LSTM neural network.

Hybrid methods refer to the combination of different fore-
casting methods with the aim of retaining the merits of each
technique and improve the overall accuracy [9]. It includes
the combination of physical and statistical methods, the com-
bination of alternative statistical methods or the combination
of models for short-term and medium-term forecasting for
instance.

The last group corresponds to some novel wind forecast
models that have been developed in recent years. Between
the most interesting ones, XGBOOST, Adaptative Neural
Fuzzy Inference System (ANFIS), RF and SVM models have
achieved the most accurate predictions for wind power gener-
ation.

Some of the most relevant papers found in the literature
about WPGF are:

A study made by M.Duran et al [10], that tested an ARX
model for wind power prediction using wind speed as exoge-
nous variable. The results for a 24 hours time horizon showed
a significant improvement in accuracy, when comparing the
mean error of their model with persistence and a traditional
AR model. According to [10], when compared with AR the
improvement of ARX is about 14% and about 26% when
compared with persistence.

A paper of J.Catalao [11] that presents a successful ap-
plication of ANN in combination with wavelet transform for
short-term wind power forecasting in Portugal. The model
proposed predicts the value of wind power for 3 hours ahead
and it is compared with persistence, ARIMA and other neural
network approach. The results of the study confirmed that
this model is effective, since the Mean Absolute Percentage
Error (MAPE) has an average value of 6.97%, outperforming
the other methods analyzed in [11]. Also, the introduction of
the wavelet transform enables a reduction of the error when
compared with the normal neural network.

A model developed by M.Mabel et al [12] to forecast wind
power generation of seven wind farms in Muppandal, India. A
BPNN is implemented using three input variables: wind speed,
relative humidity and generation hours. The model accuracy
is evaluated then by comparing the predicted power with the



actual measured values, using two years of training and one
year of forecast. The results are satisfactory and in agreement,
since the overall percentage error obtained was 4%.

A study from H.Zheng et al [13] that proposes a model
for short-term wind power generation forecast based on XG-
BOOST, with weather similarity analysis and feature engineer-
ing. Hourly wind power generation is predicted for the week
between April 21st and 28th of 2017, using the data from
January 1st of 2016 to April 20th of 2017 as training. The
results of the proposed model are compared with a BPNN,
RF, SVM and a single XGBOOST model. Among all the
methods, XGBOOST produced the highest accuracy of predic-
tion, while weather similarity analysis and feature engineering
significantly improved the accuracy of the forecasting results
when comparing with the single XGBOOST model.

A paper of Y.Kassa et al [14] that presents an ANFIS based
approach for one day ahead hourly wind power generation
forecas. The proposed model is trained with historical wind
speed and wind power data of a 2.5 MW rated wind turbine
installed in Beijing, using one year of information. The per-
formance of the ANFIS model is therefore evaluated against
persistence, a BPNN and a hybrid method and the results
demonstrated that ANFIS outperformed all other methods
tested, achieving an average MAPE of 6.88%.

A study from L.Fugon et al [15] that evaluates three
different models for short-term WPGF. The models analyzed
are ANN, RF and SVM, while three wind farms in France
are considered in the analysis. The data used corresponds to
a time series of hourly power production for a 18 months
period, specifically from July 2004 to December 2005. For the
same period, NWP of Meteo France are used, considering two
meteorological variables, wind speed and gust wind direction.
The forecast is made once a day for time horizons from 0
to 60 hours ahead (3-hour resolution) and the results revealed
that RF outperformed the rest of the models.

In summary, the literature review showed that WPGF is an
extend task that depends on the time horizon of the forecast,
the resolution and quantity of data used or the meteorolog-
ical variables considered. There is not a clear method that
outperforms all others for WPGF and that is the reason why
this thesis develops and compares different methods. The main
focus is to find the model that best fits the characteristics of
the wind farms analyzed and considering that the sample of 20
wind farms studied represent 10% of the total number of wind
farms connected to the MV distribution network of Portugal,
the results might be significant for the DSO.

III. METHODOLOGY

The methodology proposed in this thesis corresponds to the
five stages presented in Figure 1 and described in this section.

Fig. 1. Methodology stages

A. Pre-Processing

This stage intends to prepare the raw data and make it
suitable for the forecasting models by removing the outliers
and by dealing with missing data.

In the case of outliers, all the data points that present a value
of power generation higher than the installed capacity of the
wind farm to which they belonged, are considered outliers
and therefore are removed from the datasets. Negative values
of power, if they exist, are considered inconsistent data points
and are adjusted to zero.

To deal with missing data, several strategies are applied to
fill in the gaps. All the strategies are specifically based on
two factors, the position (where the data is missing) and the
quantity (number of consecutive values that are missing).

In case the missing data is located at the beginning of
the dataset, instead of trying to fill the missing values, the
algorithm will decrease the length of the training set to the first
value that is available but respecting the minimum quantity
of data defined. If in the training set 50% or more of the
values are missing, then no forecast is done and the training
set becomes invalid. On the other side, if the missing data is
located at the end of the dataset, a calculation based on the
median is used to fill in the missing values.

When the missing data is not located on the extremes but it
is in the middle of the dataset (having available values before
and after the gap), four different scenarios are considered:

• If the missing data correspond to one hour (4 data points)
or less, the interpolation approach is used. Since only
a small number of values are missing, a straight line
between both sides gives a good approximation of the
missing values.

• From one hour (4 data points) to one day (96 data points)
of missing data, an approach based in adjusting the
profile of the previous day is used. It considers the time
where the missing data is found and also the previous
day information for that specific moment, to make a
normalization and adapt it to the current day.

• If the missing data goes from one day (96 data points)
to one week of 5 days (480 data points), again a median
approach is used, but in this case the day of the week
and the exact time where the data is missing are also
considered. It is relevant to mention at this point that
only real values contribute to the median, values created
by the missing data algorithm are not taken into account
in the median calculation.

• For more than one week (more than 480 data points)
of missing values, the gap is not filled because creating
artificial values for long periods of time may have a
negative effect in the forecast models and consequently
in the results. The approach in this case, is to remove the
dates that contain the large periods of missing data from
the training set, as long as the minimum length defined
for the training set is respected.



B. EDA and Feature Selection

Exploratory Data Analysis (EDA) is the process where the
user look at and understand the data with statistical and visu-
alization methods. To have an idea about the data contained in
the IPMA dataset, Table I presents some descriptive statistics
of wind farm 15. The variables T and R stand for temperature
and radiation.

TABLE I
DESCRIPTIVE STATISTICS OF WIND FARM 15

Power
(kW )

T
(K)

R
(W/m2)

Wind
Speed
(m/s)

Wind
Direction

(◦)

Count 70,176 70,153 70,153 70,153 70,153
Mean 7,834.07 288.58 735.84 7.01 241.51

Std Dev 7,177.94 4.95 729.82 2.80 109.90
Min 0.00 272.94 0.00 0.14 0.02

25th Perc 1,600.00 285.25 86.43 4.93 157.24
50th Perc 5,610.00 288.11 524.35 6.92 284.33
75th Perc 13,102.50 291.45 1,193.59 9.08 338.96

Max 29,705.29 310.58 2,814.88 16.32 359.98

Feature selection consists in determine which features (input
variables) will be used in the forecasting models. Only a few
variables in the dataset are useful for building the models and
the rest of the features are either redundant or irrelevant. If we
input the dataset with all these redundant or irrelevant features,
it may negatively impact and reduce the overall performance
and accuracy of the models [16].

To select the appropriate features, a correlation matrix,
which provides the relationship between variables is used.
Figure 2 shows the correlation matrix of wind farm 15.

Fig. 2. Correlation matrix of wind farm 15

Based on the correlation matrix, only wind speed and
wind direction features are selected to forecast the power
generation. Wind speed presents the higher correlation as
expected, followed by wind direction. The rest of the variables
are discarded because they have either negative or very low
correlation.

C. Forecasting Models

Once the outliers are removed, the missing values are filled
or handled and the feature selection has been done, the final
dataset is divided into the following two subsets:

• Training set, data used by the model to discover and learn
patterns between the features and the forecast variable,
power.

• Test set, data on which the power predictions are gen-
erated. Correspond to unseen data used to evaluate the
performance of the model.

The training set is normally larger than the test set because
the idea is to feed the model with as much data as possible,
to learn meaningful patterns and then apply the things learned
to create predictions on unseen data.

Eight different forecasting models are implemented to pre-
dict the power generation of the 20 wind farms, starting from
persistence (to have a benchmark), passing trough regressive
models, a neural network and some newer models.

Specifically, the following forecasting models are tested:
1) Persistence
Persistence forecast corresponds to the power measured at

the same time instant from the previous day (96 time intervals
before the desired forecast time instant). It can be formulated
as:

X̂(t) = X(t− 96) (1)

Where X̂(t) is the wind power forecast value at certain
instant of time and X(t−96) is the wind power value measured
96 time intervals before.

2) Auto-Regressive (AR)
AR(p) model relates p past observations to the current value

Xt as [17]:

Xt = µ+

p∑
i=1

φiXt−i + εt (2)

Where µ is the mean value, φi is a coefficient which reflects
each past observation Xt−i influence on current value and εt
is the actual stochastic perturbation.

3) Auto-Regressive with Exogenous Variable (ARX)
ARX model is an auto-regressive model with exogenous

inputs that can described as [18]:

Xt = µ+

p∑
i=1

φiXt−i +

nx∑
i=1

ηibt−i + εt (3)

Where ηi is the exogenous coefficient and nx is the order
of the exogenous inputs.

4) Long Short-Term Memory (LSTM) Neural Network
LSTM is one of many types of RNN. Since RNN cannot

store long time memory, LSTM proved to be very useful in
forecasting with long time data based on ’memory line’. In a
LSTM the memorization is performed trough gates and every
node consists of a set of cells responsible of storing passed data
streams. To develop the LSTM model in Python, the library
tf.keras.layers.LSTM was used.



5) Decision Trees (DT)
Present a tree-like structure, made up of different nodes.

The root node is the start of the decision tree, which is
usually the whole dataset. Leaf nodes are the endpoint of a
branch, or the final output of a series of decisions. The features
of the data are internal nodes and the outcome is the leaf
node [19]. To develop the DT model in Python, the library
sklearn.tree.DecisionTreeRegressor was used.

6) Random Forest (RF)
Combines several decision trees and uses the majority vot-

ing of the individual trees to find the overall class. It consists
in three steps: randomly selecting training data when making
trees, choosing some subsets of features when splitting nodes
and employing only a subset of all features for splitting each
node in each simple decision tree. To develop the RF model in
Python, the library sklearn.ensemble.RandomForestRegressor
was used.

7) Extreme Gradient Boosting (XGBOOST)
The process of additive learning in XGBOOST as explained

by N.Dhieb et al [20] is presented below. First, consider a data
set D expressed as follows:

D = {(xi, yi), where xi ∈ Rm and yi ∈ R} (4)

|D| = n (5)

Where m is the dimension of the features xi, yi is the
response of the sample i and n is the number of samples.
The vertical bars in Equation 5 denotes the cardinality of the
set.

Then, the predicted value of the entry i and denoted as ŷi,
is defined as:

ŷi =

K∑
k=1

fk(xi), where fk ∈ F (6)

Where fk indicates an independent tree in the space of
regression trees F and fk(xi) refers to the predicted score
given by the i-th sample and k-th tree.

The objective function of the XGBOOST, denoted by ζ, is
given as follows:

ζ =

n∑
i=1

ℓ(yi, ŷi) +

K∑
k=1

Ω(fk) (7)

By minimizing the objective function ζ, the regression tree
model functions fk can be learned. The training loss function
ℓ(yi, ŷi) evaluates the difference between the prediction ŷi and
the actual value yi. Herein, the term Ω is used to avoid the
overfitting problem by penalizing the model complexity as
follows:

Ω(fk) = γT +
1

2
λ
∥∥w∥∥2 (8)

Where γ and λ are regularization parameters, T and w are
respectively the numbers of leaves and the scores on each leaf.

A second degree Taylor series can be used to approximate
the objective function. Let’s define Ij = {i|q(xi) = j} an
instance set of leaf j with q(x) a fixed structure. The optimal

weights w∗
j of leaf j and the corresponding optimal value can

be obtained by the following equations:

w∗
j = − gj

hj + λ
(9)

ζ∗ =
1

2

T∑
j=1

(
∑

i ∈ Ij
gi)

2

(
∑

i ∈ Ij
hi + λ)

+ λT (10)

Where gi and hi are the first and the second gradient orders
of the loss function ζ. The loss function ζ can be used as a
quality score of the tree structure q. The smaller the score is,
the better the model is.

As it is not possible to enumerate all the tree structures,
a greedy algorithm can solve the problem by starting from a
single leaf and iteratively add branches to the tree. Let’s say
that IR and IL are the instance sets of right and left nodes
after split. Assuming I = IR ∪ IL, the loss reduction after the
split is given as:

ζsplit =
1
2

[
(
∑

i ∈ IL
gi)

2∑
i ∈ IL

hi+λ +
(
∑

i ∈ IR
gi)

2∑
i ∈ IR

hi+λ − (
∑

i ∈ I gi)
2∑

i ∈ I hi+λ

]
− γ (11)

This formula is usually used in practice for evaluating the
split candidates. The XGBOOST model use many simple trees
and score leaf nodes during splitting. The first three terms of
the equation represent respectively the score of the left, right
and original leaf. In addition, the term γ is the regularization
on the additional leaf and it will be used in the training process.

To develop the XGBOOST model in Python, the library
xgboost.XGBRegressor was used.

8) Support Vector Machine (SVM)
SVM regression trains the model using symmetrical loss

function, which penalizes for both high and low misestimates.
The aim is to find a hyperplane that differentiates the data
points plotted in multi-dimensional space, where each dimen-
sion represents the different features used. To develop the
SVM model in Python, the library sklearn.svm.SVR was used.

D. Post-Processing

Its main purpose is to check the generated power predictions
and adjust the values out of range if they exist. To do that, the
algorithm checks two conditions:

• Power predictions >= 0. The predicted power cannot
be negative. In case there are negative values, they are
adjusted to 0.

• Power predictions <= Installed capacity. The pre-
dicted power cannot be higher than the installed capacity
of the wind farm. In this case the maximum forecast value
is limited to the installed capacity.

E. Validation

The error metric defined to evaluate the performance of the
forecasting models is based on the Root Mean Square Error
(RMSE) but with a small difference: in this case the error is
normalized by dividing by the installed capacity of the wind
farm.



Thus, it is called RRMSE and is calculated as:

RRMSE (%) =
RMSE

Pinstalled
× 100 (12)

RRMSE (%) =

√
1
N

∑N
i=1(P̂i − Pi)2

Pinstalled
× 100 (13)

Where N is the total number of samples, P̂i is the forecast
value, Pi is the measured value and Pinstalled is the installed
capacity of the wind farm.

The algorithm calculates the daily RRMSE between pre-
dictions and real values for the test period defined and then
the average of this daily error is reported (as a percentage),
to have an idea of the accuracy of the forecast made. This
RRMSE metric is used as comparison point in all the results
presented.

IV. RESULTS AND DISCUSSION

This section presents the results obtained for the forecasting
models developed, the comparison of the RRMSE between
them and with the DSO results. It also presents the different
tests and the tuning performed to the best-suited model in
order to improve the results.

A. WPGF Models

Table II presents the RRMSE for Persistence, AR and ARX
models; while Table III presents the RRMSE for LSTM,
DT, RF, XGBOOST and SVM models. The training and test
periods defined in all the simulations were: JUN-NOV of 2021
for training and DEC of 2021 forecast. The meteorological
parameters wind speed and wind direction were used as
features in all the models that use exogenous variables.

TABLE II
RRMSE FOR PERSISTENCE, AR AND ARX: 6 MONTHS TRAINING, 1

MONTH FORECAST

Wind
Farm

Persistence
(%)

AR
(%)

ARX
(%)

DSO
(%)

1 24.594 16.886 15.384 13.482
2 37.717 35.105 19.248 16.187
3 14.895 12.396 12.515 41.013
4 35.714 32.035 28.131 19.850
5 30.814 26.713 20.364 14.874
6 32.897 27.102 21.185 18.929
7 35.403 28.947 19.673 50.877
8 38.103 32.230 27.287 21.536
9 30.248 26.306 20.168 14.372
10 34.136 30.781 20.690 45.416
11 31.939 29.759 23.380 29.586
12 24.222 19.232 17.073 15.593
13 33.787 29.940 18.394 17.470
14 38.087 30.688 25.111 21.550
15 26.191 20.947 13.660 11.954
16 37.940 26.028 36.241 21.983
17 34.902 23.803 29.912 19.541
18 34.712 28.478 33.975 26.619
19 31.060 19.225 24.680 18.242
20 29.404 21.114 26.565 18.998

Average 31.838 27.522 21.046 22.904

TABLE III
RRMSE FOR LSTM, DT, RF, XGBOOST AND SVM: 6 MONTHS

TRAINING, 1 MONTH FORECAST

Wind
Farm

LSTM
(%)

DT
(%)

RF
(%)

XGBOOST
(%)

SVM
(%)

DSO
(%)

1 23.209 19.543 12.371 12.451 19.492 13.482
2 24.413 24.596 19.952 17.637 31.561 16.187
3 8.288 15.671 11.257 10.549 10.399 41.013
4 29.888 28.721 28.698 22.649 47.410 19.850
5 22.727 21.783 14.873 13.617 29.755 14.874
6 22.555 25.147 23.205 19.273 35.377 18.929
7 29.426 32.046 21.851 21.101 20.949 50.877
8 25.833 25.484 25.398 24.427 39.240 21.536
9 26.900 23.291 17.296 17.472 24.699 14.372
10 26.700 22.602 21.286 16.374 28.953 45.416
11 21.877 25.785 22.783 21.412 34.463 29.586
12 19.562 23.656 17.673 17.509 23.907 15.593
13 21.859 17.593 18.195 12.947 26.973 17.470
14 26.925 29.963 26.919 28.127 36.026 21.550
15 22.833 17.059 12.828 11.651 15.297 11.954
16 29.310 25.150 22.071 20.628 37.585 21.983
17 27.285 26.611 25.206 21.862 45.642 19.541
18 24.323 31.979 28.080 26.764 29.098 26.619
19 21.575 27.072 18.103 17.219 24.802 18.242
20 27.717 23.865 19.042 18.595 34.802 18.998

Average 24.160 24.381 20.354 18.613 29.822 22.904

From the results obtained in Tables II and III just three
methods, ARX (21.046%), RF (20.354%) and XGBOOST
(18.613%) outperformed the DSO results (22.904%). Since
XGBOOST has the lower RRMSE, it is chosen as the method
to be focus on and to be improved, in order to reduce the
percentage of error even more.

B. XGBOOST Adjusting Training and Test Periods

The first test consists on adjusting the training and test
periods, to compare the RRMSE of the XGBOOST model
under different time horizons. Based on the two years of
IPMA data available (2020 and 2021), the following eight
combinations of training and test periods are defined:

• Combination 1: 6 months training (JAN-JUN of 2021)
and 6 months forecast (JUL-DEC of 2021).

• Combination 2: 7 months training (JAN-JUL of 2021)
and 5 months forecast (AUG-DEC of 2021).

• Combination 3: 8 months training (JAN-AUG of 2021)
and 4 months forecast (SEP-DEC of 2021).

• Combination 4: 9 months training (JAN-SEP of 2021)
and 3 months forecast (OCT-DEC of 2021).

• Combination 5: 10 months training (JAN-OCT of 2021)
and 2 months forecast (NOV-DEC of 2021).

• Combination 6: 11 months training (JAN-NOV of 2021)
and 1 month forecast (DEC of 2021).

• Combination 7: 1 year training (JAN-DEC of 2020) and
6 months forecast (JAN-JUN of 2021).

• Combination 8: 1 year training (JAN-DEC of 2020) and
1 year forecast (JAN-DEC of 2021).



The results obtained are summarized in Figure 3, that
presents the average RRMSE of the 20 wind farms for each
combination, achieved by the XGBOOST model and by the
DSO.

To have a fair comparison between the different combina-
tions, regardless of the number of months to forecast, the
RRMSE of the same month (DEC of 2021) was analyzed
independently of the combination and the same results were
obtained.

Fig. 3. Average RRMSE for each combination

Figure 3 shows that first, the error of the XGBOOST model
developed is always lower than the error of the DSO for any
combination of training and test sets. Second, the XGBOOST
model more accurately forecasts long periods of time like 6
months (Combination 7) or 1 complete year (Combination 8)
instead of short periods of time like 1 month (Combination
6) or 2 months (Combination 5). Third, the best combination
found corresponds to Combination number 7: 1 year training
(JAN-DEC of 2020) and 6 months forecast (JAN-JUN of 2021)
with an average RRMSE of 14.257%. From now on these
training and forecast periods are used in all tests.

C. XGBOOST Hyperparameter Tuning
Hyperparameter tuning or hyperparameter optimization, is

the process of determining the right combination of hyper-
parameters that maximizes a machine learning or AI model
performance.

The hyperparameters of XGBOOST that are tuned are the
following [21]:

• max depth: Maximum depth per tree. A deeper tree might
increase the performance, but also the complexity and
chances to overfit. The value must be an integer greater
than 0. Default is 6.

• learning rate: Determines the step size at each iteration
while the model optimizes toward its objective. A low
learning rate makes computation slower, and requires
more rounds to achieve the same reduction in residual
error as a model with a high learning rate. The value
must be between 0 and 1. Default is 0.3.

• n estimators: The number of trees in our ensemble.
Equivalent to the number of boosting rounds. The value
must be an integer greater than 0. Default is 100.

• colsample by tree: Represents the fraction of columns
to be randomly sampled for each tree. It might improve
overfitting. The value must be between 0 and 1. Default
is 1.

• sub sample: Represents the fraction of observations to be
sampled for each tree. Lower values prevent overfitting,
but might lead to underfitting. The value must be between
0 and 1. Default is 1.

• min child weight: Defines the minimum sum of weights
of all observations required in a child. It is used to control
overfitting. The larger it is, the more conservative the
algorithm will be. The value must be an integer greater
than 0. Default is 1.

To find the best combination of hyperparameters for the
XGBOOST model, the Random Search optimization algorithm
is used. It consists in a large range of hyperparameters values,
which are randomly iterated a specific number of times over
combinations of the values defined. The number of iterations
defined for the Random Search is 50 and the Mean Square
Error (MSE) is the metric used to evaluate the performance
for each combination of hyperparameters.

This process is done only once because the computation
time is very high and it takes a long time to get the results.

Table IV presents the best combination of hyperparameters
obtained for each wind farm after running the Random Search
and the average values of each hyperparameter, when consid-
ering the 20 wind farms all together.

TABLE IV
BEST XGBOOST HYPERPARAMETERS FOR EACH WIND FARM

Wind
Farm

max
depth

learning
rate

n
estimators

colsample
by tree

sub
sample

min child
weight

1 2 0.050 200 0.7 0.7 10
2 2 0.050 500 1.0 0.7 10
3 2 0.001 385 1.0 1.0 5
4 3 0.030 200 1.0 0.7 5
5 3 0.030 200 1.0 1.0 10
6 3 0.030 500 1.0 0.5 10
7 2 0.017 610 0.7 1.0 5
8 3 0.050 200 1.0 0.5 5
9 2 0.050 500 1.0 0.7 10
10 2 0.005 715 1.0 1.0 3
11 3 0.022 345 1.0 0.7 10
12 2 0.050 200 1.0 0.5 3
13 2 0.050 100 1.0 1.0 10
14 3 0.100 100 0.7 1.0 10
15 2 0.025 502 1.0 1.0 5
16 2 0.048 181 1.0 0.7 5
17 3 0.054 208 1.0 1.0 5
18 2 0.046 217 0.7 0.7 3
19 2 0.050 500 1.0 0.7 10
20 2 0.050 500 1.0 0.7 10

Average 2 0.04 343 0.9 0.8 7

Considering the obtained results, two tests, one using the
best combination of hyperparameters for each wind farm (Best
combination) and the other using the same average values



of hyperparameters for all wind farms (Average values) are
performed. The idea is to compare the best RRMSE achieved
so far (Best results until now), with the RRMSE obtained after
the hyperparameter optimization. The results are presented
in Table V, using 1 year training (JAN-DEC of 2020) and
6 months forecast (JAN-JUN of 2021) that was the best
combination found in the previous test.

TABLE V
RRMSE FOR XGBOOST AFTER HYPERPARAMETER TUNING: 1 YEAR

TRAINING, 6 MONTHS FORECAST

Wind
Farm

Best results
until now

(%)

Best
combination

(%)

Average
values

(%)

DSO
(%)

1 11.247 10.321 10.338 10.193
2 13.775 12.835 12.860 13.443
3 8.558 7.586 11.194 26.794
4 17.922 17.070 17.497 17.293
5 11.947 11.066 11.174 11.221
6 12.886 11.770 12.125 12.321
7 14.374 13.547 13.567 39.519
8 15.996 14.452 14.756 15.510
9 14.989 14.279 14.254 11.981

10 15.495 14.246 14.404 30.680
11 14.400 13.450 13.526 19.459
12 10.595 9.838 9.909 10.538
13 15.012 14.076 14.175 14.034
14 16.386 15.358 15.459 15.931
15 10.804 9.729 9.796 10.308
16 19.087 16.147 16.237 18.055
17 15.345 14.352 14.732 15.129
18 17.286 16.302 16.335 16.313
19 13.685 12.660 12.726 12.689
20 15.350 14.525 14.555 15.140

Average 14.257 13.180 13.481 16.827

From Table V it is possible to observe that the average
RRMSE was reduced from 14.257% to 13.180% after the
hyperparameter tuning done specifically for each wind farm,
meaning an improvement of 7.55%. In the other case, where
the RRMSE was computed using the average values of hyper-
parameters instead of the specific combination found for every
wind farm, the average RRMSE achieved was 13.481%. In
both cases a considerable reduction of the error was achieved
with the hyperparameter tuning.

After the comparison between the two tests performed, it is
decided that for future forecasts just the average combination
of hyperparameters (max depth = 2, learning rate =
0.04, n estimators = 343, colsample by tree =
0.9, sub sample = 0.8, min child weight = 7) will be used
to run the XGBOOST model independently of the wind farm.
This, considering that the DSO has 200 wind farms connected
to the MV distribution network of Portugal and running the
Random Search for each one is not worth the computation time
required (around 12 hours per wind farm) for the little extra
improvement obtained when calculating the best combination
of hyperparameters specific for every wind farm.

To have a graphical sense of the predictions obtained after
the hyperparameter tuning, Figure 4 presents the comparison
between XGBOOST predictions, DSO predictions and the
real values of power for one month of the forecast period,
specifically February.

Fig. 4. Forecast vs real values for FEB of 2021

D. XGBOOST with Backtesting

Backtesting is a term used in modeling that refers to testing
a predictive model on historical data. It involves moving
backward in time, step-by-step, in as many stages as it is
necessary. Hence, it is a special type of cross-validation
applied to previous periods [22].

The purpose of this test is then to apply the backtesting
with refit and increasing training size strategy inside the
XGBOOST model, to see if the RRMSE can be reduced. To
do that, the model is trained each time before making a new
prediction, then that prediction is included in the training set
and the process is repeated until all the predictions are made.
That means that the model uses all the data available so far,
while the training set increases sequentially, maintaining the
temporal order of the data.

The initial training set in our case corresponds to 1 year of
data (JAN-DEC of 2020), the prediction horizon correspond
to 1 day (meaning that the model is trained in each iteration
to forecast each day separately) and the retraining is done
until the 6 months (JAN-JUN of 2021) that correspond to the
forecast period are predicted.

Table VI presents the RRMSE achieved when using
the backtesting strategy implemented inside the XGBOOST
model. The results obtained with backtesting are better than
the best RRMSE achieved until now. There is a little improve-
ment of 2.8%, since the error was reduced from 13.481% to
13.097%. However, when considering the computation time
that backtesting requires, which is in average 10 hours per
wind farm, the small reduction of the error makes not worth
to implement this strategy into the model.

For the DSO the main point is that the model is able to
do the forecast in a short computing time because they have
200 wind farms connected to the MV distribution network of
Portugal. The implemented XGBOOST model takes between
20 − 30 seconds per wind farm to run and with backtesting



it takes 1500 times more. Since the accuracy of the forecast
with backtesting does not represent a significant improvement,
the inclusion of backtesting is discarded.

TABLE VI
RRMSE FOR XGBOOST USING BACKTESTING STRATEGY

Wind Farm Best Results
(%)

Backtesting
(%)

DSO
(%)

1 10.338 10.053 10.193
2 12.860 12.568 13.443
3 11.194 9.212 26.794
4 17.497 16.475 17.293
5 11.174 10.683 11.221
6 12.125 - 12.321
7 13.567 13.247 39.519
8 14.756 14.109 15.510
9 14.254 13.740 11.981

10 14.404 14.031 30.680
11 13.526 12.901 19.459
12 9.909 9.355 10.538
13 14.175 13.983 14.034
14 15.459 14.809 15.931
15 9.796 9.575 10.308
16 16.237 17.668 18.055
17 14.732 14.153 15.129
18 16.335 15.899 16.313
19 12.726 12.547 12.689
20 14.555 13.832 15.140

Average 13.481 13.097 16.827

E. Stacking

Stacking is the process of using different machine learning
and AI models one after another, where the predictions from
each model are added as new features. It is done in layers, and
there can be arbitrarily many layers, dependent on exactly how
many models are trained, along with the best combination of
these models. At the end, the final dataset combining the initial
features plus the predictions created after each layer are feed
into a last model. The last model is called a meta-learner, and
its purpose is to generalize all the features from each layer
into the final predictions [23].

Figure 5 presents the diagram of the stacking process
implemented in this case.

Fig. 5. Stacking process implemented [23]

First, six layers were defined using the following models:
RF, Light Gradient Boosting Machine (LGBM), XGBOOST,
Ridge, Lasso and SVM. Then, the XGBOOST model was used
again as meta-learner to obtain the final predictions.

Table VII presents the RRMSE obtained using the stacking
approach with RF, LGBM, XGBOOST, Ridge, Lasso and
SVM layers and XGBOOST meta-learner, for 1 year training
and 6 months forecast.

TABLE VII
RRMSE FOR STACKING APPROACH

Wind Farm Best Results
(%)

Stacking
(%)

DSO
(%)

1 10.338 10.358 10.193
2 12.860 12.856 13.443
3 11.194 8.793 26.794
4 17.497 17.685 17.293
5 11.174 11.136 11.221
6 12.125 12.225 12.321
7 13.567 13.589 39.519
8 14.756 14.619 15.510
9 14.254 14.077 11.981
10 14.404 14.731 30.680
11 13.526 13.569 19.459
12 9.909 9.974 10.538
13 14.175 14.585 14.034
14 15.459 15.394 15.931
15 9.796 9.853 10.308
16 16.237 16.288 18.055
17 14.732 14.912 15.129
18 16.335 16.134 16.313
19 12.726 12.689 12.689
20 14.555 14.375 15.140

Average 13.481 13.392 16.827

In this case, by using stacking the RRMSE passed from
13.481% to 13.392%, equivalent to a 0.66% improvement.
Regarding the computation time required by this approach, for
each wind farm it took on average 15 minutes to run, that is 40
times more than the normal XGBOOST (that takes between
20 − 30 seconds to run). Therefore, even when the RRMSE
results are better when using stacking, the little reduction of
the error is not worth the extra computation time and this
approach is discarded.

V. CONCLUSIONS

In this work eight different forecasting models namely,
Persistence, AR, ARX, LSTM neural network, DT, RF,
XGBOOST and SVM were developed and tested to predict the
power generation of 20 wind farms connected to the secondary
substations of the MV distribution network of Portugal.

After comparing the eight models between them and with
the DSO predictions, the results showed that for 6 months
training (JUN-NOV of 2021) and 1 month forecast (DEC
of 2021), XGBOOST obtained the best performance with a
RRMSE of 18.613%, followed by RF with a RRMSE of
20.354% and ARX with a RRMSE of 21.046%. The rest of
the models obtained an error that is higher than the error of the
DSO predictions for the same period, which corresponds to a
RRMSE of 22.904%. Specifically, LSTM neural network, DT,
AR, SVM and Persistence obtained respectively a RRMSE of
24.160%, 24.381%, 27.522%, 29.822% and 31.838%.



With XGBOOST as the best-suited forecasting model for
the wind farms analyzed, some tests and improvements were
performed to this method in order to reduce the error as
much as possible. It was found that the best combination of
training and test periods based on the two years of information
available for IPMA, corresponds to 1 year of training (JAN-
DEC of 2020) and 6 months of forecast (JAN-JUN of 2021).
When using this specific combination the average RRMSE
gets reduced to 14.257%.

A hyperparameter tuning of XGBOOST using Random
Search optimization was carried out to improve the previous
result. The best combination of hyperparameters were found
for each wind farm and the average RRMSE got reduced to
13.180%. However, since the computation time to run Random
Search (around 12 hours) is very high, it was decided to use
the average values of the hyperparameters independently of the
wind farm. Using the average values of the hyperparameters
the RRMSE achieved was 13.481%, that is not so far from the
value obtained using the best combination of hyperparameters,
and therefore this approach should be used for future forecasts
or with new wind farms.

Other improvements that lowered the best RRMSE
(13.481%) of the developed XGBOOST model were achieved
using backtesting and stacking approaches. In the case of
backtesting the RRMSE got reduced to 13.097%, while for
stacking the RRMSE got reduced to 13.392%. Nevertheless,
both processes require a longer computation time, 10 hours per
wind farm for backtesting and 15 minutes per wind farm for
stacking, than the normal XGBOOST model which takes only
between 20 to 30 seconds per wind farm to run. Since one
of the most important characteristics of a forecasting model is
to make predictions in an efficient way, meaning rapidly and
with accuracy, it was concluded that the small reduction of
the error achieved with this strategies is not worth the large
computation time needed and consequently, backtesting and
stacking were discarded.

After all, using the proposed XGBOOST model for 1 year
training (JAN-DEC of 2020) and 6 months forecast (JAN-
JUN of 2021), the best average RRMSE achieved for the 20
wind farms studied, corresponds to 13.481%; after discarding
Random Search, backtesting and stacking of course. The
results successfully fulfilled the main goal of this thesis,
that was to improve the performance of the actual DSO
forecasting system, which for the same period of analysis
presents a RRMSE of 16.827%. With the XGBOOST model
developed an improvement of 20% is achieved. The framework
is scalable, computationally efficient and can be used for future
wind power forecasting, if the DSO want to obtain predictions
with higher accuracy.
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