Spanning edge betweenness for large graphs and percolation

Guilherme Ribeiro
guilherme.ribeiro@tecnico.ulisboa.pt
Instituto Superior Técnico
Lisboa, Portugal

ABSTRACT

Centrality measures are a vital tool to study networks. After a
new centrality measure is introduced, it is important to be part
of studies, to become relevant in the community. Spanning Edge
Betweenness was recently introduced, and this is one of those
studies. An overview of network science concepts and centrality
measures is provided. A brief explanation of Spanning Edge Be-
tweenness’ theoretical concepts can also be seen in this work. The
implementation options can also be consulted along with practical
experimentations to try to minimize the computational time cost
of calculating such centrality measure. These experimentations
consist of either taking advantage of the parallelizable computation
algorithm, or preprocessing algorithms that could positively impact
the calculation time. We achieved promising results for both alter-
natives. Another method to reduce the computation time could be
the calculation of the approximated centrality values. This has been
previously done for Spanning Edge Betweenness in unweighted
networks. In this work, we propose an implementation for this
approximation for weighted networks. This method also achieves
promising results regarding the improvements in computation time.
Finally, we perform edge percolation, comparing Spanning Edge
Betweenness to Edge Betweenness regarding five metrics. For each
centrality measure, we introduce two variations, one where there is
no recalculation between every edge removal, and one where there
is. We observed significant differences between both variations and
between both centrality measures. This work makes Spanning Edge
Betweenness available to be used for large-scale graphs, while also
contributing to a bigger understanding of said measure, regarding
the connectivity of a network.

CCS CONCEPTS

« Networks; « Software and its engineering — Application
specific development environments; - Theory of computation
— Sparsification and spanners;

KEYWORDS

Spanning Edge Betweenness, Approximate centrality measures,
Edge percolation.

1 INTRODUCTION

Networks can represent everything in our life. They can describe the
water infrastructure of a given city, the air traffic between airports
in different countries, or even the daily interactions between work
colleagues. This constant presence in our lives led to an interest in
studying these networks and their properties for multiple different
purposes.

Graphs are one of the simplest ways of representing these net-
works. Nodes represent entities, and edges represent the interac-
tions/connections between them. There are networks of all kinds
and sizes from very different areas of society, such as Biology,
Physics, Sociology, and many others, going from a couple of nodes
to millions, with even more connections. Graphs represent these
networks, and there are multiple ways of representing these graphs.

Studying graphs and their properties to try to draw conclusions
regarding the networks they represent is a science that has been
around for a while now. This field of study is called Network Science
and can be described as “an attempt to understand networks emerg-
ing in nature, technology, and society using a unified set of tools
and principles” [Barabasi 2013]. The evolution of technology in the
past decades allowed for new types of studies in this field, where
it is now possible to study bigger networks and take advantage of
the computational capabilities and accessibility to further develop
this field by making these studies available to anyone anywhere in
the world.

One way to study this network is through metrics and measures,
and based on the interpretation of the values they return, conclu-
sions can be drawn. Centrality measures are one of these available
measures to the user, that can use them for multiple purposes. They
give each node/edge a value of importance. There are many dif-
ferent centrality measures, some related to nodes and some others
related to edges. There are more centrality measures related to
nodes than related to edges. Each measure is distinct, attributing
this value based on different characteristics of the node/edge in
the network. In this work, the values that the centrality measure
provides are used for percolation. The process of (inverse) perco-
lation consists in ordering the structures based on the value the
centrality measure attributed to every single one of them present in
the network, and then based on that order, remove the structures,
and study the impact that change causes to the network. Different
measures produce different results. Therefore each measure has its
pros and cons.

1.1 Objectives

A considerable amount of measures have been proposed and con-
tinuously are throughout the years. A part of their value comes
from being publicly available and easy to use by anyone interested
in pursuing this field of study. An example of that is the Spanning
Edge Betweenness, an edge centrality measure [Teixeira et al. 2013].
For recent measures, such as this one, it is important that they are
publicly available, so they can be reviewed by the scientific com-
munity. With that in mind, it is important to make the measures
available in the most widely used technologies. Python is now the
programming language of choice to study networks, and for a cen-
trality measure to be publicly available and easy to use it should be
integrated into a Python library.

1.2 Outline

In this work, are introduced basic concepts of Network Science,
including graph definitions and representations while also pre-
senting different network models. A brief explanation of Spanning
Edge Betweenness can be found, together with efforts to reduce
the computational cost of this centrality measure. Next there is the
calculation of the approximation of Spanning Edge Betweenness
for weighted graphs, along with results for such implementation.
Finally there is a brief example of the percolation process and re-
spective analysis.

2 NETWORK SCIENCE CONCEPTS

In this section, some basic but fundamental Network Science con-
cepts are introduced and briefly explained, to make the rest of the
document understandable to the reader.

2.1 Graph Theory

Graphs are the mathematical representation of networks. These
networks can come from all different types of backgrounds, being
able to represent the most diverse complex systems’ structure and
dynamics. A vertex/node represents an entity in a graph. This
entity can be a person (social networks), a player (game theory), a
computer (IT networks), a neuron (brain networks), among others.
An edge/link represents the connection between different entities.
These connections can represent physical structures (a pipe), social
interactions (between different persons), or co-fluctuations (brain
activity), among others.

A graph, denoted as G = (V,E), is a tuple of sets, where V is
a set of nodes(/vertices) and E is a set of edges(/links), such that
E C V xV.The size of the set V is denoted by N = |V| and indicates
the number of nodes in the graph. The size of the set E is denoted
by L = |E| and indicates the number of edges in the graph. Two
nodes (i, j) are adjacent if there is an edge e € E, between them.
These nodes are called neighbours.

A graph is called undirected if E is a set of unordered pairs,
meaning that every edge is bidirectional, therefore the edge (i, j) is
equal to the edge (j, i). Oppositely, a graph is called directed if E is a
set of ordered pairs, so that the edge (i, j) is different from the edge
(j,). A tree is a graph with no cycles. A spanning tree T(V, E’),
where E’ C E, is a subgraph of G that is a tree and contains all
nodes of G, with L’ = |E’| = |V| — 1. A minimum spanning tree
(MST) is a spanning tree in which ¢ g w(e) is minimum among
all spanning trees of graph G.

A path is a sequence of x edges which joins a sequence of x + 1
nodes. A graph G is said to be connected if there is a path between
every two distinct nodes. Otherwise, graph G is said to be discon-
nected. In disconnected graphs, there are connected components,
denoted by C, where each connected component is a maximal set
of nodes, C C V, such that C forms a connected graph, i.e., there is
a path connecting every two distinct nodes in C.

A weighted graph is a tuple G = (V, E, w), where v and E are sets
of nodes and edges, respectively, and w is a function that assigns
to each edge e € E a numerical value. These numerical values can
represent different things, based on what the network is about.
One of the most intuitive is in a flow network, where each weight
represents the capacity of each edge.

Guilherme Ribeiro

In unweighted graphs, the shortest path between two nodes (i, j)
is the path with the smallest size, i.e., the path that contains the
least amount of edges € E and connects i and j. On the other hand,
on a weighted graph, the shortest path is not always the path with
the least amount of edges, instead, it is the path that minimizes
Yeeo(i,j) w(e) where e is an edge in a path o (i, j) between nodes
i and j and w(e) is the weight of edge e. The distance between two
nodes d(i, j) is the size of the shortest path between nodes i and j.
If there is no shortest path, then d(i, j) = co. The greatest distance
between any two nodes in G is called the diameter, which can be a
useful metric.

2.2 Network Models

Real networks are often analysed and used in studies, however, in
the absence of the real structure, it is possible to generate artificial
networks based on specific models that try to reproduce the same
characteristics as of those networks/systems observed in the real
world. In this section we approach some of these models.

2.2.1 Random Networks. Random Network was the first model
proposed to mimic the properties of real networks. In this model,
the number of edges and/or nodes is fixed, the way that the nodes
connect is random. There are two different models, one by Erdés
and Rényi [RENYI 1959]:

e G(N, L) model where N labelled nodes are connected by L
randomly chosen edges from the set of all possible edges
in the graph, regarding the existing nodes.

and other by Gilbert [Gilbert 1959]:

e G(N, p) model where N labeled nodes are connected with
probability p. On the other hand, one could take the com-
plete graph and erase edges with probability ¢ = p — 1.

We should highlight that the network created by these models
can contain isolated nodes, i.e., nodes that are not connected to any
other node, but that are still a part of the network. The network
is called completely connected if all its nodes are connected, i.e.,
there are no isolated nodes.

The networks generated by these models are truly random, how-
ever with the appearance of real large networks, the characteristics
of those did not coincide with the models, therefore they are not
adequate to represent real networks.

2.2.2 Small-World Effect. The small-world property, also known
as six degrees of separation, became very famous because of a study
regarding social networks, by Milgram [Travers and Milgram 2011].
According to this study, two individuals in the United States of
America, have six or fewer intermediates in their acquaintance
chains using the "small world method", introduced by Milgram
[Milgram 1967]. This experimentation states that real networks
show that people are closer to each other than predicted. Knowing
that real networks are not well represented by the random network
model, and considering Milgram’s findings, Duncan Watts and
Steven Strogatz proposed an extension to the random network
models previously mentioned [Watts and Strogatz 1998]:

e Starting from a regular ring lattice with N nodes, every
node has the same degree, k, and is connected to the closest

Spanning edge betweenness for large graphs and percolation

neighbours, then the procedure of random rewiring is ap-
plied to the regular ring lattice, where each edge is rewired
at random with probability p.

Notice that if p = 1 then we have a random network model be-
cause every edge gets rewired. This model is closer to real networks
regarding the clustering coefficient, however fails to explain the
degree distribution.

2.2.3 Scale-free Networks. The increase of computational power
led to the possibility of analysing many real large networks. To build
a network model that could accurately represent these large net-
works, the characteristics, specifically degree distribution, should be
taken into account. However, when the World Wide Web (WWW)
got sampled and mapped out [Albert et al. 1999], the conclusion
reached was that the random network model was not able to gener-
ate networks similar to the real large networks. The degree distribu-
tion of the WWW was well represented by a Power Law distribution
[Albert et al. 1999], defined as:

pr=k7Y (1)
A network with a Power Law degree distribution, also known as the
80-20 rule, has many small degree nodes — the vast majority of nodes
belong to this small degree part of the distribution (correspondent
to the 80% in the rule mentioned above) — while very few nodes
have a very high degree value - also known as hubs (correspondent
to the 20% in the rule mentioned above). Since these hubs can have
a great impact on the system’s behaviour, this type of network
gained an important role in the study of complex systems.
The first scale-free network model was created by A.L. Barabasi and
R. Albert, the B-A model [Barabasi and Albert 1999]:

e At each time step, the network grows, adding a new node,
connecting it to another m already existent nodes. These
connections are probabilistic, giving preference to nodes
with a higher degree, making big nodes even bigger, creat-
ing hubs. These two processes are called growth and prefer-
ential attachment, two key features of real networks.

Another scale-free model was created by Dorogovtsev-Mendes-
Samukhin, called DMS model [Dorogovtsev et al. 2001]:

e In this model, as in the previous one, every time step a node
is added to the network, but instead of connecting itself to
the already existent nodes, it randomly chooses an edge
and connects to both ends of it. As stated in [Dorogovtsev
et al. 2001], there is preferential attachment, but unlike the
B-A model, it comes naturally. The networks generated by
this model also achieve a higher cluster coefficient than the
ones generated with the B-A model.

2.3 Centrality Measures

This section is divided into two subsections. First, we present the
centrality measures, and how to compute them, regarding nodes
and then, the same but with centrality measures related to the edges.
We should note that not every formula was originally presented
with the same notation, however, in the present work, this notation
will be made uniform for better understanding.

2.3.1 Measures related to Edges.

Edge Betweenness Centrality. is very similar to the Betweenness
centrality, but in this case instead of nodes we are focused on the
edges. The Edge Betweenness of an edge e is the sum of the fraction
of all shortest paths that pass through e for every pair of start and
end nodes on the graph:

B = Y L5270 @
ijev a(i,J)
where e € o(i, j) represents the number of shortest-paths between
(i, j) that goes through the edge e, and o (i, j) represents the number
of shortest-paths between (i, j). It was first introduced in [Girvan
and Newman 2002].

Degree Product Centrality. of an edge is based on the degree of
its adjacent nodes. This measure is used for assortative graphs,
however, can be misleading in disassortative graphs as nodes are
connected to other nodes with very different degree values. It can
be calculated as:

Dp(e) = D()D(j) ®)
where D(i) represents the degree of node i, and edge e is the edge
that connects nodes i and j. A concrete literature reference for the
definition of this measure was not found, however as it is exclu-
sively based on the degree of the nodes, which is a concept from
graph theory, it is natural to assume that this measure is also from
graph theory. This measure, and variants, have been widely used
throughout the years [Barrat et al. 2004; Holme et al. 2002; Wang
and Chen 2008].

Bridgeness Centrality. looks onto sizes of cliques, more specifi-
cally the cliques’ size of the two adjacent nodes of an edge, and also
to the clique size that the edge belongs to. It can be calculated by:

5i5;
s 4
5 @

where i and j are the two nodes connected by e, and S; represents
the size of the clique that contains i.

B(e) =

K-Path Edge centrality. in contrast to the edge Betweenness cen-
trality mentioned earlier, the K-Path Edge centrality measure does
not look into the shortest paths between two nodes that cross an
edge, instead, it looks into the k-sized paths from a node that cross
an edge. The centrality value for each node can be calculated by:

e € o (i)
K(e) =), = 5)
i€V Ok
where oy (i) represents a path with length k from node i. The notion
of K-Path centrality was introduced in [Alahakoon et al. 2011].

Spanning Edge Betweenness. unlike other measures already men-
tioned, the Spanning Edge Betweenness centrality measure [Teix-
eira et al. 2013], does not take into account the shortest paths of
a graph. It looks into which links are fundamental to keep the
network connected and which are not. To do so, it takes into ac-
count the Minimum Spanning Trees (MSTs) of the graph, and the
Spanning Edge Betweenness of an edge is the fraction of minimum
spanning trees that edge is a part of, and can be calculated by:

Color Key

All
0.6 0.8 1

g s
<

comm
katz
betw
pr50
pris

Figure 1: Image retrieved from [Baig and Akoglu 2015], illustrating
correlation between different studied centrality measures.
A color scale was used, where green represents less similar-
ity and red represents more similarity. The three similarity
clusters are: betw-pr15, katz-eig and deg-cc.

Se) = <556, ©)
G
where e € 7 represents the number of MSTs that contain edge
e, and 7 represents the total number of MST of graph G. This
measure is bound to be between 0 and 1. For unweighted graphs, a
value of 1 means that if the edge is removed the network breaks
apart.

2.4 Related work

When researchers first started using networks in their studies the
computational power did not allow for real-world large networks
to be studied. Therefore they had to either use networks created
based on models or small real-world networks. However as the
years went by the computational power increased a lot and for
some time now it is possible to work with very large real-world
networks, like the ones used in [Mavroforakis et al. 2015], where
the largest has millions of nodes. Even with this huge growth in
computational power, followed by the growth in the networks’ size
there are centrality measures that are still unviable to calculate, by
being too computationally expensive. However it would be very
clever to study similarities between centrality measures, where one
centrality measure could be closely approximated by another one
much cheaper, that would be viable to be calculated. A study in this
area was performed [Baig and Akoglu 2015], reaching interesting
results, by being able to create three clusters of similar centrality
measures, where the cheaper measures can be used instead of the
similar but more expensive ones.

Centrality measures are widely used in Network Science. This
fact, together with the continuous growing size of the networks
studied, leads to the necessity that these centrality measures are
computationally cheap to calculate. The best way of achieving such
goal is, instead of calculating the exact measure, algorithms to
calculate approximations are created.

Guilherme Ribeiro

An example of this can be seen in [Brandes and Fleischer 2005;
Wang 2006], where based on a randomized approximation algo-
rithm the centrality measure values are calculated for the given
networks. Another example of a similar method can be found in
[Bader et al. 2007], where the algorithm is based on "an adaptive
sampling technique"” which allows for better computational times.
The multiple different proposed algorithms have their pros and
cons, i.e., there are differences between each proposed algorithm,
and the authors always argue why their method is better from the
ones already proposed. For example, in [Geisberger et al. 2008], the
authors state "...we also get good approximations for the between-
ness of unimportant nodes" as an advantage over the methods that
were already introduced at that time.

With the evolution in technology, new methods for approximat-
ing centrality measures’ values were developed. An example of
this is the use of machine learning. By using neural networks, the
authors state tat they can achieve results that are very close to the
exact ones only using a fraction of the time [Grando et al. 2018;
Mendonga et al. 2021].

3 SPANNING EDGE BETWEENNESS -
IMPLEMENTATION AND PARALLELISM

In this section we briefly explain the theory behind Spanning Edge
Betweenness, and based on that we propose an implementation,
together with a couple of possible improvements in order to reduce
the computational time cost.

3.1 Theory

SEB is a centrality measure that calculates how strongly connected
a network is, i.e., which links are fundamental to keep the network
connected and which are redundant. This metric can be defined
as the fraction of Minimum Spanning Trees (MSTs) where a given
edge is present. This metric was initially developed to be used in
phylogenetic trees [Teixeira et al. 2013], but quickly other applica-
tions started to emerge, one of them being the study of network
robustness.
SEB can be formally defined as:

€
SEB(e) = 576 (7)
G

where G = (V, E) is a connected, undirected and weighted graph, V
is the set of nodes and E ¢ V XV is the set of edges of the graph, and
e € E. e € 1 represents the number of MSTs where edge e occurs,
and 7 is the total number of MSTs of the graph. To count how
many MSTs exist in G, and in how many e is present we can rely on
Kirchhoff’s matrix tree theorem [Kirchhoff 1847] for unweighted
networks and on Eppstein [Eppstein 1995] for weighted networks.

In [Teixeira et al. 2013] is explained how to compute both e € 75
and 75, by using both aforementioned theorems. Computations
can however be resumed to calculating determinants of matrices,
as these take most of the computation time and are predominant
throughout the implementation.

3.1.1 Determinants. The determinant can be seen as a scalar value
that is a function of the entries of a square matrix. A minor of a
square matrix is the determinant of a smaller square matrix obtained
from the first by deleting one or more rows or columns. There are

Spanning edge betweenness for large graphs and percolation

multiple ways to calculate a determinant directly, such as using
the Leibniz’s formula for determinants, based on permutations of
matrix elements or using the Laplace expansion, based on minors.
However, these methods are inefficient, therefore new methods of
calculating determinants have been developed.

These are called decomposition methods, and they calculate the
determinant of a given matrix by writing the matrix as a prod-
uct of matrices whose determinants can be more easily computed.
Examples are the LU decomposition or the QR decomposition.

The QR decomposition decomposes a matrix into a product of an
orthogonal matrix and an upper triangular matrix. This decomposi-
tion was published in 1961 by both John G.F. Francis [Francis 1961]
and Vera N. Kublanovskaya [Kublanovskaya 1962], independently.
The LU decomposition was introduced by Tadeusz Banachiewicz
in 1938 [Schwarzenberg-Czerny 1995]. This decomposition factors
a matrix as the product of a lower triangular matrix and an up-
per triangular matrix. This decomposition is particularly useful
because the determinant of a triangular matrix is the product of
the elements of its diagonal. This property is used throughout the
implementation.

3.2 Implementation

In this section we look into the implementation of SEB. We chose to
implement SEB using the Python programming language, specially
because we aimed to integrate this measure in NetworkX, a Python
package.

In Algorithm 1 there is pseudocode regarding the SEB calcula-
tion for weighted networks. One must start by ordering the edges
by their weights, in increasing order. Then, for each connected
component formed by edges with the same weight, calculate SEB
for each edge in each connected component. After that, contract
all edges such that each connected component becomes a single
vertex. Repeat until all edges are processed.

The calculation for SEB values of an unweighted network can
be seen as a specific case of a weighted network, where all the
edges have the same weight, therefore having only one connected
component, so the calculation is more direct.

As stated before, conventional methods of calculating the deter-
minant of a matrix are not optimal, because they are very inefficient.
It is reasonable to expect that packages for scientific computing for
Python, such as SciPy! [Virtanen et al. 2020] and NumPy? [Harris
et al. 2020] use more efficient options for calculating determinants,
such as decompositions. With that in mind, a possible solution for
the problem of calculating determinants would be to use built-in
functions from those packages, however when calculating the deter-
minant of a matrix of a relevant size, built-in functions may cause
overflow, so a solution to this problem would be to use built-in
functions from the same packages to factorize the initial matrix,
and then perform the calculations using logarithmic properties,
which allow to represent bigger numbers easier, mitigating the risk
of overflow. The decomposition that best fits this use case is the LU
decomposition, as it possibilitates the easiest method to calculate
the determinant of a matrix, hence it is the one that will be used.

Uhttps://scipy.org/
Zhttps://numpy.org/

begin

edges «— sortEdgesByWeight(G.edges())

Laplacian «— laplacianMatrix(G)

LaplacianToKirchhof f «—
RemoveRowColumn(Laplacian, 0, 1)

TotalMSTs «—
CalculateDeterminant(LaplacianToKirchhof f)

ne«—2o0

while True do

if StilllnTheSameWeightValue() then
AddEdgeToLaplacian(edges[n])
n«—n+l

end

if AnyEdgeProcessed() then
BuildSCCs()
CalculateSEBEachSCC()

if NoMoreEdges() then
‘ break
end
ContractEdgesEachSCC()
end
else
‘ IncreaseWeightValue()
end
end
end

Algorithm 1: Weighted Network

The calculation of the exact SEB value for every edge can be
heavy and expensive. With that in mind, there is a possible prepro-
cessing that would make the computations faster. As stated before,
the SEB value of an edge is the fraction between the number of
MSTs that such edge is present and the total number of MSTs of
the graph. A bridge on a network is by definition an edge whose
deletion increases the graph’s number of connected components,
therefore this edge has to be present in every MST of the network,
and so it is possible to set the SEB value of such edges a priori, and
temporarily remove them from the network, creating subgraphs,
which are smaller than the initial graph, making the Laplacian ma-
trix for each subgraph smaller and making the decomposition faster,
so the calculation for the remaining edges is lighter and faster.

Another attempt at making SEB faster to calculate led to the
use of PySpark. PySpark is a Python interface for Apache Spark.
It allows to easily use the available cores of a machine, with little
changes to the implementation.

In the implementation of SEB, the calculation of the value for
each edge is independent, therefore it is possible to easily paral-
lelize the calculation. Taking advantage of the capacities of the
PySpark interface it is possible, with minimal changes to the code,
to implement such improvement.

3.3 Results

In this section we look at the results of the decisions made for the
implementation, where the aim is to minimize the calculation time

https://scipy.org/
https://numpy.org/

of SEB for a network. The machine used to obtain these results has
the following specs: Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz,
24 cores and 64GB of RAM.

Below there is a brief explanation for every real world network,
used for the studies which results are present in this work.

e PowerGrid(Infrastructure) - A representation of the West-
ern States Power Grid of the United States, compiled by
Duncan Watts and Steven Strogatz.

e Facebook(Social) - A social friendship network extracted
from Facebook, where nodes represent people and edges
represent friendship ties.

e Dolphins(Animal Social) - A social network of bottlenose
dolphins where links represent frequent associations.

o C.elegans(Biological) - In this network nodes represent
substrates and edges represent metabolic reactions.

e NetScience(Collaboration) - A co-authorship in network
theory and experiments, where nodes represent researchers
and edges co-authorship.

e Web(web) - In this network nodes represent web-pages and
edges represent hyperlinks between web-pages.

In Table 1 there are the characteristics for the real world networks
used in this study. It is possible to see that the networks are very
heterogeneous, not only in size but also in terms of clustering
coefficient, assortativity and average degree.

Table 1: Characteristics of real world networks. C = Clustering Coef-
ficient, r = assortativity, <k> = average degree.

Network # Nodes # Edges C r <k>
PowerGrid 4941 6594 0.080 0.003 2
Facebook 2888 2981 0.027 -0.668 2
Dolphins 62 159 0.258 -0.043 5
C.elegans 453 2025 0.646 -0.225 8
NetScience 379 914 0.741 -0.081 4
Web 3031 6474 0.564 -0.168 4

Table 2: Real world networks SEB calculation time without prepro-
cessing, with preprocessing and using PySpark, time in sec-

onds.

Network # Edges #bridges Without With PySpark
PowerGrid 6594 1611 7936 3126 26830

Facebook 2981 2796 1502 0.8 10109

Dolphins 159 9 0.60 0.35 21

C.elegans 2025 8 307 212 3016
NetScience 914 30 78 63 1171

Web 6474 512 3696 1134 22306

In Table 2 there is the computation time for SEB in each real
world network used. The first two columns show the characteristics
for each network, regarding the number of edges and bridges. The
third columns shows the time when neither preprocessing nor
parallelization is applied. The fourth column shows the time when

Guilherme Ribeiro

only preprocessing is applied. Finally, the last column shows the
time when only parallelization, using PySpark, is applied.

As stated before, the SEB value of an edge is the fraction between
the number of MSTs that such edge is present and the total number
of MSTs of the graph. A bridge on a network is by definition an
edge whose deletion increases the graph’s number of connected
components, therefore this edge has to be present in every MST
of the network, and so it is possible to set the SEB value of such
edges a priori, and temporarily remove them from the network,
creating subgraphs, which are smaller than the initial graph, making
the Laplacian matrix for each subgraph smaller and making the
decomposition faster, so the calculation for the remaining edges
is lighter and faster. This was the preprocessing performed in this
work.

There is a clear improvement from the preprocessing and an
even more clear negative effect on the calculation time when using
PySpark.

4 WEIGHTED APPROXIMATION

In the previous sections we discussed some possibilities to try to
reduce the computational effort, mostly related to time, spent when
calculating the SEB values for a given graph. This was attempted
by trying to divide the effort by multiple cores or by introducing
preprocessing that could actively mitigate the calculation time.

Another way to reduce the computation time is by computing
an approximation instead of the exact SEB values. This was done in
[Mavroforakis et al. 2015] for unweighted networks. The authors
took advantage of the relation between SEB and the effective resis-
tance concept [Doyle and Snell 1984]. Effective resistance, R(e), is
calculated by looking to a graph as an electrical circuit and is equal
to the probability that the edge is present in a random spanning
tree of the graph [Bollobas 1998; Doyle and Snell 1984], therefore
R(e) = SEB(e). Effective resistance can be seen as pairwise dis-
tances between vectors [Mavroforakis et al. 2015]. This allows us
to use the Johnson-Lindenstraus Lemma [Johnson 1984], as the
pairwise distances are still preserved if we project the vectors into
a lower-dimensional space. From the above observations we can
extract Algorithm 2, that was first proposed by Spielman and Sri-
vastava [Spielman and Srivastava 2011].

begin
Z «— [],L «— laplacianMatrix(G), B «—
IncidenceMatrix(G)
Q «— RandomProjectionMatrix(k, m)
Y=0B
for i=1.. kdo
Solve Lz; = Y[i,:]
Z=(z2]]
end

For every e=(u,v), return R(e) = ||Z[u,:] — Z][v,:] ||§
end
Algorithm 2: SEB approximations for unweighted networks.

By looking at Algorithm 2 it is possible to see that Q is the
random projection matrix, and Y is where the projection applies. It

Spanning edge betweenness for large graphs and percolation

allows to lower the dimensional space, because if instead of this we
do Y = BB and k = m, there is no reduction in calculation cost. For
the random projection matrix’s entries it is possible to use either
probability distribution from [Achlioptas 2001], Theorem 2. In this
case the second option was chosen.

Another fundamental property is the value of k, and it can be
calculated using:

4+2p

mlog(") ®)

0=
where f controls the probability of success and e the accuracy in
distance preservation, in other words, the error parameter. We can
now define k > ko, where k is an integer.

It is now possible to assure that with probability at least 1 —n~5,
forall u,o € E

(1-¢€)R(e) < ER(e) < (1+¢€)R(e) 9)

where ER(e) is the estimate of R(e).

It is important to remember that is not always worth to use the
projection to a lower-dimensional space, if the dimensional space
is not lower after all, as it has to respect the formula present in
equation 8. By looking at this equation it is possible to understand
that ko scales logarithmically with n, that is the number of nodes of
the graph. However the multiplicative constant part of the equation
should not always be disregarded. This part depends on both € and
B, and depending on the values chosen for both variables the impact
of this part will change accordingly. This can be called a threshold.
Therefore, if the value of k does not represent a lower-dimensional
space, it is better, from a computation cost point of view, to use
Y = BB.

Moving on to line 6 in Algorithm 2, for a better understanding
it is necessary to explain the notation used. Y[, :] represents the
i-th row of matrix Y. Z = [Z, ziT] represents the addition of column
to matrix Z. As stated in [Mavroforakis et al. 2015] the aim is to
compute QBLY where L¥ is the pseudoinverse of L, but if computed
directly the computation cost is high, and does not offer any im-
provement over the exact measure calculation. Therefore in line
6 an approximation for this value is computed by approximately
computing Lz; = Y[i,:]. The solver used for this operation is a
Symmetric Diagonally Dominant matrix (SDD) solver [Koutis et al.
2011]. The result of this calculation is then stored in a placeholder
matrix, Z. After this procedure has been repeated for every line
of Y, it is necessary to compute the L% distance between the vec-
tors corresponding to nodes u and v, for every edge on the graph
e = (u,0).

We should keep in mind that it is possible to optimize this algo-
rithm space-wise by instead of generating an entire matrix Q, in
each iteration of the cycle a 1 X m vector, g, is generated accordingly
to the distribution previously mentioned. In the same manner it is
also possible to store the results in a placeholder 1 X m vector, z,
calculating the SEB value for each edge iteratively.

A SSD solver is used to solve equations of the form Lx = b
where L is a laplacian matrix, so it is symmetric, its off diagonals
are non-positive, and all rows sum to 0, and b is in the span of the
matrix.

The above method allows the calculation of the SEB values for an
unweighted network. We can use this method to calculate the SEB
values for weighted networks, with little adaptations. By looking
at Algorithm 1 the necessary change is in line 13, where instead
of calculating the exact measure, the method above is used, for
the approximated measure. As in Algorithm 1 the SEB values are
also calculated for each connected component and afterwards, each
node inside each connected component is contracted into a single
node.

By looking into the explanation above it is possible to conclude
that this algorithm scales logarithmically with the number of nodes
and linearly with the number of edges. Because of the way k is
calculated it only makes sense to use the approximated version of
the calculation when the number of edges, m, is high. Therefore
if m is not high it is better to use Y = BB and k = m. In that case
the complexity of the approximated measure is O(m? log nlog %)
The naive method has a complexity of O(n?), or even O(n??) if
the theoretic limit is considered. So for the approximated method
to compensate m? has to be inferior to n*(or n%°) and that only
happens if m = O(n), i.e., if the graph is sparse.

4.1 Results

As stated before, the primary reason for the introduction of an
approximated measure is to reduce the computational time. Theo-
retically the threshold for the approximation measure to be better
than the exact measure was stated before to be considerably high,
as it increases with the accuracy of the results and becomes more
irrelevant the more nodes a network has. It is however important
to have empirical results. This results can be seen in Table 3, where
there is a comparison between the time spent for the calculation of
the exact measure and for the approximated measure. The networks
used are all real world unweighted networks and some of theirs
properties can be consulted in Table 1.

Table 3: Comparison of times between approximated and exact SEB
values, time in seconds. € = 0.01 and f = 1.

Network exact approximated

PowerGrid 7936 7069
Facebook 1502 1303
Dolphins 0.60 51
C.Elegans 307 426

NetScience 78 259

Web 3696 33302

Before looking into Table 3 and the results it shows it is crucial
to mention that for reasons of integration into Python’s network
libraries the entire implementation of the exact measure is done
in the programming language Python. On the other hand, for the
approximate implementation, the SDD solver® was only available
in the Julia programming language, therefore the calculation of
the SEB values for each connected component is performed using
Julia, that is known to be faster than Python, however the rest of

3https://github.com/danspielman/Laplacians.jl/blob/master/docs/src/usingSolvers.
md

https://github.com/danspielman/Laplacians.jl/blob/master/docs/src/usingSolvers.md
https://github.com/danspielman/Laplacians.jl/blob/master/docs/src/usingSolvers.md

the algorithm is still done in Python. This difference obviously has
an impact in the calculation time, but in spite of that, conclusions
can still be made.

By analyzing the results in Table 3 we can see that there are very
different results from network to network, i.e., there are networks
where the time got significantly worse, there are networks where
the time got a little worse and then there are networks where the
time improved. This calls for a deeper analysis of the results, where
it is taken into consideration the properties of the network. These
properties can be seen in Table 1 where it is possible to observe
for each network the number of nodes and edges, the clustering
coefficient, the assortativity and finally the average degree.

For the Dolphins network, the increase in time is expected, be-
cause of the constant calculation time, that is more noticeable in
smaller networks, as stated before and as observed here, with the
other characteristics of the network not having much impact on
the calculation time. The other network which also shows a far
worse result is the Web network. This network has a high number
of nodes and edges, but also a high clustering coeflicient value. The
threshold where it is better to approximate, for the values used for
€ and f, is quite high, so it is expected that the time spent would
be worse than for the exact calculation, and together with the high
value for the clustering coeflicient can justify the increase in run-
ning time. Both networks show a nearly 10 times worse calculation
time for the approximated measure than for the exact measure, but
for different reasons.

Moving on to the networks where the time got slightly worse,
there are the C.elegans and NetScience networks. Both networks are
not big enough that it should compensate to use the approximated
measure and by looking at the running time it is possible to see
that, indeed, it does not compensate. However, the time does not
get worse by the same factor as the case aforementioned. In this
case there is a factor of 1.5-3 in the time difference. It is expected
that this time factor is inversely proportional to the size of the
networks, i.e., as the size gets bigger the factor tends to become
smaller, as it gets closer to the threshold where the approximated
measure is more worth to use. It is also worth to point out that
the clustering coefficient for both networks is pretty high, which is
another reason for the time to be so worst when compared to the
time from the exact SEB values calculation.

Finally, but not least, there were networks in which the time
improved. This happened for the PowerGrid and Facebook networks.
These networks are both in the range of thousands of nodes and
edges, so it is possible to affirm that they have a considerable size.
It is necessary to interpret this results carefully. As mentioned
before the calculation part of the approximated measure is done
in the Julia programming language, that is faster than Python, and
that definitely contributes to have a lower calculation time than
if everything was done in Python, however if we are not over the
threshold we are definitely close to it, and it is lower than expected.
This can be justified by the low clustering coefficient that both
networks have.

The networks used for these results are all unweighted, however
the conclusion about the importance of the clustering coefficient
can be extended to weighted networks but for the giant connected
component formed with edges all with the same weight. This and
the relative size of the giant component to the rest of the network

Guilherme Ribeiro

are two of the most important characteristics that contribute to
lower the threshold where it is worth to use the approximated
measure. This can only be seen for networks with somewhat ho-
mogeneous weights, so it is possible that a giant component exists,
because otherwise if there is too much heterogeneity in the weight
values a giant component will never be formed. In this later case
the time would then increase linearly with the number of edges,
but with the addition of the constant part, and this would never
go beyond the threshold, making it always worth to use the exact
measure. This topic needs further investigation, and unfortunately
there was not enough time for it now, but it is left as a suggestion
for future work.

5 PERCOLATION

For context is important to clarify two aspects related to percola-
tion. In many backgrounds percolation represents the addition of
structures to a network, and reverse percolation the removal of
structures. In this work, specially in this chapter the word percola-
tion is used to represent the removal of structures from a network.
The second aspect is that percolation is usually related to nodes,
but in this work and specially in this chapter, edges are the removed
structures, as SEB provides a value of centrality for the edges.

In this section edge percolation was performed on real world
networks. It is important to recall the networks’ characteristics, that
can be seen in Table 1. The aim of this chapter is to compare SEB to
Edge Betweenness Centrality(EBC) when percolation is performed
on a network based on the value that both these centrality measures
attribute to each edge.

In each plot there are 4 lines, where 2 represent SEB and the other
2 represent Edge Betweenness Centrality. Out of those two lines for
each measure, one represents the measure with recalculation after
removing an edge and the other represents the measure without
recalculation between iterations. This is interesting as it allows to
draw conclusions if the recalculation can have an impact and if so
which metrics does it impact the most.

It is important to take into consideration each network’s char-
acteristics for a better analysis of the results, which can be done
by consulting Table 1. The results for the NetScience network are
represented in subfigure (a). This network is not particularly big,
however its number of edges is almost the triple of the number of
nodes, which then leads to an high clustering coefficient. In sub-
figure (b) it is possible to see the results for the C.elegans network,
which has a relevant size, with only a few hundred nodes but a
couple thousand edges, also with an high clustering coefficient, and
the highest average degree of all the networks, which is expected
when there are 5 times more edges than nodes. Now moving on to
subfigure (c), it shows the results for the Facebook network, which
can be considered to have a relevant size, with almost three thou-
sand nodes and edges, with a very low clustering coefficient, and
an average degree of 2, which is expected when the number of
nodes is almost equal to the number of edges. Subfigure (d) shows
the results for the Dolphins network. This network is very small,
with only around half a hundred nodes and one hundred and a half
edges, also with a quite low clustering coefficient, and an average
degree of 5. In subfigure (e) are the results for the Web network.
This network is the second largest used in this study, with over

Spanning edge betweenness for large graphs and percolation

three thousand nodes and six and a half thousand edges, also with
a quite high clustering coefficient, and an average degree of 4.

In Figure 2 there is an example of the percolation performed.
In the yy axis is the number of connected components, and in the
xx axis is the percentage of edges removed. By looking at this
same figure it is possible to draw some conclusions. For about ev-
ery network there is a clear difference between Spanning Edge
Betweenness(SEB) and Edge Betweenness Centrality(EBC), where
for this specific measure, SEB achieves higher number of connected
components. There is also a noticeable difference between recalcu-
lating or not the centrality values, for both measures, that is more
obvious for EBC than for SEB. However, it can be argued that the
difference is not big enough to justify the increase in computational
time introduced by the recalculation of the centrality values.

number of connected companents

0% 10% 20% 30%

0% 70% 80% 90% 100%

% 70% 80% 90% 100%

0% 10% 20% 30% 40%
% of "

edg

(d) Dolphins network.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of edges removed

(e) Web network.

Figure 2: Evolution of the number of connected components with
the removal of edges, for every real world network studied.

6 CONCLUSION

This work focused on Spanning Edge Betweenness, a centrality
measure related to edges. Firstly some concepts were introduced
to better understand this field of study. We then proposed an im-
plementation using Python. Also, an attempt to lower the computa-
tional time was conducted, as SEB can become quite expensive to
calculate, especially for bigger networks. This attempt consists in
taking advantage of the calculation being highly parallelizable or

applying preprocessing in a way that would lower the calculation
complexity. This attempt led to interesting results, which showed
that it is possible to achieve lower calculation times if the right
choices are taken, heavily dependent on the network’s characteris-
tics.

Another possibility of lowering the computational cost was
thought to be by calculating the approximate measure and not the
exact measure. This alternative showed to have a high threshold
of when it does actually compensate regarding the computational
cost. However, there are networks present in this work, which are
not that big, where it compensates to use the approximate measure.

6.1 Future Work

It is always possible to go deeper in every study. This one is no
exception. Regarding Spanning Edge Betweenness implementation,
there may be more options available to parallelize the implemen-
tation that were not taken into consideration. It is also possible
that anytime after this work is published, some other option is
created, which may achieve better results. The same goes for the
preprocessing applied, where new and better ways may become
available to use. It is also possible that some different preprocessing
methods may be applied, either exclusively or together with the
one already done.

For the weighted approximation, it is necessary a deeper analysis
of the proposed implementation, where bigger and more networks
are used for this purpose. It is also important to study generated
networks and try to find relations between the calculation time and
the characteristics of such networks. It is also possible to implement
the full algorithm using the Julia programming language, which is
expected to be much faster than the Python programming language,
achieving better empirical results, even if the theoretical complexity
stays the same.

For percolation, it would be interesting to include more edge-
related measures in these types of studies. However, these centrality
measures are unavailable in network-related packages, making it
almost impossible to integrate them. Hopefully, in the future, they
do become available, and studies like this can include them. It is also
important to extend these studies to weighted networks. However,
to use Spanning Edge Betweenness in these studies, it first needs
to be studied the different possible meanings of the different values
that can be assigned to an edge, and taken into consideration when
performing such studies.

ACKNOWLEDGMENTS

To Prof. Pedro Monteiro, Prof. Sofia Teixeira, thanks for everything.
To Prof. Alexandre, thanks for all the help and availability to answer
my questions. To my family, friends and girlfriend, without you
this would not be possible.

REFERENCES

Dimitris Achlioptas. 2001. Database-Friendly Random Projections. In Proceedings of
the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (Santa Barbara, California, USA) (PODS ’01). Association for Computing
Machinery, New York, NY, USA, 274-281. https://doi.org/10.1145/375551.375608

Tharaka Alahakoon, Rahul Tripathi, Nicolas Kourtellis, Ramanuja Simha, and Adriana
Tamnitchi. 2011. K-Path Centrality: A New Centrality Measure in Social Networks.
In Proceedings of the 4th Workshop on Social Network Systems (Salzburg, Austria)

https://doi.org/10.1145/375551.375608

(SNS ’11). Association for Computing Machinery, New York, NY, USA, Article 1,
6 pages. https://doi.org/10.1145/1989656.1989657

Réka Albert, Hawoong Jeong, and Albert-Laszl6 Barabasi. 1999. Diameter of the World-
Wide Web. Nature 401, 6749 (Sept. 1999), 130-131. https://doi.org/10.1038/43601

David A. Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. 2007. Approximat-
ing Betweenness Centrality. In Algorithms and Models for the Web-Graph, Anthony
Bonato and Fan R. K. Chung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
124-137.

Mirza Basim Baig and Leman Akoglu. 2015. Correlation of Node Importance Mea-
sures: An Empirical Study through Graph Robustness. In Proceedings of the 24th
International Conference on World Wide Web (Florence, Italy) (WWW ’15 Com-
panion). Association for Computing Machinery, New York, NY, USA, 275-281.
https://doi.org/10.1145/2740908.2743055

Albert-Laszlo Barabasi. 2013. Network science. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 371, 1987 (2013),
20120375. https://doi.org/10.1098/rsta.2012.0375

Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of Scaling in Random
Networks. Science 286, 5439 (1999), 509-512. https://doi.org/10.1126/science.286.
5439.509 arXiv:https://www.science.org/doi/pdf/10.1126/science.286.5439.509

A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. 2004. The archi-
tecture of complex weighted networks. Proceedings of the National Academy
of Sciences 101, 11 (2004), 3747-3752. https://doi.org/10.1073/pnas.0400087101
arXiv:https://www.pnas.org/content/101/11/3747 full pdf

Béla Bollobas. 1998. Modern graph theory. Vol. 184. Springer Science & Business Media.

Ulrik Brandes and Daniel Fleischer. 2005. Centrality Measures Based on Current Flow.
In STACS 2005, Volker Diekert and Bruno Durand (Eds.). Springer, Springer Berlin
Heidelberg, Berlin, Heidelberg, 533-544.

S.N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. 2001. Size-dependent degree
distribution of a scale-free growing network. Phys. Rev. E 63 (May 2001), 062101.
Issue 6. https://doi.org/10.1103/PhysRevE.63.062101

Peter G Doyle and] Laurie Snell. 1984. Random walks and electric networks. Vol. 22.
American Mathematical Soc.

David Eppstein. 1995. Representing all minimum spanning trees with applications to
counting and generation. (1995).

John GF Francis. 1961. The QR transformation a unitary analogue to the LR transfor-
mation—Part 1. Comput. J. 4,3 (1961), 265-271.

Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better approximation
of betweenness centrality. In 2008 Proceedings of the Tenth Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM, Society for Industrial and Applied
Mathematics, USA, 90-100.

E. N. Gilbert. 1959. Random Graphs. The Annals of Mathematical Statistics 30, 4 (1959),
1141-1144. http://www.jstor.org/stable/2237458

M. Girvan and M. E. J. Newman. 2002. Community structure in so-
cial and biological networks. Proceedings of the National Academy of
Sciences 99, 12 (2002), 7821-7826. https://doi.org/10.1073/pnas.122653799
arXiv:https://www.pnas.org/content/99/12/7821.full pdf

Felipe Grando, Lisandro Z. Granville, and Luis C. Lamb. 2018. Machine Learning in
Network Centrality Measures: Tutorial and Outlook. ACM Comput. Surv. 51, 5,
Article 102 (oct 2018), 32 pages. https://doi.org/10.1145/3237192

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew
Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi,
Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy.
Nature 585, 7825 (Sept. 2020), 357-362. https://doi.org/10.1038/s41586-020- 2649-2

Petter Holme, Beom Jun Kim, Chang No Yoon, and Seung Kee Han. 2002. Attack
vulnerability of complex networks. Phys. Rev. E 65 (May 2002), 056109. Issue 5.
https://doi.org/10.1103/PhysRevE.65.056109

William B Johnson. 1984. Extensions of Lipschitz mappings into a Hilbert space.
Contemp. Math. 26 (1984), 189-206.

Gustav Kirchhoff. 1847. Ueber die Auflésung der Gleichungen, auf welche man bei der
Untersuchung der linearen Vertheilung galvanischer Stréme gefiihrt wird. Annalen
der Physik 148, 12 (1847), 497-508.

Toannis Koutis, Gary L. Miller, and David Tolliver. 2011. Combinatorial preconditioners
and multilevel solvers for problems in computer vision and image processing.
Computer Vision and Image Understanding 115, 12 (2011), 1638-1646. https://doi.
0rg/10.1016/j.cviu.2011.05.013 Special issue on Optimization for Vision, Graphics
and Medical Imaging: Theory and Applications.

Vera N Kublanovskaya. 1962. On some algorithms for the solution of the complete
eigenvalue problem. U. S. S. R. Comput. Math. and Math. Phys. 1, 3 (1962), 637-657.

Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria
Terzi. 2015. Spanning Edge Centrality: Large-Scale Computation and Applications.
In Proceedings of the 24th International Conference on World Wide Web (Florence,
Italy) (WWW ’15). International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE, 732-742. https://doi.org/10.1145/2736277.
2741125

Guilherme Ribeiro

Matheus R. F. Mendonca, André M. S. Barreto, and Artur Ziviani. 2021. Approximating
Network Centrality Measures Using Node Embedding and Machine Learning. IEEE
Transactions on Network Science and Engineering 8, 1 (2021), 220-230. https:
//doi.org/10.1109/TNSE.2020.3035352

Stanley Milgram. 1967. The small world problem. Psychology today 2, 1 (1967), 60-67.

Erdos RENYI. 1959. On Random Graph. Publicationes Mathematicate 6 (1959), 290-297.
https://cinii.ac.jp/naid/10026207309/en/

Alex Schwarzenberg-Czerny. 1995. On matrix factorization and efficient least squares
solution. Astronomy and Astrophysics Supplement Series 110 (1995), 405.

Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective
Resistances. SIAM J. Comput. 40, 6 (2011), 1913-1926. https://doi.org/10.1137/
080734029 arXiv:https://doi.org/10.1137/080734029

Andreia Sofia Teixeira, Pedro T Monteiro, Jodo A Carri¢o, Mario Ramirez, and Alexan-
dre P Francisco. 2013. Spanning edge betweenness. In Workshop on mining and
learning with graphs, Vol. 24. Springer International Publishing, Cham, 27-31.

Jeffrey Travers and Stanley Milgram. 2011. An experimental study of the small world
problem. Princeton University Press, 130-148. https://doi.org/10.1016/B978-0-12-
442450-0.50018-3

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey,
{lhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antdnio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods 17 (2020), 261-272. https://doi.org/10.1038/s41592-019-
0686-2

David Eppstein Joseph Wang. 2006. Fast approximation of centrality. Graph algorithms
and applications 5, 5 (2006), 39.

Wen-Xu Wang and Guanrong Chen. 2008. Universal robustness characteristic of
weighted networks against cascading failure. Phys. Rev. E 77 (Feb 2008), 026101.
Issue 2. https://doi.org/10.1103/PhysRevE.77.026101

Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-world’
networks. Nature 393, 6684 (June 1998), 440-442. https://doi.org/10.1038/30918

https://doi.org/10.1145/1989656.1989657
https://doi.org/10.1038/43601
https://doi.org/10.1145/2740908.2743055
https://doi.org/10.1098/rsta.2012.0375
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.286.5439.509
https://doi.org/10.1073/pnas.0400087101
https://arxiv.org/abs/https://www.pnas.org/content/101/11/3747.full.pdf
https://doi.org/10.1103/PhysRevE.63.062101
http://www.jstor.org/stable/2237458
https://doi.org/10.1073/pnas.122653799
https://arxiv.org/abs/https://www.pnas.org/content/99/12/7821.full.pdf
https://doi.org/10.1145/3237192
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1103/PhysRevE.65.056109
https://doi.org/10.1016/j.cviu.2011.05.013
https://doi.org/10.1016/j.cviu.2011.05.013
https://doi.org/10.1145/2736277.2741125
https://doi.org/10.1145/2736277.2741125
https://doi.org/10.1109/TNSE.2020.3035352
https://doi.org/10.1109/TNSE.2020.3035352
https://ci.nii.ac.jp/naid/10026207309/en/
https://doi.org/10.1137/080734029
https://doi.org/10.1137/080734029
https://arxiv.org/abs/https://doi.org/10.1137/080734029
https://doi.org/10.1016/B978-0-12-442450-0.50018-3
https://doi.org/10.1016/B978-0-12-442450-0.50018-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1103/PhysRevE.77.026101
https://doi.org/10.1038/30918

	Abstract
	1 Introduction
	1.1 Objectives
	1.2 Outline

	2 Network Science Concepts
	2.1 Graph Theory
	2.2 Network Models
	2.3 Centrality Measures
	2.4 Related work

	3 Spanning Edge Betweenness – Implementation and Parallelism
	3.1 Theory
	3.2 Implementation
	3.3 Results

	4 Weighted approximation
	4.1 Results

	5 Percolation
	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

