
CROSS City Cloud:
Extension, Deployment and Operation of a

Smart Tourism Application relying on Location Certificates

Lucas de Haan Vicente

Thesis to obtain the Master of Science Degree in

Computer Science and Engineering

Supervisor(s): Prof. Miguel Filipe Leitão Pardal
Dr. Samih Eisa Suliman Abdalla

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. Luís Manuel Antunes Veiga

October 2022

ii

I dedicate this work to my beloved, late grandfather Joop de Haan. You were a major

inspiration for me while growing up, and I would not be the person I am today without the

impact you had in me.

iii

iv

Acknowledgments

I am extremely grateful to have had the opportunity to work with my advisor Miguel Pardal and

co-advisor Samih Eisa. Both their advice and collaboration were critical from the ideation all

the way up to the delivery of this work. I was fortunate enough to be able to not only learn from

all the active and past contributors of the SureThing project, but also add my own contribution

to it.

I would want to offer my deepest gratitude to Prof. Nuno Santos and his team for their

cloud support and funding; without their assistance, the deployment of our solution would not

have been conceivable. I would also like to express my heartfelt appreciation to Rui Claro for

his remarkable endeavor in gathering Wi-Fi data around Lisbon. His commitment was vital to

the evaluation of the developed solution.

I would also want to thank my friends and colleagues Rafael Figueiredo and Ricardo Grade

for all of the ideas and discussions we had throughout our journey at the SureThing project. I

would like to thank in particular my friend André Augusto, with whom I had the opportunity to

collaborate on several projects throughout our academic pursuit and who was always available

to encourage me to accomplish this work.

Last, but certainly not least, I would like to thank my father Nuno, my mother Renate

and my sister Inês for their unconditional support throughout this endeavor and my academic

years. They were able to provide me with a perfect stable environment in which to fulfil this

work, which benefited positively to my mental health. I am incredibly grateful to my parents for

providing me with the opportunity to pursue a higher education in a field that I am passionate

about.

This work was supported by national funds through Fundação para a Ciência e a Tecnolo-

gia (FCT) with reference UIDB/50021/2020 (INESC-ID) and through project with reference

PTDC/CCI-COM/31440/2017 (SureThing).

v

vi

Resumo

Lisboa é uma das cidades mais visitadas do mundo, recebendo milhões de turistas por ano.

Muitos destes visitantes usam aplicações móveis para descobrir pontos de interesse na cidade,

recorrendo ao posicionamento geográfico. Apesar desta forte dependência, a maioria das aplicações

está suscet́ıvel a ataques de falsificação de localização.

O CROSS City é uma aplicação móvel desenvolvida para o turismo inteligente, que rec-

ompensa utilizadores por completarem circuitos tuŕısticos, emitindo certificados de localização,

que oferecem proteção contra falsificações. No entanto, o CROSS exige o uso de infraestrutura

espećıfica para validar o peŕıodo de visita. Para além disso, sendo um protótipo, os operadores

do sistema têm dificuldade em garantir a sua confiabilidade, segurança, manutenibilidade e

observabilidade.

Neste trabalho propomos o CROSS City Cloud, um sistema desenhado de raiz com com-

putação em nuvem para a certificação de localização numa aplicação móvel, capaz de produzir

e validar provas de localização com granularidade temporal usando a infraestrutura pública

de redes Wi-Fi. Foram desenvolvidos componentes para a computação das redes estáveis e

voláteis de um determinado ponto de interesse. Os novos componentes foram instalados na

Nuvem da Google, incluindo um plano de controlo que facilita a sua operação. O caso de uso de

turismo inteligente demonstrou a viabilidade de uma plataforma de Certificação-de-Localização-

como-um-Serviço em ambientes de computação em nuvem. A avaliação experimental testou o

desempenho e escalabilidade de cada componente em cenários reais. Foram alcançadas taxas

de sucesso de 61.11% e 63.89% na determinação da localização e intervalo temporal de visitas

tuŕısticas, respetivamente, validando a solução.

Palavras-chave: Prevenção de Falsificação de Localização, Prova de Localização,

Adaptação ao Contexto, Segurança Móvel, Internet das Coisas, Computação em Nuvem

vii

viii

Abstract

Lisbon is one of the world’s most visited cities, attracting millions of tourists each year and

many of them use smartphone apps to discover points of interest. Although these apps heavily

rely on geographic positioning information, most of them are susceptible to location spoofing.

CROSS City is a smart tourism application that uses location certification to reward users for

completing tourist itineraries. However, CROSS requires the use of purpose-built infrastructure

to validate the visiting period of a location claim. Furthermore, since it is a prototype, it is

difficult and costly for system operators to ensure its reliability, security, maintainability, and

observability.

In this work, we introduce CROSS City Cloud, a cloud-native location certification system for

mobile applications, capable of producing and validating time-bound location proofs using the

publicly available Wi-Fi network infrastructure. We present an architectural extension composed

of the components necessary to integrate scavenged Wi-Fi network observations and compute

the stable and volatile networks of a given location. We designed and deployed a cloud solution

of the system, including an additional control plane to ease service operation, to Google Cloud

Platform. The smart tourism application use case was utilized as a testbed, and demonstrated

the feasibility of a Location-Certification-as-a-Service platform embedded in cloud computing

environments.

Our evaluation stresses each component of the system in various aspects, such as performance

and scalability, including real-world scenario assessments. The achieved stable and volatile set

match success rates of 61.11% and 63.89%, respectively, validated our solution for the expected

use case.

Keywords: Location Spoofing Prevention, Location Proof, Context-Awareness, Secu-

rity, Internet of Things, Cloud Deployment.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

Glossary . 1

1 Introduction 1

1.1 Contributions . 2

1.2 Dissertation Outline . 3

2 Background and Related Work 5

2.1 CROSS City Application . 5

2.1.1 Architecture . 5

2.1.2 Location Proof Techniques . 6

2.1.3 Time-Bound Location Proofs Based On Scavenging 7

2.2 Data Storage . 8

2.2.1 Key Concepts . 9

2.2.2 Relational . 10

2.2.3 Key-value . 10

2.2.4 Column-oriented . 11

2.2.5 Document-oriented . 12

2.2.6 Summary . 12

2.3 Data Processing . 14

2.3.1 Batch Processing . 14

2.3.2 Stream Processing . 14

2.4 Architectures . 14

xi

2.4.1 Lambda Architecture . 15

2.4.2 Kappa Architecture . 16

2.5 Cloud Computing . 16

2.5.1 Deployment Models . 17

2.5.2 Delivery Models . 17

2.5.3 Container-based Managed Services . 19

2.6 Summary . 19

3 Implementation 21

3.1 Assumptions and Requirements . 21

3.2 Architecture Extensions . 23

3.2.1 Data Management Layer . 23

3.2.2 Network Observation Data Collection . 27

3.2.3 Intermediate Network Observation Set Computation 29

3.2.4 Stable and Volatile Network Observation Set Computation 29

3.2.5 Catalog Immutability . 31

3.3 Cloud Deployment . 32

3.3.1 Base Deployment . 32

3.3.2 Supplemental Developments . 41

3.4 Summary . 46

4 Evaluation 47

4.1 Qualitative Evaluation . 47

4.2 Lisbon Hotspots Dataset . 48

4.3 Stable and Volatile Set Match as Location and Time Proof 49

4.3.1 Stable Set Match as Location Proof . 49

4.3.2 Volatile Set Match as Time Proof . 49

4.4 Systematic Service Characterization . 50

4.5 Domain Layer Scalability and Performance Testing 51

4.5.1 Scalability Model . 52

4.5.2 Experimental Setup . 53

4.5.3 Results . 54

4.5.4 System Performance and Scalability Analysis 54

4.5.5 Request Performance Analysis . 56

4.5.6 Resource Utilization Analysis . 58

xii

4.5.7 Summary . 61

4.6 Stream Layer Performance and Completeness Testing 61

4.6.1 Experimental Setup . 62

4.6.2 Results . 63

4.6.3 Impact on Throughput . 64

4.6.4 Impact on Network Observation Processing Time 66

4.6.5 Impact on Output Data Watermark . 67

4.6.6 Resource Utilization Analysis . 68

4.6.7 Summary . 69

4.7 Theoretical Model vs Practical Model Assessment 69

4.7.1 Experimental Setup . 70

4.7.2 Stable Set Computation . 70

4.7.3 Volatile Set Computation . 72

4.8 Summary . 75

5 Conclusion 77

5.1 Achievements . 78

5.2 Future Work . 79

5.3 Final Remarks . 80

Bibliography 81

A Data Storage Models In Depth 87

A.1 Relational . 87

A.2 Key-value . 89

A.3 Column-oriented . 92

A.4 Document-oriented . 95

B Service Operation 99

B.1 Automated Configuration and Deployment . 99

B.2 Secure Cloud Environment . 101

xiii

xiv

List of Tables

2.1 Summary comparison of the studied databases. 13

2.2 Delivery model responsibility sharing. 18

3.1 Intermediate network observation set view fields. 30

4.1 Prover’s Stable and Volatile Set Match Percentage for each Point-of-Interest. . . 50

4.2 CROSS City Cloud service characterization and benchmark model. 51

4.3 Google Kubernetes Engine cluster specification for domain layer evaluation. . . . 53

4.4 Universal Scalability Law (USL) derived parameters. 54

4.5 Google Kubernetes Engine cluster specification for the real-time client. 62

4.6 Relations detailed in the theoretical model. 70

4.7 Stable Set Computation Elapsed and Slot Time over Point-of-Interest. 71

4.8 Varying Spans and Deltas experimental configurations. 72

4.9 Volatile Set Query Elapsed and Slot Time per Span Interval. 73

4.10 Varying Input Dataset Size experimental configurations. 74

4.11 Elapsed and Slot Time per Input Dataset Size for the Gulbenkian Volatile Set

Query. 74

xv

xvi

List of Figures

2.1 CROSS v1 architecture. 6

2.2 Overview of the Lambda data processing architecture. 15

2.3 Overview of the Kappa data processing architecture. 16

3.1 Minimal Lambda architecture data flow diagram. 24

3.2 Kappa Architecture data flow diagram. 25

3.3 Overview of the CROSS v1 prototype server-side architecture. 27

3.4 Overview of the extensions to the CROSS server-side architecture. 27

3.5 Network observation publish protocol UML sequence diagram. 28

3.6 CROSS City Cloud lifecycle UML timing diagram. 28

3.7 CROSS City Cloud stable and volatile network set pipeline. 30

3.8 Overview of the CROSS City Cloud Google Cloud Platform Architecture. 41

4.1 Load duration and ramping user concurrency experimental configuration. 54

4.2 Mean Throughput over Concurrent Users. 55

4.3 Throughput per system size configuration and USL model. 55

4.4 Latency modelled in relation to Throughput per system configuration. 56

4.5 Mean Latency over Concurrent Users. 57

4.6 Median Latency over Concurrent Users. 57

4.7 Percentile 90 Latency over Concurrent Users. 58

4.8 Minimum Latency over Concurrent Users. 58

4.9 Mean CPU Usage over Elapsed Time. 59

4.10 Mean Memory Usage over Elapsed Time. 59

4.11 Mean CPU Usage (per pod) over Elapsed Time. 60

4.12 Mean PostgreSQL CPU Usage over Elapsed Time. 60

4.13 Mean Memory Usage (per pod) over Elapsed Time. 61

4.14 Observed probability of occurrence of each Wi-Fi Access Point spotted in Sé. . . 62

4.15 CROSS Dataflow pipeline Directed Acyclic Graph (DAG). 64

xvii

4.16 Exactly-once semantics pipeline Throughput. 64

4.17 At-least-once semantics pipeline Throughput. 64

4.18 Mean throughput in the pull/window phase for each semantics. 65

4.19 Mean throughput in the transform phase for each semantics. 66

4.20 Mean throughput in the load phase for each semantics. 66

4.21 Mean latency per phase for each semantics. 67

4.22 Data watermark lag per pipeline processing semantics. 68

4.23 CPU utilization per pipeline processing semantics. 68

4.24 Memory utilization per pipeline processing semantics. 69

4.25 BigQuery Dataset Size per Input Dataset Size. 75

B.1 CROSS City Cloud Control Plane. 101

B.2 Overview of the SureThing resource hierarchy. 102

xviii

Nomenclature

BSON Binary JavaScript Object Notation

JSON JavaScript Object Notation

LBS Location-Based Service

SQL Structured Query Language

XML Extensible Markup Language

SSID Service Set Identifier

FaaS Function-as-a-Service

IaC Infrastructure as Code

LXC Linux Container

NIST The National Institute of Standards and Technology

PaaS Platform-as-a-Service

API Application Programming Interface

CI/CD Continuous Integration/Continuous Delivery

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

REST Representational State Transfer

TCP Transmission Control Protocol

UDP User Datagram Protocol

xix

xx

Chapter 1

Introduction

Modern mobile applications and services rely heavily on geographic location to provide users

with relevant context-aware and appropriate information. Practical use case services include:

map navigation, smart tourism, weather services and location-based games. Several techniques

can be used to provide applications with contextual location information. However, many of

these employ techniques which do not thoroughly verify the location information they consume,

making the applications and services vulnerable to various location spoofing techniques [LB10].

Once we have vulnerabilities on valuable applications and services, it is only a matter of time

until malicious actors attempt to exploit them.

In order to combat and provide protection against the aforementioned attacks, location cer-

tification or proof systems [ZC11, CCCDP13, WPZM16] provide a means for producing reliable

digital certificates (digitally signed proofs) attesting an individual’s presence at a claimed geo-

graphical location. The generated certificates can subsequently be utilized by an Location-Based

Service (LBS) to validate location claims. Location certification systems are typically capable of

creating proof for location related information, such as a single specific location or a full travel

route history, but often fail to take into account the time of occurrence without the usage of

auxiliary trusted infrastructure at each point of interest.

An initial version (v1) of CROSS City [MCP20] (loCation pROof techniqueS for consumer

mobile applicationS) was developed for the smart tourism use case, in which tourists interact

with existing infrastructure at points of interest in the city using their mobile devices. Tourists

are rewarded for engaging in this interaction, which in turn motivates them to continue using the

application. However, such rewards also entice bad actors to illegitimately attempt to obtain

them. To combat this, the interaction must produce verifiable information about a tourist’s

location that the LBS can use for validation. While the initial version of CROSS offered multiple

strategies for producing location proofs, such as the Scavenging, TOTP (Time-based One-time

1

password), and Kiosk. None of these strategies attested for the time of visit without augmenting

each point of interest with additional trusted infrastructure.

To eliminate the need for additional infrastructure, further improvements can be performed

on top of the network scavenging location proof strategy [CEP22]. These improvements rely

on the data collected from the tourist’s smartphone sensors and its comparison to previously

obtained Wi-Fi data from the claimed location, to proof visits with temporal granularity. The

CROSS City v1 architecture lacks the necessary components and protocols to properly support

these enhancements.

Furthermore, the initial version of CROSS was a prototype not designed with production

software system properties in mind, such as reliability, availability, scalability and performance.

It also lacks a systematic and automatic approach for configuring and deploying its various com-

ponents. CROSS v1 also does not provide operators with the information to assess the system

health status of its back-end services or a way to determine the cause of failures. The afore-

mentioned problems are significant challenges towards providing a Location-Certification-as-a-

Service platform to system operators managing location certification dependent applications.

In this work, we present CROSS City Cloud, a cloud-native location certification system

with support for time-bound location proofs, serving as a testbed framework, to demonstrate

the feasibility of embedding a location certification framework into public cloud computing

technology to provide a Location-Certification-as-a-Service platform. This work was developed

within the SureThing framework [FP18]. This framework provides data formats and utility

libraries which facilitate the creation and validation of location certificates for Internet-connected

devices. Although, CROSS is based on the SureThing framework, the v1 prototype lacks the

usage of its data types and libraries, in the smart tourism use case

1.1 Contributions

This work makes four distinct contributions:

1. We extended the server-side architecture of CROSS with an additional data management

layer and components to properly support location proofs with temporal granularity;

2. We selected and implemented the appropriate service abstractions and cloud offerings

for each architectural component, based on the use case requirements and the predicted

workloads;

3. We delivered CROSS services on-demand by leveraging cloud computing, involving the

deployment and operation of our system on Google Cloud Platform using Docker and

2

Kubernetes;

4. We evaluated each resulting architectural layer in different aspects involving location and

time-bound proof feasiblity, scalability, and performance from both a system and a user

perspective. Also, alternative implementation options were assessed.

1.2 Dissertation Outline

The remaining chapters of the document are organized as follows. In Chapter 2, we start

with a detailed presentation of the CROSS City prototype. Next, we go over a data analysis

model aiming to ensure time-bound location proofs, built on top of its scavenging strategy. In

addition, a survey and analysis of data storage and processing components, as well as relevant

architectures to the CROSS City Cloud extension, are presented. Furthermore, modern cloud

computing technology is discussed, as to support the deployment and operation of the system

components. Chapter 3 specifies the solution in depth, including the architecture extensions,

the cloud deployment and the service operation. Chapter 4 presents the evaluation performed

to assess the solution and its various layers, in aspects such as performance and scalability.

Chapter 5 summarizes the conclusions and presents future work.

In Appendix A a detailed database type analysis is conducted. Finally, in Appendix B,

we analyse and select the proper methodology for automating the system configuration and

deployment, as well as discuss the tools to secure the environment at the cloud provider level.

3

4

Chapter 2

Background and Related Work

In this Chapter, we present concepts and technologies that are relevant for our work.

In Section 2.1, we start by presenting the initial CROSS City prototype [MCP20], analyze its

shortcomings, as well as a related work [CEP22] aimed at addressing those limitations. In Sec-

tion 2.2, we survey the state of the art in database models and their respective implementations.

In Section 2.3, we study the distinct methods of data processing, and in Section 2.4 we discuss

two data processing architectures which incorporate data processing and storage components.

In Section 2.5, we discuss the current cloud computing landscape, including the virtualization

technologies present at its core, delivery and deployment models, and the services currently sup-

plied by the major providers. We conclude this Chapter with Section 2.6 where we summarize

the literature review.

2.1 CROSS City Application

Maia et al. [MCP20] proposed an initial prototype version of CROSS (v1), a system that imple-

ments a set of location proof techniques for consumer mobile applications. In CROSS, tourists

are rewarded for completing itineraries of points of interest (PoI) in the city; The mobile de-

vice of each tourist interacts with Wi-Fi and other existent infrastructure and records verifiable

information (trip logs), for later validation of location claims.

2.1.1 Architecture

CROSS v1 uses a client-server model consisting of a mobile application and a centralized server

with a database component, as illustrated in Figure 2.1. The server is responsible for handling

the validation of location evidence submitted by the tourists. The server contains a persistent

module with domain data such as user information, points of interest, tourism routes, estimated

5

rewards and the set of APs (identified by their SSIDs) expected to be present at each location.

Regarding the technologies used for implementation, the client prototype is running Android

4.4 version or higher. Communication between the client and the server is done through HTTPS.

The server is implemented in GO and exposes a REST API with JSON payloads. The persistent

module is a PostgreSQL relational database, which stores all the domain data.

Internet
API

Server

Database
Catalog

User information

Client (Android application)

Location proof
producer

Location proof verifier

User interface

API request handler

Cache
Catalog

System operator

Internal storage
Proofs pending

submission

API client / Serializer

Tourist

Reward assigner

Android OS

GNSS receiver

Camera

Bluetooth radio

Wi-Fi radio

Kiosk

Wi-Fi Access Point

Figure 2.1: Overview of CROSS v1 architecture [MCP20].

2.1.2 Location Proof Techniques

CROSS v1 is able to employ three distinct strategies for location verification. Each strategy

provides different levels of security by trading off infrastructure complexity and operational

costs:

• Scavenging strategy : Users collect Wi-Fi traces with associated timestamps at the point

of interest and store them as evidence. The stored data is compared against the list of

known networks at that location and are accepted based on the amount of matches. This

strategy has a reduced setup cost, however it provides a weaker level of confidence, since

an attacker could forge a trip log after knowing the list of public networks;

6

• TOTP strategy : Leverages a Time-based One-time Password similar to the proposed in

RFC 6238 [MMPR11], in the broadcast SSID. This strategy requires the deployment of a

customized Wi-Fi AP that is dynamically changing the broadcast SSID in a set period.

Only the Wi-Fi AP and the CROSS server share a secret which is used to produce and

validate the codes. This strategy is able to attest for both a user’s location and visiting

period, at the expense of setup cost and further synchronization between the custom AP

and the server. From the point of view the client, this strategy is exactly the same as the

Scavenging strategy;

• Kiosk strategy : Clients produce location proofs by interacting with a trusted kiosk

device, which will sign the required information to be later verified by the server. Similarly

to the TOTP strategy, kiosks are required to be synchronized with the server. This strategy

is more inconvenient for the clients and requires extra infrastructure, the kiosks themselves,

however it does provide more assurance.

2.1.3 Time-Bound Location Proofs Based On Scavenging

The ability to offer verifiable information with regards to a location time of visit strengthens

the dependability of the location proofs generated, however when using the TOTP strategy each

point of interest needs to be augmented with a customized Wi-Fi AP to dynamically broadcast

its SSID value synchronized with the server.

Claro et al. [CEP22] collected a dataset of Lisbon hotspots, developed a data model and

algorithms to determine the location and time interval of a tourist visit, as precisely as possible

with the existing data. Three distinct entities are defined, prover (the user of the system trying

to prove his presence at a location), witness (neighboring user of the prover that provide the

system with location proof attesting for the prover), and verifier (entity that validates the

location proof submitted by the prover). Their approach leverages diverse ad-hoc witnesses to

observe both long-lived and short-lived hotspots to detect the location and prove the time of visit,

respectively, of other users. A prover’s - the user of the system trying to prove his presence at a

location - location claim uses as evidence a collected set of Wi-Fi Access Point SSIDs, referred

to in the model as observations. Three time windows are defined in the model to bound the

observations for verification:

• Epoch: The most encompassing time frame. Only observations collected within the defined

epoch time window will be used to compute the stability of the Wi-Fi networks at each

location. These networks do not change and, as such, provide location verification. This

process is executed at the start of the system;

7

• Period : A subdivision of an epoch. Only observations collected within the defined period

time window will be used to compute the volatility of the Wi-Fi networks at a given

location. These networks change and, as such, provide a time bound for simultaneous

observation;

• Span: A subdivision of a period. A span is the interval formed by the time of visit in the

location claim (tp) and an additional parameter delta (δ) between tp − δ and tp + δ. The

ideal span is the smallest window, and consequently the smallest delta, where evidence was

found to verify a location and time claim. Prover and witness must share observations in

the same span.

As mentioned previously, the verification of a prover’s time of visit depends on the co-location

with witnesses. This involves the identification of the volatile set of networks at that specific

location from matching observations collected by co-located witnesses, within the defined period,

and by the prover. The smallest interval (span) where evidence is found to verify the time claim

provides the highest accuracy.

This approach does not require any sort of communication between witness and prover, it

only requires periodic submission of sensed Wi-Fi traces to the server that acts as verifier.

2.2 Data Storage

CROSS must store domain and user collected data, such as Wi-Fi and other signal observations,

in both its raw and processed forms. Therefore, it is important to determine the appropriate

database types for integrating each data. To accomplish this, we surveyed existing data models

and their mainstream implementations.

The data model of a database does not by itself translate directly into any sort of enhance-

ment, for example, MongoDB is not simply better than PostgreSQL due to its employment

of the document-oriented data model, instead of relational. The distinction between database

systems is based on the unique implementation of a given data model via its components, as

well as the assurances that each one may provide. Section 2.2.1, introduces some key concepts.

Sections 2.2.2 to 2.2.5 will be structured with a general definition of the data model and an

analysis of a specific implementation. Section 2.2.6 summarizes the ideas discussed throughout

the database analysis. In Appendix A, we discuss in more detail.

8

2.2.1 Key Concepts

Before delving into the database type analysis, we introduce the database concepts [SKS+02]

necessary to grasp, in order to understand potential benefits and drawbacks of the distinct

properties and guarantees supported by each database.

Transaction, A group of commands that must behave as a single atomic command, meaning

they must all succeed or fail as a single unit, and their consequences, depending on the isolation

level, should not be visible to other sessions until the transaction is completed.

Atomicity, The property of a transaction in which all or none of its operations complete as

a single unit. Furthermore, if a system failure happens while a transaction is being executed,

no partial results are visible following a recovery.

Consistency, The property of ensuring that data in a database is always in accordance

with integrity constraints. Transactions may transiently break some of the constraints before

committing, but if such violations are not rectified by the time the transaction commits, the

transaction is immediately rolled back.

Isolation, The property that ensures that the effects of a transaction are not visible to

concurrent transactions before it commits.

Durability, The guarantee that after a transaction has been committed, the changes will

persist even if the system crashes.

ACID Transaction, A transaction is deemed to follow ACID semantics if it ensures the

properties of Atomicity, Consistency, Isolation, and Durability, as described above. These prop-

erties are meant to ensure validity in concurrent operation, and even in the case of errors or

power outages.

Scalability, Capability of the database to handle a growing amount of load with the potential

to be enlarged in order to accommodate that growth. Scaling can be done either horizontally or

vertically. Horizontal scaling implies adding or removing database nodes, while vertical scaling

means adding or removing resources to a single node [Kle17].

According to the CAP theorem [Bre12], a distributed database may have, at most, two of

three properties:

• Consistency (C): Database node maintains a single up-to-date copy of the data. Every

read request visualizes the most recently modified dataset or does not return;

• Availability (A): Every request receives a response, i.e. the system is always available to

respond to both read and write requests;

• Partition Tolerance (P): Tolerance to network partitions, even if some communications

9

are lost or delayed, the system continues to function.

It is crucial to emphasize that, as mentioned by Brewer [Bre12], partitions are commonly

viewed as unavoidable in distributed systems across a “wide area”. For this reason, most prac-

tical distributed systems must be designed to yield either consistency or availability, becoming

AP or CP, respectively. It is also worth noting that the system is only truly forced to make this

sacrifice during a partition.

2.2.2 Relational

As initially proposed by Codd [Cod02, Cod89], a relational database is a collection of related

data structure types, in the form of tables. Tables are organized into columns and rows, each

column represents an attribute, storing a single type of data. Each row of a table holds an entire

record or tuple, uniquely identified by a key. Data retrieval, manipulation or definition, in most

relational databases, is achieved through the execution of Structured Query Language (SQL)

statements. This manipulation consists of a series of relational algebra operators, which when

applied to a certain relation (table) produce a new relation, causing a transformation.

PostgreSQL1 is an open source object-relational database management system (ORDBMS)

implemented in C, based on POSTGRES [SR86, SRH90]. PostgreSQL utilizes the standard

Structured Query Language (SQL) which includes statements for defining and manipulating

data. It supports ACID semantics for transactions. PostgreSQL’s replication method is Primary-

Backup where a cluster is formed of a single primary node, responsible for receiving data modifi-

cations and forwarding them to the backup nodes. Replication can be done either synchronously

or asynchronously, however by default it is done synchronously to ensure strong consistency.

PostgreSQL does not provide a horizontal scalability solution such as sharding, instead par-

titioning is done solely at the table level, to improve query performance, using one of three

methods: Range, List, Hash. It does not provide a storage engine capable of running in-memory

only.

2.2.3 Key-value

As described by Han et al. [HHLD11] and Seeger [See09], the key-value data model consists

of a “key-value” relationship, where the value, representing the actual stored data, is indexed

by a uniquely identifiable key. These keys are typically strings and the data is generally a

programming language primitive, facilitating the marshalling between the key-value database.

Redis2 is an open source in-memory data structure store written in C, which maps keys to

1https://www.postgresql.org/
2https://redis.io/

10

five different types of values. Redis trades-off a traditional and robust query language to have

a simplified schema-less key-value data model. Redis instances are able to execute server-side

code written in Lua. Redis can only support transactions with no rollback mechanism, thus not

ACID compliant. Redis supports a primary-backup replication scheme, in which the replicas

are copies of a single master instance, however it lacks automated failover in the event of a

master’s failure. Redis provides asynchronous replication trading a stronger level of consistency

for higher availability. Redis offers a Hash Slot method for sharding data from a dataset among

several nodes. By default, operations are done over a dataset present only in-memory, however

data may be persisted by regularly dumping the dataset to disk.

2.2.4 Column-oriented

As outlined by Han et al. [HHLD11] and Abadi et al. [ABH09], column-oriented databases use a

table as the data model, however each database table column is stored separately with attribute

values belonging to the same column stored contiguously, compressed, and densely packed. This

contrasts with traditional relational database systems that store entire records (rows) one after

the other and associate tables. Reading a subset of a table’s columns becomes faster, potentially

at the expense of excessive disk-head seeking from column to column for dispersed operations.

Each column is typically handled by a separate process, allowing for concurrent process queries.

Apache Cassandra3, initially proposed by Lakshman and Malik [LM10], is a distributed

NoSQL database written in Java and developed to combine Amazon Dynamo [DHJ+07] dis-

tributed storage and replication techniques with Google Bigtable [CDG+08] data and storage

engine model. Cassandra employs a wide column data model. Cassandra Query Language

(CQL) offers a similar model and syntax to SQL with statements to define and manipulate

data. Data retrieval is more limited when compared to SQL, for example the ability to join data

is absent. Cassandra does not provide ACID transactions with rollback or locking methods,

opting instead for atomic, isolated, and durable transactions. Replication in Cassandra is done

through a Multi-Master scheme with multiple coordinator nodes in charge of replicating the data

items within a certain range and non-coordinator nodes acting as replicas. Cassandra offers an

eventual/tunable consistency, allowing the client to select the level of consistency required for

each session. Cassandra provides horizontal scalability by utilizing a hash algorithm to parti-

tion all data stored in the system. A storage engine capable of running in-memory only is not

supported.

3https://cassandra.apache.org/

11

2.2.5 Document-oriented

As mentioned by Han et al. [HHLD11] and Jatana et al. [JPA+12], similarly to key-value

databases, the document-oriented data model also constitutes a “key-value” relationship. How-

ever, the distinction is made regarding the semantics of the value, referred to as a document,

which instead of being encoded in a simple type, is serialized in some standard form such as

XML, JSON, and BSON.

MongoDB4 is a document oriented database implemented in C++, with BSON formatted

documents as the basic unit of data. Each document consists of a set of key-value pairs that

can vary from document to document — dynamic schemas. MongoDB has a distinct language

model from SQL with a JSON-like syntax, which provides operations to manipulate documents

(create, read, update and delete) and a similar level to relational databases of operators to

query data from them. Nodes are able to execute server-side code implemented in JavaScript.

MongoDB adheres to ACID principles for multi-document transactions. MongoDB supports a

Primary-Backup replication scheme, with automated failover, where secondary nodes replicate

the primary’s data set. By default, the replication is done synchronously and MongoDB client

sessions can ensure up to a causal level of consistency. In order to scale horizontally, MongoDB

supports two methods of sharding: Hashed Sharding and Ranged Sharding. MongoDB nodes

are also able to run on an in-memory only storage engine.

2.2.6 Summary

Relational databases are able to offer critical properties, such as ACID transactions, enforce-

ment of a database schema, flexible query language and a strong level of consistency through

its replication method. Transaction-oriented applications are able to leverage these properties

effectively, while other use cases require a higher level of availability, horizontal scalability and

performance. Non-relational databases are able to fulfill these needs by relaxing some properties,

such as query language expressiveness, transaction semantics and consistency guarantees.

In sum, the choice of database type is determined by the expected workload access patterns,

type of data to be stored and acceptable assurances. A comparison of the considered databases

is summarized in Table 2.1.

4https://www.mongodb.com/

12

Table 2.1: Summary comparison of the studied databases.

Database

Implementation
PostgreSQL Redis Cassandra MongoDB

Chosen

Database Model
Relational Key-value Wide column Document

Implementation

Language
C C Java C++

Schema

Required
yes no no no

Defined

Format Types
yes partial yes yes

Server-Side

Scripting
PSQL Lua no JavaScript

Transactions ACID

Atomic,

Isolated and Durable

Execution of

Command Blocks

Row-Level

Atomicity,

Isolation and

Durability

Multi-Document

ACID

Concurrency yes yes yes yes

Durability yes yes yes yes

Replication

Methods

Primary-Backup

Replication

Primary-Backup

Replication

Multi-Master

Replication

Primary-Backup

Replication

Consistency

Guarantees

Strong

Consistency

Eventual

Consistency

Eventual/

Tunable

Consistency

Eventual

Consistency,

Causal

Consistency

CAP CP AP AP AP

Partitioning

Methods

Table

Partitioning

(By range,

list or hash)

Sharding

(Hash Slot)

Sharding

(Consistent

Hashing)

Sharding

(Hashed

or Ranged)

In-Memory

only support
no yes no yes

13

2.3 Data Processing

CROSS relies on a significant volume of collected Wi-Fi and other signal observations. We will

discuss two distinct data processing methods of producing useful information to subsequently

integrate it in our operation: batch and stream.

2.3.1 Batch Processing

Batch processing is a method of processing large volumes of input data and producing some

output data, at once. This is typically achieved through batch jobs, which can take a few

minutes to several days. Batch jobs are often scheduled to run periodically, for example once a

day. A concrete implementation of this technique is MapReduce [DG04], a programming model

for parallel and distributed processing over large datasets.

2.3.2 Stream Processing

Batch processing assumes the input data is bounded, meaning that it is of a known and finite

size. However, most systems require near real-time capabilities, since data might arrive at any

moment and continue to grow progressively over time and they need to respond to it as it

happens. A stream is a concept that encapsulates this notion of data that is made available

gradually over time.

Stream processing is a method of continuously processing input data and producing some

output data. A stream processor reacts to events as they occur, whereas a batch job operates on

a fixed set of input data. More specifically, these events are generated by producers and can then

be processed by consumers. To handle the storage and transmission of these streams, stream

processing systems are usually built on top of a message broker. Producers write messages to the

broker, and consumers receive them by reading them from the broker. Concrete implementations

of stream processing frameworks are Apache Storm5 and Apache Samza6 [NPP+17].

2.4 Architectures

Most modern data-sensitive systems demand real-time data analytics. The capability to react

to events as they occur, for example in social media recommendation engines or in financial

institution fraud detection algorithms, is simply not feasible with a dataset obtained through a

data processing job executed the day before. These systems require asynchronous data trans-

5https://storm.apache.org/
6https://samza.apache.org/

14

formations with minimal delay. However, this should not sacrifice processing of historical data,

meaning to reprocess past input data, which is crucial to cope with change in the system.

We now discuss two concrete scalable and fault-tolerant architectures - Lambda and Kappa

- that are widely utilized to address the challenges outlined above, as well as their trade-offs.

2.4.1 Lambda Architecture

Marz proposed the “Lambda Architecture” [Mar11] in 2011 with the goal of achieving both real-

time and historical data processing capabilities by combining both batch and stream methods.

The Lambda architecture, as illustrated in Figure 2.2, is composed of three distinct layers: a

batch layer, a speed layer and a serving layer. Captured data is continuously fed to the system

as immutable sequences of records to both the batch and speed layers. The batch layer is

responsible for storing the immutable, ever growing master dataset and recomputing a series

of batch views which facilitate the computation of arbitrary queries over the dataset. Running

batch jobs to maintain these precomputed views of the dataset takes a significant amount of

time. Furthermore, any queries made during the precomputation process lack access to the data

captured during this period. Therefore, to compensate for high latency updates the speed layer

is responsible for incrementally computing a series of real-time views of recent data. Queries

are handled by the serving layer against the merged results of both the batch and real-time

views [WM15].

These capabilities increase the complexity with regards to code maintainability, since two

separate complex distributed systems need to be indefinitely maintained. Both the batch and

speed layers are required to be synchronized for the speed layer to correctly integrate the miss-

ing updates that occur during a batch job, resulting in increased computational time and ef-

fort [Lin17].

Speed layer

Stream

Processing

job

BATCH LAYER

Master

dataset

batch

Processing

job

SERVING LAYER

BATCH

VIEWS

REALTIME

VIEWS

MERGE

queries

Responses
INCOMING DATA

Client

Figure 2.2: Overview of the Lambda data processing architecture.

15

2.4.2 Kappa Architecture

Kreps proposed the “Kappa Architecture” [Kre14] in 2014 to overcome the limitations of the

Lambda Architecture. In the Kappa architecture there is no notion of batch. Every data is

treated as a stream and therefore only a stream processing engine is required. As illustrated in

Figure 2.3, it consists of two distinct layers: a stream processing layer and a serving layer. Data

is captured and fed to the system as streams, similarly to the Lambda architecture, however

due to the absence of the batch layer, it is simply directed to the stream processing layer. The

stream processing layer is responsible for running the real-time data processing jobs. Queries

are handled by the serving layer against the results from the stream processing layer. It is

important to note, however, that data may still be reprocessed by simply streaming through

historical data.

The Kappa architecture aims to achieve a “general-purpose” solution with both real-time and

reprocessing capabilities without the added complexity of maintaining two separate systems. In

this case, the trade-off is between latency/throughput and efficiency when reprocessing historical

data. A low-latency stream processing engine is not going to outperform a high-throughput batch

processing engine on a batch processing task built for that purpose [Lin17].

INCOMING DATA

Stream processing layer

Stream

Processing

job

SERVING LAYER

Database

queries

Client
Responses

Figure 2.3: Overview of the Kappa data processing architecture.

2.5 Cloud Computing

Cloud computing has emerged as an appealing means of providing services over the Internet with

the flexibility to provision additional resources as needed and employ a “pay-as-you-go” pricing

model. Therefore, it is important to explore the virtualization technologies that support cloud

computing, the cloud delivery and deployment models, as well as the offered container-based

managed services.

As mentioned by Bernstein [Ber14] and Pahl [Pah15], virtualization technologies are at the

foundation of cloud computing, whether via a hypervisor-based deployment with virtual ma-

chines (VMs) or a container-based deployment with containers. Due to their stronger isolation

16

guarantees, VMs pioneered as the primary virtualization form on the cloud, however these guar-

antees impose various constraints, such as the requirement for full guest operating system (OS)

images for each VM, which results in increased RAM and disk storage needs with poor startup

performance.

2.5.1 Deployment Models

The NIST organization [MG11] defined the notion of cloud deployment model. Several deploy-

ment models are available for a provider’s cloud infrastructure. The main distinction between

each model is in the level of exclusivity granted to a cloud consumer, with respect to the cloud

computing resources provided:

• Private cloud: A single organization has exclusive access to the infrastructure and the

underlying computing resources. It can be managed by the consumer organization or by

a third party, meaning it can be hosted on-site or by a hosting company;

• Community cloud: Shared infrastructure for a group of enterprises with similar mission

objectives, security, privacy, and compliance policies. It, similarly to the previous model,

can be administered by a group of companies or by a third party, being on-premise or

off-premise;

• Public cloud: The general public has access to both the cloud infrastructure and the

underlying resources. The public cloud is owned by an industrial group and run by a

company that sells cloud services, catering to a wide range of clients;

• Hybrid cloud: The cloud infrastructure is made up of two or more clouds (private,

community, or public) that are separate, yet linked by technology facilitating data and

application portability.

2.5.2 Delivery Models

The Software-Platform-Infrastructure (SPI) model has been defined as a classification approach

for cloud computing by NIST [MG11]. This scheme stands for the three main cloud-based

services, offered by all the major providers:

• Infrastructure as a Service (IaaS): The consumer has the ability to provision compute

capacity, storage, network capacity and other key computing resources. The consumer is

free to deploy and run any arbitrary software, which can include operating systems. The

provider has the responsibility to manage and control the underlying cloud infrastructure;

17

• Platform as a Service (PaaS): Customers are able to deploy already developed appli-

cations, with programming languages and tools supported by the provider, into the cloud

infrastructure. The provider has the responsibility to manage and control the underlying

cloud infrastructure;

• Software as a Service (SaaS): The provider offers applications to users over the network.

Latest advancements in virtualization technology, such as containers, have also allowed the

emergence of the serverless computing model, as described by Baldini et al. [BCC+17] and

Castro et al. [CIMS19]. Applications are broken down into small snippets of code that may

be triggered and executed in an arbitrary cloud infrastructure. The term “serverless” comes

from the shift in the focus of the developers away from the configuration, provisioning and

management of servers to focus on the business logic. Naturally, the code is still executed on

server machines.

The Function as a Service (FaaS) delivery model is the realization of serverless. Code

logic is encapsulated in small stateless functions executed for a set period of time, after being

triggered by an event such as an HTTP request. FaaS can be viewed as an evolution of PaaS,

as it removes further customer control over the configuration of the execution environment,

concealing complex components such as scaling policies. It also has a more fine-grained cost

model, in which clients are only billed for actual code execution. However, the FaaS stateless

model can lead to restrictive application programming and increase vendor lock-in.

A summary of the different responsibility concerns between the customer and the service

provider across the distinct delivery models is shown in Table 2.2.

Table 2.2: Delivery model responsibility sharing between customer and service provider.

Delivery Model IaaS PaaS FaaS SaaS

Interface Customer Customer Customer Customer

Application

Custom Code
Customer Customer Customer Service Provider

Application Runtime Customer Service Provider Service Provider Service Provider

Operating System Customer Service Provider Service Provider Service Provider

Hypervisor Service Provider Service Provider Service Provider Service Provider

Computing Service Service Provider Service Provider Service Provider Service Provider

Storage Service Service Provider Service Provider Service Provider Service Provider

Network Service Provider Service Provider Service Provider Service Provider

Local Infrastructure Service Provider Service Provider Service Provider Service Provider

18

2.5.3 Container-based Managed Services

Application architectures composed of various services that share the underlying infrastructure,

in the cloud, need a solution that addresses packaging, deployment, and portability concerns.

Containers can satisfy these criteria. Docker expands on Linux Container (LXC) techniques,

which use namespaces and control groups to isolate processes on a shared OS, by offering a

systematic approach to packaging and deploying applications as portable containers while per-

forming at a similar native level to make the most of the available computational resources.

However, as the usage of containers at a larger scale grows, so does the demand for a set

of management tools, such as Docker Swarm and Kubernetes, able to oversee the networking

between containers, the automation of their deployment, scaling policies, and the overall infras-

tructure operation. Cloud providers offer managed orchestration tools as a service, as a means

to ease the use of these complex tools.

Ferreira and Sinnott [FS19] measured and evaluated CPU, memory, disk and network per-

formance of manually deployed Kubernetes clusters and compared it against the performance of

managed clusters deployed through Kubernetes-based cloud services. Specifically, they have con-

sidered the most popular service providers, and their Kubernetes-based cloud services: Amazon

Elastic Container Service for Kubernetes (EKS), Azure Kubernetes Service (AKS), and Google

Kubernetes Engine (GKE). According to their experimental evaluations, the large percentage of

the performance variations observed were tightly linked to the underlying resources delivered by

the provider such as the VM type, storage type and network tier. Using managed cloud services,

by themselves, does not result in a performance overhead.

2.6 Summary

In this Chapter, we showcased the initial CROSS prototype and some of its shortcomings in

the generation and verification of time-bound location proofs. Additional data storage and

processing components on the server-side are required to incorporate this feature in CROSS.

Therefore, we analysed the main database types as well as a concrete implementation of each

data model, discussed the different data processing modes and architectures which incorporate

both components. Finally, we looked at cloud computing as a means of delivering services on

demand.

19

20

Chapter 3

Implementation

In this Chapter, we describe CROSS City Cloud, the server-side implementation of the new

version of the CROSS smart tourism application. The mobile application was led by a colleague

working in the same project [Gra22]. The CROSS V1 architecture required several extensions to

support the generation and verification of location proofs with time granularity. Additionally,

we deployed the resulting cloud solution to a public cloud provider, alongside the integration of

service operation related processes. With our work, CROSS services are available on demand for

any client front-end application to consume, in particular the CROSS City mobile application.

In Section 3.1, we discuss the assumptions under which the new system was developed, as

well as the requirements it must fulfill. In Section 3.2, we examine alternative architectures,

and present an architectural overview of the extensions made to the data management layer of

CROSS City, with a description of the functionality of each component and how components

communicate and interact with one another. In Section 3.3, we select the proper cloud services

for each architectural component, along with the reasoning behind each decision. We conclude

this Chapter with Section 3.4, where we summarize the implementation details.

3.1 Assumptions and Requirements

CROSS City Cloud extends the functionality of the CROSS v1 prototype with increased de-

pendability, therefore we retain some of its original assumptions while making some new ones:

• The system will be deployed in urban environments with a high density of diverse Wi-Fi

networks, Bluetooth beacons and GSM cell-towers;

• The existence of GSM cell-towers with sufficient sky visibility for mobile devices to use

GNSS;

21

• The system will be operated by system operator entities which are businesses directly in

the tourism industry, or other organizations hired by them;

• Prior to the system going live, the system operators define the points of interest (such as

emblematic city locations), touristic routes and corresponding rewards;

• Within the epoch, prior to the system going live, system operators collect sufficient net-

work observations with multiple devices across the points of interest to identify the stable

networks;

• At the end of a full period, we have sufficient network observation data collected by tourists

to determine transient networks at each point of interest.

For the purpose of illustration, we will assume that the time windows for validating location

proofs, as discussed in Section 2.1.3, are epoch of 1 week, period of 1 day and span of 1 minute.

We must still be able to guarantee that the initial CROSS v1 functional requirements are

still met, including:

• R1: Rewards should only be given to people who are actually eligible to receive them;

• R2: System operators should be able to identify which users were rewarded with which

rewards.

To adequately facilitate the generation and verification of time-bound location proofs, the

system must also be able to fulfill the following functional requirements:

• R3: Determine the stable network set by point of interest sliced by time, which involves

queries such as “What are the stable Wi-Fi SSIDs in this point of interest over the epoch”;

• R4: Determine the volatile network set by point of interest sliced by time, which involves

queries such as “What are the transient Wi-Fi SSIDs in this point of interest over the

span”.

In addition to the functional requirements, we established critical non-functional require-

ments that the system must be capable of satisfying:

• Security: Public clouds typically follow a shared responsibility model, as described in

Section 2.5.2, thus security is a major concern. The infrastructure and communications

between services needs to be protected against unauthorized use. Additionally, the confi-

dentiality and integrity of the data must be preserved while stored persistently or in-transit;

22

• Reliability: The architected solution should tolerate crash faults and continue to function

to achieve high availability;

• Scalability: The system should be capable to handle growing loads, by linearly adding

more computational resources to meet that demand;

• Elasticity: The system should be able to provision or deprovision resources to meet the

workload;

• Monitoring: To allow the detection of problems, the health status of each system com-

ponent should be monitored;

• Performance and Cost Efficiency: The computing resources should be tuned for op-

timal performance while meeting the system requirements and operating at the lowest

feasible price point;

• Maintainability: The system infrastructure and cloud services should be easy to manage

and extend.

3.2 Architecture Extensions

In this section, we detail the extensions to the CROSS V1 prototype architecture, necessary to

properly support time-bound location proofs, and discuss possible alternatives. Furthermore,

we identify and mitigate conflicts with the original architectural components.

3.2.1 Data Management Layer

The CROSS prototype user flow always necessitates client communication with the back-end

before and after a trip. Before starting a specific trip, the client application fetches the catalog

of locations and possible itineraries. During the trip, the client application logs the visits to each

point of interest while sensing Wi-Fi signals, and either stores these locally (offline connection)

or publishes them to the API server (online connection) as it senses. At the end of the trip,

the application submits all of the collected information, that has not been submitted during the

trip, to the back-end and claims each point of interest visited. It is important to note that the

start and end of a trip might coincide with the beginning and end of a day/period, but it is not

guaranteed.

Based on the expected user flow, one crucial question emerges: Is there a necessity for

real-time data analytics? If the answer to this question is negative, then a minimal Lambda

23

architecture with solely batch processing is sufficient to provide us offline data processing capa-

bilities. However, if the answer to this question is positive, then either the Lambda or Kappa

architectures are potential solutions. Additionally, the Kappa architecture is preferable over

the Lambda architecture due to the lower level of complexity to maintain it, as mentioned in

Section 2.4.2, and our ability to address the correctness of the solution by ensuring that the

stream processing system delivers a semantic guarantee as strong as the one that is provided by

the batch system.

Minimal Lambda Architecture Rationale

If we consider that the start and end of a trip typically coincide with the beginning and end

of a day/period, then we can argue that real-time capabilities are not required in this partic-

ular scenario. The process of generating a time-bound location proof is highly dependent on

the integration of the complete set of network observations collected by the greatest number of

co-located witnesses within a period, as described in Section 2.1.3. Ideally, with real-time capa-

bilities we should be able to ingest, process and integrate the observations into the operating

dataset as soon as they happen, however this does not ensure that we have received all obser-

vations that have occurred up until that point in time. By purposefully delaying location proof

requests and integrating all of the observations received in a period of 24 hours, through offline

data processing, we do not solve this issue, but we would have an equal chance of determining

the most encompassing volatile network set. Figure 3.1 is a data flow diagram showcasing the

process of ingesting submitted network observations collected by tourists in an Observations

Storage data store, and the batch transformation and integration of network observations in an

Serving Storage data store to serve stable and volatile network queries.

Observations
Storage

Persist Network
Observation ProcessTourist

Network
Observation

Network
Observation

Serving
Storage

Extract Wi-Fi SSID
Batch Process

Notification

Batch ViewsLoad Batch Views
Process

Batch
Views

Aggregate Sum
Wi-Fi SSIDs By

POI and Event Time
 Process

Key Network
Observations by

Event Time, Wi-Fi SSID
and POI
 Process

Network
Observations

Network
Observations

Figure 3.1: Data flow diagram detailing the network observations data ingestion, processing and

integration for the minimal Lambda architecture.

24

Kappa Architecture Rationale

The minimal Lambda architecture solution detailed in the previous Section 3.2.1 relies on the

assumption that the start and end of a trip typically coincide with the beginning and end of

a day/period. Alongside this assumption, it must also be assumed that during the day/period

no location claim request is made for that particular period, or at the very least that this user

behavior is expected to be the most common one. However, if we consider that real-time capabil-

ities are necessary, then we are able to relax these assumptions. Network observations published

by users can be persisted as soon as they are received, as streams, then processed and integrated

into the operating dataset in real-time. These capabilities ensure that we produce responses in

a timely manner through low latency updates, even with incomplete data. Solely with offline or

batch processing, any location proof requests made during a period would necessarily have to

be purposely delayed until a period reached its completion or multiple high latency batch jobs

would have to be triggered during the period, for us to be able to fulfill those requests. Further-

more, real-time capabilities would allow us to both extend the solution with logic to potentially

react and predict user behavior in real-time and support latency sensitive clients. Figure 3.2 is a

data flow diagram showcasing the process of ingesting published network observations collected

by tourists, as streams, in an Observations Stream Storage data store, and the stream processing

job processes to integrate network observations in a Serving Storage data store to serve stable

and volatile network queries.

Observations
Stream Storage

Persist Network
Observation ProcessTourist

Network
Observation

Network
Observation

Stream

Serving
Storage

Pull Network
Observations

Process

Network
Observations

Network Observations
Window PanesReal Time ViewsLoad Real Time Views

Process

Real Time
Views

Aggregate Sum
Wi-Fi SSIDs By

POI and Event Time
 Process

Key Network
Observations by

Event Time, Wi-Fi SSID
and POI
 Process

Group Network
Observations in

Event Time Window
 Process

Network
Observations

Network
Observations

Figure 3.2: Data flow diagram detailing the network observations data ingestion, processing and

integration for the Kappa Architecture.

Final Architecture

With the additional extension, CROSS City Cloud needs to offer the following services:

• Serve domain touristic and user information requests (insert, read, update and delete);

25

• Authenticate users;

• Assign rewards;

• Verify location proofs;

• Store and validate network observations;

• Process network observations;

• Fetch stable and volatile network set data.

Based on the detailed rationales and operations, we extend the CROSS architecture data

management layer with three distinct layers: a domain layer, a stream layer and a serving layer.

The domain layer will be responsible for storing all of the entity relations and their corresponding

related data, such as the user information, points of interest and tourism routes. Any queries

related to the domain data will be handled directly by the domain layer. The stream layer stores

the raw streams of Wi-Fi signal observation data as atomic facts, these facts are kept immutable

and true within a given epoch time window through the use of publish time timestamps. With

this fact-based model, since no data is altered and always true as per the time of its addition, we

are able to recompute views from historical data, which is particularly useful in the event of any

possible requirements change. Additionally, the stream layer is responsible for executing stream

processing jobs that will produce stream views containing precomputed aggregated results to

assist stable or volatile set queries. The serving layer indexes the results processed the stream

layer, to serve the stable or volatile set query requests. Since processing is done asynchronously

on the stream layer, the serving layer is only required to fetch the sets while handling client

query requests, avoiding extra computation work.

Figure 3.3 illustrates the CROSS v1 prototype server-side architecture to contrast with

Figure 3.4 which illustrates the resulting CROSS server-side architecture with the extension

described previously.

26

Catalog
&

User Info Location Proof
Verifier

API
Request
Handler

Reward
Assigner

System
Operator

Database

CROSS Server

CROSS Mobile
Client

Tourist

API
Internet

Wi-Fi
Access PointKiosk

Figure 3.3: Overview of the CROSS v1 proto-

type server-side architecture.

Location Proof
Veri�er

API
Request
Handler

Reward Assigner

Intermediate
Data Sets

Database

CROSS City Server

CROSS
Mobile Client

API
Internet

Serving Layer Stream Layer

Raw Network
Observations

Stream
Storage Network

Observations
Processor

Domain Layer

Catalog
&

User Info

Database

Wi-Fi
Access PointKiosk

System
Operator

Tourist

Figure 3.4: Overview of the extensions to the

CROSS server-side architecture.

3.2.2 Network Observation Data Collection

The diversity of signals at each point of interest is leveraged as an ad-hoc witness to prove

the location and time of visit, as described in Section 2.1.3. CROSS City Cloud specifically

utilizes the stable networks to prove the location and the volatile networks to prove the time of

visit. Thus, networks observed by tourists must be continuously integrated into the operational

dataset. Nonetheless, we need to ensure that only valid network observations are integrated.

With this in mind, the CROSS City Cloud lifecycle is split into two stages: Pre-Live and

Live. The Pre-Live stage is a finite time interval with a total duration equal to the system

epoch, referred to as epoch0. Throughout the Pre-Live stage, only trustworthy entities such as

the system operators submit network observations of each existing point of interest, with the

goal of deriving the initial stable network sets. Since the system trusts the system operators,

the verification of their submissions is not required. The Live stage is a sequence of epoch

intervals, with the initial one named epoch1. Throughout the Live stage, untrusted entities

interact through trip submissions, as depicted in the UML sequence diagram of the protocol

(Figure 3.5). Tourists/Provers are meant to complete trips across multiple point of interest

visits and collect the networks observed. Each visit (location claim) contains a set of evidences

(network observations) which are validated against the claimed point of interest stable network

set of the former epoch. For epochn , the stable network set of epochn− 1 is used for validation.

Only if the claimed point of interest confidence threshold is fulfilled does the visit get accepted

and its network observations are incorporated in the system.

27

Prover CROSSCityAPI WiFiAPObsStorage PipelineStreamStorage

postTrip(trip)

tripResponse

publishResponse

stableSet

getStableSetNetworkObs(visit.poi,
visit.interval)

calcConfidence(visit.evidences,
stableSet)

[confidence >=
visit.poi.threshold]

[foreach visit in
trip.visits]

opt

loop

publishBatchNetworkObs(visit.evidences)

pullNetworkObs()

networkObs

Figure 3.5: UML sequence diagram of the Prover/Tourist entity network observation publish

protocol.

In sum, the Pre-Live stage represents the epoch0 and has the main purpose of producing the

genesis stable network sets of each point of interest, via data collection scavenged by system

operator entities. The Live stage reflects the subsequent epochs and both stable and volatile

network sets of each point of interest are produced, through the data collection provided by

prover tourists. Figure 3.6 is a UML timing diagram illustrating the state change and the

aforementioned entity interaction.

P
ro

ve
r

S
ys

te
m

 O
p

er
at

or
C

R
O

S
S

 C
it

y
C

lo
ud

Pre-Live
{Epoch}

Stable Set Collection

Submit WiFi AP
Observations

Submit Trips

Stable and Volatile Set Collection

{Epoch}

{Epoch}

{Epoch}

{Epoch}

Period 1 2 3 4 5 6 7 8 9 10 11 12 13

{Epoch}
Live

Scavenging

Idle

Scavenging

Idle

Figure 3.6: UML timing diagram of the CROSS City Cloud lifecycle across epoch0 and epoch1

with the system operator and prover entity lifelines.

28

3.2.3 Intermediate Network Observation Set Computation

The sole goal of the stream layer is to produce network observation views to be queried efficiently,

in a low-latency manner. Hence, we are adopting an incremental computation approach over

recomputation, avoiding the execution of our function logic over the entire set of observations. To

be efficient, the views should contain intermediate results of the expected queries: Most observed

networks, over an epoch, for a given point of interest (stable network set) and Least observed

networks in a span interval, over a period, for a given point of interest (volatile network set).

The key idea of the intermediate views is to maintain a count of the number of observations

per network at each point of interest, for the most encompassing range of time. Note that

the usage of larger time intervals increases query performance by trading-off proof validation

accuracy. We now reason about the ideal time interval for each set and the kind of window

used for grouping (tumbling for fixed size non-overlapping time intervals and hopping for fixed

size scheduled overlapping intervals [Kle17]). Stable network sets are queried within an epoch;

since an epoch must always encompass a period, the minimum time window granularity is a

period. Volatile network sets are queried within a span, and each of the possible span time

windows encompasses smaller intervals of span’s greatest common divisor size. For example let

the spans = {15min, 10min, 5min}, given any span interval with size equal to one of the spans,

it can be represented as a union of 5 min (the greatest common divisor) intervals. We leverage the

fact that the set of spans are known before going live to compute every possible time interval of

a span’s greatest common divisor size with minute granularity, during a period, by aggregating

network observations into one minute periodic hopping time windows. This computation is

feasible as it results in, at most, 1440 windows (there are 24 ∗ 60 = 1440 minutes in a day)

during computation time. Figure 3.7 represents the pipeline, each network observation is first

pulled from the stream layer storage component, then aggregated in two separate tumbling and

hopping windows, based on its publish time (event time), with size equal to the period and the

greatest common divisor of the spans, then keyed and summed per point of interest and BSSID,

and finally written to the serving layer. We also studied the possibility of computing each

interval using hopping windows of each span’s size, as this would result in a minor computation

overhead of additional 1440 windows per span interval, however due to the relatively low size of

a period, this alternative did not yield any gains over our solution.

3.2.4 Stable and Volatile Network Observation Set Computation

Both stable and volatile network set views are persisted in the serving layer and partitioned

by point of interest and period, since the queries are expected to be tied to a particular point

29

Read Network
Observation

Window By Event
Time �Volatile Set
Hopping Window)

Sum Network
Observations per POI

and BSSID

Write Volatile Set
Intermediate Results

to Serving Layer

Window By Event
Time �Stable Set

Tumbling Window)

Sum Network
Observations per POI

and BSSID

Write Stable Set
Intermediate Results

to Serving Layer

Pull/Window

Transform

Load

Figure 3.7: CROSS City Cloud pipeline for producing intermediate stable and volatile network
sets.

of interest and require, at most, a period worth of data. Hence, the usage of the horizontal

partitioning method is an efficient way to store these specific views. Each record in the view

maintains the number of observations for a particular network within a time interval, as detailed

in Table 3.1. This method of caching is similar to the concept of materialized view which

commonly is a copy that contains the results of a query [Kle17].

Table 3.1: Intermediate network observation set view fields.
Field Description

poi id Point Of Interest

bssid Collected Network

start time Initial Timestamp of the Collection Time Interval

end time Final Timestamp of the Collection Time Interval

count Number of Observations for the Collected Network

As soon as an epoch is completed the period intermediate stable set views, that comprise

the epoch, are used to produce a materialized view containing the top 10% observed networks

over that epoch (Listing 3.1), off the critical path. Network observations from past epochs are

expected to remain unchanged, thus the creation of an additional materialized view significantly

improves the efficiency when accessing a stable set. Furthermore, volatile set queries utilize the

intermediate volatile set views and the stable set materialized view to filter the top 10% observed

networks of the previous epoch and retrieve the bottom 10% observed networks within the

claimed time interval (Listing 3.2). We are considering 10% as the threshold value, nonetheless

this remains a configurable parameter.

30

Listing 3.1: 1 week Epoch Stable Set Query - 2022-07-29 to 2022-08-04

-- Sum network observations for the epoch

WITH bssid_total_count AS (

SELECT bssid, SUM(count) as total_count

FROM (SELECT bssid, count FROM ‘intermediate_stable_set_2022-07-29‘ UNION ALL ... SELECT

bssid, count FROM ‘intermediate_stable_set_2022-08-04‘)

GROUP BY bssid)

-- Stable set for the epoch (top 10% observed)

SELECT bssid, total_count

FROM bssid_total_count

WHERE total_count >= (SELECT PERCENTILE(total_count, 0.9) FROM (SELECT * FROM

bssid_total_count) LIMIT 1)

Listing 3.2: 10 Minute Span Volatile Set Query - 14:30:00 to 14:40:00

-- Sum network observations for the claimed span interval, and filter the stable set

WITH bssid_total_count AS (

SELECT bssid, SUM(count) as total_count

FROM ‘intermediate_volatile_set_table‘

WHERE bssid NOT IN (SELECT bssid from ‘stable_set_table‘) AND (start_time = 14:30:00 OR

start_time = 14:35:00)

GROUP BY bssid)

-- Volatile set for the claimed span interval (bottom 10% observed)

SELECT bssid

FROM bssid_total_count

WHERE total_count <= (SELECT PERCENTILE(total_count, 0.1) FROM (SELECT * FROM

bssid_total_count) LIMIT 1)

3.2.5 Catalog Immutability

Whenever extending or modifying any software architecture we should be aware of possible

conflicts with existing components, to swiftly identify and mitigate them.

The stream layer, in our extension, sums network observations by their point of interest

and event time, which in turn produces the intermediate results stored in the serving layer. As

one might expect, the points of interest in the stable and volatile set views must exist in the

domain layer of CROSS, therefore these intermediate results depend on the domain layer. More

specifically, there is a dependence on the database module storing the domain data related to the

points of interest and tourism routes, referred to as the catalog. In essence, this problem arises

only whenever there is data inconsistency between the data in the catalog and the serving layer,

31

such as the existence of different points of interest or routes, which can be solved by enforcing

immutability in the catalog. By timestamping each tourist collected network observation and

keeping each as the truth only within the epoch it originated, we are able to enforce immutability

in the stream layer. Similarly, once the points of interest and tourism routes are created we are

able to version and timestamp them, preventing changes to them and enforcing immutability

of the catalog, within an epoch. This method guarantees that time-bound location claims are

ensured to be true within the epoch claimed based on both the domain and serving layer.

3.3 Cloud Deployment

In this section, we assess the proper cloud offerings for each architectural component of the

CROSS City Cloud architecture, detailed in Section 3.2.1. Furthermore, we discuss the numerous

additional changes that were required, to fulfill the criteria enumerated in Section 3.1.

3.3.1 Base Deployment

Each one of the three layers of the CROSS City Cloud architecture has a different set of compo-

nents which must fulfill a different set of requirements. The decision of each component’s cloud

service is dependent on the service that satisfies the greatest amount of requirements, without

the need to be modified.

Domain Layer

When abstracting the implementation details, the domain layer is comprised of two primitive

components: a compute (CROSS API Server) and a database (CROSS Domain Database).

Starting off with the CROSS API Server component, in the CROSS prototype, the client

mobile application communicated with the back-end services through this component. It was

a REST API (Application Programming Interface) exchanging JSON payloads. The code was

implemented in Go and communication was done over HTTPS. HTTP is an application-layer

protocol supported on reliable TCP connections designed for web communications [Mai19].

Due to maintainability reasons, specifically to address the evolvability and documentation

of the code base, the CROSS API Server component was redeveloped in the Java programming

language with Maven1 as the software project management tool (build and dependency manage-

ment automation). This API Server component remains the entrypoint for the communication

between the client and the back-end services, containing all of the necessary handlers to handle

domain data, authentication, reward assignment, and location proof validation requests. The

1https://maven.apache.org/

32

interface still follows the REST (REpresentational State Transfer) software architectural style

for web services, which defines a set of constraints restricting the protocol used in Client-Server

architectures with regards to the possible requests and responses. REST principles lead to a

stateless application layer protocol, which helps us assure some of the requirements for our so-

lution, such as performance, scalability, maintainability, and reliability. In stateless protocols,

there is no concept of sessions and each request contains all the information necessary to be

processed. This is useful in contexts where the services can be decoupled and scaled out. As

for the implementation of this component, the Jersey 3.0 reference implementation2 was used to

support the Jakarta RESTful Web Services 4.0 specification3 (JAX-RS) which eases and stan-

dardizes the development of web services according to the REST architectural pattern with Java

annotations added to the source code. Additionally, Jersey helps to expose data in a variety

of representation media types and abstracts away the low-level details of the client-server com-

munication. GlassFish4 is used as the application server with Grizzly5 web server components.

GlassFish is an open-source Jakarta EE platform application server project. Project Grizzly is

an HTTP server framework, pure Java web service built using the non-blocking I/O (NIO) API

for improved performance and scalability. The redevelopment was also used as an opportunity

to ensure that the API server is compliant and uniform with other existing SureThing projects

with regards to the use of the format protocol buffers for encoding data. Protocol buffers6,

originally proposed by Google, is an open-source language-neutral, platform-neutral, extensible

mechanism for serializing structured data, allowing us to structurally serialize (binary encoding)

our typed data across languages.

The API was documented following the OpenAPI7 specification, which is a language-agnostic

interface for REST APIs that allows current and future system operators to discover and under-

stand the capabilities of the CROSS City Cloud services. The specification defines the expected

requests and responses without requiring full access to the source code, through human-readable

documentation about both the data and API specification. In pursuance of automatic genera-

tion of the OpenAPI description from the CROSS API Protocol Buffer service definitions, we

have decided to leverage a third-party plugin, developed by Google, for the Protocol Buffer

Compiler named “gnostic protoc-gen-openapi”8. This plugin allows the conversion of OpenAPI

descriptions to and from equivalent Protocol Buffer representations. The CROSS API Protocol

2https://eclipse-ee4j.github.io/jersey/
3https://jakarta.ee/specifications/restful-ws/4.0/
4https://javaee.github.io/glassfish/
5https://javaee.github.io/grizzly/httpserverframework.html
6https://developers.google.com/protocol-buffers
7https://swagger.io/specification/
8https://github.com/google/gnostic/tree/main/cmd/protoc-gen-openapi

33

Buffer service definitions follow the Google APIs Guidelines9, which involves providing HTTP

definitions for each RPC defined, for compiling purposes.

Based on the goal of pushing as many infrastructure concerns as possible to the cloud

provider, the most adequate delivery models in this scenario would be FaaS or PaaS. Any

existent cloud compute offering, such as Google Cloud Platform (GCP) Cloud Functions or App

Engine, Amazon Web Services (AWS) Lambda or Elastic Beanstalk and Azure Functions or

App Service, is able to serve this kind of RESTful service. More specifically, Google Cloud

offers the Google App Engine Platform, which is a fully managed cloud computing PaaS with

built-in services, such as auto-scale based on demand and load-balancing, and fits most of our

set criteria. Nonetheless, we want to mitigate cloud provider lock-in as much as possible, have

a greater control over our scalability policies and node configuration flexibility, as well as uni-

formize future service deployments by using the same interface regardless of cloud choice. As

discussed in Section 2.5.3, Kubernetes-based cloud services offer managed orchestration tools as

a service providing a complete control over every aspect of container orchestration, from net-

working, to storage, and observability over each component. With this in mind, the CROSS

REST API Server can be packaged as a Docker container and deployed to a Kubernetes cluster,

such as Google Kubernetes Engine (GKE), as a service to be exposed to connections outside of

the cluster. Based on this cloud deployment decision for the CROSS API server, some of our

initial requirements are promptly fulfilled, where as others require further modifications to be

assured:

• Scalability - If we describe load as the rate of requests made to the server, then by having

a stateless application layer protocol derived from the enforcement of REST principles,

we address the scalability aspect of this component. Moreover, services can be decoupled

and scaled out independently, which can be leveraged with the use of a load balancer.

Both scaling out and up can be attained within our Kubernetes deployment configuration.

Scaling out is achieved by adding additional replicas and scaling up can be defined by

requesting more from a resource such as CPU and memory within the set GKE node

limits used. A load balancer is not obtained by simply using GKE, therefore this will be

addressed in the following Section as a “deployment enhancement” to this component;

• Elasticity - The base deployment of this component is not inherently elastic with the use

of GKE and therefore requires further modifications to fulfil this requirement;

• Reliability - With the use of Kubernetes, we are able to set the level of replication (number

9https://google.aip.dev/127

34

of identical pods) for this specific component, which when paired with the fact that the

application layer protocol is stateless, high availability is assured. Fault tolerance at the

pod level can be achieved with the use of a liveness probe, which periodically sends an

HTTP request to a specific endpoint and waits for the response within a certain delay, if

the threshold delay is surpassed without a response the pod is restarted, to overcome the

failure, i.e. transition to a failure free state;

• Maintainability - This requirement is intrinsically satisfied with our decision to use Maven

for build and dependency management automation, and with the enforcement of REST

guidelines leading to decoupled services. Additionally, the API documentation generation,

with the use of the OpenAPI specification, also contributes to the satisfaction of this

requirement;

• Performance - Each GKE cluster is comprised of a node pool with variable node resource

specifications set by us. Therefore, from a resource performance standpoint, by using GKE

we have available, by default, a plethora of Google Cloud instance types. Furthermore,

the derived stateless application layer protocol, from the enforcement of REST principles,

contributes to assuring this requirement;

• Security - With regards to security, two major concerns arise: secure network communica-

tions between client and server through the TLS protocol, and secure access to the CROSS

API server workload resources, in the GKE cluster, with authentication and authorization.

Both concerns are not satisfied by default and thus require modifications detailed in the

subsequent Section.

In the CROSS City Cloud deployment, the database component of the domain layer remains

responsible for storing both user and tourism related data, similarly to the CROSS prototype.

User information is used to serve the user authentication service, as well as provide specific

information of each user account, regarding their trip history and rewards received. Tourism

information is comprised of the available tourism routes, points of interest and possible rewards,

referred to as the catalog. Due to the level of relation between the data described and the degree

of query expressiveness required, we maintained the decision to use a relational data model and

PostgreSQL as the specific relational database, since other alternatives were formerly discussed

in the prototype [Mai19].

The deployment of the database could be attained through fully managed services such as

Google Cloud SQL, Amazon RDS and Azure Database for PostgreSQL. However, considering

the use of GKE for the deployment of the CROSS API server, we can leverage cluster multi-

35

tenancy as a means to be more cost effective, while maintaining a similar level of management.

Let us review the list of requirements concerning the database component with the deployment

decision in consideration:

• Scalability - Similarly to what was mentioned with regards to the CROSS API Server, both

scaling up can be attained within the Kubernetes deployment configuration. Scaling up

can be defined by requesting more from a resource such as CPU and memory within the set

GKE node limits used, which are also configured based on the instance types provided by

Google Cloud or a custom one. In contrast to the CROSS API Server component, scaling

out can not by achieved by simply adding additional replicas, due to the Primary-Standby

replication method used by PostgreSQL, as detailed in Appendix A.1. Either synchronous

or asynchronous replication between the primary and the read replicas (separate deploy-

ments) would need to be setup. While in our configuration replication is performed at the

disk level;

• Elasticity - Identically to the CROSS API Server deployment, the database component

base deployment is not elastic, by default. Moreover, as mentioned previously due to

the Primary-Standby replication method utilized by PostgreSQL, replication between the

primary deployment and the read replicas deployment would need to be established first.

After that, elasticity within the read replicas would be satisfied;

• Reliability - The combination of a GKE regional cluster (multi-zone replicated with mul-

tiple masters - one per zone in the region) and a regional persistent disk provides durable

storage and synchronous replication of data between two zones, in the same region, guar-

anteeing that an outage in a single zone does not make the database unavailable. Although

PostgreSQL does not provide automatic failover, as described in Appendix A.1, this can be

mitigated with the use of a Kubernetes Deployment workload resource. In a Kubernetes

Deployment workload resource we can describe the desired state (one database Kubernetes

pod), and the Deployment controller ensures that the actual state matches the described

desired state;

• Performance - Each GKE cluster is comprised of a node pool with variable node resource

specifications. Therefore, from a resource performance, such as CPU and memory, stand-

point, we have available, by default, a plethora of Google Cloud instance types. As for the

persistent disk performance achieved, the persistent volume claim used by the database

instance is based on the regional persistent disk types available, which can be resized to

obtain more throughput and IOPS.

36

Stream Layer

The stream layer is comprised of two primitive components: data ingestion and data processing.

The data ingestion component has the purpose of ingesting network observation events,

published by clients through the CROSS API, for streaming into the data processing component.

In the current architecture, from a publish/subscribe model standpoint, the CROSS API Server

pods are considered the producers and the processing pipeline worker the consumers. Thus,

support for both multiple producers and multiple consumers should be satisfied.

We could either implement a messaging system with direct communication between producers

and consumers (brokerless) or utilize intermediary nodes (brokers). The application code in

brokerless systems typically has to be aware of the risk of message loss, even though they

function effectively in the scenarios for which they are intended. Its tolerable faults are relatively

constrained, despite the fact that the protocols identify and resend packets that have been lost

in the network. It is typically assumed that producers and consumers are always online, as

a consequence a consumer may miss communications received while it was unavailable. Some

protocols let the producer reattempt a failed message delivery, however this strategy may fail

if the producer crashes and loses the buffer of messages it was intended to try again with. A

message broker is essentially a type of database that is designed specifically to handle message

streams. Consumers read the messages that producers publish to a broker topic, after they have

been written to the broker. By centralizing the data in the broker, these systems can more

readily withstand clients who connect, disconnect or crash. Moreover, the durability assurance

is thereby transferred to the broker.

Consumers are typically asynchronous as a result of queueing, for example, when a producer

delivers a message, it typically simply waits for the broker to validate that it has buffered the

message and does not wait for consumers to digest the message. The delivery to customers

will take place at some unspecified period in the future. For our specific use case, a message

broker fits more our criteria. A plethora of message brokers are available, such as RabbitMQ10,

ActiveMQ11, Apache Kafka12, Azure Service Bus13 and Google Cloud Pub/Sub14. The decision

between the message brokers lies on our application requirements. Specifically, we have previ-

ously mentioned that the message broker must support multiple producers and consumers on

the same topic. Message ordering is not necessary, since our intermediate results are aggregated

on event-time and are not dependent on the delivery order. Replaying previous events is re-

10https://www.rabbitmq.com/
11https://activemq.apache.org/
12https://kafka.apache.org/
13https://azure.microsoft.com/en-us/services/service-bus/
14https://cloud.google.com/pubsub

37

quired, thus message retention with period of an epoch is necessary. To avoid the loss of any

network observations and duplicates from retries, at-least-once delivery paired with exactly-once

processing semantics must be guaranteed.

A pull-based model, where the consumer pulls messages from the broker is preferable over

a push-based model. Push-based systems struggle to handle a diversity of consumers, since the

broker sets the data transmission rate. In a push system, the consumer can become overwhelmed

when its rate of consumption falls below the pace of production, which is bad because the aim

is often for the customer to be able to consume at the greatest rate feasible for that specific

consumer. In a pull-based system the consumer just lags behind and catches up when it can.

A contract should be able to be enforced at the broker level, between the producer and

consumer, specifying both the format of the network observation messages, as well as their

encoding. Moreover, this contract should support the Protocol Buffer format, considering this

is the format of choice at the domain layer.

Based on the fulfilment of the detailed requirements, Google Cloud Pub/Sub was chosen as

the message broker/data ingestion component. Let us assess the set of requirements for this

component:

• Scalability - Pub/Sub attains horizontal scalability through per-message parallelism, rather

than partition-based messaging. Individual messages are leased by Pub/Sub to topic

subscribers, and it then keeps track of whether each message is properly digested;

• Elasticity - Pub/Sub guarantees automatic capacity management with both auto-scaling

and auto-provisioning;

• Reliability - Pub/Sub ensures that all data is replicated synchronously to at least two

zones and best-effort replicated in a third zone;

• At-least-once delivery - Publishers push messages to the brokers, and synchronously wait

for the broker to confirm that it has buffered the message. Then, messages get cross-

zone replicated, and tracked individually on a per-message acknowledgement to ensure

at-least-once delivery;

• Message Retention - A Pub/Sub topic defaults to discarding messages once they have

been acknowledged by every subscriber attached to the topic. Nevertheless, a topic can be

setup with message retention, which enables any subscription attached to the topic to seek

back in time and replay previously acknowledged messages. A topic can retain published

messages for a maximum of 31 days, which is within our epoch time window requirement

of 7 days;

38

• Protocol Buffer Schema - Pub/Sub supports the creation of Protocol Buffer schemas. A

schema establishes a contract between a publisher and a subscriber that Pub/Sub will

enforce by defining the format that the message data fields must adhere to. Schemas are

versioned resources, and assigned to specific Pub/Sub topics.

Regarding the data processing component, responsible for processing the network observa-

tions ingested and producing the intermediate results for the stable and volatile set queries, two

decisions must be made. First, concerning the processing engine used, and second, with regards

to its cloud deployment. The pipeline is meant to aggregate network observations on event-time

in two separate tumbling and hopping windows, corresponding to stable and volatile set win-

dows. Moreover, we should expect late and duplicate network observations. With this in mind,

the processing engine must be able to compute aggregations on event-time, not processing-time,

automatically manage state and resources, elastically scale the system and also be fault-tolerant.

Additionally, since the data ingestion component solely assures at-least-once delivery, this com-

ponent must guarantee exactly-once processing semantics. Furthermore, as an optional require-

ment the engine should likewise be capable of batch processing, if required. Note that some of

these requirements are only assured when the engine is deployed to the respective cloud service.

Common options that satisfy each requirement and provide Java Software Development Kits

(SDKs) to maintain the code base homogeneity are Apache Spark15 or Apache Flink16, however

ideally we would be engine agnostic, meaning that we would plug any engine independently of

our processing logic. Therefore, we have decided to use Apache Beam17. Apache Beam is similar

to the aforementioned options in that it is an open-source framework for parallel, distributed

data processing at scale. It contrasts in the fact that it does not come with an execution engine

of its own, but instead plugs into other execution engines, such as Apache Spark, Apache Flink,

or Google Cloud Dataflow. Apache Beam is a unified model for defining both batch and stream-

ing data-parallel processing pipelines, with a single API for both modes. This grants ample

flexibility to share logic between each processing mode. As for the cloud deployment, there is

Google Cloud Dataflow, a fully managed service for executing Apache Beam pipelines, fulfilling

our needs. Let us revise the requirements for this component:

• Scalability & Elasticity - Both vertical and horizontal autoscaling work seamlessly in

Dataflow. Dataflow dynamically adjusts the compute capacity allocated to each worker

based on the utilization (vertical autoscaling). Dataflow estimates the appropriate num-

ber of worker instances required to run the processing job, and dynamically provisions

15https://spark.apache.org/
16https://flink.apache.org/
17https://beam.apache.org/

39

additional or fewer workers during runtime (horizontal autoscaling);

• Reliability - In case of worker failures, Dataflow may repeatedly retry pipeline code execu-

tion due to its built-in fault-tolerance support. It is able to ensure a level of fault-tolerance

through the creation of backup copies of the pipeline code;

• Exactly-once processing semantics - Dataflow is able to provide exactly-once processing se-

mantics, however with the use of non-deterministic sources or sinks, these semantics are not

preserved18. Both Google Pub/Sub and the serving layer database are non-deterministic

source and sink, respectively. Thus, further modifications will need to be performed to

guarantee exactly-once processing semantics, which we will detail in Section 3.3.2.

Serving Layer

The serving layer is composed of a single primitive component: the database. It is accountable

for persisting the aggregate intermediate results computed by the stream layer and serve query

requests related to the stable and volatile signal sets. Both queries make use of a SUM aggregate

function over the intermediate results network observations count, and either filter the resultant

top 10% or bottom 10% observed networks, for the stable and volatile set queries, respectively.

The database engine query language should allow us to express all of this query logic directly

through it. To guarantee proper inter-layer operability and connectivity the database should be

easily integrated with both the data processing stream layer component (Google Cloud Dataflow)

and the API domain layer component (Kubernetes pod with the Java REST server), detailed in

Section 3.3.1. Writes are expected to be made in as soon as possible, so the database component

must support streaming records to it, and reads may be performed randomly. Additionally, the

database must scale as the size of the intermediate results increases and be fault-tolerant. Based

on these requirements, the most suitable cloud service candidates are Google Bigtable (Key-

Value - NoSQL) and Google BigQuery (Relational - SQL). Both services are fully managed with

scalability, high availability and fault-tolerance ensured. We decided to utilize Google BigQuery

mainly due to its support of ANSI-standard SQL, granting us a higher level of expressiveness, and

the seamless Google Dataflow integration for streaming records through the Storage Write API 19

with exactly-once semantics. Let us now go through the fulfilled criteria for this component:

• Scalability - BigQuery ensures system scalability as the dataset size increases from bytes

up to petabytes. It is claimed that it maintains identical performance levels with minimal

18https://cloud.google.com/blog/products/data-analytics/after-lambda-exactly-once-processing-in-google-
cloud-dataflow-part-1

19https://cloud.google.com/bigquery/docs/write-api

40

overhead;

• Elasticity - As a fully managed service, BigQuery ensures automatic resource provisioning.

A sizable number of multi-tenant resources is kept pre-deployed in the background to

rapidly scale up;

• Reliability - BigQuery storage attains fault-tolerance by automatically replicating storage

across multiple locations ensuring a high level of availability and storage durability;

• Standard SQL - BigQuery supports ANSI-standard SQL (SQL:2011 [ISO11]) accommo-

dating the previously mentioned aggregate functions and percentile computation necessary

for the stable and volatile set query logic;

• CROSS API Server integration - BigQuery offers JDBC (Java Database Connectivity)

drivers so that the CROSS API Server may interact seamlessly with its engine;

• Dataflow integration for exactly-once delivery semantics - Two methods are provided to

insert data into BigQuery, either ensuring exactly-once semantics or a lower latency and

potentially cheaper method with at-least-once semantics. We go into further detail on how

exactly-once semantics are guaranteed in Section 3.3.2.

3.3.2 Supplemental Developments

In this section, we detail the several configurations that had to be performed, on top of the cloud

deployment services chosen, to thoroughly satisfy the set requirements described in Section 3.1.

Figure 3.8 details the deployed cloud architecture on the Google Cloud Platform.

CROSS

Mobile Client

Load

Balancer

NGINX

Ingress

CROSS

Service

CROSS

Pod

Cert

Manager

CROSS

CA Issuer

Cloud

Pub/Sub

Cloud

Dataflow

BigQuery

PSQL

Service

PSQL

Pod

External

DNS

GoDaddy

DNS

GKE Cluster - europe-west1

Domain Layer - HA PostgreSQL

CROSS City Server - Java 11 REST API Stream Layer

Serving Layer

cross-surething.eu

Monitoring Layer - Kube-Prometheus-Stack

Prometheus Grafana

Figure 3.8: Overview of the CROSS City Cloud Google Cloud Platform Architecture.

41

Exactly-Once Processing Semantics

Most stream processing systems provide at-least-once guarantees, ensuring that records are

always processed at least once. Cloud Dataflow uses the upstream backup technique to tolerate

worker, network or other unexpected failures, assuring that each element is processed at-least-

once across the various transformations. Meaning that the sender will attempt the element

delivery again until it obtains a confirmation of receipt. Additionally, Cloud Dataflow ensures

that it will keep retrying even if the sender crashes, guaranteeing that every record is delivered

at least once. The issue, though, is that these retries could also produce duplicates, impeding

exactly-once processing semantics.

The immediate solution for the record duplication problem is to tag every record sent with a

unique identifier, and store a catalog of all identifiers that have already been seen and processed

at each receiver. However, custom pipeline code running in Apache Beam can produce non-

deterministic output. For example, a transformation can execute twice on the same input record,

because of a retry, and yield a different output on each retry. Cloud Dataflow tackles this issue by

employing checkpointing to effectively make non-deterministic processing deterministic. Before

being delivered to the next stage, each output of a transform is saved to stable storage with its

unique id.

A new problem arises when the pipeline is required to contact external remote services, as

it typically happens at sources and sinks. Cloud Dataflow might retry reads from a source if

processing fails, and needs to ensure that every unique record produced by a source is pro-

cessed exactly once. For deterministic sources, Cloud Dataflow is able to deduplicate trans-

parently. However, in our specific case, the source of our pipeline (Google Cloud Pub/Sub) is

non-deterministic, due to its per-message parallelism where multiple subscribers can pull from

a Cloud Pub/Sub topic, and the unpredictability of knowing which subscribers receive which

message. In a processing failure, Cloud Pub/Sub will redeliver messages, however these may be

delivered to workers other than those who handled them originally, and in a different order. To

address this issue, we add a deterministic custom ID, equal to the hash of the concatenation

of all the network observation fields, before publishing a network observation, as an additional

message attribute. Dataflow then deduplicates messages, through an incremental aggregation

mechanism, with respect to this deterministic message attribute ID. As a result, all processing

logic can assume that the messages are already unique with respect to this custom ID. In short,

we add an application-level deterministic identifier to each message, to allow each message to

be distinguished and executed only once.

As previously mentioned delivering data externally in a sink is a side effect, and due to output

42

non-determinism, exactly-once semantics are not transparently guaranteed. Thus, the least effort

solution to guarantee that outputs are delivered exactly once in a sink, is to use the built-in sinks

are provided as part of the Beam SDK. These sinks are carefully designed to prevent duplicate

data from being produced, even when executed several times. Particularly in our case, Beam

provides a BigQueryIO connector sink with Dataflow support to the BigQuery Storage Write

API which is a unified data-ingestion interface that supports exactly-once semantics through

the use of stream offsets. The Storage Write API ensure that it never writes two messages that

have the same offset within a stream.

Load Balancing

The Kubernetes Ingress20 resource manages external access to the services in our Google Kuber-

netes Engine (GKE) cluster. The Ingress provides load balancing, content-based routing (both

host-based and path-based), and TLS termination. The Ingress exposes two HTTPS routes

from outside the cluster to both the CROSS API and monitoring services within the cluster.

An Ingress Controller must be deployed to the cluster, to satisfy the configuration defined in

the Ingress resource. The Ingress Controller is, therefore, responsible for configuring an HTTP

load balancer in Google Cloud, according to the Ingress resource. From the available Ingress

Controllers, we have decided to utilize the NGINX Ingress Controller21, as we had previous

knowledge from former projects and it fulfills our set criteria.

With regards to domain name resolution, since the SureThing project already possessed

domains purchased in the GoDaddy22 DNS provider, we deployed an ExternalDNS 23 Controller,

to the GKE cluster, to synchronize the exposed Kubernetes Ingress with the GoDaddy DNS

provider. The ExternalDNS allows us to control DNS records dynamically in a DNS provider-

agnostic way. With the use of this resource, we avoid the cost of maintaining a static IP address

reserved to the CROSS City Cloud GKE cluster, since ExternalDNS automatically updates the

DNS records in GoDaddy whenever we decide to provision a new cluster with a new IP.

Elasticity

Kubernetes Deployments24 or Stateful Sets25 controllers manage replicated applications and

periodically guarantee that the current state matches the desired state. Nonetheless, this desired

state of replica pods is typically static and set a priori in the workload configuration Kubernetes

20https://kubernetes.io/docs/concepts/services-networking/ingress/
21https://docs.nginx.com/nginx-ingress-controller
22https://www.godaddy.com/
23https://github.com/kubernetes-sigs/external-dns
24https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
25https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

43

manifests. Kubernetes Deployments or Stateful Sets are not transparently elastic, and lack the

ability to adapt to workload changes by deprovisioning or provisioning resources autonomously.

To attain elasticity in Kubernetes, we can leverage the HorizontalPodAutoscaler26 resource to

automatically update a workload resource, such as a Deployment or StatefulSet, with the goal of

automatic horizontal scaling to adapt to the current demand. Horizontal scaling means that the

response to increased load is to deploy more pods. If the load decreases, and the number of Pods

is greater than the set minimum, the HorizontalPodAutoscaler instructs the workload resource to

scale back down. Based on measured metrics such as average CPU utilization, average memory

utilization, or any other custom metric, the horizontal pod autoscaling controller, operating

within the Kubernetes control plane, periodically modifies the intended scale.

The metric used to keep track of effective utilization of the resources, during the application

execution, is of extreme importance as it will dictate the desired scale as a response to the

increase in load. Ideally, the metric used and threshold would be obtained through the analysis

of each resource utilization during particular client workloads of former executions where the

system was not able to meet the demand. However, in absence of such data we must resort

to expected system and user behavior, which we go into further detail in the Section 4.5. As

a specific example, a CROSS API replicated configuration could be set to horizontally auto-

scale based on an average CPU utilization threshold (40%), using the Kubernetes Horizontal

Pod Autoscaler resource, provisioning identical CROSS API pods (replicas) to accommodate a

growing work demand.

Monitoring Layer

An increased level of observability and analysis capabilities over each service of CROSS City

Cloud, must be assured to aid system operators achieve high operational maintainability. Ob-

servability refers to the degree to which a system can be understood from its external outputs,

such as CPU and memory utilization, disk space, latency, etc. Analysis refers to the activity of

inspecting each observable data and retrieving useful information from it. To achieve this set

goal, an additional monitoring layer/stack comprised of Prometheus27 and Grafana28 was added

to CROSS City Cloud. The main responsibility of the monitoring layer is to collect, aggregate,

and analyze metrics to allow increased understanding of the system behavior by its operators.

Metrics are a measurement of a system at a given point in time that are intended to provide a

picture of the system’s health.

26https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
27https://prometheus.io/
28https://grafana.com/

44

Prometheus27 is an open source, metrics-based monitoring system. Specifically in our mon-

itoring layer, Prometheus is employed to collect and store real-time metrics as time series data,

meaning that the metrics information is stored with the timestamp at which it was recorded.

Kubernetes and Docker are already instrumented with Prometheus client libraries, exposing

metrics in Prometheus format. Exporters may also be setup to expose metrics in different

formats.

Grafana28 is an open source analytics and interactive visualization web application, which

allows us to query data stored in a Prometheus data source. The queries are made in PromQL

(Prometheus Query Language) with built-in time-related query functionalities to leverage the

time-series stored data. Grafana dashboards composed of charts and graphs can then be built,

using our set of queries, to visualize relevant data.

The deployment of this layer to our GKE cluster was achieved through the use of the

“kube-prometheus-stack” helm chart29. Helm assists the management of Kubernetes appli-

cations through helm charts, a collection of definitions that describe a related set of Kubernetes

resources, meant to aid the deployment of significantly more complex Kubernetes applications.

Security Considerations

Due to the fact that CROSS City Cloud was deployed to the Google Cloud, a public provider,

it is crucial to assure secure network communications between clients and the server. We should

also provide a method for clients to authenticate the server. The usage of HTTPS (HTTP

over TLS) protects the privacy and integrity of data transmitted while it is in transit. HTTPS

authentication necessitates the use of a trustworthy third party to sign server-side digital certifi-

cates, hence we have setup a CROSS City project private Certificate Authority (CA) responsible

for issuing certificates.

With regards to the Kubernetes deployment of our private CA, we have decided to utilize

“cert-manager”30 a X.509 certificate controller for Kubernetes and OpenShift workloads with the

purpose of handling the certificate management. The CROSS project private CA is represented

as an Issuer Kubernetes resource31, able to generate signed certificates by fulfilling certificate

signing requests. The Ingress resource, formerly described in Section 3.3.2, is secured through

an additional request step for TLS signed certificates with additionally configured manifest an-

notations, during the its deployment. Moreover, cert-manager supports secure internal cluster

service to service communication with mutual TLS, through the utilization of a Container Stor-

29https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
30https://cert-manager.io/
31https://cert-manager.io/docs/concepts/issuer/

45

age Interface Driver. This driver guarantees that the private key and associated signed certificate

are unique to each pod and are saved on disk to the node of the cluster to which the pod is

scheduled.

Another security concern is related to the access control to the GKE cluster Kubernetes

resources. Only authorized system operator entities should be allowed to access the cluster re-

sources. In our GKE cluster, tenant applications are assigned a specific Namespace, restricting

them only to this Namespace. With this namespace model, we are able to leverage Role-based

access control (RBAC), to control access to a particular namespace, for example to the cross

namespace. The Kubernetes resource Role32 defines the rules that represent the set of permis-

sions allowed within the set namespace. This Role is then bound to specific system operators,

represented by their Google Cloud accounts, through the Kubernetes resource RoleBinding33.

On top of Kubernetes RBAC, used for controlling access to specific resources within the cluster,

Google Cloud’s Identity and Access Management34 (IAM) was also be employed to control access

to the cluster at the level of the Google Cloud project, which we will detail in Appendix B.2.

3.4 Summary

In this Chapter, we detailed the architectural extensions needed to ingest, aggregate and in-

tegrate scavenged network observations in pre-computed stable and volatile networks of given

points of interest, both offline and in real-time. These extensions resulted in stream and serving

layers, similarly to the Kappa architecture. The stream layer handles the asynchronous com-

munication between the CROSS REST API server and the pipeline that produces the views

of the aggregated network observations. The serving layer indexes the views and serves stable

and volatile set query requests. Location claims made by tourists are then attested for the

visited location and time of visit, through stable and volatile set queries. We presented the

cloud deployment plan comprised of the cloud offerings and service abstractions for each system

component. The deployment of the system leverages modern virtualization technology and the

existing services offered by the Google Cloud Platform.

32https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
33https://kubernetes.io/docs/reference/access-authn-authz/rbac/#rolebinding-and-clusterrolebinding
34https://cloud.google.com/iam

46

Chapter 4

Evaluation

In this Chapter, we describe the evaluation of the CROSS City Cloud solution.

In Section 4.1, we describe an assessment to determine compliance with each functional re-

quirement outlined in Section 3.1. In Section 4.2, we describe the test dataset used throughout

the quantitative evaluation, detailing both its collection process, as well as how we used it. In

Section 4.3, we assess the feasibility in providing location and time-bound proofs. In Section 4.4,

we present a systematic service characterization of CROSS City Cloud as an assistance to deter-

mine the quantitative evaluation goals, test workloads and metrics. In Section 4.5, we present

and discuss the performance and scalability evaluation made to the domain layer. In Section 4.6,

we showcase and analyze the stream layer performance and completeness evaluation. In Sec-

tion 4.7, we present and discuss the assessment conducted to determine possible gains or losses

observed in the serving layer, between our practical implementation and the implementation of

the theoretical model. We conclude this Chapter with Section 4.8, where we summarize the

experimental findings.

4.1 Qualitative Evaluation

The implemented CROSS City Cloud solution is able to fulfill each of the functional requirements

enumerated in Section 3.1:

• R1: Rewards should only be given to people who are actually eligible to receive them. Each

touristic trip setup by the system operators is composed of a series of points-of-interest

with each having a pre-configured confidence threshold. A user’s trip submission will only

be accepted if it matches or surpasses the set confidence threshold of each claimed point of

interest. The confidence is calculated based on the time of visit and the amount of network

observation matches with the stable and volatile set, for time-unbound and time-bound

47

locations proofs, respectively. Thus, rewards are only given to provers whose completed

trip submissions are eligible;

• R2: System operators should be able to identify which users were rewarded with which

rewards. Similarly to the CROSS V1 prototype, user reward history is persisted in the

domain layer PostgreSQL database, as part of the user related information. Authorized

system operators are able to fetch the user reward information by querying the domain

database module, and thus obtain this information for further verification;

• R3: Determine the stable network set by point of interest sliced by time. Intermedi-

ate stable network sets are computed through the aggregation of user published network

observations per point-of-interest and period. Stable network sets are meant to be com-

puted within an epoch. An epoch encompasses a period, thus an epoch may vary from a

period −→ ∞. The stable network set of each individual point of interest can be queried

with a minimum period time window granularity;

• R4: Determine the volatile network set by point of interest sliced by time. Intermediate

volatile network sets are computed through the aggregation of user published network

observations per point-of-interest in time windows of greatest common divisor of the span

intervals set. Volatile network sets are meant to be computed within a span, and each

of the possible spans encompasses smaller intervals of greatest common divisor size. The

volatile network set of each individual point of interest can be queried with a greatest

common divisor of the span intervals level of accuracy.

4.2 Lisbon Hotspots Dataset

The Lisbon Hotspots dataset (LXspots) [CEP22] was collected over a six month period across six

different tourism locations distributed among the city of Lisbon, Portugal - Jerónimos, Comércio,

Sé, Oceanário, Alvalade and Gulbenkian. The collected data is composed of discrete measure-

ments of existing Wi-Fi networks. The measurements contain detailed information obtained

through Wi-Fi scanning, such as MAC addresses and signal intensities. For redundancy, the

data collection was done using three different smartphones running the Android operating sys-

tem, namely: one Samsung Galaxy S9, one Huawei Mate 10 and one LG V10 thinq.

Due to its real-world relevance, the dataset is utilized as the base for the synthetic test

workloads used in the subsequent evaluation sections, either by being the foundation of the

expected user flow and access patterns or as the input.

48

4.3 Stable and Volatile Set Match as Location and Time Proof

We now assess the feasibility of our solution in providing location and time-bound proofs. We

used the real-world collected network observations of the LXspots dataset, detailed in the pre-

vious Section 4.2. Each point-of-interest has different characteristics, such as being outdoors or

indoors, sparse or central, and central or remote, hence differing proof effectiveness across each

location is expected. Each smartphone - Samsung Galaxy S9, Huawei Mate 10 and LG V10

thinq - represents a distinct prover - Alice, Bob and Charlie. Each prover stays at each point-

of-interest for 15 minutes. We will consider the seven consecutive day epoch from 2019-07-29 to

2019-08-04 and the one day period of 2019-08-19, available in the dataset.

4.3.1 Stable Set Match as Location Proof

To prove the presence at the location, the prover’s collected network observation set, at the

claimed point-of-interest, is compared against the set of stable networks computed for the pre-

vious epoch. Table 4.1 presents the percentage of match between these two sets. Considering a

50% match threshold to determine successful proof, all provers visits are attested at four out of

the six locations (except for Alice in Sé). Given the total 18 visits, this equates to a stable set

success rate of 61.11%. Stable sets produced through our solution seem viable to attest presence

at a location. Locations lacking stable networks such as Jerónimos and Comércio, due to their

characteristics, would favour from either a lower match threshold or the deployment of known

access points with TOTP, the dynamically changing SSID strategy described in Section 2.1.2.

4.3.2 Volatile Set Match as Time Proof

To prove the visiting period, the prover’s scavenged network observation set, at the claimed

point-of-interest, is compared against the set of volatile networks computed for the span. The

match percentage between these two sets is shown in Table 4.1. The 15 minute visit is split

into four span intervals - 15, 5, 3 and 1 min. Considering a 50% match threshold to determine

successful proof, visiting period attestation was achieved for all locations in at least 50.00% of

the provers’ claimed span intervals. Most notably, 75.00% of the claimed intervals in Comércio

and Sé were successfully attested. Given the total 72 claimed intervals, this equates to a volatile

set success rate of 63.89%. Our solution’s volatile sets seem to be effective in attesting for the

visiting period. It is also important to note, that longer intervals have a lower success rate

than shorter intervals - 15 min (44.44%) and 1 min (83.33%). Due to the user’s network scan

collection period of 30 seconds, we can view a longer interval’s volatile set as a union of several

shorter intervals’ volatile sets. Additionally, since a volatile set is composed of the bottom 10%

49

observed networks, if a specific subset of shorter intervals was ”more observed” than the other,

then the most observed subset will have a greater influence on their union. Meaning the volatile

set of the longer interval will be different from its subset shorter intervals. This demonstrate a

higher dependence on consistent colocated witnesses for long visiting period proof, since ideally

network observations should be scavenged equally, meaning by the same number of witnesses,

throughout the full duration of the interval. Nonetheless, touristic visits are typically performed

in specific groups and scheduled intervals, thus the feasibility of the solution remains plausible.

Table 4.1: Prover’s Stable and Volatile Set Match Percentage for each Point-of-Interest (per-

centage ≥ 50% shown in green, and < 50% in red).

Point-of-Interest Prover
Stable Set

Match

Stable Set

Success Rate

(≥ 50.00%)

Volatile Set Match for

Claimed Span Interval

Volatile Set

Success Rate

(≥ 50.00%)

15

min

5

min

3

min

1

min

Alice 100.00% 100.00% 87.50% 100.00% 90.00%

Bob 100.00% 0.00% 61.53% 50.00% 58.33%Alvalade

Charlie 92.85% 0.00% 30.76% 62.50% 46.15%

Alice 27.77% 20.00% 50.00% 0.00% 100.00%

Bob 30.55% 57.14% 100.00% 100.00% 100.00%Comércio

Charlie 27.77% 80.00% 0.00% 100.00% 100.00%

Alice 100.00% 0.00% 12.50% 50.00% 91.66%

Bob 60.70% 54.54% 41.66% 33.33% 46.15%Gulbenkian

Charlie 100.00% 44.44% 50.00% 78.57% 83.33%

Alice 9.30% 30.00% 50.00% 60.00% 75.00%

Bob 27.90% 9.09% 30.00% 25.00% 40.00%Jerónimos

Charlie 20.93% 54.54% 50.00% 33.33% 100.00%

Alice 85.00% 83.33% 100.00% 100.00% 100.00%

Bob 65.00% 0.00% 50.00% 50.00% 60.00%Oceanário

Charlie 75.00% 16.66% 14.28% 14.28% 50.00%

Alice 43.00% 60.00% 86.00% 33.33% 100.00%

Bob 50.00% 62.50% 66.60% 50.00% 75.00%Sé

Charlie 54.00%

61.11%

0.00% 33.33% 50.00% 75.00%

63.89%

4.4 Systematic Service Characterization

The subsequent sections of the evaluation will focus on the performance and scalability of the

resulting system. The process will involve the collection of key metrics to quantify the demands,

performance of the system and assess the resource efficiency during the execution of demand-

ing synthetic workloads. Each layer is evaluated separately, as each impacts the performance

differently. We start by doing a systematic service characterization of each layer containing a

description of the service it provides, possible high level workloads and important metrics to

collect, illustrated in Table 4.2. The baseline values for each metric are obtained through the

deployment of the system with a basic configuration and detailed in each section. During the

50

execution of the synthetic workloads, it is also important to assess the utilization and efficiency

of the underlying resources more specifically the CPU and memory.

Table 4.2: CROSS City Cloud service characterization and benchmark model.

Domain Layer Stream Layer Serving Layer

Services Authenticate users;

Serve domain touristic and

user information requests;

Verify location proofs;

Assign rewards.

Store network observations;

Process network observations

to produce intermediate

aggregate results.

Fetch stable and volatile

network set data.

Workloads Series of read and write

type of domain data requests;

Series of distinct

trip submissions.

Series of observation

submissions of different POI

and collection timestamp.

Series of stable and

volatile network set

requests of different POI and

time granularity.

Metrics Request response time;

CPU Usage;

Memory Usage.

Rate of observations processed;

Observation process latency;

Data watermark lag;

CPU Usage;

Memory Usage.

Response time;

Slot time.

Ideally the test workloads used would be obtained through traces of real execution of the sys-

tem, however since this is a brand new development we must resort to expected user behaviour.

4.5 Domain Layer Scalability and Performance Testing

The domain layer is comprised of the API and database deployed to a cloud environment, as

detailed in Section 3.2. To assess the performance and scalability of this layer, we synthesized a

test workload based on expected user access patterns. We focus on the submission of trip visits

through the domain layer as this is the typical path of a user’s interaction with CROSS. The

integration of scavenged network observations is done asynchronously, through the stream and

serving layer, and will be evaluated separately. Ideally the test workload used would be obtained

through traces of real execution of the system, however since this is a new system we resort to

predicted user scenarios. With the execution of the test workload we stress each component of

the SUT (System under Test). During the execution of the workload, the request response time,

rate of requests and both the CPU and memory usage metrics were collected to assess the user

perception of the system and adequate resource utilization.

Several benchmark load testing tools were considered for executing the test workload, most

notably k61, wrk2, and Apache JMeter3. k6 was chosen as the benchmark load testing tool. The

1https://k6.io/
2https://github.com/wg/wrk
3https://jmeter.apache.org/

51

main grounds sustaining the k6 tool decision are the “Everything as code” doctrine with test

logic and configuration options written in JavaScript for both ease of version control (important

for reproducible testing) and integration with our Protocol Buffer payloads. The tool itself is

written in Go to achieve maximum performance, embedding a JavaScript runtime.

4.5.1 Scalability Model

Before delving into the experimental results and discussion, we briefly present our rationale for

using a scalability model, and the model used in the experiment. We will be using a scalability

model to assess the behavior of the system beyond the capacity used in the experiments and to

quantify it in specific parameters which can be compared with. in the The Universal Scalability

Law (USL) [Gun06] (Equation 4.1) extends Amdahl’s law [Amd67] (Equation 4.2) with an

additional parameter (κ), allowing us to model capacity degradation related to coherency losses.

Other scalability models exist such as the Exponential, Geometric and Quadratic. The USL, on

the other hand, differs from the other models in that it is defined in terms of two parameters

rather than a single one, accounting separately for both contention (serial work) and coherence

(crosstalk among workers in the system such as nodes, CPUs, threads, etc). The contention

component (σ) of the system ends up limiting asymptotically its speedup, while the coherence

portion (κ) limits the maximum system achievable size. Using a nonlinear regression, we are

able to solve the equation and determine best-fit values for the three parameters λ, σ and κ.

Nonetheless, we will be using the USL R package [Möd20] to compute the parameters, reducing

the manual work needed to perform the scalability analysis.

X(N) =
λN

1 + σ(N − 1) + κN(N − 1)
(4.1)

X(N) =
λN

1 + σ(N − 1)
(4.2)

X = throughput

N = concurrent users

λ = performance coefficient

σ = serial portion

κ = crosstalk factor

52

4.5.2 Experimental Setup

The benchmark tool alongside the test scripts were wrapped up into a Docker image, tagged, and

pushed to our Google Cloud project’s container private registry. The k6 image version 0.38.3

provided by Grafana Labs4 was used as the base image, with the CROSS Certificate Authority

added to the system’s trusted certificates pool.

The benchmark tool and CROSS City Cloud’s domain layer were deployed to distinct Google

Kubernetes Engine (GKE) clusters, comprised of one and two nodes, respectively, physically

isolated, in the “europe-west1 region”. A comprehensive specification of the GKE clusters used

is detailed in Table 4.3. It is worth noting that no resource limit was configured at any point to

avoid resource contention when performing the tests.

Table 4.3: Google Kubernetes Engine cluster specification for CROSS City Cloud and the k6

benchmark tool.
Stack

Machine

Family

Machine

Type
OS

Kernel

Version
CPU

RAM

Size

Disk

Size

Disk

Type

Additional

Disk

Size

Additional

Disk

Type

Network
Docker

Ver

Kubernetes

Ver
Region Locations

CROSS

City

Cloud

General-

-Purpose

e2-

-highcpu-

-4

Container-

-Optimized

OS

5.10.107

Intel Xeon or

AMD EPYC Rome

@ 2.00+ GHz

(4)

4

GB

20

GB

Standard

persistent

disk

- - Default 20.10.12
1.21.11-

-gke

europe-

-west1

europe-

-west1-b,

europe-

-west1-c

k6

Benchmark

Tool

General-

-Purpose

e2-

-highcpu-

-8

Container-

-Optimized

OS

5.10.107

Intel Xeon or

AMD EPYC Rome

@ 2.00+ GHz

(8)

8

GB

20

GB

Standard

persistent

disk

200 GB

Regional

Standard

Persistent

Disk

Default 20.10.12
1.21.11-

-gke

europe-

-west1

europe-

-west1-b

The test workload was comprised of two stages of distinct load duration and ramping user

concurrency. The first stage lasts for five minutes, while the second stage lasts for ten minutes,

which constitutes the sum total of fifteen minute load duration. Each stage executes an identical

user flow: the users sign-in to authenticate, retrieve existing routes, fetch a specific route, and

submit a visit to one of the route’s point of interest with a sufficient amount of Wi-Fi AP

evidences to achieve the route’s waypoint set confidence threshold (75%), claiming that location.

It is worth noting that the route used in the test accepts multiple submissions for the same user,

to ease testing, and that various user accounts are utilized. The first stage ramps from zero

to ten concurrent virtual users (vus) and the second stage ramps from ten to fifty concurrent

virtual users, as shown in Figure 4.1.

The test workload will be executed in three separate configurations - A, B and C - of

the domain layer, with regards to the CROSS API server level of replication. The baseline

configuration is comprised of a single replica (A), while the test configurations vary from one

to two replicas (B) and from one to four replicas (C). Since the workload is expected to be

CPU bound, each configuration horizontally auto-scales based on a set average CPU utilization

threshold (40%), using the Kubernetes Horizontal Pod Autoscaler resource, which provisions

4https://hub.docker.com/r/grafana/k6/

53

Time (m)

A
ct

iv
e

V
U

s
(#

)

0

10

20

30

40

50

0 5 10 15

Figure 4.1: Concurrent Active Virtual Users over Time during the execution of the Test Work-
load.

identical CROSS API server pods (replicas) to accommodate a growing work demand.

4.5.3 Results

As previously stated, we have plotted the experimental results over four distinct system perfor-

mance metrics, to assess system and user observed behaviour, and resource usage. Figures 4.5 to

4.2 consist of plots over the mean, median, percentile 90 and minimum latency, in milliseconds,

and mean throughput, in requests per second, while Figures 4.9 to 4.13 show the mean CPU

usage per service and per pod, in CPUs or cores, and the mean memory utilization per service

and per pod, in MiB and GiB.

4.5.4 System Performance and Scalability Analysis

Using the throughput measurements collected per level of user concurrency, plotted in Figure 4.2,

we are able to model the scalability of the system with the Universal Scalability Law (USL)

(Equation 4.1). Table 4.4 summarizes the performance coefficient and scalability parameters

estimations, detailed in Section 4.5.1, for each configuration, with their respective model plots

in Figure 4.3.

Table 4.4: Universal Scalability Law (USL) parameters for each configuration.
Configuration λ σ κ

A 23.24 0.0409 0.0007583

B 23.57 0.0000 0.0006959

C 26.87 0.0000 0.0003925

54

Active VUs (#)

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0

200

400

600

800

10 20 30 40

1 CROSS Replica (A)

1 - 2 CROSS Replicas
(B)

1 - 4 CROSS Replicas
(C)

Figure 4.2: Mean Throughput over Concurrent

Virtual Users.

Active VUs (#)

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0

200

400

600

800

20 40 60 80 100

1 CROSS Replica (A)

1 CROSS Replica (A)
USL

1 - 2 CROSS Replicas
(B)

1 - 2 CROSS Replicas
(B) USL

1 - 4 CROSS Replicas
(C)

1 - 4 CROSS Replicas
(C) USL

Figure 4.3: Throughput over Active Concur-

rent Virtual Users with USL model.

By comparing the estimated performance coefficients (λ) at the unitary load, we can quantify

the efficiency of the system across sizes. Doubling the size of the system from both configuration

A to B and B to C we maintain approximately 51% and 57% efficiency, respectively. Despite

the efficiency values being lower than expected, these can be explained by the fact that all

configurations start the test workload execution with the same amount of replicas (1), and only

when above a certain average CPU utilization threshold do configurations B and C provision

the additional resources to accommodate the extra demand. Regarding the scalability of the

system, the maximum useful user concurrency of each configuration, calculated through the

Equation 4.3 in relation to both scalability parameters, is 35, 37 and 50 users for A, B and C,

respectively, after which point performance is significantly degraded. Based on the maximum

useful user concurrency, the speedup achieved on the observed maximum throughput between

configuration A (247 req/sec) and C (684 req/sec) is of approximately 2.77x. From a request

performance standpoint, we can model latency in relation to throughput by combining the

Universal Scalability Law (Equation 4.1) and Little’s Law [All90] (Equation 4.4) resulting in

Equation 4.5. By observing Figure 4.4, which plots the modelled relation between latency and

throughput for each configuration, we note both a higher achievable throughput, as previously

discussed, and lower latency for configuration C, as well as the expected degradation at the

aforementioned observed maximum throughputs.

Nmax =

√
1− σ

k
(4.3)

N = XR (4.4)

55

R(X) =
−
√

X2(κ2 + 2κ(σ − 2) + σ2) + 2λX(κ− σ) + λ2 + κX + λ− σX

2κX2
(4.5)

Nmax = maximum achievable concurrent users

σ = serial portion

κ = crosstalk factor

N = concurrent users

X = throughput

R = response time

λ = performance coefficient

Throughput (req/sec)

La
te

nc
y

(s
ec

)

0.00

0.05

0.10

0.15

0 200 400 600

1 CROSS Replica (A)

1 - 2 CROSS Replicas
(B)

1 - 4 CROSS Replicas
(C)

Figure 4.4: Latency modelled in relation to Throughput for each system size configuration.

4.5.5 Request Performance Analysis

From a practical standpoint, derived from the collected mean latency measurements plotted in

Figure 4.5, we are able to note that for a set latency threshold of 100 ms (the limit for giving

the user the perception that the system is reacting instantly [Mil68, CRM91]), configuration

A is able to perform below set threshold solely until 17 concurrent virtual users after which

a high level of degradation is noticeable. Configuration B, by leveraging the second node, is

able to withstand set threshold until 37 concurrent virtual users after which a similar level of

performance degradation is observed. Despite the peak at 41 concurrent virtual users, configu-

ration C is capable of performing below set threshold for the full duration of the test workload.

This peak is also observed in the median latency plotted in Figure 4.6, thus it is not an outlier

skewing the average response time, and neither CPU or memory utilization (Figures 4.9 and

56

4.10) seem abnormal at the minute 13, hence why one can attribute this peak to either a low

surge of requests from the client benchmark cluster side or noisy neighbours.

Active VUs (#)

La
te

nc
y

(m
s)

0

100

200

300

400

10 20 30 40

1 CROSS Replica (A) 1 - 2 CROSS Replicas (B) 1 - 4 CROSS Replicas (C)

Figure 4.5: Mean Latency over Active Concur-

rent Virtual Users.

Active VUs (#)
La

te
nc

y
(m

s)

0

100

200

300

400

10 20 30 40

1 CROSS Replica (A) 1 - 2 CROSS Replicas (B) 1 - 4 CROSS Replicas (C)

Figure 4.6: Median Latency over Active Con-

current Virtual Users.

Additionally on the subject of request performance from the practical standpoint, in an

effort to further quantify the overall user experience and perception of the system with each

configuration, we have plotted the percentile 90 latency (filters top 10% worse latencies) in

Figure 4.7. Percentiles are useful for us to determine the expected maximum response time

for a percentage of requests/users. In this particular case, only configuration C (in spite of the

aforesaid peak at 41 concurrent virtual users) is able to able to withstand a set latency threshold

of 200 ms (double the set mean latency threshold), meaning we are able to conclude that for

90% of users, within the tested range of user concurrency, will experience a response time either

as fast or faster than 200ms. From the minimum latency plot in Figure 4.8, we are able to infer

that both configuration B and C with similar mean minimum latencies of 2.10 and 2.30 ms,

respectively, are consistently below configuration A, which demonstrates sensitive behavior to

spikes from 24 concurrent users onwards (11 users below the predicted the maximum useful user

concurrency of this configuration) due to contention.

57

Active VUs (#)

La
te

nc
y

(m
s)

0

250

500

750

1000

10 20 30 40

1 CROSS Replica (A)

1 - 2 CROSS Replicas
(B)

1 - 4 CROSS Replicas
(C)

Figure 4.7: Percentile 90 Latency over Active Concurrent Virtual Users.

Active VUs (#)

La
te

nc
y

(m
s)

0

20

40

60

10 20 30 40

1 CROSS Replica (A)

1 - 2 CROSS Replicas
(B)

1 - 4 CROSS Replicas
(C)

Figure 4.8: Minimum Latency over Active Concurrent Virtual Users.

4.5.6 Resource Utilization Analysis

Regarding resource utilization, from the CPU and memory usage per pod plots in Figures 4.11

and 4.13 we can infer that both configurations B and C provision the additional pods at minute 3

(cold start) and become operational between minute 4 and 5. Furthermore, from the PostgreSQL

CPU usage plot in Figure 4.12 we are able to deduct that, for this particular user access pattern,

higher levels of user concurrency have a higher impact on PostgreSQL than the CROSS API,

and only between minute 6-7, and 11-12 do the configurations B and C, respectively, utilize more

CPU from PostgreSQL than configuration A. As expected configuration C reaches a higher level

of resource utilization on both CPU, overall CPU usage plot Figure 4.9, (A - 2.38 CPUs, B -

58

3.90 CPUs and C - 4.79 CPUs) and memory, overall memory usage plot Figure 4.10, (A - 2.06

GiB, B - 2.37 GiB and C - 3 GiB), albeit significantly within the cluster limits of 8 CPUs and

8 GiB.

Time (m)

C
P

U
 U

sa
ge

 (c
pu

s)

0

2

4

6

8

0 5 10 15

1 CROSS Replica
(A)

1 - 2 CROSS
Replicas (B)

1 - 4 CROSS
Replicas (C)

Max Cluster
Capacity

Figure 4.9: Mean CPU Usage over Elapsed Time.

Time (m)

M
em

or
y

U
sa

ge
 (G

iB
)

0.0

2.5

5.0

7.5

10.0

0 5 10 15

1 CROSS Replica
(A)

1 - 2 CROSS
Replicas (B)

1 - 4 CROSS
Replicas (C)

Max Cluster
Capacity

Figure 4.10: Mean Memory Usage (without cache) over Elapsed Time.

59

Time (m)

C
P

U
 U

sa
ge

 (c
pu

s)

0.00

0.25

0.50

0.75

1.00

1.25

0 5 10 15

CROSS Replica
1/1 (A)

CROSS Replica
1/2 (B)

CROSS Replica
2/2 (B)

CROSS Replica
1/4 (C)

CROSS Replica
2/4 (C)

CROSS Replica
3/4 (C)

CROSS Replica
4/4 (C)

Figure 4.11: Mean CPU Usage (per pod) over Elapsed Time.

Time (m)

C
P

U
 U

sa
ge

 (c
pu

s)

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15

CROSS PostgreSQL
(A)

CROSS PostgreSQL
(B)

CROSS PostgreSQL
(C)

Figure 4.12: Mean PostgreSQL CPU Usage over Elapsed Time.

60

Time (m)

M
em

or
y

U
sa

ge
 (M

iB
)

0

100

200

300

400

500

0 5 10 15

CROSS Replica
1/1 (A)

CROSS Replica
1/2 (B)

CROSS Replica
2/2 (B)

CROSS Replica
1/4 (C)

CROSS Replica
2/4 (C)

CROSS Replica
3/4 (C)

CROSS Replica
4/4 (C)

Figure 4.13: Mean Memory Usage (per pod, without cache) over Elapsed Time.

4.5.7 Summary

For this specific synthetic workload, configuration C is capable of outperforming the other two

configurations with regards to both system and request performance metrics, as observed and

forecasted through the scalability model. Moreover, we infer that the system is able to scale

horizontally, while maintaining an acceptable level of performance and resource utilization.

4.6 Stream Layer Performance and Completeness Testing

The stream layer pipeline is implemented by Apache Beam and is responsible for processing

the published network observations and producing intermediate aggregate results. A real-time

scenario was setup, to estimate the trade-offs made in performance, completeness and cost of

the pipeline. During the execution of the scenario test workloads, a set of metrics were collected

including the rate of observations processed, the observation process latency which refers to the

maximum time that a particular network observation has been processing or awaiting processing

in the pipeline, data watermark lag. The data watermark lag refers to the amount of time since

the most recent output watermark - network observation publish time. CPU and memory usage

were also collected to ensure adequate resource usage with no limits, avoiding any possible

contention when performing the tests.

The test workload was performed using a custom Java client developed to simulate real-time

user behaviour of the network observation collection and submission process.

61

4.6.1 Experimental Setup

The custom Java client was wrapped up into a Docker image tagged and pushed to our Google

Cloud project’s container private registry, for ease of result reproduction used the Maven image

3.8-jdk-11 5.

The client was deployed to a GKE cluster, comprised of a single node in the “europe-west1”

region. A comprehensive specification of the GKE clusters used is detailed in Table 4.5. The

Message Broker and the Apache Beam pipeline were deployed to Google Cloud Pub/Sub and

Google Cloud Dataflow, respectively.

Table 4.5: Google Kubernetes Engine cluster specification for the real-time client.

Stack
Machine

Family

Machine

Type
OS

Kernel

Version
CPU

RAM

Size

Disk

Size

Disk

Type

Additional

Disk

Size

Additional

Disk

Type

Network
Docker

Ver

Kubernetes

Ver
Region Locations

Real-Time

Client

General-

-Purpose

e2-

-highcpu-

-8

Container-

-Optimized

OS

5.10.107

Intel Xeon or

AMD EPYC Rome

@ 2.00+ GHz

(8)

8

GB

20

GB

Standard

persistent

disk

200 GB

Regional

Standard

Persistent

Disk

Default 20.10.12
1.21.11-

-gke

europe-

-west1

europe-

-west1-b

The real-time processing test workload consists of real time submissions of a dynamic set

(both in size and frequency of observations) of network observations of a specific point of interest

as Wi-Fi AP evidences, simulating both user collection and submission. The simulated point

of interest is Sé due to its level of volatility, which is present in the test dataset described in

Section 4.2. Each client submission contains a sample of collected/observed Access Points from

the total number of existing Access Points in the point of interest. This synthetic sample is

derived from the probability of occurrence of each Wi-Fi Access Point spotted in Sé during the

days of 2019-07-29 and 2019-08-19, which is plotted in Figure 4.14.

Wi-Fi AP BSSID

P
ro

ba
bi

lit
y

of
 O

cc
ur

re
nc

e

0

0.25

0.5

0.75

1

82
:2

a:
a8

:f7
:

b8
:9

4:
36

:a
8:

be
:a

5:
8b

:c
8:

10
:3

0:
47

:9
5:

f6
:d

d:
9e

:7
e:

04
:f0

:2
1:

45
:

06
:4

1:
69

:b
3:

ba
:4

1:
a4

:5
a:

04
:f0

:2
1:

46
:

58
:9

8:
35

:3
a:

30
:8

9:
d4

:4
a:

04
:f0

:2
1:

45
:

04
:f0

:2
1:

45
:

04
:f0

:2
1:

46
:

58
:9

8:
35

:9
0:

6e
:7

4:
bf

:1
6:

ec
:8

9:
14

:9
e:

fe
:1

8:
3c

:7
1:

9c
:4

f:c
f:2

d:
4d

:
7e

:3
8:

ad
:1

8:
3a

:f8
:8

9:
09

:
32

:c
3:

d9
:3

3:
e4

:e
1:

30
:d

0:
04

:f0
:2

1:
45

:
68

:c
9:

0b
:0

1:
e0

:e
6:

2e
:8

e:
e4

:e
1:

30
:9

f:
94

:2
7:

90
:9

f:
0a

:c
5:

e1
:0

e:
fc

:2
d:

5e
:4

d:
7c

:7
d:

3d
:2

f:
e0

:e
6:

2e
:7

6:
e0

:e
6:

2e
:4

4:

Figure 4.14: Observed probability of occurrence, in a sample, of each Wi-Fi Access Point spotted
in Sé during 2019-07-29 and 2019-08-19.

5https://hub.docker.com/ /maven

62

As we can see, the distribution has a long tail, meaning that the sample publish time is

skewed by a random amount of publish time delay (maximum 1 minute delay) from the current

system clock time (simulating late events) and the sample has a certain probability of being

published multiple times (simulating duplicate events). The test workload has a total duration

of 20 minutes, to provide ample time to quantify both the performance and impact, as well

as trigger multiple stable and volatile set intermediate windows. Regarding the time window

parameters, the volatile window size is set to 1 minute, calculated as the greatest common divisor

of the spans (1, 5, 10 and 15 minutes) which are derived from each respective delta (30 seconds,

2.5, 5 and 7.5 minutes). The deltas are set by the system operator entities and represent the

several achievable levels of accuracy. We decided to use only the low value deltas, as they are

the most useful, in contrast to the maximum possible span which is a period (1 day). The stable

window size is typically set to a period (1 day), however since the test workload has a duration

of 20 minutes we have set it to 5 minutes, which results in 4 stable window triggers, in an effort

to observe the impact of the stable set pipeline stages.

4.6.2 Results

The results are grouped according to the pipeline stage and/or phase depicted in Figure 4.15,

which illustrates the Dataflow implementation of the architected pipeline DAG from Figure 3.7.

Figures 4.16 to 4.20 consist of plots over the throughput, in observations per second, while Fig-

ures 4.21 to 4.22 plot the mean latency, in seconds, and the data watermark lag, in minutes.

Resource utilization (CPU and memory) is plotted in Figures 4.23 and 4.24. All of the afore-

mentioned plots draw comparisons between the pipeline’s processing semantics (exactly-once and

at-least-once), which is the factor that is expected to have the most impact on the performance

of this layer, based on the explanation detailed in Section 3.3.2. Therefore, through the analysis

of the plots we can properly quantify this impact. Note as well that, as detailed in Section 3.2,

Dataflow assures at-least-once semantics by default, however to guarantee exactly-once seman-

tics modifications had to be performed to ensure that both our source (Pub/Sub - Read WiFi

AP Obs Proto from Pub/Sub Stage) and sinks (BigQuery - Write Intermediate Results Stages

to BigQuery) were deterministic. Thus, these stages are a good starting point for our analysis.

63

Read WiFi AP Obs
Proto from Pub/Sub

Parse WiFi AP Obs
Proto

Window Volatile Set
Obs

Sum Volatile Obs per
POI and BSSID

Convert Volatile Obs
to Table Row

Write Volatile Set
Intermediate Results

to BigQuery

Window Stable Set
Obs

Sum Stable Obs per
POI and BSSID

Convert Stable Obs
to Table Row

Write Stable Set
Intermediate Results

to BigQuery

Pull/Window

Transform

Load

Figure 4.15: CROSS Dataflow pipeline Directed Acyclic Graph (DAG).

4.6.3 Impact on Throughput

From the plots in Figures 4.16 and 4.17 of the overall throughput over the total test workload

duration, we are able to observe that, for the same rate of observation publish requests, the

pull/window pipeline phase containing the Pub/Sub source with at-least-once semantics is able

to process more than 700 observations per second (Figure 4.16), where as with exactly-once

semantics it is only able to process more than 200 observations per second (Figure 4.17), equating

to a 3.5x speedup. However, both semantics seem to process observations at a similar rate in

the transform and load phases, in spite of our contrary expectations.

Time (m)

Th
ro

ug
hp

ut
 (o

bs
/s

ec
)

0

200

400

600

800

0 5 10 15 20

Pull/Window Phase Transformation Phase Load Phase

Exactly Once Semantics

Figure 4.16: Throughput per phase of the

pipeline with exactly-once semantics.

Time (m)

Th
ro

ug
hp

ut
 (o

bs
/s

ec
)

0

200

400

600

800

0 5 10 15 20

Pull/Window Phase Transformation Phase Load Phase

At Least Once Semantics

Figure 4.17: Throughput per phase of the

pipeline with at-least-once semantics.

64

In more detail, we have plotted the mean throughput per pipeline stage in Figures 4.18 to

4.20. From the plot in Figure 4.18, we are able to confirm the speedup observed, of approximately

3.5x, with at-least-once semantics all throughout the pull/window phase in which each stage is

able to performance consistently at the same rate. Nonetheless, as noted in the transform phase

plot in Figure 4.19 the performance gains obtained in the pull/window phase with at-least-once

semantics are lost, and both semantics end up performing at identical levels (approximately 1.0x

speedup), indicating a potential bottleneck at these stages. In the load phase (Figure 4.20), with

at-least-once semantics the pipeline is able to sustain the rate of observations from the previous

phase, confirming the bottleneck suspicion with these semantics, as opposed to the pipeline with

exactly-once semantics which is not able to maintain the rate at this phase, more specifically at

the Write to Big Query stages where we observe a 165x speedup, demonstrating that these are

in fact the bottleneck stages with these semantics.

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0.00

200.00

400.00

600.00

800.00

Read WiFi
AP Obs

Proto from
Pub/Sub

Parse WiFi
AP Obs
Proto

Window
Stable Set

Obs

Window
Volatile Set

Obs

Exactly Once
Semantics

At Least Once
Semantics

Pull/Window Phase

Figure 4.18: Mean throughput per pipeline stage in the pull/window phase for each semantics.

65

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0

2

4

6

Sum Stable Obs per POI
and BSSID

Sum Volatile Obs per
POI and BSSID

Exactly Once
Semantics

At Least Once
Semantics

Transform Phase

Figure 4.19: Mean throughput per pipeline

stage in the transform phase for each seman-

tics.

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0

2

4

6

Con
ve

rt S
tab

le

Con
ve

rt V
ola

tile

W
rite

 S
tab

le

W
rite

 V
ola

tile

Exactly Once
Semantics

At Least Once
Semantics

Load Phase

Figure 4.20: Mean throughput per pipeline

stage in the load phase for each semantics.

4.6.4 Impact on Network Observation Processing Time

Regarding the time of processing, latency or system lag, from the perspective of a single ob-

servation in the pipeline, we have plotted the mean latency per pipeline phase, in seconds,

in Figure 4.21. By observing the aforesaid plot, we conclude that in spite of the significant

speedup in throughput over the pull/window phase with at-least-once semantics, this equates

to a 1.1x speedup in latency. Additionally, the load phase impact is as expected noted in the

transform + load phases, in which the at-least-once semantics pipeline has a 3.0x speedup over

the exactly-once semantics pipeline. It is important to note however that this plot contains

each phases cumulative latency, meaning that if Dataflow is able to parallelize these stages, the

latency differences on the overall system can be negligible.

66

Pipeline Phase

M
ea

n
La

te
nc

y
(s

ec
)

0.00

2.00

4.00

6.00

8.00

10.00

Pull/Window Transform +
Load (Stable)

Transform +
Load (Volatile)

Exactly Once
Semantics

At Least Once
Semantics

Figure 4.21: Mean latency per pipeline phase for each semantics.

4.6.5 Impact on Output Data Watermark

Another important metric that allows us to quantify the processing time in relation to the

publish time of an observation (the client collection time), which in our pipeline is used as the

observation’s watermark, is the data watermark lag. The data watermark lag, as previously

explained, is the age up to which all data has been processed by the pipeline, meaning that it

is the time since the earliest watermark output by the pipeline at a specific point in time. In

this specific test workload we know that observations can be delayed at most 1 minute, thus we

expect that the data watermark lag to be at least 1 minute plus the cumulative processing time

in the CROSS API server, Pub/Sub and the pipeline. We are able to observe that as expected

both pipelines have a data watermark lag of at least 1 minute, and in spite of two peaks at 2

and 7 minutes in the exactly-once semantics pipeline, both are performing at a similar level, as

plotted in Figure 4.22. More precisely, the pipeline with at-least-once semantics and the pipeline

with exactly-once semantics achieve a mean data watermark lag of 1.35, 1.46, respectively, a

median data watermark lag (which excludes the peak outliers) of 1.20 and 1.26, respectively.

These differences total to a speedup of the at-least-once semantics pipeline over the exactly-once

semantics pipeline of 1.08x and 1.05x for the mean and median, respectively.

Regardless of the processing semantics enforced in the pipeline, from these results we are

able to derive the overall median system lag per observation from the complete flow throughout

this layer (including the CROSS API server, Pub/Sub and the pipeline) ranging from 20 to 26

seconds. Note that this lag, i.e. time to process network observations, does not directly impact

the user perceived performance of the system, as this process is done asynchronously.

67

Time (m)

D
at

a
W

at
er

m
ar

k
La

g
(m

)

0

1

2

3

4

5

0 5 10 15 20

Exactly Once
Semantics

At Least Once
Semantics

Figure 4.22: Data watermark lag per pipeline processing semantics.

4.6.6 Resource Utilization Analysis

As for resource utilization, we present plots for both CPU and memory in Figure 4.23 and

Figure 4.24, respectively. We are able to observe that the pipeline ensuring at-least-once seman-

tics utilizes more from both resources. More precisely, the pipeline with exactly-once semantics

and the pipeline with at least once semantic achieve a mean CPU utilization of 16% and 21%,

respectively, and a mean memory utilization of 4.6 GiB and 5.6 GiB, respectively. The obser-

vation of a higher processing rate upstream in the at-least-once semantics pipeline is a possible

rationale for these resource utilization differences. Nonetheless, in spite of the utilization offset

both pipelines present an identical trend on either resource.

Time (m)

C
P

U
 U

til
iz

at
io

n
(%

)

0%

10%

20%

30%

40%

0 5 10 15 20

Exactly Once
Semantics

At Least Once
Semantics

Figure 4.23: CPU utilization per pipeline processing semantics.

68

Time (m)

M
em

or
y

U
til

iz
at

io
n

(G
iB

)

0

5

10

15

0 5 10 15 20

Exactly Once
Semantics

At Least Once
Semantics

Max Memory

Figure 4.24: Memory utilization per pipeline processing semantics.

4.6.7 Summary

In sum, although the impact of using exactly-once semantics is significant on the achievable

throughput, this impact is attenuated by the sum per key stage of the pipeline (combine func-

tion) which is naturally present in both pipelines, regardless of their processing semantics. Addi-

tionally, the main goal of our stream pipeline is to provide low-latency updates with the highest

level of correctness, thus based on the median latency speedup of 1.05x, we conclude that the

ability to provide correct updates, by ensuring exactly-once semantics, for this specific workload

outweights the minor performance impact.

4.7 Theoretical Model vs Practical Model Assessment

One of the major differences between the practical implementation of the CROSS City Cloud

extension, detailed in Section 3.2, to support time-bound location proofs, and the theoretical

model, described in Section 2.1.3, is the method of storing the Wi-Fi AP observations and the

usage of time-based partitioned intermediate aggregate results. To properly quantify possible

gains or losses when computing and retrieving the stable or volatile sets with our implementation

and a naive theoretical implementation, we have developed a base solution of the model, as the

baseline, and equivalent stable and volatile set queries. In the subsequent sections, we refer to

the alternatives as the “Practical Implementation” and the “Theoretical Implementation”.

During the assessment, the measurements are performed over the time elapsed since the start

of the query execution and the total slot time used by the query. The term slot is described in

the “Query Plan Explanation” section6 of the BigQuery documentation as “an abstracted repre-

6https://cloud.google.com/bigquery/query-plan-explanation#background

69

sentation of multiple facets of query execution, including compute, memory, and I/O resources”,

meaning the “total slot time used” metric provides an estimate of the individual query cost.

4.7.1 Experimental Setup

The theoretical implementation of the model was developed in BigQuery, involving the creation

of a new dataset containing the tables which represent each relation (Observations, Locations,

Devices and Users) as described in the model [CEP22], illustrated in Table 4.6. Additionally,

similarly to the stream layer of our implementation, an Apache Beam pipeline was developed

to extract, transform and load the signal observations of the test dataset, formerly described in

Section 4.2, onto the aforementioned tables.

Table 4.6: Relations detailed in the theoretical model, adapted from [CEP22].
Relation Attributes Description

Observations id, obsTime, location, device, signalType, transmitterId Collected signal

Locations id, name, coordinates Points of Interest

Devices id, name, userId User mobile devices

Users id, name Users of the system

Regarding the time window parameters of the experiment for validating location proofs, we

have set these to one week (2019-07-29 to 2019-08-04) and one day for the epoch and period,

respectively, as referred in Section 3.1, with varying spans and points of interest.

4.7.2 Stable Set Computation

The stable set of a particular point of interest is computed over an epoch time window. As men-

tioned previously, the default value for the epoch parameter is of one week or seven days/periods.

We have used the network observations correspondent to the week of 2019-07-29 to 2019-08-04

to compute the stable sets, since these are the sole consecutive seven days existent in the dataset.

Six experiments across five repetitions were conducted for each one of the six distinct points

of interest (Jerónimos, Comércio, Sé, Oceanário, Alvalade and Gulbenkian) among the test

dataset. We have plotted the experimental results with regards to the query elapsed time, in

milliseconds, and slot time used, in seconds, as presented in Table 4.7.

70

Table 4.7: Elapsed and Slot Time over Point-of-Interest per Implementation for the Stable Set

Computation.

Implementation Point-of-Interest
Elapsed Time

(ms)

Elapsed Time

Speedup (x)

Slot Time

(sec)

Slot Time

Speedup (x)

Theoretical 848.0 3.6

Practical
Alvalade

889.0
1.0

3.8
0.9

Theoretical 847.0 4.8

Practical
Comercio

897.4
0.9

3.8
1.3

Theoretical 798.2 4.0

Practical
Gulbenkian

797.4
1.0

3.4
1.2

Theoretical 791.4 4.0

Practical
Jeronimos

871.4
0.9

3.8
1.1

Theoretical 887.2 4.6

Practical
Oceanario

848.2
1.0

3.6
1.3

Theoretical 953.6 6

Practical
Se

825.6
1.2

3.6
1.7

For the query elapsed time, both implementations obtain similar results with the practical

implementation being able to achieve on average a lower elapsed time for Gulbenkian, Oceanário

and Sé while the theoretical implementation obtaining on average a lower elapsed time for the

remaining three points of interest: Alvalade, Jerónimos and Comércio. The average difference

between implementations is approximately 57 milliseconds (average speedup of approximately

1.1x), with the minimum difference observed being only 0.8 milliseconds for the Gulbenkian

point of interest while the maximum difference observed being 128 milliseconds for the Sé point

of interest, equating to a speedup of approximately 1.2x.

Regarding the slot time used, the practical implementation is able to achieve on average

a lower slot time for five out of the six points of interest: Gulbenkian, Jerónimos, Comércio,

Oceanário and Se. The theoretical implementation obtained on average a lower elapsed time

for the remaining point of interest: Alvalade. The average difference between implementations

is approximately 0.9 seconds (average speedup of approximately 1.2x), with the minimum dif-

ference observed being 0.2 seconds for both the Alvalade and Jerónimos points of interest while

the maximum difference observed being 2.4 seconds for the Sé point of interest, equating to a

speedup of approximately 1.7x.

Both implementations for the same amount of observations distributed across a single week

achieve a similar amount of overall elapsed time, which is the metric with a greater influence

on the user’s perception of system performance. However, it is worth noting that in the prac-

tical implementation the stable set computation is done off the critical path onto a separate

table, which necessarily depends on the existence of the stable set. But, this is done without

impacting the volatile set computation, and consequently the user’s experience. Thus, perfor-

mance gains are expected to be more evident for the volatile set computations, presented in

71

Section 4.7.3. Moreover, as for the slot time experiment the results are on par with expecta-

tions, since both implementations are limited by two major functions (the aggregate count and

percentile), nonetheless the practical implementation projects from the union of the tables of

each period, instead of the double selection made by the theoretical implementation over the obs

relation. Therefore, since the obs relation might contain observations from multiple different

timestamps and points of interest this operation might present itself resource heavier or costlier.

4.7.3 Volatile Set Computation

The volatile set of a particular point of interest is computed over a span time window interval

resultant from the client’s time location claim and a delta. Since the volatile set computation

depends on an existent stable set, we have used the network observations correspondent to the

week of 2019-07-29 to 2019-08-04 to compute it, hence why the volatile set computations are

performed over the day/period of 2019-08-19, as this is the closest day to the epoch used present

in the dataset. Sixteen experiments across five repetitions were conducted for the Gulbenkian

point of interest with varying spans and overall dataset size.

Varying Spans Analysis

The first eight experiments were performed with varying spans (1, 5, 10 and 15 minutes) derived

from the respective deltas (30 seconds, 2.5, 5 and 7.5 minutes). As in Section 4.6 of the stream

layer experiments, we have selected four realistically low deltas, in contrast to the maximum

possible span which is a period (1 day). The Table 4.8 details the resulting experimental config-

urations including the claimed time interval used in the volatile set query. We have plotted the

experimental results with regards to both the query elapsed time and slot time used, in seconds,

presented in Table 4.9.

Table 4.8: Varying Spans and Deltas Volatile Set Experimental Configurations.
Point-of-Interest Span Delta Claimed Time Interval

1 min 0.5 min 14:37:00 - 14:38:00

5 min 2.5 min 14:35:00 - 14:40:00

10 min 5 min 14:33:00 - 14:43:00
Gulbenkian

15 min 7.5 min 14:30:00 - 14:45:00

72

Table 4.9: Elapsed and Slot Time per Span Interval for the Gulbenkian Volatile Set Query.

Implementation
Span Interval

(min)

Elapsed Time

(sec)

Elapsed Time

Speedup (x)

Slot Time

(sec)

Slot Time

Speedup (x)

Theoretical 2.4 39.8

Practical
15

1.0
2.4

18
2.2

Theoretical 2.0 43.8

Practical
10

1.0
2.0

17.8
2.5

Theoretical 2.0 38.8

Practical
5

1.0
2.0

17.4
2.2

Theoretical 2.0 34.4

Practical
1

1.0
2.0

17.2
2.0

The practical implementation consistently outperformed the theoretical implementation for

each span on both the query elapsed time and the slot time used metrics. Specifically regarding

the query elapsed time, it was able to achieve on average a speedup of 2.1x, with a minimum

speedup of 2.0x and a maximum speedup of 2.4x. Furthermore, with respect to the slot time

used, it was able to achieve on average a speedup of 2.2x, with a minimum speedup of 2.0x and

a maximum speedup of 2.5x.

These results match the expectations that the practical implementation would perform better

than the theoretical implementation. It demonstrates the impact of computing the stable set off

the critical path and its materialization onto a separate table, and the aggregation of network

observations per period and point of interest on distinct tables. Note that the theoretical

implementation requires on premise stable set computation, on top of maintaining all network

observations individually on a single relation.

Varying Dataset Size Analysis

The last eight experiments were performed with varying input dataset sizes (8988, 12616, 22372

and 25404 KB) derived from the combination of the network observations of the remaining

points of interest across the dates 2019-07-29 to 2019-08-19 existent in the dataset, as detailed

in Table 4.10. The claimed time interval is maintained consistent throughout the experiments

with the highest achievable accuracy, from 2019-08-19 14:37:00 to 2019-08-19 14:38:00 (1 min

span). We have plotted the experimental results with regards to both the query elapsed time

and slot time used, in seconds, presented in Table 4.11.

73

Table 4.10: Varying Input Dataset Size Volatile Set Experimental Configurations.

Input Points-of-Interest
Input Dataset Size

(KB)

Gulbenkian 8988

Gulbenkian + Jerónimos + Comércio 12616

Gulbenkian + Jerónimos + Comércio +

Oceanário + Alvalade
22372

Gulbenkian + Jerónimos + Comércio +

Oceanário + Alvalade + Sé
25404

Table 4.11: Elapsed and Slot Time per Input Dataset Size for the Gulbenkian Volatile Set Query.

Implementation
Input Dataset Size

(KB)

Elapsed Time

(sec)

Elapsed Time

Speedup (x)

Slot Time

(sec)

Slot Time

Speedup (x)

Theoretical 2.0 32.6

Practical
8988

1.0
2.0

17.6
1.9

Theoretical 2.0 33.2

Practical
12616

1.0
2.0

17.8
1.9

Theoretical 2.0 39.4

Practical
22372

1.0
2.0

17.8
2.2

Theoretical 2.0 44.2

Practical
25404

1.0
2.0

17.8
2.5

The practical implementation surpassed the theoretical implementation for each input dataset

size on both the query elapsed time and the slot time used metrics. Specifically regarding the

query elapsed time, it was able to achieve on average a speedup of 2.0x, with a minimum

and maximum speedups of 2.0x. Furthermore, with respect to the slot time used, it was able to

achieve on average a speedup of 2.1x, with a minimum speedup of 1.9x and a maximum speedup

of 2.5x.

The obtained results match the expected volatile set computation performance gain. Ad-

ditionally, particularly with these experiments we are able to observe a higher performance

degradation with relation to the dataset size with the theoretical implementation, the additional

input dataset size from 8988 KB to 25404 KB results in a 0.74x slot time speedup equating to

a difference of 11.6 seconds, when compared to the 0.99x slot time speedup obtained with the

practical implementation. This can be explained by the use of a single table to store all network

observations as individual records, in the theoretical implementation. Although, this does not

have a noteworthy impact on the elapsed time on our experiments, we should expect that for

significantly larger sizes, above a certain threshold, the impact on the elapsed time would be

noticeable. Additionally to further support the previous claim, based on these experiments we

quantified the impact of the input size in the resulting BigQuery dataset size of each imple-

mentation plotted in Figure 4.25, which for the maximum increase in input size from 8988 to

25404 KB (+16416 KB) the practical implementation increases its dataset size in approximately

74

1.16 MiB, while the theoretical implementation requires an increase of approximately 10.9 MiB

(≈ 9.4x).

Input Dataset Size (KB)

B
ig

Q
ue

ry
 D

at
as

et
 S

iz
e

(M
iB

)

0

5

10

15

20

10000 15000 20000 25000

Practical
Implementation

Theoretical
Implementation

Figure 4.25: BigQuery Dataset Size per Input Dataset Size.

4.8 Summary

In this Chapter, we demonstrated the feasibility of providing location and time-bound proofs

through the match of network observations scavenged by the prover devices and pre-computed

stable and volatile sets, by achieving stable and volatile set match success rates of 61.11% and

63.89%, respectively. The performance and scalability analysis demonstrated that the system is

able to scale horizontally, maintaining an acceptable performance level of under 100 ms under

load with up to 50 concurrent users, at a 60% resource utilization. The trade-offs made in the

performance and completeness of the pipeline solution with distinct processing semantics were

analyzed and quantified, and we concluded that our solution is still able to provide real-time

low-latency updates while enforcing a greater level of correctness. We evaluated the method

used for integrating the Wi-Fi AP observations in the serving layer, with regards to client stable

and volatile set query performance. Our solution significantly outperforms the baseline used by

leveraging the stable set computation off the critical path. Most notably, it achieves an average

speedup of ≈ 2.2x in perceived user location proof validation performance.

75

76

Chapter 5

Conclusion

We presented CROSS City Cloud, a cloud-native location certification system for consumer

mobile applications, capable of producing and validating time-bound location proofs.

The ability to offer verifiable information with regards to a location time of visit strength-

ens the dependability of the location proofs generated. However, existing related work, more

specifically the CROSS City v1 prototype, was only capable of validating the time of visit of a

location claim through the augmentation of each supported location with purpose-built infras-

tructure. To address this limitation, we designed and implemented an architectural extension

to the CROSS data management layer on top of a scavenger data analysis model, properly

supporting location proofs with temporal granularity. The architectural extension can ingest,

aggregate and integrate scavenged network observations in stable and volatile networks of a

particular point of interest. Location claims made by tourists can be attested for the visited

location and time of visit using solely the stable and volatile sets. A range of data storage

and processing components, as well as prominent architectures were assessed, to select the most

optimal solution for the requirements and objectives. The deployment of the system leverages

modern virtualization technology and the existing services offered by the modern, commercial

clouds, namely the Google Cloud public provider. By exploiting cloud computing and fine tun-

ing each component, we were able to ensure the fulfilment of the production quality criteria

including system scalability, reliability and observability of each component. We implemented a

control plane for the automation of the configuration and deployment of the system, leveraging

Infrastructure-as-Apps tools to conform to GitOps standards, such as being Continously Recon-

ciled, i.e. keeping the service state always as declared by the operator. From the perspective of

an operator, the control plane allows for an efficient management.

CROSS City Cloud achieved stable and volatile set match success rates of 61.11% and 63.89%,

respectively, demonstrating its feasibility in providing location and time-bound proofs. Scalabil-

77

ity and performance analysis demonstrated that the system is able to scale horizontally, main-

taining the acceptable performance level of under 100 ms under load with up to 50 concurrent

users, at a 60% resource utilization. Although exactly-once semantics significantly impact the

achievable throughput, this impact is attenuated by the downstream operators and the pipeline

parallelism. Thus, we assessed that our pipeline solution is still able to provide real-time low-

latency updates while enforcing a greater level of correctness. We evaluated our method of

integrating the Wi-Fi AP observations, through the usage of time-based partitioned interme-

diate aggregated views, with regards to client stable and volatile set query performance. This

assessment was carried out against a baseline naive implementation of the theoretical scavenging

model. Our solution significantly outperforms the baseline by leveraging the stable set compu-

tation off the critical path. Most notably, it achieves an average speedup of ≈ 2.2x in perceived

user location proof validation performance.

In conclusion, we demonstrated the feasibility of embedding a time-bound location certifica-

tion framework into public cloud computing technology to provide a Location-Certification-as-

a-Service platform, for consumer mobile application use cases.

5.1 Achievements

We developed CROSS City Cloud, a cloud-native location certification system for consumer

mobile applications, capable of producing and validating time-bound location proofs without

additional infrastructure, leveraging public cloud services to deliver its services.

We implemented an architectural extension to CROSS City, based on the Kappa architecture,

comprised of stream and serving layers. This extension is responsible for ingesting, transform-

ing and integrating client scavenged Wi-Fi AP observations, to determine over particular time

windows the stable and volatile networks of a given location. The stream layer handles the

asynchronous communication between the CROSS REST API server and the pipeline that pro-

duces the intermediate views of aggregated network observations. The serving layer indexes the

intermediate views and serves stable and volatile set query requests.

We designed and implemented a cloud deployment solution of the complete CROSS City

architecture. The system was deployed to Google Cloud Platform leveraging the following

services: Google Kubernetes Engine, Google Cloud Pub/Sub, Google Dataflow and Google

BigQuery. The cloud solution components were tinkered to fulfill set production system criteria.

We implemented a CROSS City control plane, using ArgoCD and Crossplane, to automate

the configuration and deployment of the system and its components, conforming to GitOps

standards, aiding system operators manage and operate the CROSS City Cloud services.

78

We assessed the location and time-bound proof feasibility. We evaluated the performance

and scalability of the domain layer. We evaluated the trade-offs made in performance and

completeness of our stream processing pipeline solution with distinct processing semantics. We

assessed the gains obtained with the use of the implemented time-based partitioned intermediate

aggregated view method, with regards to stable and volatile set query performance.

5.2 Future Work

CROSS City Cloud supports a smart tourism use case, in which pedestrian type tourists can

be more predominant. As a result, the window type and sizes utilized to aggregate network

observations for the computation of the intermediate stable and volatile sets are fine-tuned to

this sort of tourist and physical movements. Nonetheless, since low-latency updates are already

supported through the utilization of a stream processing engine, window type and size parameter

adjustments tailored to transportation tourism, such as buses and the iconic tuk-tuks, could be

explored.

The monitoring layer of CROSS City Cloud provides system operators with a complete

image of the system’s health status. Nonetheless, further improvements can be made to this

layer to enhance the degree of observability, for instance with the addition of logging and tracing

capabilities. Logging would be useful to determine what each component was communicating

at time of failure and further diagnose potential issues. Moreover, tracing can be leveraged to

enable the ability to pinpoint problematic components of the system and constitute user traces

from real-world executions to optimize system performance, since CROSS City is built on a

microservice architecture,.

From an operational standpoint, CROSS City Cloud provides a control plane to manage and

automate the configuration and deployment of its components. However, the CROSS City ap-

plication business logic is expected to evolve over time, hence why the automation of its lifecycle

can be enhanced. For example, the integration of a Continuous Integration and Continuous

Delivery (CI/CD) pipeline automates the processes of testing the code, building an artifact and

pushing it to a cloud registry.

System operators can utilize several user interfaces to interact with CROSS City Cloud,

such as directly from the cloud provider, ArgoCD, Grafana, BigQuery, and the command-line

interface (CLI). The combination of these interfaces into a single dashboard developed using

proper front-end tooling, with the goal of offering both health status information and query

capabilities, could improve the system operator user experience (UX).

79

5.3 Final Remarks

CROSS City Cloud is a time-bound location certification platform specifically built for the smart

tourism use case and reliant on system operators to manage it. Nonetheless, we envision future

scenarios where the platform presented in this work, can be utilized as a fully automatic location

proof self service to be consumed anywhere by any user independently of its use case.

80

Bibliography

[ABH09] Daniel J Abadi, Peter A Boncz, and Stavros Harizopoulos. Column-oriented

Database Systems. Proceedings of the VLDB Endowment, 2(2):1664–1665, 2009.

[All90] Arnold O Allen. Probability, statistics, and queueing theory. Gulf Professional

Publishing, 1990.

[Amd67] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring

Joint Computer Conference, AFIPS ’67 (Spring), page 483–485, New York, NY,

USA, 1967. Association for Computing Machinery.

[BCC+17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,

et al. Serverless Computing: Current Trends and Open Problems. In Research

advances in cloud computing, pages 1–20. Springer, 2017.

[Ber14] David Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes.

IEEE Cloud Computing, 1(3):81–84, 2014.

[Bre12] Eric Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. Computer,

45(2):23–29, 2012.

[CCCDP13] Eyüp S Canlar, Mauro Conti, Bruno Crispo, and Roberto Di Pietro. Crepuscolo:

A collusion resistant privacy preserving location verification system. In 2013 In-

ternational Conference on Risks and Security of Internet and Systems (CRiSIS),

pages 1–9. IEEE, 2013.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A

Distributed Storage System for Structured Data. ACM Transactions on Computer

Systems (TOCS), 26(2):1–26, 2008.

81

[CEP22] Rui Claro, Samih Eisa, and Miguel L Pardal. Lisbon hotspots: Wi-fi access point

dataset for time-bound location proofs. arXiv preprint arXiv:2208.04741, 2022.

[CIMS19] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski. The

Rise of Serverless Computing. Communications of the ACM, 62(12):44–54, 2019.

[Cod89] Edgar F Codd. Relational Database: A Practical Foundation for Productivity. In

Readings in Artificial Intelligence and Databases, pages 60–68. Elsevier, 1989.

[Cod02] Edgar F Codd. A Relational Model of Data for Large Shared Data Banks. In

Software pioneers, pages 263–294. Springer, 2002.

[CRM91] Stuart K Card, George G Robertson, and Jock D Mackinlay. The information

visualizer, an information workspace. In Proceedings of the SIGCHI Conference on

Human factors in computing systems, pages 181–186, 1991.

[DG04] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. In OSDI’04: Sixth Symposium on Operating System Design and

Implementation, pages 137–150, San Francisco, CA, 2004.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. ACM

SIGOPS operating systems review, 41(6):205–220, 2007.

[FP18] Joao Ferreira and Miguel L Pardal. Witness-based Location Proofs for Mobile

Devices. In 2018 IEEE 17th International Symposium on Network Computing and

Applications (NCA), pages 1–4. IEEE, 2018.

[FS19] Arnaldo Pereira Ferreira and Richard Sinnott. A Performance Evaluation of Con-

tainers running on Managed Kubernetes Services. In 2019 IEEE International

Conference on Cloud Computing Technology and Science (CloudCom), pages 199–

208. IEEE, 2019.

[Gra22] Ricardo António Augusto Grade. CROSS City Mobile Application: Gamified Peer-

Based Location Certification Strategy. Master’s thesis, Instituto Superior Técnico,

Universidade de Lisboa, Portugal, 2022.

[Gun06] Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning

for Highly Scalable Applications and Services. Springer-Verlag, Berlin, Heidelberg,

2006.

82

[HHLD11] Jing Han, Ee Haihong, Guan Le, and Jian Du. Survey on NoSQL Database. In

2011 6th international conference on pervasive computing and applications, pages

363–366. IEEE, 2011.

[HKJR10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.

ZooKeeper: Wait-free Coordination for Internet-scale Systems. In USENIX an-

nual technical conference, volume 8, 2010.

[ISO11] ISO. ISO/IEC 9075-1:2011 Information technology — Database languages — SQL

— Part 1: Framework (SQL/Framework). International Organization for Stan-

dardization, Geneva, Switzerland, 2011.

[JPA+12] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain. A

Survey and Comparison of Relational and Non-Relational Database. International

Journal of Engineering Research & Technology, 1(6):1–5, 2012.

[JSL+11] Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md Wasi-ur

Rahman, Nusrat S Islam, Xiangyong Ouyang, Hao Wang, Sayantan Sur, et al.

Memcached Design on High Performance RDMA Capable Interconnects. In 2011

International Conference on Parallel Processing, pages 743–752. IEEE, 2011.

[Kle17] Martin Kleppmann. Designing data-intensive applications: The big ideas behind

reliable, scalable, and maintainable systems. ”O’Reilly Media, Inc.”, 2017.

[Kre14] Jay Kreps. Questioning the Lambda Architecture. https://www.oreilly.com/

radar/questioning-the-lambda-architecture/, 2014. Accessed: 01-12-2021.

[LB10] Jeong Heon Lee and R Michael Buehrer. Location spoofing attack detection in wire-

less networks. In 2010 IEEE Global Telecommunications Conference GLOBECOM

2010, pages 1–6. IEEE, 2010.

[Lin17] Jimmy Lin. The Lambda and the Kappa. IEEE Internet Computing, 21(05):60–66,

2017.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra - A Decentralized Structured

Storage System. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[Mai19] Gabriel Antunes Maia. CROSS: loCation pROof techniqueS for consumer mobile

applicationS. Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa,

Portugal, 2019.

83

https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/

[Mar11] Nathan Marz. How To Beat The CAP Theorem. http://nathanmarz.com/blog/

how-to-beat-the-cap-theorem.html, 2011. Accessed: 01-12-2021.

[MCP20] Gabriel A Maia, Rui L Claro, and Miguel L Pardal. CROSS City: Wi-Fi Location

Proofs for Smart Tourism. In International Conference on Ad-Hoc Networks and

Wireless, pages 241–253. Springer, 2020.

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Tech-

nical Report 800-145, National Institute of Standards and Technology (NIST),

Gaithersburg, MD, 2011.

[Mil68] Robert B Miller. Response time in man-computer conversational transactions. In

Proceedings of the December 9-11, 1968, fall joint computer conference, part I,

pages 267–277, 1968.

[MMPR11] David M’Raihi, Salah Machani, Mingliang Pei, and Johan Rydell. Totp: Time-

based one-time password algorithm. Technical report, 2011.

[Möd20] Stefan Möding. Analyze system scalability in R with the Universal Scalability Law.

2020.

[NPP+17] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon Bringhurst,

Indranil Gupta, and Roy H Campbell. Samza: stateful scalable stream processing

at LinkedIn. Proceedings of the VLDB Endowment, 10(12):1634–1645, 2017.

[Pah15] Claus Pahl. Containerization and the PaaS Cloud. IEEE Cloud Computing,

2(3):24–31, 2015.

[See09] Marc Seeger. Key-Value stores: a practical overview. Computer Science and Media,

Stuttgart, 9:1–21, 2009.

[SKS+02] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. Database system

concepts, volume 5. McGraw-Hill New York, 2002.

[SR86] Michael Stonebraker and Lawrence A Rowe. The Design of Postgres. ACM Sigmod

Record, 15(2):340–355, 1986.

[SRH90] Michael Stonebraker, Lawrence A Rowe, and Michael Hirohama. The Implemen-

tation of POSTGRES. IEEE transactions on knowledge and data engineering,

2(1):125–142, 1990.

84

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

[WM15] James Warren and Nathan Marz. Big Data: Principles and best practices of scalable

realtime data systems. Simon and Schuster, 2015.

[WPZM16] Xinlei Wang, Amit Pande, Jindan Zhu, and Prasant Mohapatra. Stamp: Enabling

privacy-preserving location proofs for mobile users. IEEE/ACM transactions on

networking, 24(6):3276–3289, 2016.

[ZC11] Zhichao Zhu and Guohong Cao. Applaus: A privacy-preserving location proof

updating system for location-based services. In 2011 Proceedings IEEE INFOCOM,

pages 1889–1897. IEEE, 2011.

85

86

Appendix A

Data Storage Models In Depth

In this section we will discuss in more detail the specific implementations of each data storage

model, initially introduced in Section 2.2, general use cases of the implementation and mention

examples of other implementations. Each database type analysis in this section will be struc-

tured with a detailed analysis of a specific implementation, general use cases of the analysed

implementation, and examples of other implementations.

A.1 Relational

Regarding PostgreSQL’s main characteristics1:

Transactions PostgreSQL does support ACID semantics for transactions with atomicity

and consistency being guaranteed by both a rollback mechanism and a MVCC (Multiversion

Concurrency Control) locking method, multiple isolation levels provided by a snapshot “filter”

and durability being ensured by the storage manager.

Query Language PostgreSQL utilizes the standard Structured Query Language (SQL).

As previously stated, PostgreSQL stores data in tables, which are collections of rows, each of

which contains a set of columns (attributes). Each row in a certain table has the same set

of columns, as defined by the table’s schema. Data Definition statements (DDS) are used to

create and modify those tables. DDS also provides additional control over how data is stored

in tables through table partitioning and triggers. DDS also provides further control over how

the data will be stored in the tables with table partitioning and triggers. Data Manipulation

statements (DMS) are used to insert, update and delete data from tables. To retrieve data from

a table, PostgreSQL supports projecting specific columns from a set of rows (SELECT clause),

retrieving rows matching a given multi-conditional predicate (WHERE clause), grouping rows

1https://www.postgresql.org/docs/14/index.html

87

for aggregate functions (GROUP BY clause), sorting rows (ORDER BY clause) and limiting the

amount of rows returned (LIMIT clause). Tables can be joined according to a variety of rules

including inner, outer and cross-joins. Data from joined tables may also be queried. Updated

results of a query can also be kept in a materialized view. PostgreSQL provides the ability to

create multiple types of indexes on tables (B-Tree, Hash, GiST, SP-GiST, GIN, BRIN), as a

means to improve the performance of certain queries with the introduction of overhead.

Replication PostgreSQL supports unidirectional Primary-Standby replication for high avail-

ability, and some level of fault-tolerance. More specifically, a cluster may only contain a single

primary node, which is responsible for receiving data modifications and communicating such

data updates to the backup servers, either asynchronously or synchronously. Standby servers

can answer read requests and may only be allowed to do local data updates, which will not be

further replicated. In addition, standby servers can accept replication connections and stream

WAL (Write-Ahead Logging) records to other standbys, which is referred to as “Cascading Repli-

cation”. Regarding failovers, it is worth to note that PostgreSQL does not provide the system

software needed to detect a failure on the primary node and alert the standby nodes.

Partitioning PostgreSQL supports three types of basic table partitioning, in order to split

a large table into smaller physical pieces, as a means to improve query performance. Range

Partitioning which is a key column or combination of columns is used to split the table into

“ranges.”. List Partitioning where the table is partitioned by stating which key values occur

in each partition explicitly. Hash Partitioning where each partition of the table is achieved by

specifying a modulus and a remainder. However, it is important to note that PostgreSQL does

not provide native support to sharding, a horizontal scalability solution where each partition is

held on a separate database server instance.

Storage Engine PostgreSQL utilizes Write-Ahead Logging (WAL), in order to first record

any changes made to data files, containing tables and indexes, in a sequential manner before

flushing these to permanent storage. It also utilizes checkpoints, points from which it is assured

that the heap and index data files have been updated with all information recorded prior to that

checkpoint. At checkpoint time, all dirty data pages are flushed to disk and a specific checkpoint

record is recorded to the log file.

General use cases of PostgreSQL:

• OLTP database: Online Transaction Processing (OLTP) applications are concerned with

transaction-oriented processes that must be executed at a high rate. Relational databases

are highly suited for OLTP applications as they allow for inserting, updating, and delet-

ing data across several tables, while also allowing frequent queries. Since PostgreSQL is

88

entirely ACID compliant, it is suited for OLTP workloads;

• Geospatial database: PostgreSQL supports geographic objects when used with the

PostGIS extension and may be used as a geospatial data store for location-based services

and geographic information systems (GIS). PostGIS is a highly standard-compliant and

de-facto standard in the Open Source GIS industry, providing hundreds of functions for

processing geometric data in multiple formats;

• Federated hub database: The Foreign Data Wrapper extension for PostgreSQL allows

it to connect to other data sources, including NoSQL databases, and operate as a federated

hub for polyglot database systems.

Mainstream examples of relational databases:

• MySQL: Open-source RDBMS, also available under multiple proprietary licenses, written

in C and C++;

• Microsoft SQL Server: Microsoft’s relational database management system, under a

proprietary license, written in C and C++;

• IBM Db2: Relational database management system designed for performance in trans-

actional workloads.

A.2 Key-value

Regarding Redis’ main characteristics2:

Transactions Redis can not handle ACID transactions of the kind found in relational

databases, instead, it can only support lightweight transactions with no rollback mechanism and

an optimistic locking check-and-set (CAS). All commands in a transaction’s execution block are

guaranteed to be isolated, atomic, and durable.

Query Language Redis lacks support for a more traditional and robust query language

due to its simplified key-value data model. With this in mind, it lacks concepts such as Data

Definition and Data Manipulation statements. Redis does provide commands for setting and

getting a value of a specified key. Since Redis supports a variety of data structures as values,

specific operations related to each data structure are also supplied. Redis Lists, for example,

includes methods for inserting elements into the list at the head or tail. In addition, Redis

supports cursor-based queries with a few aggregation functions, such as “COUNT”, which limits

2https://redis.io/documentation

89

the amount of elements returned. It is worth noting that Redis does not handle more complex

queries such as joins.

Replication Replication in Redis can be used as a means to achieve high availability and

durability. Redis replication is built on a simple primary-backup replication scheme, in which

Redis replicas are perfect copies of a single master instance. When the link between the master

and the replica breaks, the replica can immediately reconnect to the master and seek to be an

identical copy of it, regardless of what happens to the master. Client’s write requests must

always go to the primary node, whereas read requests can be routed either to the primary or

any of the replicas. It’s worth noting that Redis’ basic replication system detailed here does not

enable any type of automated failover in the event of a master’s failure, just a manual failover.

Redis provides by default asynchronous replication, off the critical path, to maintain request’s

low latency and high performance. However it also able to provide synchronous replication to

ensure that a certain number of acknowledged copies are obtained from Redis instances, but it

does not transform a set of Redis instances into a CP system with strong consistency, because

acknowledged writes can still be lost during a failover.

In order for a Redis primary-backup deployment to achieve high availability without the

need for human intervention, Redis requires the deployment to run Redis Sentinel, which is a

distributed monitoring system. Redis Sentinel, on top of its monitoring layer is able to provide

an automatic failover solution.

Partitioning Redis Cluster is Redis’ solution for sharding data from a dataset among several

Redis nodes automatically. Redis Cluster does not utilize consistent hashing, but rather a type

of sharding in which each a key is part of what they term a hash slot. Redis Cluster has a total

of 16384 hash slots, and to get the hash slot of a given key, they obtain the CRC16 of the key

modulo 16384. Every node in a Redis Cluster is in charge of a fraction of the hash slots, and

can be replicated using the same primary-backup type replication scheme described above. This

enables some level of availability during partitions, when a subset of nodes fails or is unable to

communicate. However, in the event of a failure in a majority of the master nodes, the cluster

ceases to function.

Storage Engine Despite the fact that Redis operates with its data structures directly in-

memory, in other words with its dataset in-memory, it also supports two separate persistence

models:

• RDB (Redis Database): At preset intervals, it takes point-in-time snapshots of the dataset

and saves them to disk;

• AOF (Append Only File): The AOF persistence logs every write operation received by the

90

server in an append-only mode, which is then replayed upon server restart to reassemble

the original dataset. When the log reaches a particular size, Redis can rebuild it in the

background to the smallest sequence of commands required to recreate the current dataset

in memory.

RDB is a compact single-file point-in-time representation of the dataset that is ideal for

backups. However it is not able to provide the same level of durability as AOF. On top of both

of these models, Redis also supports a combination of both RDB and AOF or no persistence at

all.

General use cases of Redis:

• Caching: A cache layer has the set objective of decreasing an application’s latency and in-

crease throughput. This can be achieved by keeping frequently accessed data on ephemeral,

but very fast storage. Redis as an in-memory key-value store is a popular solution for a dis-

tributed caching solution. Redis provides the ability to perform sub-millisecond response

times at scale through sharding, while maintaining high availability through replication;

• Session Management: Session data typically refers to user data from a certain session

state, for example in the form of user profiles, login credentials and other user-specific

personalization information. Reading and writing session data with each user interaction

must be done in a way that does not compromise the user experience. When a user

disconnects and thus terminates a session, session data must be preserved for future use.

Session state may be maintained in Redis as a key-value pair, with the user identifier as

the key and the session data as the value. Applications can only read and write to the

Redis in-memory session store, and if durability is required, they can use Redis’ persistence

options;

• Messaging: Modern applications built on a microservice architecture are composed of

several loosely coupled services that must communicate with one another. Redis offers

data structures such as lists, sorted sets, and hashes, which are used to implement message

queues. Redis also provides a publish subscribe messaging protocol that may be used to

broadcast live notifications within a system.

Mainstream examples of key-value databases:

• Memcached [JSL+11]: Key-value distributed memory object caching system. Most used

for caching results of database calls, API calls or any other data;

91

• Tokyo Cabinet: A key-value database that supports 3 modes of operation: hashtable

mode, b-tree mode, and table mode, written in C;

• etcd3: Strongly consistent distributed key-value store, implemented in Go.

A.3 Column-oriented

Regarding Cassandra’s main characteristics4:

Transactions Cassandra does not employ relational database type ACID transactions with

rollback or locking methods, instead it opts for atomic, isolated, and durable transactions with

eventual/tunable consistency, allowing the user to choose how strong or eventual the consistency

of each transaction is. At the row level, Cassandra supports atomicity and isolation, however

it sacrifices transactional isolation and atomicity with high availability and rapid write speed.

Cassandra also does not allow joins or foreign keys since it is a non-relational database.

Query Language Cassandra Query Language (CQL) offers a similar model and syntax to

SQL, which was discussed in Section 2.2.2. CQL stores data in tables, the schema of which

dictates the layout of the data in the table, and tables are stored in keyspaces. Data Definition

statements are used to create, modify and remove keyspaces and tables. Data Manipulation

statements are used to insert, update, delete and query data from tables. When querying data,

CQL allows retrieving rows matching a specific multi-conditional predicate (WHERE clause),

grouping results for aggregate functions (GROUP BY clause), ordering results (ORDER BY

clause) and limiting the amount of results returned (LIMIT BY clause). It is important to note

that data from different column families cannot be joined in CQL. CQL provides the ability

to create secondary indexes on tables, allowing queries to leverage such indexes. In order to

maintain a set of rows from a table specified in a SELECT statement, materialized views can

be created.

Replication Replication in Cassandra is used as a means to achieve high availability and

durability. Each data item in a partition, with a key belonging to a certain token range, is

replicated across N distinct nodes in the cluster, where N is the replication factor pre-configured.

Cassandra provides several distinct replication strategies, in order to determine which replicas

are selected for a certain token range, including “Rack Aware”, “Rack Unaware” and “Datacenter

Aware”. Note that all replicas are equally important, there is no primary or master replica.

Cassandra contains two types of nodes in a cluster:

• Coordinators: The coordinator is in charge of replicating the data items within its token

3https://etcd.io/
4https://cassandra.apache.org/doc/4.0/

92

range. The coordinator not only stores each key within its range locally, but also replicates

them at N-1 nodes in the ring;

• Non-Coordinators: Nodes which act as replicas for data items within a particular range

of keys;

• Leader: Apart from the two above, a single node in the cluster will also be elected as the

leader, through a system called ZooKeeper [HKJR10]. When nodes join the cluster, they

contact this node, who informs them of the token ranges for which they are replicas.

Any node in the cluster can receive client read or write requests. Receiving nodes operate

as a proxy between the client application and the nodes that own the data being requested,

acting as the coordinator for that particular client operation. Based on how the cluster is

setup, the coordinator selects which nodes in the ring should receive the request and waits for

acknowledgements of a specific number of replicas, based on the consistency guarantees requested

by the client.

Cluster membership information and other system-related control state is regularly sent

between nodes using Gossip, a peer-to-peer communication protocol. When feasible, Cassandra

utilizes this information to avoid routing client requests to inaccessible nodes.

Partitioning Cassandra provides horizontal scalability by utilizing a hash algorithm to

partition all data stored in the system. Cassandra’s hashing technique, in particular, is consistent

hashing with order preservation. The output range of the hash function is viewed as a ring,

meaning the largest hash value wraps around to the smallest hash value. Within this region,

each node in the system is assigned a random value that indicates its token/location on the ring.

Each data item is allocated to a coordinator node, which is determined by hashing the data

item’s key to get its token/location on the ring, then traveling the ring clockwise to identify the

first node with a position greater than the item’s position.

Storage Engine Cassandra makes use of Google’s Bigtable data and storage engine model.

Cassandra’s storage engine provides commit logs, which are append-only logs recording all Cas-

sandra node modifications. Every write operation, also referred to as a mutation, to Cassandra

is first written to a commit log in a sequential manner. Only after being successful does the

data get written and indexed in-memory to a Memtable structure. This ensures both durability

and recoverability, in the event of an unexpected shutdown. Only once a certain size thresh-

old is met do the in-memory structures get flushed into disk, becoming immutable SSTables,

which are data files used by Cassandra in order to persist data on disk. Cassandra also initiates

compactions, which merge several SSTables into a single table.

93

General use cases of Cassandra:

• Time-series data: Time-series data are measurements performed at consistent time in-

tervals. This type of data tends to come at a high frequency and has the potential to

generate vast volumes of data, a typical use case is Internet of Things. Cassandra is

highly efficient with writes providing a higher throughput. Since time-series data tends

to involve write heavy workloads Cassandra is a good fit for it. As large amounts of data

get integrated Cassandra is able to scale and maintain performance, due to its sharding

methods;

• E-commerce: E-commerce companies rely on the reliability and availability of their

services to generate a profit, which is especially true during peak hours. They must also

be able to scale their online inventory cost-effectively. Inventory data may also easily reach

massive amounts of data. And, in order to adapt to an ever-changing market, they must

be able to continually adjust their product offerings. Cassandra supports multi-master

replication for high availability and its peer-to-peer architecture allows data to reside in

multiple regions closer to any particular customer. Cassandra also provides cost-effective

sharding methods for horizontal scalability;

• Recommendation Engine: Personalization and recommendation engines are widely

used in modern applications and websites to tailor the experience to each unique user.

Cassandra is a suitable match for this sort of application since it demands high write

throughput with low latency and real-time analytics across the dataset. Similarly to the

previous use cases, as the dataset grows Cassandra is able to horizontally scale through

sharding.

Mainstream examples of column-oriented databases:

• BigTable [CDG+08]: Distributed storage system for managing structured data designed

for large scale, most notably web indexing, implemented in C++;

• Hypertable: DBMS inspired by Google Bigtable, meant to run on top of a distributed

file system such as the Apache HDFS, GlusterFS or the CloudStore Kosmos, implemented

in C++;

• Apache HBase: Column-oriented database built on Apache Hadoop and BigTable con-

cepts, written in Java.

94

A.4 Document-oriented

Regarding MongoDB’s main characteristics5:

Transactions To begin, it’s crucial to note that MongoDB adheres to ACID principles,

which is critical for understanding the ideas that follow. Each transaction can adopt different

transaction-levels regarding the read preference, read concern and write concern. Read prefer-

ence defines to which node a client’s read requests is routed to first, either to the primary or any

secondary. Read and write concerns allow the client to have a strict control of the consistency

and isolation required for the application, defining the number of distinct node acknowledgments

required for a certain, read or write, request to accumulate before returning back to the client.

Query Language MongoDB has a distinct language model from SQL, explored in Sec-

tion 2.2.2, with a JSON-like syntax. MongoDB stores data in collections, which are groups of

documents. Collections are not required to have a defined schema, meaning that not all docu-

ments in a collection need to have the same fields. It is worth mentioning, though, that schema

validation may be used to lock down the schema of a given collection. With this in mind, Mon-

goDB lacks the traditional concept of Data Definition statements. MongoDB, on the other hand,

offers four types of operations to create, read, update and delete documents. When querying

data, MongoDB supports retrieving documents matching a given multi-conditional predicate and

project specific fields. In addition, MongoDB has a plethora of aggregation functions including

grouping, sorting and limiting document results. In contrast to CQL described in Section 2.2.4,

MongoDB is able to performs left outer joins between collections. MongoDB provides the ability

to create secondary indexes (single-field, compound and multi-key) on collections.

Replication Replication in MongoDB is accomplished using replica sets. A replica set is a

group of mongod processes that keep track of the same data set. Replica sets are able to provide

redundancy and high availability, on top of a level of fault tolerance against the loss of a single

database server. A replica set consists of many data-bearing nodes and, if desired, one arbiter

node. One and only one member of the data-bearing nodes is designated as the primary node,

while the others are designated as secondary nodes. Each node type has a different role in the

replication process:

• Primary: By default, receives all write and read operations. Records all changes to its

data set in its operation log (oplog);

• Secondary: Replicates the primary’s oplog and applies the operations to its data set,

such that it matches with the primary’s data set. In the event that the primary is not

5https://docs.mongodb.com/manual/

95

available, an eligible secondary will hold an election to elect a new primary;

• Arbiter: This node does not have a copy of the data set and cannot become a primary.

However, it is able to cast a vote. When a cost limitation prevents the installation of

another data-bearing node, arbitrator nodes prove useful. To be noted however that, if

a secondary is unavailable or behind in a three-member primary-secondary-arbiter (PSA)

architecture, requests with write concern “majority” might create performance concerns.

Secondary members of a replica set synchronize data from some other member, referred to as

their sync sources, to replicate the primary’s oplog, and therefore keep up-to-date copies of the

shared data set. This synchronization method requires secondaries to select their synchronization

sources, which happens right after their entrance on the replica set. After that, sync from sources

sends a continuous stream of oplog entries to their syncing secondaries.

Partitioning The primary objective of MongoDB ’s system is to enable horizontal scalability

via sharding. This approach is useful for dealing with huge data volumes or high throughput

operations that cannot be handled by a single server. In essence, the cluster data is separated

into smaller pieces for each replica set, which not only helps the system handle more operations,

but it also provides an increase in storage capacity. As previously mentioned, MongoDB has a

sharded cluster query router called mongos, which serves as a bridge between the applications

and the sharded cluster, determining the correct shard to which any request should be forwarded

to. To retrieve the best performance, efficiency and scalability of a sharded cluster, shard keys

were introduced, which consist of a field or multiple fields in the documents. Shard keys are

used to make the distribution of datasets across shards, which are then used by both methods

of sharding supported by MongoDB : Hashed Sharding and Ranged Sharding.

Storage Engine MongoDB ’s storage engine is the main component in charge of data man-

agement, more specifically it controls how data is saved, both in memory and on disk. MongoDB

offers two storage engines to fulfill different workloads. WiredTiger Storage Engine which is well-

suited for most workloads, and having as its main characteristics the document-level concurrency

model, checkpointing and compression. In-Memory Storage Engine which keeps documents in-

memory, rather than on disk to ensure a more predictable data latency. To be noted that this

particular storage engine does not persist data after process shutdown.

To further increase the durability guarantees, MongoDB utilizes write ahead logging to on-

disk journal files, providing resilience in case of a failure. The WiredTiger storage engine already

uses checkpoints to maintain a consistent view of data on disk and to allow MongoDB to recover

from the last checkpoint. However, if MongoDB were to crash suddenly in between checkpoints,

it would not be able to recover data lost after the last checkpoint, that is why journaling is

96

necessary. There is no separate journal when using the in-memory Storage Engine, since its

data is kept in memory.

General use cases of MongoDB:

• Content Management Systems: Content management systems (CMS) store informa-

tion assets and their related metadata. This type of content needs to be served to various

applications, including websites, online publications and archives. With this in mind, CMS

platforms are required to accommodate any kind of data and as large amounts of content

are integrated the platform should also scale, either horizontally or vertically. The JSON-

like document model and rich query language of MongoDB enables applications to store

and query several content types with varying attributes. To scale horizontally, MongoDB

supports sharding;

• Mobile Applications: Mobile apps must meet different, more strict criteria than conven-

tional computer applications. Such criteria include a more efficient battery consumption

and the ability to function offline. MongoDB provides a cross-platform mobile database

named Realm. MongoDB Realm is able to function offline locally as it persists data on-

disk, and can sync data whenever multiple devices are connected. Realm also supports

automatic conflict resolution by merging data changes via timestamps and operational

transforms;

• Internet of Things (IoT): Internet of Things refers to the concept of embedding sensors

into physical objects which connect to the Internet as a means to exchange their collected

data. IoT projects tend to be composed of multiple distinct objects acting as sources of

data. With this in mind, IoT platforms are required to ingest and process large volumes of

data over time. As vast amounts of data are integrated, the platform should remain highly

available and scale both horizontally or vertically. MongoDB natively supports time series

data, provides primary-backup replication to ensure highly available servers and allows

sharding to scale horizontally.

Mainstream examples of document-oriented databases:

• Couchbase: JSON document-oriented database built for versatility, performance, scala-

bility and financial value across cloud deployments, implemented in C;

• Firebase Realtime Database: Google’s cloud-hosted realtime document store, popular

for mobile and Internet Of Things applications;

97

• Google Cloud Firestore: An auto-scaling document-oriented database built for mobile

and web apps that allows for cross device synchronization.

98

Appendix B

Service Operation

In this Chapter, we go over the operational aspects of CROSS City Cloud from the standpoint

of the system operators. We detail the specific methodologies implemented to continuously

integrate and deploy each element of CROSS, in an automated manner. Moreover, we integrate

a fine-grained access control for each cloud service utilized.

B.1 Automated Configuration and Deployment

An important aspect of operating cloud services efficiently is the automation of the configuration

and deployment of the system and its components, as these will inevitably evolve over time.

CROSS City Cloud is comprised of two main elements, at a high level: the infrastructure

resources and the business logic.

To automate the creation of the infrastructure (resource provisioning), we can either leverage

Infrastructure-as-Code (IaC) or Infrastructure-as-Apps (IaA). Several tools are available for

IaC such as Terraform1 and Pulumi2. For IaA, commonly used tools include ArgoCD3 and

Crossplane4. We based our decision between IaC and IaA on the fulfillment of the GitOps

principles. The GitOps principles are defined in OpenGitOps5, which is a standardized approach

to implementing GitOps through a set of open-source standards and best practices:

• Declarative - A system managed by GitOps must have its desired state expressed declar-

atively;

• Versioned and Immutable - Desired state is stored in a way that enforces immutability,

versioning and retains a complete version history;

1https://www.terraform.io/
2https://www.pulumi.com/
3https://argoproj.github.io/cd/
4https://crossplane.io/
5https://opengitops.dev/

99

• Pulled Automatically - Software agents automatically pull the desired state declarations

from the source;

• Continuously Reconciled - Software agents continuously observe actual system state and

attempt to apply the desired state.

A declarative IaC configuration tool such as Terraform does not comply with the Contin-

uously Reconciled principle, since these declarative formats are typically applied once or on

explicit change to the desired state via some kind of Continuous Integration/Continuous Deliv-

ery (CI/CD) pipeline. And, these pipelines are not capable of monitoring the state for drift,

i.e. for differences between the current and the desired state. For example, if a certain system

operator alters the state of the cloud resources directly through the cloud provider this drift of

state will not be corrected and not even detected.

To overcome the raised Continuously Reconciled issue, we have opted to leverage IaA by

combining two tools: ArgoCD and Crossplane. ArgoCD is a GitOps continuous delivery tool.

ArgoCD utilizes a Kubernetes controller to continually monitor the state of all resources under its

management and compare it to the desired states specified in a Git repository. Crossplane is an

open-source project that allows the provisioning and management of any kind of cloud resource

via the Kubernetes API. ArgoCD has the concept of an application that includes a desired state

configuration comprised of the intended destination and policies for syncing and managing its

resources. When an application is deployed, ArgoCD continually monitors the actual state of the

application and compares it to the desired state through its Kubernetes controller, as previously

mentioned. When there is divergence, whether due to drift or a new desired state, there will be a

reconciliation. In sum, by combining both the ArgoCD application concept and the Crossplane

Custom Resource Definitions (CRDs), we are able to define infrastructure as applications and

satisfy all the GitOps principles.

From an implementation standpoint, we maintain a separate GKE cluster, as the CROSS

City Cloud Control Plane containing the Crossplane CRDs, the GCP Provider and an ArgoCD

controller. Moreover, a Github repository is preserved comprised of both the Crossplane cloud

service definitions and the applications as standard Kubernetes manifests. The ArgoCD con-

troller establishes a connection between this repository and the main GKE cluster continually

syncing the state as defined in the repository. Note that, in the event that the connection with

the repository is down, then continuous syncing will also be down. To mitigate this, the repos-

itory can be replicated across multiple version control hosting solutions, such as GitLab6 and

6https://about.gitlab.com/

100

Bitbucket7, Github is being used as an example implementation. Another advantage of adopt-

ing Crossplane is that we can remain cloud-provider agnostic while maintaining homogeneity by

leveraging the Kubernetes API as our single interface for orchestrating both infrastructure and

applications. Figure B.1 illustrates the CROSS City Cloud control plane composed of ArgoCD

and Crossplane.

GKE Cluster - europe-west1 Control Plane Github Repo - CROSS City Cloud

ArgoCD

Controller

Crossplane

Kubernetes Manifests

Infrastructure

ApplicationsGCP

Provider

Figure B.1: The CROSS City Cloud Control Plane.

The automation of the build and deployment of the application business logic is not in the

scope of this work, however the integration of a CI/CD pipeline, leveraging for example GitHub

Actions, could be explored to achieve this goal. The pipeline would be required to continuously

test the code, build the artifact and push it to the project’s cloud registry.

B.2 Secure Cloud Environment

Although the SureThing project already includes a variety of use case projects to demonstrate

the usefulness of location certification. CROSS City Cloud is the pioneer in deploying its services

on the cloud. Therefore, we must establish common foundations of the SureThing project on

Google Cloud by creating a manageable secure cloud environment, that can be reused by other

projects. Specifically, we should enforce a strict access control to the several cloud services used,

as formerly mentioned in Section 3.3.2, at the project cloud level. In Google Cloud Platform8,

fine-grained access control to cloud resources is done centrally via IAM. IAM allows the adoption

of the security principle of least privilege, which states that every service or user should only

have the permissions required for its legitimate purpose. IAM is able to handle authentication

and authorization based on three main concepts:

• Principal: A principal is the Google cloud identity of a specific entity, typically associated

with an email address as the identity;

7https://bitbucket.org/
8Due to the similarities across cloud providers, we explore the GCP security services in more detailed as a

specific example, however these also apply to other providers.

101

• Role: A role is a collection of permissions which determine the set of operations allowed

on a specific resource;

• Policy: A policy is a collection of bindings of one or more principals to specific roles.

The process of granting access to a specific resource involves the three concepts described

above. First the principal attempting to access a certain resource is authenticated through

the verification of its associated identity (authentication). The IAM policy of the resource,

containing the principal’s role, is then assessed to determine whether the action is allowed

(authorization).

Google Cloud resources are organized hierarchically as organization, folders, projects and

resources. The organization which is the root node in the hierarchy. Folders which are children of

the organization. Projects which are either children of the organization or of a folder. Resources

for each cloud service which are descendants of projects. IAM policies can be defined at any level

of the resource hierarchy and each resource inherits the policies of all of its parent resources.

In our particular use case, the resource hierarchy, illustrated in Figure B.2, is composed of

the SureThing organization, CROSS City Cloud folder and separate projects for distinct devel-

opment environments. This hierarchy can be extended to integrate additional applications as

different folders. New applications would automatically inherit IAM policies set at the orga-

nization level, but not at the folder level which is crucial to preserving policy consistency and

scalability.

Organization SureThing

Folders CROSS City Cloud

Projects Dev Prod

Resources

Figure B.2: Overview of the SureThing resource hierarchy on Google Cloud Platform.

102

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Contributions
	1.2 Dissertation Outline

	2 Background and Related Work
	2.1 CROSS City Application
	2.1.1 Architecture
	2.1.2 Location Proof Techniques
	2.1.3 Time-Bound Location Proofs Based On Scavenging

	2.2 Data Storage
	2.2.1 Key Concepts
	2.2.2 Relational
	2.2.3 Key-value
	2.2.4 Column-oriented
	2.2.5 Document-oriented
	2.2.6 Summary

	2.3 Data Processing
	2.3.1 Batch Processing
	2.3.2 Stream Processing

	2.4 Architectures
	2.4.1 Lambda Architecture
	2.4.2 Kappa Architecture

	2.5 Cloud Computing
	2.5.1 Deployment Models
	2.5.2 Delivery Models
	2.5.3 Container-based Managed Services

	2.6 Summary

	3 Implementation
	3.1 Assumptions and Requirements
	3.2 Architecture Extensions
	3.2.1 Data Management Layer
	3.2.2 Network Observation Data Collection
	3.2.3 Intermediate Network Observation Set Computation
	3.2.4 Stable and Volatile Network Observation Set Computation
	3.2.5 Catalog Immutability

	3.3 Cloud Deployment
	3.3.1 Base Deployment
	3.3.2 Supplemental Developments

	3.4 Summary

	4 Evaluation
	4.1 Qualitative Evaluation
	4.2 Lisbon Hotspots Dataset
	4.3 Stable and Volatile Set Match as Location and Time Proof
	4.3.1 Stable Set Match as Location Proof
	4.3.2 Volatile Set Match as Time Proof

	4.4 Systematic Service Characterization
	4.5 Domain Layer Scalability and Performance Testing
	4.5.1 Scalability Model
	4.5.2 Experimental Setup
	4.5.3 Results
	4.5.4 System Performance and Scalability Analysis
	4.5.5 Request Performance Analysis
	4.5.6 Resource Utilization Analysis
	4.5.7 Summary

	4.6 Stream Layer Performance and Completeness Testing
	4.6.1 Experimental Setup
	4.6.2 Results
	4.6.3 Impact on Throughput
	4.6.4 Impact on Network Observation Processing Time
	4.6.5 Impact on Output Data Watermark
	4.6.6 Resource Utilization Analysis
	4.6.7 Summary

	4.7 Theoretical Model vs Practical Model Assessment
	4.7.1 Experimental Setup
	4.7.2 Stable Set Computation
	4.7.3 Volatile Set Computation

	4.8 Summary

	5 Conclusion
	5.1 Achievements
	5.2 Future Work
	5.3 Final Remarks

	Bibliography
	A Data Storage Models In Depth
	A.1 Relational
	A.2 Key-value
	A.3 Column-oriented
	A.4 Document-oriented

	B Service Operation
	B.1 Automated Configuration and Deployment
	B.2 Secure Cloud Environment

