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I. INTRODUCTION

Mobile autonomous robots are one of the most researched
topics in recent years with commercial designs already avail-
able for both industrial settings, (e.g. Waypoints’s Vector), and
for home settings (e.g. the vacuum Roomba from iRobot). The
most common sensor deployed for accurate navigation is the
LiDAR sensorP_-] since it provides accurate depth information
which facilitates estimating the robot’s pose. The excellent
quality of LiDAR sensors implies, however, very high hard-
ware costs.

Nowadays, the availability of low cost cameras and iner-
tial measurement units (IMU) means developing autonomous
robots based on this sensor suite is very promising. If an
accurate and real-time performing platform can be developed
at a low cost, it might open the door for a future in which most
people have mobile robots that do surveillance, carry objects
from room to room autonomously and more. In a world where
most people deal with robots, it seems imperative that the
robots possess a human-like understanding of the world.

A. Related Work

A low-cost mobile system capable of navigation using a
camera and an inertial measurement unit (IMU) has been ex-
plored previously in the literature. Fusing these sensors started
with only estimating the local positioning of the platform
without loop closure, i.e. visual-inertial odometry (VIO), as
in the works [11] and [7]] using filters.

For a more complete system with global consistency, and
potentially multi-session mapping, SLAM is the next step.
Filter-based solutions have been proposed in [18[|[12] that
include loop closure and as such are capable of global consis-
tency. Optimization-based algorithms seem to be the current
trend of the art, with [21]], [15], [16], [22] and [3] all developed
since 2017 and with increasing performance. In particular, [3]]
can be said to be representative of the state of the art for visual
and visual-inertial SLAM systems, capable of multi-session
navigation, with a multiple map system with short, medium
and long term recall capabilities.

These state-of-the-art algorithms have very high metric
accuracy, however no semantic meaning of places is attempted
[LO]. For a robot to navigate homes using the same paradigm
of humans, assignment of semantic meaning to places has
to occur. The first step towards meaning assignment is the
creation of topological maps, which has been explored for
many years. Topomap [2]] uses visual information to create
topological maps and navigate them. From these topological

le.g. Velodyne’s LiDAR sensors are considered market leaders having been
part of the Waymo/Google project autonomous car.

maps, semantic meaning can be assigned to nodes of the map
with research on this topic conducted recently in [1] and [4].

B. Problem Formulation and Thesis Approach

In this thesis we aim to address the first step in our view
to enabling mobile robots to communicate with humans on
the same abstract level when it comes to navigation, which is
topological mapping.

As an example, humans navigate home environments not
with reference to a frame, but by assigning meaning to
locations, such as ’kitchen’, and recognizing they are there
or if they are in another location. For an autonomous system
to be able to assign semantic meaning to locations it must first
be able to differentiate them in some way.

Topological maps are a valuable tool for this since they
provide discrete states that can be assigned meaning.

We propose a topological mapping framework that takes
the output of a SLAM system that provides 3D structure and
creates a scene graph. This scene graph is composed of nodes
that map to 3D clusters of the environment. To evaluate if node
recognition in this framework is successful we present several
experiments where the robot navigates for a second time in a
particular scene and matches the nodes being created for the
current navigation to the first one.

A robot platform similar to the one developed in [14] was
developed and used in these experiments. It uses a monocular
camera and an inexpensive IMU.

II. BACKGROUND AND STATE OF THE ART

In this section we cover the mathematics behind the SLAM
system chosen to use in combination with our work. We also
provide background on the techniques used in the literature
for visual topological mapping and a discussion on some
advantages and disadvantages for each. We relate topological
mapping to semantic labeling while also defining semantic
labeling.

A. Unscented Kalman Filter on Lie Groups

The Brossard et al. [[12]] filter is a foundation of our project
as the chosen SLAM system utilized. It is an Unscented
Kalman filter on Lie groups that fuses camera and IMU
measurements together in order to estimate the system’s state.

1) Filter Implementation:



a) State Space: The state space used for this work is an
extension of the SFE(3) Lie group. This Lie group is defined
in x € SE>1,(3) space.

It contains the position = € R, R € SO(3), linear velocity
v € R3 and the 3D positions of landmarks p,...,p, € R?
tracked in the scene. The state is formed by a square matrix
x with dimensions (5 + p) x (5 + p):
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To have an online estimation of the IMU biases we append
these to the state. Consequently, the state has concatenated the
IMU biases defined as the bias vector b € RS:

b= [bj bﬂ ' 2)

with the accelerometer bias b, € R3 and gyroscope bias b,, €
R3. Finally, the state of the filter is expressed as the tuple
(X, b).

b) Dynamic Model: The system model chosen assumes
that the robot is navigating a flat earth and it is equipped with
an IMU:

R:R(w—bw+nw)X

body state = ¢ v=R(a — b, + 1) — g 3)
X=V
IMU biases = {b“’ = by 4)
b, = nb,
landmarks = {pi =0,0=0,...,p o)

where (w)x portrays the skew-symmetric matrix related
with the cross product with vector w € R? (as shown in
equation ??). The multiple noises are grouped as:

n=[ne na' Np M |~ N0, Q) (6)

c) Sensors Model: The measurement model takes camera
frames. The camera observes p landmarks tracked in the
scene. Each landmark p, is observed according to the standard
pinhole model and the respective projection model, as such:

yiu i
Y, = L/ij +ny (N

where y, is the result of the projection:

v,
Ayl | = KR poo(p; — ) — tgocl )
1

where ~y is the scale factor, K is the camera intrinsics matrix,
x is the IMU/Body position in the world frame, R is the
IMU/Body orientation, tg_,o and R B are respectively
translation and rotation from the IMU to the camera in the
world frame.

With this projection a landmark p, is converted from the
world frame to the image plane and is now compared to its
corresponding 2D feature that is being tracked frame to frame.

2) Filter Summary: The filter architecture can finally be
presented as

x=-exp({x |§
state {bn —5, 40 b N(0, P,), 9
dynamics {Xn,bn = f(Xn—1,Un = bp_1,70) , (10)
YTL - [le . YPT] = Y(X’ﬂ’w’n) (11)
y;, according toeql?, i=1,...p ’

with (X,,,b,) as the mean estimate of the state at time
n, P, € RUSE3P)x(1543p) a9 the covariance matrix that
represents the state’s uncertainties (&, INJ), and vector Y,, that
contains the observations of the p landmarks with associated
Gaussian noise w,, ~ N (0, W).
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Fig. 1: Block diagram of Unscented Kalman filter on Lie
groups used in our work. From [14]

B. Topological Mapping and Semantic Labeling

Topological maps are graph-like spatial representations.
Nodes in such a graph often represent states in the agent’s
state space and edges represent system actions and trajectories
that take the agent from a state to another.

In a mobile robot context, topological map’s nodes most
often represent a position in space with edges representing
trajectories and connections between such positions.

Semantic labeling of images is the categorization of visual
information according to an abstract meaning, often related to
how humans perceive such information. These meanings often
imply specific properties which are useful for the application
at hand.

Topological mapping has been a research topic for many
decades with recent advances in computing power and SLAM
enabling progress [2] [8]. Whereas semantic labeling is more
recent in the literature [1] [S] , with real advances being a
result of the foundational work done with machine learning,
more specifically, in deep learning and SLAM.

There have been recent works that combine both approaches
in a complete system using sensor suites which directly
observe depth [1]][4] as opposed to ours which does not.

Libraries like [17] present an opportunity for accurate
object-recognition which was not possible a decade ago, by
making use of neural networks like this, it seems that semantic
meaning can be assigned to places that a robot navigates,
which in turn could enable a more seamless interaction be-
tween humans and robots.



1) Topological mapping: Topological mapping from visual
information has been studied extensively in recent years
(2141811201

In order to perform mapping using vision, it is necessary
to describe the acquired images and be able to compare these
descriptions. Consequently, the quality of the map will directly
rely on the method used for visually describing the different
environment locations.

The method used for representing the image can be clas-
sified into four main categories according to the authors of
[8]:

e Methods based on global descriptors, with the image
represented by a general descriptor computed using the
entire frame as input.

« Methods based on local descriptors, where interest points
are found in the image and then a patch around this point
is described in order to identify them in other similar
images.

¢ Methods based on the Bag-of-Words (BoW) algorithm
EL where local features are quantized according to a set
of feature models called visual dictionary, representing
images as histograms of occurrences of each word in the
image;

e Methods based on combined descriptors, where several
techniques described above are used together as a new
solution.
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Fig. 2: Classification of vision-based topological schemes
according to their image representation method. From [8]

There are advantages and disadvantages to each of these
representation schemes. In table [[] a breakdown of these can
be seen.

Factor Gl. Descriptors ~ Loc. Features BoW
CPU Load Low High Medium
Storage Need Low High Medium
Matching Complexity Medium High Low
Discrimination Power Low High Medium
Perceptual Aliasing Effect High Low Medium
Large-Scale Operation Medium Low High
Spatial Loss Information Medium Low High
Pose recovery complexity High Low Medium

TABLE I: Advantages and disadvantages for each representa-
tion scheme. From [S]]

Zhttps://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

These image representations serve the purpose of allowing
for fast and accurate image matching which concerns topo-
logical mapping in terms of aggregating similar frames to the
same place node.

However, a completely different approach which concerns
itself with the geometry of the environment has also been
studied, for example in [2]. From the 3D structure of the
environment, occupancy information can be retrieved and it
is possible to create a set of convex free-space clusters, which
form the vertices of the topological map.

This approach lends itself more to sensors that provide
depth information such as RGB-D cameras, stereo cameras and
LiDAR. However, there have been good results in estimating
the geometry of an environment through RGB only video
[L3] which in turn could result in this approach constructing
accurate topological maps using information from a simple
RGB camera alone.

III. GEOMETRIC SCENE LABELING AND PLACE
REGISTRATION

Figure [3]illustrates the proposed solution of our work. Given
a mobile ground robot doing landmark-based SLAM that loses
metric tracking for any reason, is it possible to answer the
question "What was the nearest Place?".

In order to accomplish this, we generate a topological
framework that maps the scene with nodes representing Places
via a previous navigation that generates a database for com-

parison.
—»{ Create Scene Graph
—»{ Create Scene Graph H }—I I'm at Place 30!

Fig. 3: Basic diagram of the proposed methodology. Given
a sentinel robot navigating a previously mapped environment,
can the robot recognize its current location based on the notion
of Places.
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A. Topological Mapping

Topological ideas allow for recognition of locations without
a need for accurate metric information, providing a potential
approach for addressing the hijacked robot problem. In our
proposal, location recognition is based on the overall structure
of landmarks tracked by the SLAM system. This structure can
be robust to slight metric errors.

B. Place registration as a solution

As discussed, an advantage of topological mapping is that
robot localization does not require highly precise metric esti-
mation and navigation. If the mobile robot system can traverse
from node to node and identify at which node it currently is,
topological mapping and navigation is a success.

We propose a mapping strategy that combines information
from a metric SLAM system with topological mapping such
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that to recognize a place the robot must only navigate near it
and capture it with its camera, as long as the scene has been
previously mapped.

The feature type chosen to represent places in our topologi-
cal map is the geometry relation of the 3D landmarks, that are
being tracked in the SLAM system. Estimation of structure
of the 3D landmarks has robustness to errors in the metric
estimation and does not depend on the coordinate system used.

We have built a software system to evaluate the proposal.

1) Place definition: The methodology used will be based
on places. During operation, a SLAM algorithm outputs the
3D landmarks that it is tracking. These 3D landmarks form
a pointcloud of the environment. Clusters of landmarks shall
be regarded as places and will be the basis for recognizing
locations in our proposal. Places hold the geometric informa-
tion of every point of the cluster. It holds the cluster’s centroid
information as well as the images that are associated to each
3D point, if available. The algorithm chosen for the clustering
of landmarks is DBSCAN [6].

2) 3D pointcloud information: The chosen SLAM algo-
rithm for providing 3D structure information in our work is
based on the work of Brossard et al.[12]. We provide both
the IMU information and the camera frames, and receive as
output the 3D information of the landmarks and the trajectory
taken by the robot.

In some experiments we utilize structure from motion
software to create the 3D structure of the environment as
if it was the output of a SLAM system. This is because
initialization is important for the filter’s stability and no
initialization parameters exist for our own datasets.

3) Clustering 3D landmarks:

a) DBSCAN for place creation: We utilize the DBSCAN
algorithm for 3D clustering. DBSCAN is an acronym that
stands for Density-Based Spatial Clustering of Applications
with Noise. It is an algorithm for clustering data based on
density.

DBSCAN searches for clusters by examining the e-
neighborhood of each datapoint. If the e-neighborhood of
datapoint p contains more than MinPts, a new cluster is
created using point p as the core datapoint. DBSCAN collects
directly density-reachable datapoints repeatedly from these
core datapoints, which may include the merging of a few
density-reachable clusters.

Noise

\
3 \ ) /
\ .'. Density {
\ |
\
|

/

/

/

|Reachable |
! H

Fig. 4: DBSCAN visualization. From [9]. In our case, data-
points are 3D points that are clustered by density into places
that represent nodes in the scene graph.

For our application, the clusters of landmarks found in the
first navigation performed will represent places and in the sec-
ond locations which are candidate places. The two parameters
of the algorithm ¢ and MinPts were found experimentally.

Using these clusters of landmarks, we can construct a graph
with nodes containing information about a cluster, and edges
containing information about the relationship of two clusters.

For evaluating our results clusters from the first navigation,
places, are matched to clusters from the second navigation,
locations.

4) Graph Split into Places: Assignments of names to
each cluster is done after place creation has happened. The
methodology used for naming in our work is simple, using a
sequential name assignment.

5) Registration: We consider the registration of the point-
clouds obtained by a SLAM framework after each of
the two navigations. We will use the resulting alignment-
transformation to change the robot position from scene2’s
coordinate system to scenel’s such that we can find the closest
place. The chosen registration algorithm for our application
is the matlab’s implementation of Generalized-ICP which is
based on Segal et al.’s work [19].

6) Generalized ICP: Standard ICP is a point-to-point
method, which attempts to align all matched points precisely
by minimizing their Euclidean distance. This does not take
into account the fact that an exact matching is typically not
possible due to the different sampling of the two point clouds,
which leads to pairs that do not have perfect equivalence with
one another.

We utilize a plane-to-plane variant by Segal et al. [[19] that
takes into account the surface normals of both the model
pointcloud and also the data pointcloud.

Fig. 5: Plane to plane matching. From Seagal et al. [19]

By applying a probabilistic model to the problem, it modi-
fies the error function utilized in the Standard ICP and assigns
a covariance matrix to each point.

This results in the new error function:

i (D)7 (oA BpTy=14(T)
TearngmZdi (CA+TCETT) 14 (1)

where dz(-T) = a; — Tb;, C* and CP are covariance matrices
(assuming that all points which could not be matched were
already removed from A and B and that a; corresponds with
bi).

They key benefit of introducing information about the
surfaces of both pointclouds is that if the matching of points
reveals inconsistent surface matching, those correspondences
will contribute less in the optimization problem. This improves
the registration process and provides more robustness to incor-
rect correspondences in most indoor scenarios since human
constructions are highly structured. This is preferred for our
approach since we aim to construct topological maps of indoor
home environments.



C. Software diagram and Summary of proposal

We have built a software system to evaluate the proposal.
The system is implemented such that it can use any SLAM
framework, provided they output 3D structure, such as land-
marks being tracked.

We have implemented the use of an unscented kalman filter
on Lie groups for fusion of IMU measurements and camera
frames based on Barrau et al. [12].

The full software system’s diagram is represented in fig. [7]
The methodology it follows is:

1) Begin first navigation and get information of the scene
from SLAM system and all the landmarks as a point-
cloud.

2) Create clusters of landmarks using DBSCAN [6] cluster-
ing method on their 3D position.

3) Assign places label to each landmark having each land-
mark belonging to the same cluster considered the same
place.

4) Begin second navigation and get information of the
scene from SLAM system and all the landmarks as a
pointcloud.

5) Match the second navigation’s clusters landmark point-
cloud to the prior clusters pointcloud based on plane-to-
plane ICP [19].

6) Use the transformation obtained to transform robot’s
position, and places centroids from second navigation to
first.

7) Compute euclidean distance to all places and localize the
robot as being at the nearest place.

Using this methodology a graph scene composed of places
as states is created and matched to a previous state.

We postulate that the structure of the clusters created is
similar enough that a good matching can be created between
navigations.

To evaluate each experiment success, we consider images
from the matched clusters using the process depicted in
figure [f] We plot the images that generated the 3D points
of a place from Navigationl and its correspondent from
Navigation2.

We plot both a reference image for the place and the mean
image. The representative image ¢, of place X with images %
and mean image %,, was chosen as such:

12)

tp = min |2 — 1

" viex i = il
A complete diagram of the implemented software design

can be seen in figure [/} It illustrates each of the main steps

implemented characterized as a rounded block.

IV. EXPERIMENTS

In this section we will present three types of experiments
that were conducted to evaluate the place registration method-
ology for solving topological location recognition.

For each type of experiment, pairs of robot navigations are
performed. The first represents the scene acquisition and place
generation for topological mapping. The second represents
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Fig. 6: To evaluate matching success we employ the strategy
depicted above. Each place holds information about each 3D
point it contains as well as the associated image from which
the 3D point was first generated. We compare place matches
by comparing a representative image of each matched cluster
and the average image of each matched cluster.
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Fig. 7: Diagram of complete software implementation

scene navigation from which we can verify if current place
recognition was successful.

We utilize the public EuRoC MAV Dataset Vicon Room 1
02 dataset for one of the experiment setups. All other datasets
were acquired by us in a regular house setup.

Since achieving SLAM is not the focus of our work, we uti-
lize a structure from motion software package, VisualSFM EL
to acquire a 3D pointcloud for home datasets. We then apply
our proposed methodology on this 3D structure as if it was
the output of a SLAM system.

3VisualSFM is a GUI application for 3D reconstruction using structure from
motion (SFM).
http://ccwu.me/vsfm/index.html
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A. Experimental Setups and Implementation Details

a) Setup I: For this experiment Navigation2 will be a
subset of the dataset used for Navigationl. This experiment
serves as a proof of concept for the methodology used. It is
the only setup for which we use the public Euroc dataset.

b) Setup II: For this experiment Navigationl and Navi-
gation2 observes the same scene with very similar trajectories,
Navigation2 being a re-acquisition of Navigationl. The second
navigation starts and ends at a different, but similar, location
to the first navigation.

c) Setup III: For this setup, the robot takes a different
trajectory observing the same scene. A estimation of the
groudtruth for both navigations can be seen in figure [I3] This
is a more complex case than the previous experiments. With
different perspectives on the scene and a different trajectory, it
is more challenging to obtain a 3D structure that is comparable
between navigations. We postulate that clusters will still form
according to the objects seen, permitting correct matches.

B. Experiment I: Place registration results and analysis

This experiment uses Setup I. The navigations used for this
are taken from the EuRoC MAV Dataset Vicon Room 1 02
dataset. We use the SLAM system from Barrau et al. [12] and
utilize this public dataset since it is the only one for which the
chosen SLAM system provides the initialization parameters
for. We use this SLAM filter to compute both the trajectory
of the robot and the 3D structure of the scene. We then use
this output and perform our proposed methodology of place
clustering and place matching.
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Fig. 8: Representation of Navigationl and Navigation2 for
Experiment I. From left to right, first frame, early middle
frame, late middle frame, last frame.

Navigation]l initiates at the same time as Navigation2.
Navigationl composes 6000 IMU iterations and 600 frames.
Navigation2 composes 4000 IMU datapoints and 400 frames.

A representation of Navigationl and Navigation2 can be seen
in Bl

From running the Barrau et al.[12] software we receive as
output information about both the trajectory of the mobile
robot and the 3D structure of the environment. The filter only
holds thirty landmarks at all times, removing old ones when
a new 3D landmark is required. We require more that thirty
3D points to evaluate our proposal and so we externally save
all landmarks the first time they are added to the filter. This
means they are never updated inside the filter after we save
them which, in turn, means there is less accuracy.

Even with less 3D geometric accuracy we postulate that as
long as there can be a match between scenes, clusters will
form around the same locations and places can be extracted
and matched.

For registration using plane-to-plane ICP we utilized an
inlier-ratio of 0.75 for this pair of navigations.

The root average squared error of the registration was
0.0023 m. It is understandable that registration is done very
successfully since we utilize a subset of the same dataset in
Navigation2 compared to Navigationl and the filter created an
identical pointcloud up to the cutoff point of Navigation2.

For this experiment the amount of clusters created in
Navigationl was ten and for Navigation2 was six. Between
navigations we can observe that there are some clusters that
Navigationl could produce due to more data points that
Navigation2 could not.

a) Matching Results: - From the previously shown align-
ment of scenes we have available the rigid transformation
from scene2 to scenel. By applying the registration to the
clusters and matching them using smallest euclidean distance
we obtain the matching shown in figure [I0]

To evaluate how good the matching process was, we show in
figure[I3]a representative image for each place and the average
image associated to the place, with the standard brightness
deviation shown below.

Since images are taken in motion and a specific place is
observed from several close but different perspectives it is
normal for average images to present some blur. Because this
dataset is from a drone that moves at a relatively high velocity,
it is expected that this will happen.

In Placel we note that the average image has a very high
standard deviation and appears very blurred. This seems to be
due to the fact that the cluster associated a lot of 3D points
and their related image. While a lower clustering distance
might have solved this problem, some places could become
unrecognizable by the system due to having their core points
farther away.

Despite these problems, all place matches seem to have been
made correctly, with representative images depicting close
locations of the room.

C. Experiment II: Place registration results and analysis

The navigations used for this experiment are a pair of nav-
igations taken at home using the approximately the trajectory
depicted in red in figure [T} This experiment uses setup II,
with Navigation2 having a similar trajectory to Navigationl
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Fig. 9: Reference images for each place match for Experiment
I. Each match presents two sets of images, images related to
the place of Navigationl that was matched (left) and images
related to the matched cluster of Navigation2 (right). For each
place and cluster, two images are shown. A representative
image of the cluster, and the average image taken by using
all images related to said cluster. The representative image
is obtained by finding the closest image in the cluster set to
the average image. Below each average image we show the
brightness standard deviation found for the cluster.

but different starting point and ending point and thus observing
the scene from a differnt but very similar perspective. A repre-
sentation of Navigationl and a representation of Navigation2
can be seen in [l

The SLAM framework utilised by us [12] could not produce
reasonable results without the initialization parameters highly
calibrated. As thus, and since SLAM is not the focus of our
work, we produced the 3D structure of the scene by using
a structure from motion software, VisualSFM El We treat the
output of this software as if it was the output of a SLAM
system, and associate places from navigation to navigation.
The localization module is, however, turned off since there is
no trajectory or pose estimation output.

For registration using plane-to-plane ICP we utilized an
inlier-ratio of 0.8 for this pair of navigations.

The root average squared error of the registration was
0.0083 in normalized distance units.

In figure [I2] we show the pointclouds from a front view
with the coloured clusters obtained from DBSCAN, note the
axis’ relative size is not kept.

4VisualSFM is a GUI application for 3D reconstruction using structure from
motion (SFM).
http://ccwu.me/vsfm/index.html
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Fig. 10: Visual representation of place matching between
navigations, according to closest place centroids for Exper-
iment 1. For this experiment all clusters found in Navigation2
found a place match in Navigationl. However, not all places
from Navigationl had a correspondence. This might happen
if a different amount of clusters is found or if the closest
place from Navigationl is the same for two clusters found
in Navigation2, in which case only the closest cluster of
Navigation2 is matched to the place of Navigationl. Since
Navigation] was an extension of Navigation2 it is reasonable
that there are places that were not sufficiently visited in
Navigation2.

a) Matching Results: - From the previously computed
alignment of scenes we have available the rigid transformation
from scene2 to scenel. By applying the registration to the
clusters and matching them using smallest euclidean distance
we obtain the matching shown in figure [14]

To evaluate how good the matching process was, we show in
figure[T3]a representative image for each place and the average
image associated to the place, with the standard brightness
deviation shown below.

Since images are taken in motion and a specific place
is observed from several close but different perspectives it
is normal for average images to present some blur. But in
addition to this, the average images of each cluster seem to
show that the range of images associated with clusters includes
outliers. This may be due to two main reasons: there were
3D points wrongly clustered and thus their associated image
should not have been included, or the 3D point itself should not
have been placed there and is a bad estimate from VisualSFM.

However, both the average images and the representative
images of each match show that matching was successful by
matching the same general location correctly from Navigation2
to Navigationl.

D. Experiment IlI: Place registration results and analysis

The navigations used for this experiment are a pair of
navigations collected at the house of the author using ap-
proximately the trajectories depicted in red in figure [T3] This
experiment uses setup III, with Navigation2 having a different
trajectory to Navigationl observing the scene from a different
perspective.


http://ccwu.me/vsfm/index.html

(d) Nav.1 fr.226 (e) Nav.l fr.455

-

| 2 i >
(g) Nav.2 fr.247

(h) Nav.2 fr.447
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Fig. 11: Setup for experiment 2. The photo on the left portrays
the scene the robot navigates in. The trajectory portrayed on
the right is in [cm]. The red arrows indicate the sections
of the trajectory taken by the robot for this navigation. We
preconstructed the trajectory by using colored tape on the
ground and then took measurements, using measuring tape
and a protractor, for the length of each section and the angle
between them respectively.
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Fig. 12: Front view of pointclouds from Navigationl (left) and
Navigation2 (right) after clustering. Colours represent each
cluster with dark blue representing outliers. For Navigationl
seven clusters were identified, and six clusters were identified
for Navigation2. For both navigations the clustering euclidean
distance threshold for DBSCAN was 0.015 and the minimum
points per cluster was 200.

As in Experiment II, we utilise VisualSFM ﬂ to provide us
with the 3D structure of the scene for this experiment. We
again treat the output of this software as if it was the output
of a SLAM system, and associate places from navigation to
navigation. The localization module is, once again, turned off
since there is no trajectory or pose estimation output.

For registration using plane-to-plane ICP we utilized an

SVisualSFM is a GUT application for 3D reconstruction using structure from
motion (SFM).
http://ccwu.me/vsfm/index.html
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Fig. 13: Reference images for each place match for Exper-
iment II. Each match presents two sets of images, images
related to the place of Navigationl that was matched (left) and
images related to the matched cluster of Navigation2 (right).
For each place and cluster, two images are shown. A repre-
sentative image of the cluster, and the average image taken
by using all images related to said cluster. The representative
image is obtained by finding the closest image in the cluster
set to the average image. Below each average image we show
the brightness standard deviation found for the cluster.

inlier-ratio of 0.45 for this pair of navigations. The root aver-
age squared error of the registration was 0.0057 in normalized
distance units.

In figure [I6] we show the pointclouds from a front view
with the coloured clusters obtained from DBSCAN, note the
axis’ relative size is not kept.

Since the scene was observed from a different perspective,
we can notice a change in the structure of the resulting
pointclouds and therefore, the most dense regions. Regions
that were very well represented in Navigationl, such as the
zebra on the left side of the scene, were not as well represented
in Navigation2. In both navigations the right side of the scene
has lower density of points.

However, as we will present in the matching section, for
this experiment the results were still comparable to previous
experiments.

a) Matching Results: -

From the previously computed alignment of scenes we have
available the rigid transformation from scene2 to scenel. By
applying the registration to the clusters and matching them
using smallest euclidean distance we obtain the matching
shown in figure [I8]

To evaluate how good the matching process was, we show in
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Places Correspondence
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Fig. 14: Visual representation of place matching between
navigations, according to closest place centroids for Exper-
iment II. For this experiment all clusters found in Navigation2
found a place match in Navigationl. However, not all places
from Navigation]l had a correspondence. This might happen
if a different amount of clusters is found or if the closest
place from Navigationl is the same for two clusters found
in Navigation2, in which case only the closest cluster of
Navigation2 is matched to the place of Navigationl.

(f) Nav.2 fr.1 (g) Nav.2 1.286 (h) Nav.2 fr.466

Fig. 15: Setup for experiment 3. The trajectories portrayed are
in [cm]. The red arrows indicate the sections of the trajectory
taken by the robot for each navigation. We preconstructed the
trajectories by using colored tape on the ground and then
took measurements, using measuring tape and a protractor,
for the length of each section and the angle between them
respectively.

figure[I7)a representative image for each place and the average
image associated to the place, with the standard brightness
deviation shown below.

Results for this experiment seem to match the previous re-
sults. Blurring of average cluster images can still be observed.
As mentioned before, this is likely due to two reasons. The
use of images during motion, which displace the view slightly.

Fig. 16: Front view of pointclouds from Navigationl (left) and
Navigation2 (right) after clustering. Colours represent each
cluster with dark blue representing outliers. For Navigationl
six clusters were identified, and five clusters were identified
for Navigation2. For both navigations the clustering euclidean
distance threshold for DBSCAN was 0.025 and the minimum
points per cluster was 250.

And the inclusion of 3D points in the cluster that are farther
off from the average image. This can be tuned by considering
lower values for clustering distance but might lead to inability
to model some places.

We can still observe some overlap of places happening,
however, both the average images and the representative
images of each match show that matching was successful by
matching the same general location correctly from Navigation2
to Navigationl.

V. CONCLUSION AND FUTURE WORK

This work aimed to propose a topological mapping strategy
using a low-cost mobile robot that could enable the robot to
recognize previously mapped areas. Our approach relies on
an estimation of the 3D structure of the environment and the
notion that clusters in this structure can be considered sign
posts for navigation.

For evaluating our proposal we utilized and in-house built
mobile robot equipped with a monocular camera sensor and
an low-cost IMU. We have also utilized a public dataset in
one of our experiments.

Results seem to suggest the methodology proposed can
provide topological localization for the scenarios reviewed.

However, in more challenging scenarios there might be a
need to either add another type of sensor that directly observes
distances, such as a depth camera.

Real world locations appeared repeated as different nodes
of the map even if they were correctly matched in the second
navigation. Evaluation of the clustering via images revealed
that there were outlier locations included in the cluster.

Both of the mentioned issues are influenced by the clus-
tering distance and minimum number of points per cluster
parameters. In the future, pursuing a mathematical way to
model how to choose these parameters automatically given
a certain 3D pointcloud seems promising.

Another possible avenue for future research is the labelling
step of the methodology. Object-detection can be used to give
semantic meaning to the found clusters, enabling the robot to
have a more human-like understanding of the environment.
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Fig. 17: Reference images for each place match for Exper-
iment III. Each match presents two sets of images, images
related to the place of Navigationl that was matched (left) and
images related to the matched cluster of Navigation2 (right).
For each place and cluster, two images are shown. A repre-
sentative image of the cluster, and the average image taken
by using all images related to said cluster. The representative
image is obtained by finding the closest image in the cluster
set to the average image. Below each average image we show
the brightness standard deviation found for the cluster.
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