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Resumo

A disponibilidade e utilização de robôs móveis autónomos na vida quotidiana está a tornar-se
mais real a cada dia que passa. É cada vez mais importante conceber sistemas para que os robôs
móveis interajam a um nível mais abstracto com os humanos quando se trata de navegação.

Nesta dissertação, propomos uma metodologia de mapeamento topológico baseada no agru-
pamento de estruturas 3D para a criação de nós, com o objectivo de realizar uma contribuição
para a navegação e compreensão semântica.

Detalhamos tanto os componentes de software como de hardware da construção de um
robô móvel sentinela. O robô está equipado com um Raspberry Pi como sua principal unidade
computacional, uma câmara monocular e uma unidade de medição inercial.

Utilizamos este robô móvel para avaliar o processo de criação de mapas topológicos pro-
posto e o seu sucesso no reconhecimento de um local anteriormente mapeado. Para além de
utilizarmos os nossos próprios conjuntos de dados adquiridos, utilizamos também um conjunto
de dados públicos para uma das nossas experiências.

Palavras chave: Mapeamento Topológico, Agrupamento 3D, Robô Móvel, Raspberry Pi, Nave-
gação Semântica.
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Abstract

The availability and utilization of autonomous mobile robots in everyday life is becoming more
of reality with each passing day. It is increasingly more important to design systems for mobile
robots to interact on an abstract level with humans when it comes to navigation.

In this dissertation, we propose a methodology of topological mapping based on clustering
3D structures for node creation, with the objective of contributing towards semantic navigation
and understanding.

We detail both the software and hardware components of how we built a sentinel mobile
robot. The robot is equipped with a Raspberry Pi as its main computational unit, a monocular
camera and an inertial measurement unit.

We utilize this mobile robot to evaluate our proposed topological map creation process and
how successful it is at recognizing a formerly mapped location. In addition to using our own
acquired datasets we also use a public dataset for one our experiments.

Keywords: Topological Mapping, 3D clustering, Mobile Robot, Raspberry Pi, Semantic Navi-
gation.
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Chapter 1

Introduction

Mobile autonomous robots are one of the most researched topics in recent years with commer-
cial designs already available for both industrial settings, e.g. Waypoints’s Vector, and for home
settings, e.g. the vacuum Roomba from iRobot. The most common sensor deployed for accurate
navigation is the LiDAR sensor 1 since it provides accurate depth information which facilitates
estimating the robot’s pose. The excellent quality of LiDAR sensors implies, however, very
high hardware costs.

Nowadays, the availability of low cost cameras and inertial measurement units (IMU) means
developing autonomous robots based on this sensor suite is very promising. If an accurate and
real-time performing platform can be developed at a low cost, it might open the door for a future
in which most people have mobile robots that do surveillance, carry objects from room to room
autonomously and more. In a world where most people deal with robots, it seems imperative
that the robots possess a human-like understanding of the world as robust navigation.

1.1 Related Work

A low-cost mobile system capable of navigation using a camera and an IMU has been explored
previously in the literature. Fusing these sensors started with only estimating the local position-
ing of the platform without loop closure, i.e. visual-inertial odometry (VIO), as in the works
[16][24] .

For a more complete system with global consistency, and potentially multi-session mapping,
SLAM is the next step. Filter-based solutions have been proposed in [25] [34] that include loop

1e.g. Velodyne’s LiDAR sensors are considered market leaders having been part of the Waymo/Google project
autonomous car.
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closure and as such are capable of global consistency. Optimization-based algorithms seem to
be the current trend of the art, with [38], [30], [31], [15], [39] and [5] all developed since 2017
and with increasing performance. In particular, [5] can be said to be representative of the state
of the art for visual and visual-inertial SLAM systems, capable of multi-session navigation,
with a multiple map system with short, medium and long term recall capabilities.

These state-of-the-art algorithms have very high metric accuracy, however no semantic
meaning of places is attempted [21]. For a robot to navigate homes using the same paradigm of
humans, assignment of semantic meaning to places has to occur. The first step towards mean-
ing assignment is the creation of topological maps, which has been explored for many years.
Topomap [3] uses visual information to create topological maps and navigate them. From these
topological maps, semantic meaning can be assigned to nodes of the map with research on this
topic conducted recently in [1] and [6].

1.2 Problem Formulation and Thesis Approach

In this thesis we aim to address the first step in our view to enabling mobile robots to communi-
cate with humans on the same abstract level when it comes to navigation, which is topological
mapping.

As an example, humans navigate home environments not with reference to a frame, but by
assigning meaning to locations, such as ’kitchen’, and recognizing they are there or if they are in
another location. For an autonomous system to be able to assign semantic meaning to locations
it must first be able to differentiate them in some way.

Topological maps are a valuable tool for this since they provide discrete states that can be
assigned meaning.

We propose a topological mapping framework that takes the output of a SLAM system that
provides 3D structure and creates a scene graph. This scene graph is composed of nodes that
map to 3D clusters of the environment. To evaluate if node recognition in this framework is
successful we present several experiments where the robot navigates for a second time in a
particular scene and matches the nodes being created for the current navigation to the first one.

A robot platform similar to the one developed in [27] was developed and used in these
experiments. It uses a monocular camera and an inexpensive IMU.
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1.3 Objectives and Contributions

In this work, we aim to design and build a sentinel mobile robot equipped with an IMU and a
monocular camera. We also aim to design a topological mapping and matching system and test
it in the developed platform.

To accomplish this we build our software system on top of several public software compo-
nents. We utilize either a SLAM filter [25] or a structure from motion software, VisualSFM 2,
to estimate the geometric structure of the environment. We utilize the Generalized-ICP algo-
rithm [35] for registering the pointclouds of two scenes. We utilise the DBSCAN [14] algorithm
for finding 3D clusters.

We combine all of these components such that a scene graph is created for a given navigation
in a custom software system of our own. We also build a custom matching system for matching
the scene graphs of two navigated scenes.

1.4 Thesis Structure

Chapter 1 introduces the problem we approach in this thesis and how it relates to the larger
literature body in the mobile robotics field.

Chapter 2 presents the state of the art of several components that are necessary for a mobile
system capable of solving the approached problem.

Chapter 3 describes the mobile sentinel robot developed, both in terms of hardware and
software infrastructure.

Chapter 4 is a description of the proposed methodology for creating topological maps and
recognizing locations, we also present the evaluation process which we use for ascertaining if
location recognition was successful.

Chapter 5 provides an overview of the main experiments performed as well of the results
obtained. A critical analysis of interesting observations is provided. Different experiment setups
are shown to evaluate the system at different degrees of difficulty and different conditions.

Chapter 6 summarizes the work developed and its main achievements. Possible avenues for
future work and system improvement are also provided.

2VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM).
http://ccwu.me/vsfm/index.html

http://ccwu.me/vsfm/index.html
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Chapter 2

Background and State of the Art

Since our approach relies on SLAM systems we provide background on the main approaches
that utilize our sensor suite. There are two main approaches to solving the visual and, by
extension, the visual-inertial (VI) SLAM problem. There is the classical way of solving V-
SLAM which is a filter-based solution, solved for real-time applications in [11] and other, that
estimates both the system’s pose and the tracked landmarks positions by enlarging the state
vector and then using a filter such as the Extended Kalman Filter (EKF) to predict the evolution
of the entire state. There are particle filters that model the state as a stochastic process and
sample the state space in order to estimate current pose and map state [22]. And there is the
key-frame bundle adjustment (BA) strategy used by [5][15] and others, based on optimization
algorithms, which find the pose of the system by minimizing the pose error between several
keyframes taking into account the movement model. This later strategy is capable of better
accuracy than the former but demands higher computation time [21].

2.1 Filter-Based Visual and Visual-Inertial SLAM

The first visual SLAM algorithm capable of real time performance was proposed in [11] and
updated in [8]. The following is an explanation of the mathematics behind MonoSLAM, which
will also serve the purpose of explaining the motion model used in most state-of-the-art algo-
rithms that deal in the euclidean plane, as opposed to manifolds in Lie algebra which is another
common representation in today’s state-of-the-art algorithms [16] [25]. It should also serve
the purpose of representing a template for how filter-based SLAM algorithms work. It uses an
extended Kalman filter (EKF) for state estimation.
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MonoSLAM, Assumption of Smooth Motion

The model used is a statistical motion model, that assumes constant velocity and constant an-
gular velocity, with undetermined accelerations having a Gaussian profile. This assumption
imposes smoothness on the expected camera motion, i.e., very large accelerations are relatively
unlikely. At each time step unknown linear acceleration aW and unknown angular acceleration
αW processes of zero mean and Gaussian distribution cause an impulse of velocity and angular
velocity:

n =

[
VW

ΩR

]
=

[
aW∆t

αW∆t

]
(2.1)

The covariance matrix of noise vector n is assumed to be diagonal, representing uncorrelated
noise in all linear and rotational components.

State update

The state update produced is:

fv =



rWnew

qWR
new

vWnew

ωRnew


=



rW + (vW + VW )∆t

qWR × q((ωR + ΩR)∆t)

vW + VW

ωR + ΩR


(2.2)

Here, the notation qWR × q((ωR + ΩR)∆t) denotes the quaternion trivially defined by the
angle-axis rotation vector (ωR+ΩR)∆t. With rW representing the camera position in the world
frame, with qWR being the quaternion defining its orientation relative to the world frame, with
vW defining its linear velocity and ωR defining its angular velocity.

In the EKF, the new state estimate fv(xv,u) must be accompanied by the increase in state
uncertainty (process noise covariance) Qv for the camera after this motion. We find Qv via the
Jacobian calculation:

Qv =
δfv
δnv

Pn
δfv
δnv

>
(2.3)

where Pn is the covariance of noise vector n. EKF implementation also requires calculation of
the Jacobian δfv

δxv
. The rate of growth of uncertainty in this motion model is determined by the
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size of Pn and setting these parameters to small or large values defines the smoothness of the
motion expected. With small Pn, a smooth motion with small accelerations is expected, and
would be well placed to track motions of this type, but unable to cope with sudden rapid move-
ments. High Pn means that the uncertainty in the system increases significantly at each time
step and while this gives the ability to cope with rapid accelerations the very large uncertainty
means that a lot of good measurements must be made at each time step to constrain estimates.

Measurement Model

Active Feature Measurement and Update
This section concerns to the measurement of features that are already in the SLAM map.

Each observed feature imposes a constraint between the camera location and the corresponding
map feature. Observation of a point yi(xi) defines a ray coded by a directional vector in the

camera frame hC =
[
hx hy hz

]
. For the standard parametrization, xi =

[
Xi Yi Zi

]>
:

hRL = RRW (yi
W − rW ) (2.4)

With a perspective camera, the position (u, v) at which the feature would be expected to be
found in the image is found using the standard pinhole model:

hi =

u
v

 =


u0 − fku

hR
Lx

hR
Lz

v0 − fkv
hR
Ly

hR
Lz

 (2.5)

where fku, fkv, u0, and v0 are the standard camera calibration parameters.

The Jacobians of this two-step projection function with respect to camera and feature po-
sitions are also computed. These allow calculation of the uncertainty in the prediction of the
feature image location, represented by the symmetric 2 × 2 innovation covariance matrix Si,
with radially unwarped perspective-projected coordinates, ud = (ud, vd), that are the final pre-
dicted image position:

Si =
∂udi
∂xv

Pxx
∂udi
∂xv

>
+
∂udi
∂xv

Pxyi
∂udi
∂yi

>
+
∂udi
∂yi

Pyix
∂udi
∂xv

>
+
∂udi
∂yi

Pyiyi
∂udi
∂yi

>
+R (2.6)

The constant noise covariance R of measurements is taken to be diagonal with magnitude
determined by image resolution. Si represents the shape of a 2D Gaussian probability density
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function (PDF) over image coordinates and choosing a number of standard deviations (gating,
normally at 3) defines an elliptical search window within which the feature should lie with high
probability. Correlation searches always occur within gated search regions, maximizing effi-
ciency and minimizing the chance of mismatches. Si is also a measurement of the information
content expected of a measurement. This means feature searching with high Si will provide
more information [10] about estimates of camera and feature positions. In the case that many
candidate measurements are available those with high innovation covariance are selected, limit-
ing the maximum number of feature searches per frame to the 10 or 12 most informative in the
original paper.

Conclusion

MonoSLAM was an advancement in terms of visual real-time SLAM. It proved that with
enough ingenuity it was possible to use a single camera to do SLAM. Since the original pa-
per was published, a plethora of research has been done on this topic, both in the direction of
improving the filter-based SLAM like in [11] [24][25][19] , as well as in the direction of op-
timization algorithms, [5][15], which tend to be more precise at the cost of computation time
[21].

The motion model, state representation and filter strategy discussed in this section are rep-
resentative of the structure used in most filter-based strategies of the state of the art approaches,
with the exception of the state which has another common representation in the form of a Lie
group representation [25]. There are new and improved filters which generally add or remove
constraints to either estimate better or faster the state, but the probabilistic approach remains
the same.

2.2 Fusion of Inertial and Visual inputs

The addition of a different sensor’s information is very useful for better estimating the already
observable variables of the state, but also to introduce new observable state variables in case
such is possible.

Inertial measurement units provide information on the acceleration, angular rate and, if the
IMU has a magnetometer, the surrounding magnetic field. A monocular camera provides much
information about the world, but one state variable that is not observable is the true scale.

By fusing these two sensors it is possible to estimate this variable while also improving the
estimates of all other state variables while solving SLAM.
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Fusing both of these sensors data is done in several ways in the literature [21]. It is possible
to classify all of them into one of two groups: loosely-coupled or tightly-coupled.

The loosely-coupled fusion, in either filtering or optimization-based estimation, processes
the visual and inertial measurements separately to infer their own motion constraints and then
fuse these constraints. In contrast the tightly-coupled approaches directly fuse the visual and
inertial measurements within a single process.

Tightly-coupled fusion seems to yield better results and researchers postulate the decoupling
of visual and inertial constraints of loosedly-coupled fusion results in information loss [21].

There is a need of preintegrating inertial measurements before fusing them with visual in-
formation and it comes from the different sample rates of the IMU and camera, +100Hz and
~30Hz respectively, which would require that the filter computed updates at high rates or that
the system stored a large number of inertial observations to process them in batch when new
visual information is available.

By first integrating these observations they can be treated as a single observation in the filter,
reducing the problems listed previously.

First introduced in [24], where the authors employed the discrete integration of the inertial
measurement dynamics in a local frame of reference, preventing the need to reintegrate the state
dynamics at each optimization step. However, due to the use of Euler angles in the orientation
representation, it suffers from singularities.

In [16] a different orientation representation based on manifolds is introduced which presents
a singularity-free orientation representation on the SO(3) manifold.

Recently a closed form solution for preintegration on manifold was presented in [12].

After preintegration one has access to, for each camera frame, a single IMU measure which
can either be used for filter-based SLAM solvers or optimization based solvers.

2.3 Unscented Kalman Filter

The Brossard et al. [25] filter is a foundation of our project as the chosen SLAM system uti-
lized. It is an Unscented Kalman filter on Lie groups that fuses camera and IMU measurements
together in order to estimate the system’s state. We discuss the system models that this filter
utilizes and will also provide an introduction to the Lie theory required for an overview of these
models and the filter in Appendix B and provide here a summary of the filter.
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Filter Summary

The filter architecture is presented as:

state

{
χ = exp(ξ)χ

bn = bn + b̃
,

[
ξ

b̃

]
∼ N (0, Pn), (2.7)

dynamics
{
χn, bn = f(χn−1, un − bn−1, nn) , (2.8)

{
Yn = [y1

> ... yp>] := Y(χn, ωn)

yi according to eq.B.11, i = 1, ..., p
, (2.9)

with (χn, bn) as the mean estimate of the state at time n, Pn ∈ R(15+3p)×(15+3p) as the co-
variance matrix that represents the state’s uncertainties (ξ, b̃), and vector Yn that contains the
observations of the p landmarks with associated Gaussian noise ωn ∼ N (0, W).

Figure 2.1: Block diagram of Unscented Kalman filter on Lie groups used in our work.
From [27]

2.4 Optimization on Visual and Visual-Inertial SLAM

Optimization for local pose estimation is a popular method in recent research for solving SLAM
[30] [15] [39] [5].

It provides better overall accuracy compared to filter-based pose estimation because re-
linearization is performed during each iteration step. There is no inconsistency issue in opti-
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mization based SLAM and thus the quality of the estimate is higher than that of EKF-SLAM,
which linearizes only once leading to higher linearization errors.

The optimization for local pose estimation problem can be formulated as a non-linear least
squares (NLLS) problem with parameters to be estimated including all the robot poses and all
the feature positions. This NLLS problem can be solved by iterative methods such as Gauss-
Newton or Levenberg - Marquardt.

ORBSLAM3

One state of the art complete SLAM system that uses an optimization approach is ORBSLAM3
[5], and the following is the author’s formulation for this optimization problem.

The estimated state includes the body pose Ti = [Ri, pi] ∈ SE(3), the velocity vi in the
world frame and the gyroscope and accelerometer biases, bgi and bai, which are assumed to
evolve according to a Brownian motion. This leads to the state vector:

Si
.
= {Ti,vi,b

g
i ,b

a
i }. (2.10)

The IMU measurements between two consecutive frames i and i + 1 are preintegrated fol-
lowing the theory developed in [24] and formulated on manifolds in [16]. The preintegrated
rotation, velocity, and position measurements, denoted as ∆Ri,i+1, ∆vi,i+1 and ∆pi,i+1 as well
as a covariance matrix ΣIi,i+1 are obtained for the whole measurement vector. Given these
preintegrated terms and states Si and Si+1, the definition of inertial residual rIi,i+1

is adopted
from [16]

rIi,i+1
= [r∆Ri,i+1

, r∆vi,i+1
, r∆pi,i+1

]

r∆Ri,i+1
= Log

(
∆RT

i,i+1R
T
i Ri+1

)
r∆vi,i+1

= RT
i

(
vi+1 − vi − g∆ti,i+1

)
−∆vi,i+1

r∆pi,i+1
= RT

i

(
pj − pi − vi∆ti,i+1 −

1

2
g∆t2

)
−∆pi,i+1

(2.11)

where Log : SO(3) → R3 maps from the Lie group to the vector space. Together with inertial
residuals, the authors also use reprojection errors rij between frame i and 3-D point j at position
xj

rij = uij − Π
(
TCBT−1

i ⊕ xj
)

(2.12)
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where Π : R3 → Rn is the projection function for the corresponding camera model, uij is the
observation of point j at image i, having a covariance matrix Σij,TCB ∈ SE(3) stands for the
rigid transformation from body-IMU to camera (left or right), known from calibration, and⊕ is
the transformation operation of SE(3) group over R3 elements.

Combining inertial and visual residual terms, visual–inertial SLAM can be posed as a
keyframe-based minimization problem [23]. Given a set of k + 1 keyframes and its state
S̄k

.
= {S0 . . .Sk} and a set of l 3-D points and its state X .

= {x0 . . .xl−1}, the visual–inertial
optimization problem can be stated as follows:

min
S̄k,X

 k∑
i=1

∥∥rIi−1,i

∥∥2

Σ−1
Ii,i+1

+
l−1∑
j=0

∑
i∈Kj

ρHub

(∥∥rij∥∥Σ−1
ij

) (2.13)

where Kj is the set of keyframes observing 3-D point j. For the reprojection error, the au-
thors use a Huber kernel ρHub to reduce the influence of spurious matchings, while for inertial
residuals, it is not needed since miss-associations do not exist.
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Figure 2.2: Full ORBSLAM3 system overview, from [5]

Loop Closing and Map merging in ORBSLAM3

The ORBSLAM3 system not only achieves visual inertial SLAM with very good accuracy, but
also provides ORBSLAM-Atlas [13] which enables it with multi-session and multi-mapping
capabilities and provides a way to minimize the hijacked robot problem. ORBSLAM-Atlas
produces a database in which there are a series of maps represented by their keyframes, ma-
points, their covisibily graphs and their spanning trees.

By having a dedicated Loop and Map merging thread that queries the Atlas database at
keyframe rate for a similar keyframe it enables the entire system to always make use of maps
from previous sessions and find potential loop closures.

In case it finds a match for a loop closure it can correct for drift and if the match is from a
non-active map the system will do a full bundle adjustment with all keyframes from both the
current map and the matched map to create the best possible map for the database. It does this
in a separate thread so it does not impair real-time performance.
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2.5 Topological Mapping and Semantic Labeling

Topological maps are graph-like spatial representations. Nodes in such a graph often represent
states in the agent’s state space and edges represent system actions and trajectories that take
the agent from a state to another. The meanings of nodes and edges in a topological map
vary according to the application as well as the algorithms used to build them. In a mobile
robot context, topological map’s nodes most often represent a position in space with edges
representing trajectories and connections between such positions.

Semantic labeling of images is the categorization of visual information according to an
abstract meaning, often related to how humans perceive such information. These meanings
often imply specific properties which are useful for the application at hand. In the context of
mapping and mobile robots, semantic labeling most often refers to categorizing objects and
places.

Topological mapping has been a research topic for many decades with recent advances in
computing power and SLAM enabling progress [3] [18]. Whereas semantic labeling is more
recent in the literature [1] [7] , with real advances being a result of the foundational work done
with machine learning, more specifically, in deep learning and SLAM.

There have been recent works that combine both approaches in a complete system using
sensor suites which directly observe depth [1][6] as opposed to ours which does not.

Libraries like [32] present an opportunity for accurate object-recognition which was not
possible a decade ago, by making use of neural networks like this, it seems that semantic mean-
ing can be assigned to places that a robot navigates, which in turn could enable a more seamless
interaction between humans and robots.

Topological mapping Topological mapping from visual information has been studied exten-
sively in recent years [3][6][18][36].

In order to perform mapping using vision, it is necessary to describe the acquired images
and be able to compare these descriptions. Consequently, the quality of the map will directly
rely on the method used for visually describing the different environment locations.

The method used for representing the image can be classified into four main categories
according to the authors of [18]:

• Methods based on global descriptors, with the image represented by a general descriptor
computed using the entire frame as input.

• Methods based on local descriptors, where interest points are found in the image and then
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a patch around this point is described in order to identify them in other similar images.

• Methods based on the Bag-of-Words (BoW) algorithm 1, where local features are quan-
tized according to a set of feature models called visual dictionary, representing images as
histograms of occurrences of each word in the image;

• Methods based on combined descriptors, where several techniques described above are
used together as a new solution.

Figure 2.3: Classification of vision-based topological schemes according to their image repre-
sentation method. From [18]

There are advantages and disadvantages to each of these representation schemes. In table
2.1 a breakdown of these can be seen.

These image representations serve the purpose of allowing for fast and accurate image
matching which concerns topological mapping in terms of aggregating similar frames to the
same place node.

1https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision

https://en.wikipedia.org/wiki/Bag-of-words_model_in_computer_vision
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Factor Global Descriptors Local Features BoW Schemes

CPU Load Low High Medium
Storage Need Low High Medium
Matching Complexity Medium High Low
Discrimination Power Low High Medium
Perceptual Aliasing Effect High Low Medium
Large-Scale Operation Medium Low High
Spatial Loss Information Medium Low High
Pose recovery complexity High Low Medium

Table 2.1: Advantages and disadvantages for each representation scheme. From [18]

Topology based on geometry A different approach which concerns itself with the geometry
of the environment has also been studied, for example in [3]. From the 3D structure of the
environment, occupancy information can be retrieved and it is possible to create a set of convex
free-space clusters, which form the vertices of the topological map.

This approach lends itself more to sensors that provide depth information such as RGB-D
cameras, stereo cameras and LiDAR. However, there have been good results in estimating the
geometry of an environment through RGB only video [26] which in turn could result in this
approach constructing accurate topological maps using information from a simple RGB camera
alone.

In our proposal we follow the geometric approach to topological mapping. However, we do
not use a sensor suite that directly estimates distance like the ones mentioned before and thus
could decide to pursue a machine learning approach like [26]. Instead, we believe even low
accuracy estimation of the 3D structure of the environment, using a monocular camera, can be
enough to find geometric features to localize a mobile robot and attempt to create topological
maps based on 3D clusters found in the navigated scene.
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Mobile Robot

In this chapter the developed mobile robot will be presented along with the software tools
necessary for its operation. The main components are detailed below along with the full system
overview.

The system architecture used in this the dissertation work is based on the setup constructed
in [27] and [9]. These provide an already working PC interface that can interact with a Rasp-
berry Pi over Wi-Fi to receive the sensor’s data and send command signals. They also provide
software capable of receiving IMU’s readings to an Arduino which then feeds those to the
Raspberry Pi.

In section 3.1 a global vision of the system is provided. In particular are detailed the in-
formation flows and how data is processed. In section 3.1.1 the software created by Cruz [9]
is briefly introduced. In section 3.1.2 all the robot components are detailed and images of the
physical robot are provided, as well as all the wiring connections.

3.1 Global System

As depicted in figure 3.1, the hardware can be divided in two main subsystems: the mobile
robot and the user’s PC. The first one provides the visual-inertial data, while the latter has to be
able to receive said data, store it, process it and send control signals for the motor driver back.

While it would be preferable to have all calculations made onboard, with current affordable
micro-controllers or micro-computers, the computing power would not be enough for the sys-
tem to handle real-time performance. Therefore, major computations are offloaded to the user’s
PC inside Matlab. Communication between subsystems is made via a TCP/IP client-server
system created by Cruz [9].
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Figure 3.1: General overview of the system

3.1.1 PC Subsystem

The user’s PC connects to the mobile robot via a client connection. A Java GUI was written
to allow for a better user experience, both for connecting to and controlling the robot. Matlab
has to be configured to work with the Java GUI. It is inside Matlab that all computations and
processing of data occur. This has several advantages, namely, the easiness of plotting and
fast prototyping for new or improved software. Another advantage is that there is a substantial
number of libraries available for Matlab which can help accelerate and ease the development of
the proposal.

3.1.2 Mobile Platform Subsystem

The robot hardware setup follows a similar structure to [27], with some of the components
upgraded to newer versions: a Raspberry Pi model 4b 4GB, an Arduino Mega 2560 R3, a
Raspberry Pi Camera (B) Rev 2.0, a SparkFun’s 9DoF IMU Breakout - ICM-20948, Pololu’s
DRV8833 Dual Motor H-Bridge driver, a Multi-Chassis 4WD robot Kit (4DC Motors) with
battery holder and 2x PowerBanks, with capacity of 5000 mAh and 6000 mAh.

The main computational unit of this subsystem is the Raspberry Pi 4B. It hosts the TCP/IP
server to communicate with the PC which also acquires data from the Arduino. The IMU’s data
is read using an Arduino sketch written in C++, which is then fed to the previously mentioned
server script.

No processing or filtering of the data happens in this subsystem with the exception of the
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digital motion processing (DMP) that occurs on the IMU chip itself. All wiring connections can
be consulted in figure 3.2 and the full robot setup is depicted in figure 3.3.

Figure 3.2: Wiring for the mobile system

3.2 Camera Intrinsic and Camera-IMU Extrinsic Calibra-
tion

Calibration of sensor systems is important for any task or project where sensors are used. All
measurements will have biases or gaussian error that will interfere with system calculations and
predictions. In the case of our sensor suite, a camera and an IMU, both intrinsic and extrinsic
calibration parameters were estimated. In this section we detail the procedures taken and the
calibration results.
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3.2.1 Camera Intrinsics Calibration

For calibration purposes we considered the pinhole camera model and the radial-tangential
distortion model. To have accurate estimation of landmark positioning using the camera sensor,
it is necessary to estimate the camera’s intrinsic parameters, the optical center C = [cx cy],
the focal length f = [fx fy] and the skew coefficient s. With these we can create the camera
intrinsic matrix K:

K =

fx s cx

0 fy cy

0 0 1

 (3.1)

In addition we also wish to estimate the radial distortion r of the camera by two parameters
r = [r1 r2].

For this purpose, we utilized Kalibr toolbox 1. It is a ROS toolbox for calibration pur-
poses of various sensors and sensor configurations. It allows for both intrinsic and extrinsic
calibration of sensor systems. We used their rolling shutter camera calibration procedure for
this calibration [28]. First we recorded a sequence of images with the mobile robot stationary
and the calibration target, seen in figure 3.4, being moved in front of the camera as to capture
several angles, with the target filling as much of the camera field of view as possible.

This dataset was then converted to a rosbag in order for us to run the calibration library.
After calibration the parameter results were:

1083.4 0 335.0879

0 1076.4 257.0793

0 0 1

 , (3.2)

and

r = [−0.4373 0.2476] (3.3)

1Kalibr is an open source library for solving several calibration problems: https://github.com/
ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr
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Figure 3.4: Calibration target used for both intrinsic camera parameters and Camera-IMU ex-
trinsic parameters.

3.2.2 Camera-IMU extrinsics Calibration

In order to run our own datasets, we must estimate the rigid trannsformations from the camera
to IMU Tic, and from the IMU to the camera Tci.

We once again employed Kalibr toolbox 2 for this estimation. This ROS toolbox enables
us to execute a spatial and temporal calibration of a visual inertial system (camera-IMU) [17].
It is essential to note that in order to execute this calibration, a body containing these sensors
and ensuring that they remain fixed is required. If the positioning of the sensor changes, a
second calibration would be necessary. The prerequisites for this calibration were to supply the
toolbox with the intrinsic parameters of the IMU and camera. This includes the noise density
and random walk for the accelerometer and gyroscope in the IMU. In an ideal situation, these
would be included in the manufacturer’s datasheet. The manufacturer for our own IMU did not
provide these two values. We used average values found for IMUs of similar quality for both
noise density and random walk of each of the two sensors, the accelerometer and gyroscope.

In this calibration, the calibration target is fixed, and the camera-IMU system is moved in
front of the target to excite all IMU axes. It is essential to ensure that the calibration target
is well-lit and uniformly illuminated, and to keep the camera’s shutter speed low to prevent
excessive motion blur.

As previously, we converted the acquired dataset to a rosbag in order for us to run the
calibration library.

The resulting transformations estimates from the camera to IMU Tic, and from the IMU to
the camera Tci are as follows:

2Kalibr is an open source library for solving several calibration problems: https://github.com/
ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
https://github.com/ethz-asl/kalibr
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Tic =


0.0116 0.0364 0.9993 0.1903

−0.9993 0.0371 0.0102 0.0396

−0.0367 −0.9986 0.0368 0.006

0 0 0 1

 , (3.4)

Tci =


0.0116 −0.9993 −0.0367 0.0376

0.0364 0.0371 −0.9986 −0.0025

0.9993 0.0102 0.0368 −0.1907

0 0 0 1

 , (3.5)

and with temporal shift of the data [s]timu = tcam + shift estimated at shift = −0.04175.
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(a) Side view

(b) Front view (c) Rear view

Figure 3.3: Robot setup. Main components involve a Raspberry-Pi, an Arduino, a Pan-tilt
camera, and four DC motors with a dual motor power driver.
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Chapter 4

Geometric Scene Labeling and Place
Registration

Figure 4.1 illustrates the proposed solution of our work. Given a mobile ground robot doing
landmark-based SLAM that loses metric tracking for any reason, is it possible to answer the
question "What was the nearest Place?".

In order to accomplish this, we generate a topological framework that maps the scene with
nodes representing Places via a previous navigation that generates a database for comparison.

Figure 4.1: Basic diagram of the proposed methodology. Given a sentinel robot navigating a
previously mapped environment, can the robot recognize its current location based on the notion
of Places.

4.1 Hijacked Robot problem

The hijacked robot problem is defined as the ability of the robot to localize itself after being
physically moved to a different unknown location. This is a global localization problem for
which the robot needs a previous map of the environment to be able to solve it.

The type of solutions used often depend on the SLAM framework chosen. Our proposed
methodology is a method that relies on 3D landmark tracking which is one of the most common
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map representations used for SLAM frameworks. It attempts at providing a solution for this
problem without providing a new metric robot pose as output. Instead, it locates the robot
topologically, matching its current position to the closest place, defined in section 4.3.1.

4.2 Topological Mapping

As defined by Vale [37] topological maps are graph-based representations of environments com-
posed of nodes (or states) and links. Nodes or states can be thought of as separate locations that
the robot should be able to identify using external sensors. Links contain information about
traversing the connected nodes using internal and/or external sensors and represent paths or
actions between endpoints. The current node is defined as the node of the map containing
properties that most closely match the measurements from external sensors.

Topological ideas allow for recognition of locations without a need for accurate metric in-
formation, providing a potential approach for addressing the hijacked robot problem. In our
proposal, location recognition will be based on the overall structure of landmarks tracked by
the SLAM system. This structure can be robust to slight metric errors.

Figure 4.2: Topological graph example. Each node, or state, represents a Place with edges
between nodes holding information about going from one Place to the next. Edges in our
proposal hold the bearing angle between the centroids of adjacent places.

4.3 Place registration as a solution

As discussed, an advantage of topological mapping is that robot localization does not require
highly precise metric estimation and navigation. If the mobile robot system can traverse from
node to node and identify at which node it currently is, topological mapping and navigation is
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a success. By carefully choosing the type of features that identify nodes, topological strategies
might help solve the hijacked robot problem.

We propose a mapping strategy that combines information from a metric SLAM system
with topological mapping such that to recognize a place the robot must only navigate near it
and capture it with its camera, as long as the scene has been previously mapped.

The feature type chosen to represent places in our topological map is the geometry relation
of the 3D landmarks, that are being tracked in the SLAM system. Estimation of structure of
the 3D landmarks has robustness to errors in the metric estimation and does not depend on the
coordinate system used.

We have built a software system to evaluate the proposal. The system is implemented such
that it can use any SLAM framework, provided they output a 3D structure, such as landmarks
being tracked.

4.3.1 Place definition

The methodology used will be based on places. During operation, a SLAM algorithm outputs
the 3D landmarks that it is tracking. These 3D landmarks form a sparse pointcloud of the envi-
ronment. Clusters of landmarks shall be regarded as places and will be the basis for recognizing
locations in our proposal. Places hold the geometric information of every point of the cluster.
It holds the cluster’s centroid information as well as the images that are associated to each 3D
point, if available. The algorithm chosen for the clustering of landmarks is DBSCAN [14].

Places are labeled. In our proposal the labeling method is not explored. In future research
labeling might be based on object or room recognition such that places have semantic meaning.
Places are the nodes of the topological graph.

4.3.2 3D pointcloud information

The SLAM system used must provide 3D information of a pointcloud of mapped points. The
more accurate the SLAM system chosen is at providing this information, the better the geomet-
ric structure of the environment is captured. The chosen SLAM algorithm for providing this
information in our work is based on the work of Brossard et al.[25]. We provide both the IMU
information and the camera frames, and receive as output the 3D information of the landmarks
and the trajectory taken by the robot.

In some experiments we utilize structure from motion software to create the 3D structure
of the environment as if it was the output of a SLAM system. This is because initialization is
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important for the filter’s stability and no initialization parameters exist for our own datasets.

4.3.3 Clustering 3D landmarks

DBSCAN for place creation

DBSCAN is an acronym that stands for Density-Based Spatial Clustering of Applications with
Noise. It is an algorithm for clustering data based on density. The approach aggregates suffi-
ciently dense regions into clusters and identifies clusters of arbitrary structure in noisy spatial
databases. It represents a cluster as the most densely connected group of points.

The idea of density-based clustering incorporates the following definitions:

• The neighborhood within a radius ε of a certain object is referred to as the object’s ε-
neighborhood.

• If the ε-neighborhood of an object contains at least a minimum amount of other objects,
MinPts, the object is referred to as a core object.

• An object p is directly density-reachable from an object q if p is within q′s ε-neighborhood
and q is a core object.

• An object p is indirectly density-reachable from object q in a group of objects, D, if there
exists a chain of objects p1,..., pn, where p1 = q and pn = p, where pi+1 is directly
density-reachable from pi, for 1 ≤ i ≤ n.

• An object p is density-linked to another object q in a group of objects, D, if there exists
an object o within D from which both p and q are density-reachable.

• Only core objects are densely accessible to one another. This density connectivity rela-
tionship of core objects is, therefore, symmetrical. This is not the case for objects other
than core objects.

• A density-based cluster is a maximally density-reachable collection of density-connected
objects. Each object not contained in a cluster is considered noise.
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DBSCAN searches for clusters by examining the ε-neighborhood of each datapoint. If the
ε-neighborhood of datapoint p contains more than MinPts, a new cluster is created using point
p as the core datapoint. DBSCAN collects directly density-reachable datapoints repeatedly
from these core datapoints, which may include the merging of a few density-reachable clusters.
When no new points can be added to any cluster, the process removes the corresponding points.

Figure 4.3: DBSCAN visualization. From [20]. In our case, datapoints are 3D points that are
clustered by density into places that represent nodes in the scene graph.

For our application, the clusters of landmarks found in the first navigation performed will
represent places and in the second locations which are candidate places. The two parameters of
the algorithm ε and MinPts were found experimentally.

Using these clusters of landmarks, we can construct a graph with nodes containing infor-
mation about a cluster, and edges containing information about the relationship of two clusters.
Since navigation of the topological map is not the focus of this work, we chose to relate clusters
simply by their relative bearing.

For evaluating our results clusters from the first navigation, places, are matched to clusters
from the second navigation, locations. The quality of cluster matching dictates how well the
system behaves.

4.3.4 Graph Split into Places

Assignments of names to each cluster is done after place creation has happened. The methodol-
ogy used for naming in our work is simple, using a sequential name assignment. In the future,
making use of powerful Machine Learning libraries, it might be possible to conduct analysis of
cluster images such that each Place may have semantic meaning, eg. "chair", "room corner",
"bed" or others.
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4.3.5 Registration

In 3D computer vision, registration is one of the most important problems. The objective of
registration is to identify the transformation that best aligns multiple collections of points in
distinct coordinate systems into a common coordinate system. We consider the registration of
pointclouds obtained by a SLAM framework after each of the two navigations. We will use
the resulting alignement-transformation to change the robot position from scene2’s coordinate
system to scene1’s such that we can find the closest place. The chosen registration algorithm
for our application is the matlab’s implementation of Generalized-ICP which is based on Segal
et al.’s work [35].

We will provide context on the chosen Generalized-ICP algorithm by first introducing the
standard ICP algorithm, also called point-to-point ICP. Afterwards, we give an explanation of
the chosen Generalized-ICP algorithm which is also known as plane-to-plane ICP.

4.3.6 ICP algorithm

With the goal of achieving precise registration of 3D range images, the Iterative Closest Point
(ICP) algorithm was created. It aligns two point clouds by computing the rigid transformation
between them in an iterative manner. Over the past decades, numerous variants have been in-
troduced, the majority of which can be categorized as influencing one of the six stages of the
ICP algorithm [33]:

• A set of points selected from one or both point clouds;

• Matching these points from one point cloud with samples from the second point cloud;

• Appropriately weighing the corresponding pairs;

• Rejecting certain pairs based on an examination of each pair separately or the entire set
of pairs;

• Attributing an error metric to the point pairs;

• Solving the optimization problem.

Due to the fact that all ICP variants may become trapped in a local minimum, they are
generally only applicable when the distance between the point clouds is already sufficiently
small. This deficiency is frequently addressed by estimating an initial transformation using
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Algorithm 1 Standard ICP Algorithm

methods or algorithms that converge to the global minimum but with lower precision. However,
many applications create and process point clouds at a fast enough rate that the precondition of
small distance is met.

The simplest algorithm, which is depicted in algorithm 1, is frequently referred to as the
Standard ICP [35]. To estimate the transformation T between the model pointcloud A and the
data pointcloud B, the algorithm requires the model point cloud A and the data pointcloud B.
In addition, an approximation transformation T0 may be considered. If the unknown, actual
transformation between the pointclouds is sufficiently small, the initial transformation can be
set to identity.

Each iteration, each of the N data pointcloud points is transformed with the current trans-
formation estimation and matched with its corresponding point from model A, this operation is
depicted in line 4 of algorithm 1. If the Euclidean distance between the pairs exceeds dmax,
matches are rejected by setting their weight to 0, as can be seen from line 5 to 9.

The next iteration begins after solving the optimization problem in line 11, which is to
find the transformation T that minimizes the sum of weighted squared distances between the
transformed points and their corresponding match in the target pointcloud.

The algorithm converges when the difference between the estimated transformations of two
consecutive iterations becomes small or when a predetermined number of iterations is reached.
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4.3.7 Generalized ICP

Standard ICP is a point-to-point method, which attempts to align all matched points precisely
by minimizing their Euclidean distance. This does not take into account the fact that an exact
matching is typically not possible due to the different sampling of the two point clouds, which
leads to pairs that do not have perfect equivalence with one another.

Some variants of ICP take advantage of surface normal information to circumvent this is-
sue. In contrast to point-to-point variants, point-to-plane variants take into account the surface
normals of the model point cloud. In addition, plane-to-plane variants take into account the sur-
face normals of both the model pointcloud and also the data pointcloud. The Generalized-ICP
algorithm introduced by Segal et al. [35] falls under the second classification.

Figure 4.4: Plane to plane matching. From Seagal et al. [35]

By applying a probabilistic model to the problem, it modifies the error function in line 11 of
algorithm 1 and assigns a covariance matrix to each point. This is based on the assumption that
each measured point corresponds to a real point and that the sampling can be represented by a
multivariate normal distribution. This results in the new error function:

T ← arg min
T

∑
i

d
(T )>

i (CA
i + TCB

i T
>)−1d

(T )
i (4.1)

where d(T )
i = ai − Tbi, CA

i and CB
i are covariance matrices (assuming that all points which

could not be matched were already removed from A and B and that ai corresponds with bi).
This formula is similar to the Mahalanobis distance, without the square root.

It is proposed to use the covariance matrix
( ε 0 0

0 1 0
0 0 1

)
for a point with the surface normal e1 =

(1, 0, 0)>, where ε is a small constant that represents the covariance along the normal. This
covariance matrix must be rotated for each point based on its surface normal.
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They key benefit of introducing information about the surfaces of both pointclouds is that if
the matching of points reveals inconsistent surface matching, those correspondences will con-
tribute less in the optimization problem. This improves the registration process and provides
more robustness to incorrect correspondences in most indoor scenarios since human construc-
tions are highly structured. This is preferred for our approach since we aim to construct topo-
logical maps of indoor home environments.

4.4 Software diagram and Summary of proposal

We have built a software system to evaluate the proposal. The system is implemented such that
it can use any SLAM framework, provided they output 3D structure, such as landmarks being
tracked.

We have used an unscented kalman filter on Lie groups for fusion of IMU measurements and
camera frames based on Barrau et al. [25]. Since the work by Barrau et al. [25] takes advantage
of IMU measurements we focus on the output of this SLAM framework for some experiments.

The methodology it follows is:

1. Begin first navigation and get information of the scene from SLAM system and all the
landmarks as a pointcloud.

2. Create clusters of landmarks using DBSCAN [14] clustering method on their 3D position.

3. Assign places label to each landmark having each landmark belonging to the same cluster
considered the same place.

4. Begin second navigation and get information of the scene from SLAM system and all the
landmarks as a pointcloud.

5. Match the second navigation’s clusters landmark pointcloud to the prior clusters point-
cloud based on plane-to-plane ICP [35].

6. Use the transformation obtained to transform robot’s position, and places centroids from
second navigation to first.

7. Compute euclidean distance to all places and localize the robot as being at the nearest
place.
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Using this methodology a graph scene composed of places as states is created and matched
to a previous state. The amount of places created is dependent on the 3D observed scene at
the time of clustering and as such may be different from the first navigation to the second. We
assume that the structure of the clusters created is similar enough that a good matching can be
created between navigations.

To evaluate each experiment success, we consider images from the matched clusters using
the process depicted in figure 4.5. We plot the images that generated the 3D points of a place

from Navigation1 and its correspondent from Navigation2. Since the amount of images per
cluster is too large for it to be feasible to show all images, we plot both a reference image for
the place and the mean image. The representative image ir of place X with images i and mean
image im was chosen as such:

ir = min
∀i∈X
|i− im| . (4.2)

Figure 4.5: To evaluate matching success we employ the strategy depicted above. Each place
holds information about each 3D point it contains as well as the associated image from which
the 3D point was first generated. We compare place matches by comparing a representative
image of each matched cluster and the average image of each matched cluster.

A complete diagram of the implemented software design can be seen in figure 4.6. It illus-
trates each of the main steps implemented characterized as a rounded block. Each of the main
blocks is independent of the other ones provided the data structures are kept compatible. This
leaves room for use of a different SLAM system for example. Future study may potentially also
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consider a more advanced form of graph split labeling in which pictures and machine learning
are used to classify clusters as real-world objects.

Figure 4.6: Diagram of complete software implementation
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Chapter 5

Experiments

In this section we will present three types of experiments that were conducted to evaluate the
place registration methodology for solving topological localization recognition.

For each type of experiment, pairs of robot navigations are performed. The first represents
the scene acquisition and place generation for topological mapping. The second represents
scene navigation from which we can verify if current place recognition was successful.

We will first present the different experiment setups. After that we present the obtained
results, followed by an analysis of the data and a discussion of the experiment’s success. To
conclude a critical analysis of which areas can introduce the most improvement for future re-
search is suggested.

We utilize the public EuRoC MAV Dataset Vicon Room 1 02[4], for one of the experiment
setups since the authors of [25] provided initialization parameters specific to this dataset. For
the experiment using this dataset we utilized the SLAM filter [25] described in section 2.3.

All other datasets were acquired with the mobile robot described in chapter 3.

Since achieving SLAM is not the focus of our work, we utilize a structure from motion
software package, VisualSFM 1, to acquire a 3D pointcloud for home datasets. We then apply
our proposed methodology on this 3D structure as if it was the output of a SLAM system.

5.1 Experimental Setups and Implementation Details

All types of experiments conform to the same fundamental structure.

First, a navigation is performed to map the surroundings and collect the labeled scene graph

1VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM).
http://ccwu.me/vsfm/index.html

http://ccwu.me/vsfm/index.html
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and model pointcloud. This navigation will be referred to as Navigation1.

Second, another navigation is carried out, this time with the conditions being altered based
on what type of experiment is being carried out. This navigation will be referred to as Naviga-
tion2. It will observe the same or a portion of the same scene as Navigation1 and produce a new
scene graph and pointcloud that will be matched to the first one.

Setup I For experiment setup I, we will present results with EuRoC MAV Dataset Vicon
Room 1 02[4].

For this experiment we will analyse the simplest case.

Navigation2 will be a subset of the dataset used for Navigation1. Since Navigation2 is a
subset of Navigation1, the observed scene is also a subset of the previous scene with precisely
the same perspective of observation.

This experiment serves as a proof of concept for the methodology and, in case of failure,
would demonstrate a fundamental problem with either the approach or the sub components.

This is the only setup for which we use the public Euroc dataset.

Setup II All other datasets are acquired at the house of the author. Common house objects,
such as books, were spread out through the scene so that the SLAM system and the structure
from motion software have more visual features to track.

The sentinel mobile robot navigates through a room at a slow speed, with some stops and
with several turns in its trajectory. It acquires visual and inertial data from its sensors which is
sent to the PC software system to perform all calculations. It performs one of two trajectories
that were traced on the ground using coloured tape.

For this experiment Navigation1 and Navigation2 observe the same scene with very similar
trajectories, Navigation2 being a re-acquisition of Navigation1. No modifications were made to
the environment. The second navigation starts and ends at a different, but similar, location to
the first navigation.

Setup III For this setup, the robot takes a different trajectory observing the same scene. The
trajectory of the mobile robot in Navigation1 is the same as for Setup II Navigation1. For Nav-
igation2 a new dataset using a different trajectory was acquired. A estimation of the groudtruth
for both navigation can be seen in figure 5.9.

This is a more complex case than the previous experiments. With different perspectives
on the scene and a different trajectory, it is more challenging to obtain a 3D structure that is
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comparable between navigations. We postulate that clusters will still form according to the
objects seen, permitting correct matches.

5.2 Experiment I: EuRoC Datasets

This experiment uses Setup I. The navigations used for this are taken from the EuRoC MAV
Dataset Vicon Room 1 02 dataset. We use the SLAM system from Barrau et al. [25] and utilize
this public dataset since it is the only one for which the chosen SLAM system provides the
initialization parameters for. We use this SLAM filter to compute both the trajectory of the
robot and the 3D structure of the scene. We then use this output and perform our proposed
methodology of place clustering and place matching.

(a) Ground truth path for navigation 1 (b) Ground truth path for navigation 2

(c) Nav.1 frame 1 (d) Nav.1 frame 79 (e) Nav.1 frame 141 (f) Nav.1 frame 368

(g) Nav.2 frame 1 (h) Nav.2 frame 135 (i) Nav.2 frame 214 (j) Nav.2 frame 414

Figure 5.1: Representation of Navigation1 and Navigation2 for Experiment I. From left to right,
first frame, early middle frame, late middle frame, last frame.

Navigation1 initiates at the same time as Navigation2. Navigation1 composes 6000 IMU
iterations and 600 frames. Navigation2 composes 4000 IMU datapoints and 400 frames. A



40 Experiments

representation of Navigation1 and Navigation2 can be seen in 5.1.

From running the Barrau et al.[25] software we receive as output both the trajectory of the
mobile robot and the 3D structure of the environment. The filter only holds thirty landmarks at
all times, removing old ones when a new 3D landmark is required. We require more that thirty
3D points to evaluate our proposal and so we externally save all landmarks the first time they
are added to the filter. This means they are never updated inside the filter after we save them
which, in turn, means there is less accuracy.

Figure 5.2: Filter estimation results for Navigation1 for orientation error and trajectory error.

Even with less 3D geometric accuracy we postulate that as long as there can be a match
between scenes, clusters will form around the same locations and places can be extracted and
matched.

After running the SLAM filter we obtain the 3D pointclouds and the robot trajectory, as well
as the comparison with groundtruth. We show in figure 5.2 and in figure 5.3 the filter estimations
and their groundtruth comparison for Navigation1 and Navigation2 respectively. The filter can
at first very accurately track position and orientation of the robot with errors accumulating as
more iterations are run. These tracking results should provide quality 3D structure estimation
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Figure 5.3: Filter estimation results for Navigation1 for orientation error and trajectory error.

that is enough to attempt place construction and scene matching.

In figure A.1 we show the pointclouds without normalization and no centering. The dimen-
sions used are the dimensions estimated inside the filter. The pointclouds produced for Navi-
gation1 and Navigation2 were identical up to the point of Navigation2 cutoff. This is expected
since the navigations utilize the same dataset, with Navigation2 using a subset of Navigation1.
Scene matching is thus significantly easier in this experiment in terms of the structure of the
scene.

For registration using plane-to-plane ICP we utilized an inlier-ratio of 0.75 for this pair
of navigations. The registration from scene1 to scene2 shows near perfect results in terms
of visual appraisal. The root average squared error of the registration was 0.0023 m. It is
understandable that registration is done very successfully since we utilize a subset of the same
dataset in Navigation2 compared to Navigation1 and the filter created an identical pointcloud
up to the cutoff point of Navigation2.

In figure A.2 we show the pointclouds from an above view with the coloured clusters ob-
tained from DBSCAN, note the axis’ relative size is not kept. The clustering parameters, cluster
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distance and minimum points per cluster, used for this experiment were 0.3 m and 11 respec-
tively for both navigations. For this experiment the amount of clusters created in Navigation1
was ten and for Navigation2 was six. Between navigations we can observe that there are some
clusters that Navigation1 could produce due to more data points that Navigation2 could not.

Figure 5.4: Estimated trajectory of Navigation1 in scene1 (left) and estimated trajectory of
Navigation2 in scene1 after matching it to the correct frame of reference. In both plots we show
the found places from Navigation1.

Another interesting observation is that some clusters in Navigation1 further divided into sub-
clusters compared to Navigation2. Visual inspection suggests that clusters have been created
in the same general vicinity of the scene, further analysis of this is done when we present the
matching results.

Matching Results - From the previously shown alignment of scenes we have available the
rigid transformation from scene2 to scene1. By applying the registration to the clusters and
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matching them using smallest euclidean distance we obtain the matching shown in figure 5.5.
To evaluate how good the matching process was, we show in figure A.3 a representative

image for each place and the average image associated to the place, with the standard brightness
deviation shown below.

Since images are taken in motion and a specific place is observed from several close but
different perspectives it is normal for average images to present some blur. Because this dataset
is from a drone that moves at a relatively high velocity, it is expected that this will happen.

In Place1 we note that the average image has a very high standard deviation and appears
very blurred. This seems to be due to the fact that the cluster associated a lot of 3D points and
their related image. While a lower clustering distance might have solved this problem, some
places could become unrecognizable by the system due to having their core points farther away.

Another observation is that there seemed to be some repetitions of matches. This is because
different clusters formed around the same visual area. This could be solved by instead of low-
ering, increasing the clustering distance such that partitioning of clusters near each other does
not happen.

From this we can gather that there is a clear trade off in terms of clustering distance depend-
ing on the problems we wish to avoid.

Despite these problems, all place matches have been made correctly, with representative
images depicting close locations of the room.
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Figure 5.5: Visual representation of place matching between navigations, according to closest
place centroids. For this experiment all clusters found in Navigation2 found a place match in
Navigation1. However, not all places from Navigation1 had a correspondence. This might hap-
pen if a different amount of clusters is found or if the closest place from Navigation1 is the same
for two clusters found in Navigation2, in which case only the closest cluster of Navigation2 is
matched to the place of Navigation1. Since Navigation1 was an extension of Navigation2 it is
reasonable that there are places that were not sufficiently visited in Navigation2.
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5.3 Experiment II: Similar Paths - Wheeled Mobile Robot

The navigations used for this experiment are a pair of navigations taken at home using the
trajectory depicted in red in figure 5.6(b). This experiment uses setup II, with Navigation2
having a similar trajectory to Navigation1 but different starting point and ending point and
thus observing the scene from a different but very similar perspective. A representation of
Navigation1 and a representation of Navigation2 can be seen in figure 5.6.

(a) Setup (b) Ground truth path

(c) Nav1 fr.1 (d) Nav1 fr.85 (e) Nav1 fr.164 (f) Nav1 fr.226 (g) Nav1 fr.455

(h) Nav2 fr.1 (i) Nav2 fr.33 (j) Nav2 fr.16 (f) Nav2 fr.247 (k) Nav2 fr.447

Figure 5.6: Setup for experiment 2. The photo on the left portrays the scene the robot navigates
in. The trajectory portrayed on the right is in [cm]. The red arrows indicate the sections of
the trajectory taken by the robot for this navigation. We preconstructed the trajectory by using
colored tape on the ground and then took measurements, using measuring tape and a protractor,
for the length of each section and the angle between them respectively.

In this experiment, in order to avoid the precise calibration of camera and IMU sensors,
required in [25], and the initial landmarks initialization, we produced the 3D structure of the
scene by using a structure from motion software, VisualSFM 2. We use the pointcloud of this

2VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM).
http://ccwu.me/vsfm/index.html

http://ccwu.me/vsfm/index.html
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software as if it was the output of a SLAM system, and associate places from navigation to
navigation. The localization module is, however, turned off since there is no trajectory or pose
estimation output. Using just images implies a scale reconstruction ambiguity. Because of this,
Navigation1 and Navigation2 pointclouds are not constructed at the same scale. To deal with
this problem we normalize and center both pointclouds.

In figure 5.7(c) we show the pointclouds after normalization and centered at the origin. The
poinclouds produced for Navigation1 and Navigation2 were fairly similar with some noticeable
differences in density in some areas, and different edge points. This is to expect since the
navigations did not start and end at the exact same place even if close. The navigations also did
not have the exact same trajectory since Navigation2 is a re-acquisition of Navigation1, leading
to natural differences in robot motion which is not controlled for.

For registration using plane-to-plane ICP we utilized an inlier-ratio of 0.8 for this pair of
navigations. The registration from scene1 to scene2 produced acceptable results in terms of
visual appraisal. The root average squared error of the registration was 0.0083 in normalized
distance units. For better visual inspection we provide coloured pointclouds for the result of
both navigations in figure 5.7(a) and (b).

In figure A.4 we show the pointclouds from a front view with the coloured clusters obtained
from DBSCAN, note the axis’ relative size is not kept. The clustering parameters, cluster
distance and minimum points per cluster, used for this experiment were 0.015 of normalized
distance and 200 respectively for both navigations. We can confirm from visual inspection that
clusters are highly dependent on the 3D structure of the scene. The amount of clusters created
in Navigation1 was seven and for Navigation2 was six. The locations of the clusters visually
align from one 3D structure to the other which is promising.
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(a) Coloured pointcloud obtained from Navigation1

(b) Coloured pointcloud obtained from Navigation2

(c) Pointclouds obtained from Navigation1 (blue) and from Navigation2 (red).

Figure 5.7: Experiment II pointclouds. In (a) and (b) we can observe that the objects in the
middle of the trajectory were better captured by VisualSFM, compared to the edges of the scene.
Particularly the right side of the scene was not very well captured. A possible reason might
be less features for matching in that area, along with having less available frames observing
the location. On the left of (c) we show the superimposed pointclouds after normalization
and centroid centering without registration. On the right of (c) we show the pointclouds after
registration using plane-to-plane ICP with an inlier threshold of 0.8.

Matching Results - From the previously shown alignment of scenes, we have available the
rigid transformation from scene2 to scene1. By applying the registration to the clusters and
matching them using smallest euclidean distance we obtain the matching shown in figure 5.8.

To evaluate how good the matching process was, we show in figure A.5 a representative
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image for each place and the average image associated to the place, with the standard brightness
deviation shown below.

Since images are taken in motion and a specific place is observed from several close but
different perspectives it is normal for average images to present some blur. But in addition to
this, the average images of each cluster show that the range of images associated with clusters
includes outliers. This may be due to two main reasons: there were 3D points wrongly clustered
and thus their associated image should not have been included, or the 3D point itself should not
have been placed there and is a bad estimate from VisualSFM.

Another important observation is the fact that different clusters represent the same real world
place, being repeated. This is because the 3D points associated with the repeated clusters were
observed from the same camera positions. This presents a trade off problem, since if we wish
to eliminate repetitions of real world places we should increase either the clustering distance
or the minimum amount of points per cluster, at the risk of not capturing certain locations as
separate places and of including more outliers per place.

However, both the average images and the representative images of each match show that
matching was successful by matching the same general location correctly from Navigation2 to
Navigation1.

Figure 5.8: Visual representation of place matching between navigations, according to closest
place centroids. For this experiment all clusters found in Navigation2 found a place match in
Navigation1. However, not all places from Navigation1 had a correspondence. This might hap-
pen if a different amount of clusters is found or if the closest place from Navigation1 is the same
for two clusters found in Navigation2, in which case only the closest cluster of Navigation2 is
matched to the place of Navigation1.
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5.4 Experiment III: Different Paths - Wheeled Mobile Robot

The navigations used for this experiment are a pair of navigations collected at the house of the
author using approximately the trajectories depicted in red in figure 5.9. This experiment uses
setup III, with Navigation2 having a different trajectory to Navigation1 observing the scene
from a different perspective. Navigation1 is the same for experiment III as in experiment II.

(a) Ground truth path Navigation1 (b) Ground truth path Navigation2

(c) Nav2 fr.1 (d) Nav2 fr.96 (e) Nav2 fr.213 (f) Nav2 fr.286 (g) Nav2 fr.466

Figure 5.9: Setup for experiment 3. The trajectories portrayed are in [cm]. The red arrows indi-
cate the sections of the trajectory taken by the robot for each navigation. We preconstructed the
trajectories by using colored tape on the ground and then took measurements, using measuring
tape and a protractor, for the length of each section and the angle between them respectively.

As in Experiment II, we utilise VisualSFM 3 to provide us with the 3D structure of the scene
for this experiment. We again treat the output of this software as if it was the output of a SLAM
system, and associate places from navigation to navigation. The localization module is, once
again, turned off since there is no trajectory or pose estimation output.

In figure 5.10(c) we show the pointclouds after normalization and centered at the origin. The
poinclouds produced for Navigation1 and Navigation2 were fairly similar with some noticeable
differences in density in some areas, and different edge points. This is expected since the
navigations took a different trajectory and did not start or at the same place even if close.

3VisualSFM is a GUI application for 3D reconstruction using structure from motion (SFM).
http://ccwu.me/vsfm/index.html

http://ccwu.me/vsfm/index.html
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For registration using plane-to-plane ICP we utilized an inlier-ratio of 0.45 for this pair
of navigations. The root average squared error of the registration was 0.0057 in normalized
distance units. For better visual inspection we provide coloured pointclouds for the result of
both navigations in figure 5.10(a) and (b).

In figure A.6 we show the pointclouds from a front view with the coloured clusters ob-
tained from DBSCAN, note the axis relative size is not kept. The clustering parameters, cluster
distance and minimum points per cluster, used for this experiment were 0.025 of normalized
distance and 250 respectively for both navigations. The amount of clusters created in Naviga-
tion1 was seven and for Navigation2 was six.

Since the scene was observed from a different perspective, we can notice a change in the
structure of the resulting pointclouds and therefore, the most dense regions. Regions that were
very well represented in Navigation1, such as the zebra on the left side of the scene, were not
as well represented in Navigation2. In both navigations the right side of the scene has lower
density of points. This is to be expected since fewer objects were present there. There were
also fewer frames modeling the right area. This phenomenon can present a problem for the
methodology if strong enough. However, as we will present in the matching section, for this
experiment the results were still comparable to previous experiments.

Matching Results - From the previously shown alignment of scenes we have available the
rigid transformation from scene2 to scene1. By applying the registration to the clusters and
matching them using smallest euclidean distance we obtain the matching shown in figure 5.11.

To evaluate how good the matching process was, we show in figure A.7 a representative
image for each place and the average image associated to the place, with the standard brightness
deviation shown below.

Results for this experiment seem to match the previous results. Blurring of average cluster
images can still be observed. As mentioned before, this is likely due to two reasons. The use
of images during motion, which displace the view slightly. And the inclusion of 3D points
in the cluster that are farther off from the average image. This can be tuned by considering
lower values for clustering distance but might lead to inability to model some places. For this
experiment, remarkably, less outliers can be seen in average images. This may me due to a
better choice of parameters, or the structure of the pointcloud resulting from VisualSFM having
modeled real world objects better.

We can still observe some overlap of places happening, however, both the average images
and the representative images of each match show that matching was successful by matching
the same general location correctly from Navigation2 to Navigation1.
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(a) Coloured pointcloud from Navigation1
(same as Fig. 5.7(a), repeated for comparison)

(b) Coloured pointcloud from Navigation2

(c) Pointclouds obtained from Navigation1 (blue) and from Navigation2 (red).

Figure 5.10: Experiment III pointclouds. In (b) we can observe that contrarily to Navigation1
of this experiment and Navigation2 of Experiment II, the left side near the end of the trajectory
of the robot was not as well modeled. The middle and right side, however, have better mod-
eling. This could lead to better place matching in the areas where both navigations had good
intersection and worse in others.
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Figure 5.11: Visual representation of place matching between navigations, according to closest
place centroids. For this experiment all clusters found in Navigation2 found a place match in
Navigation1. However, not all places from Navigation1 had a correspondence. This might hap-
pen if a different amount of clusters is found or if the closest place from Navigation1 is the same
for two clusters found in Navigation2, in which case only the closest cluster of Navigation2 is
matched to the place of Navigation1.



Chapter 6

Conclusion and Future Work

The work described in this thesis aimed to propose a topological mapping strategy using a low-
cost mobile robot that could enable the robot to recognize previously mapped areas, and in
doing so, locate itself in the topological map. Our approach relies on an estimation of the 3D
structure of the environment and the notion that clusters in this structure can be considered sign
posts for navigation.

For evaluating our proposal we utilized an in-house built mobile robot equipped with a
monocular camera sensor and an low-cost IMU. We have also utilized a public dataset in one of
our experiments.

Results seem to suggest that the methodology proposed can provide topological localization
for the scenarios reviewed. Even though we only used a monocular camera and an IMU, a
sensor suite which has difficulties modeling distances, the 3D structure given by the SLAM
system proved enough to create matches between navigations. Recognition of places was thus
successful. However, in more challenging scenarios there might be a need to either add another
type of sensor that directly observes distances, such as a depth camera.

Some challenges presented themselves during our experiments. Real world locations ap-
peared repeated as different nodes of the map even if they were correctly matched in the second
navigation. At times evaluation of the clustering via images revealed that there were outlier
locations included in the cluster that should not belong there.

Both of the mentioned issues are influenced by the clustering distance and minimum num-
ber of points per cluster parameters. In the future, it might be worthwhile pursuing how to
choose these parameters automatically given a certain 3D pointcloud. Another possible avenue
for future research is the labelling step of the methodology. Object-detection can be used to
give semantic meaning to the found clusters, enabling the robot to have a more human-like
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understanding of the environment.
The proposed methodology compares the full 3D estimation of each scene to the other

which is not efficient. For better scalability and online capabilities, it is worthwhile to pursue a
partitioning of the scenes in smaller regions and do local comparisons instead.



Appendix A

Place Matching Results

In this section we present some results related to each experiment.

A.1 Experiment I

For experiment I we show the pointclouds of Navigation1 and Navigation2 superimposed and
centered before and after registration in figure A.1. Registration results were near perfect with
Matlab shifting the colours of points between red and blue as we moved the registered point-
cloud since they they were on top of each other. We also show the same pointclouds observed
from above after clustering in figure A.2. We can see that clusters appeared in the same general
location in both pointclouds. However, in Navigation1 the clusters encompassed more points as
well as there appearing more clusters. Since the trajectory for Navigation2 was shorter, it could
not capture as much information about the environment structure, leading to less datapoints for
clustering. We also show the place matchings in figure A.3, to showcase how good the match
pairings were between navigations. Overall the matches seem correct, with some improvements
points that are discussed in section 5.2.
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Figure A.1: Pointclouds obtained from Navigation1 (blue) and from Navigation2 (red) for Ex-
periment I. On top we show the superimposed pointclouds without registration. On the bottom
we show the pointclouds after registration using plane-to-plane ICP with an inlier threshold of
0.75.
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Figure A.2: Above view of pointclouds from Navigation1 (top) and Navigation2 (bottom) after
clustering. Colours represent each cluster with dark blue representing outliers. For Navigation1
ten clusters were identified, and six clusters were identified for Navigation2. For both naviga-
tions the clustering euclidean distance threshold for DBSCAN was 0.3 and the minimum points
per cluster was 11.



58 Place Matching Results

Figure A.3: Reference images for each place match for Experiment I. Each match presents two
sets of images, images related to the place of Navigation1 that was matched (left) and images
related to the matched cluster of Navigation2 (right). For each place and cluster, two images are
shown. A representative image of the cluster, and the average image taken by using all images
related to said cluster. The representative image is obtained by finding the closest image in the
cluster set to the average image. Below each average image we show the brightness standard
deviation found for the cluster.
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A.2 Experiment II

For experiment II we show the pointclouds that resulted from each navigation observed from
above after clustering in figure A.4. VisualSFM provided more 3D information that the SLAM
filter. This lead to more distinct object differentiation in the pointclouds for both navigations.
Again in this experiment we verify that clusters seem to appear at the same real world locations
as in the previous experiment. We also show the place matchings in figure A.5, to showcase
how good the match pairings were between navigations. Overall the matches seem correct, with
some improvements points that are discussed in section 5.3.
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Figure A.4: Front view of pointclouds from Navigation1 (top) and Navigation2 (bottom) after
clustering. Colours represent each cluster with dark blue representing outliers. For Navigation1
seven clusters were identified, and six clusters were identified for Navigation2. For both navi-
gations the clustering euclidean distance threshold for DBSCAN was 0.015 and the minimum
points per cluster was 200.
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Figure A.5: Reference images for each place match for Experiment II. Each match presents two
sets of images, images related to the place of Navigation1 that was matched (left) and images
related to the matched cluster of Navigation2 (right). For each place and cluster, two images are
shown. A representative image of the cluster, and the average image taken by using all images
related to said cluster. The representative image is obtained by finding the closest image in the
cluster set to the average image. Below each average image we show the brightness standard
deviation found for the cluster.
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A.3 Experiment III

For experiment III we show the same plots as for experiment II. First we show the pointclouds
that resulted from each navigation observed from above after clustering in figure A.6. Even in
the case that navigations took different trajectories observing the same scene it is possible to
observe from the same figure that clusters still formed around the same locations. Importantly,
for this experiment even though clusters formed around the same location we can observe that
it is harder to have clear matchings just from observation of the clustered pointclouds. We
also show to place matchings in figure A.7, to showcase how good the match pairings were
between navigations. Overall the matches seem correct, with some improvements points that
are discussed in section 5.4.
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Figure A.6: Front view of pointclouds from Navigation1 (top) and Navigation2 (bottom) after
clustering. Colours represent each cluster with dark blue representing outliers. For Navigation1
six clusters were identified, and five clusters were identified for Navigation2. For both navi-
gations the clustering euclidean distance threshold for DBSCAN was 0.025 and the minimum
points per cluster was 250.
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Figure A.7: Reference images for each place match for Experiment III. Each match presents
two sets of images, images related to the place of Navigation1 that was matched (left) and
images related to the matched cluster of Navigation2 (right). For each place and cluster, two
images are shown. A representative image of the cluster, and the average image taken by using
all images related to said cluster. The representative image is obtained by finding the closest
image in the cluster set to the average image. Below each average image we show the brightness
standard deviation found for the cluster.



Appendix B

Nonlinear Systems Filtering Tools, Lie
Groups

A Kalman filter can make probabilistic estimations of a system’s state based on Gaussian un-
certainty and, as such, is widely used in control theory and other disciplines in order to either
fuse sensor information or estimate parts of the state that are not available for measurement. If
the system is linear the Kalman filter is statistically optimal and converges to the true state.

However, these distributions stop being Gaussian if the system is nonlinear, making the
Kalman filter no longer applicable.

The extended Kalman filter (EKF) linearizes the model functions locally, approximating
the uncertainty distributions to a local Gaussian. The first order linearization, which the EKF
uses, is often very inaccurate to the true probability distribution of the state. This is because
most system’s have highly non-linear behaviours. This is the case in most mobile robotics
applications.

The Unscented Kalman filter features a distinctive methodology based on the unscented
transformation. Once again, the uncertainty associated with the state is to be represented as
a Gaussian distribution; however, in the Unscented Kalman filter it is depicted by a selected
minimal set of weighted χ points. These points are propagated through the system’s non-linear
functions. The true mean and covariance of the state distribution can be accurately represented
by these propagated points.
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Figure B.1: Comparison between EKF and UKF in terms of uncertainty propagation. Left side
shows the real mean and covariance. Middle presents the EKF first order linearization; Right
showcases the unscented transformation used by UKF. From [27]

Lie groups are mathematical differentiable manifold groups. The significance of Lie groups
like SO(3) and SE(3) in the context of orientation, represented by rotations, and the space of
poses, respectively, has long been recognized in the field of robotics [29] as a useful mathemat-
ical tool. In the last twenty years, there has been much research on probability distributions on
SE(3) and how they might be used for estimation and control [40].

Using Lie groups for state representation and Lie algebra for state propagation has shown
numerical consistency advantages compared to standard EKF, it also allows for a more compact
representation without the need for numerous representation conversions [2]. We will now
introduce the two Lie groups used in the structure of the filter chosen for our work [25].

The Special Orthogonal Group SO(3)

This Lie group comprises all three-dimensional rotations. Every member of this group is a
3× 3 matrix. The elements of SO(3) can be defined as follows SO(3) := {R ∈ R3×3 : RR> =
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I3.det(R) = 1}, where I3 is the 3 × 3 identity matrix. Matrix multiplication is the operator
within this Lie group. As stated in the above definition, the identity element is the identity
matrix I3, and an inverse element can be derived using the transpose operator.

Each Lie group is connected with a Lie Algebra, which is a unique tangent vector space at
the identity element of the Lie group, which is derived through differentiation of the Lie group.
Equation B.1 describes a skew-symmetric matrix which can be represented by the operator [.]×

over a 3D vector ω = [ωx ωy ωz] ∈ R3.

ω∧ = [ω]× =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 ∈ so(3) (B.1)

This operation represents the transformation from R3 to the Lie Algebra so(3) of the Lie
group SO(3).

Considering a matrix [ω]× ∈ so(3), we can define the rotation matrix related with this skew-
symmetric matrix as exp([ω]×) ∈ SO(3). To compute the exponential and obtain the mapping
from the Lie algebra so(3) to the Lie group SO(3) Rodriges’ Formula is used:

R = exp([ω]×) = I3 +
sin‖ω‖
‖ω‖

+
1− cos‖ω‖
‖ω‖2 [ω]2× (B.2)

Alternatively, if we wish to map an element from SO(3) to so(3), we must apply the loga-
rithmic map. First, we must determine the angle of rotation θ, from the rotation matrix’s trace:

θ = arccos
Tr(R)− 1

2
(B.3)

using θ, the skew-symmetric matrix can be calculated as:

[ω]× = log R =
θ

2 sin θ
(R− R>) (B.4)

The result of converting this matrix back to a 3D vector is a 3D vector of the form ω defined
previously. The component values are the original rotation matrix’s axis-angle representation.
This indicates that this exponential and logarithmic mapping can be utilized to convert between
these rotational representations. Because the Lie algebra is the consequence of the differentia-
tion of the Lie group, the transformation from the Lie algebra to the Lie group corresponds to
an integration. This means that if we transform a vector of angular velocity ω ∈ R3, into an
element of the Lie group SO(3), we obtain the rotation completed over a time frame.
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The Special Euclidean Group SE(3)

This group’s elements can be defined as SE(3):=

{
χ =

[
R p
0 1

]
∈ R4×4 : R ∈ SO(3),p ∈

R3

}
, where 0 represents a 1× 3 vector of zeros.

These elements, known as homogeneous transformation matrices, represent rigid transfor-
mations. The rotation R and translation p define these transformations. This group’s operator
is also the matrix multiplication. These structures are utilized as a displacement operator or
coordinate system change in various robotics applications. Regarding the Lie Algebra, because
it is the consequence of differentiating the Lie group over time, its members can be thought of
as angular and linear velocities.

Unscented Kalman Filter Implementation [25]

The filter chosen is an Unscented Kalman filter and it uses a Lie group and its Lie algebra
for state representation and state propagation (see in appendix B some Lie groups terminology
used in this section). The following sections detail the state structure, the system’s model, the
sensor’s model and state and uncertainty propagation.

State Space

The state space used for this work is an extension of the SE(3) Lie group. This Lie group is
defined in χ ∈ SE2+p(3) space. The state is composed of all the variables that we want the
filter to estimate. It contains the position x ∈ R3, R ∈ SO(3), linear velocity v ∈ R3 and the
3D positions of landmarks p1, ...,pn ∈ R3 tracked in the scene. The state is formed by a square
matrix χ with dimensions (5 + p)× (5 + p):

χ =

[
R v x p1...pn

0(p+2)×3 I(p+2)×(p+2)

]
(B.5)

In terms of the operation that defines this group, it constitutes a propagation. This means
that if a system experiences a change χ relative to its previous state χt−1, we can calculate its
new state as χt = χ ∗ χt−1. Because groups have an inverse operation by definition, we have
the option of reversing the state by applying this operation and obtain the previous state.
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To have an online estimation of the IMU biases we append these to the state. Consequently,
the state has concatenated the IMU biases defined as the bias vector b ∈ R6:

b =
[
b>ω b

>
a

]>
(B.6)

with the accelerometer bias ba ∈ R3 and gyroscope bias bω ∈ R3. Finally, the state of the filter
is expressed as the tuple (χ, b).

Dynamic Model

The system model chosen assumes that the body can navigate space in all dimensions and can
take any pose. It assumes that the robot is navigating a flat earth and it is equipped with an
IMU:

body state =


Ṙ = R(ω − bω + nω)×

v̇ = R(a− ba + na)− g
ẋ = v

(B.7)

IMU biases =

{
ḃω = nbω

ḃa = nba
(B.8)

landmarks =
{
ṗi = 0, i = 0, ..., p (B.9)

where (ω)× portrays the skew-symmetric matrix related with the cross product with vector
ω ∈ R3 (as shown in equation B.1). The multiple noises are grouped as:

n = [nω
> na

> nbω
> nba

>] ∼ N (0, Q) (B.10)

Sensors Model

The measurement model chosen takes as the calibrated monocular camera frames. The camera
observes p landmarks that are tracked in the scene. Each landmark pi is observed according to
the standard pinhole model and the respective projection model, as such:

yi =

[
yiu

yiv

]
+ niy (B.11)

where yi is the result of the projection:
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λ

y
i
u

yiv

1

 = K[R>B→C(pi − x)− tB→C ] (B.12)

where γ is the scale factor, K is the camera intrinsics matrix, x is the IMU/Body position in the
world frame, R is the IMU/Body orientation, tB→C and R>B→C are respectively translation and
rotation from the IMU to the camera in the world frame.

With this projection a landmark pi is converted from the world frame to the image plane and
is now compared to its corresponding 2D feature that is being tracked frame to frame. In case
a certain 3D landmark projection and its respective 2D feature are too distant that 3D landmark
is invalidated.

Time Discretization

Since the filter is run computationally it has to be discretized in time. This implementation uses
the standard Euler method to discretize the dynamic system’s equations, for a small step ∆t as
such:

body state =


Rt+∆t = Rt exp[(ωt − bω,t)∆t+ Cov(nω)1/2g

√
∆t]×

vt+∆t = vt + (Rt(at − ba,t)− g)∆t

xt+∆t = xt + v∆t

(B.13)

Uncertainty of the state on Lie Groups

Given the state representation defined in equation B.5, the uncertainty of the state is defined as
a probability distribution χ ∼ N (χ, P):

χ = Exp(ξ)χ,N (0, P) (B.14)

with

Exp(ξ)χ = exp([ξ]×) (B.15)

where Exp maps from the vector space to the Lie group, exp maps from the Lie algebra to the
Lie group and [.]× from the vector space to the Lie algebra. The uncertainty ξ is defined as
ξ = [ξR

> ξv
> ξx

> ξpi

> ... ξpn

>]>. To transform the uncertainty ξ from the vector space to the
Lie Algebra we use the transformation:
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[ξ]× = ξ∧ =

[
[ξR]× ξv ξx ξpi

>... ξpn

>

0(2+p)×(5+p)

]
(B.16)
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Appendix C

MonoSLAM parametrization and Feature
Initialization

In this chapter we detail further background on MonoSLAM [11] [8]. We detail a different
depth parametrization proposed in [8], that constituted an update for MonoSLAM [11]. We also
detail how both the original MonoSLAM implementation and the new depth parametrization
improved version initialized features.

C.1 Inverse Depth Parametrization

Inverse depth parametrization - an improvement for MonoSLAM [8]
In previous research works, including the original MonoSLAM [11], there were problems

integrating features with large depth. This is due to the small parallax compared to the transla-
tion of the system which needs to be large enough for an accurate depth estimate.

In 2008 a new parametrization technique, inverse depth parametrization, is proposed in [8]
which solves this problem, integrating a feature whichever its depth and gathering new infor-
mation as soon as it is detected.

The standard representation for scene points i in terms of Euclidean XYZ coordinates is:

xi =
[
Xi Yi Zi

]>
(C.1)

The proposed update to the parametrization is:

yi =
[
xi yi zi θi φi ρi

]>
(C.2)
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Which models a 3-D point located at:

xi =

Xi

Yi

Zi

 =

xiyi
zi

+
1

ρi
m(θi, φi) (C.3)

m = (cosφisinθi, −sinφi, cosφicosθi)> (C.4)

The yi vector encodes the ray from the first camera position from which the feature was
observed by xi, yi, zi, the camera optical center, and θi, φi azimuth and elevation (coded in the
world frame) defining unit directional vector m(θi, φi). The point’s depth along the ray di is
encoded by its inverse ρi = 1/di.

This new parametrization requires a new measurement model:

hC = hCρ = RCW

ρi

xiyi
zi

− rWC

+ m(θi, φi)

 (C.5)

where the directional vector has been normalized using the inverse depth. It is worth noting that
(11) can be safely used even for points at infinity, i.e., ρi = 0 an advantage compared to the
previous parametrization, although not the only one.

C.2 Feature Initialization

Original MonoSLAM
Initialization of new features in the original 2007 paper [11] is done by initializing a semi-

infinite line starting at the camera position where the feature was first observed and extending
it to infinity along the feature viewing direction and using a Gaussian uncertainty for the depth
parameter. In the first observation the uncertainty is high, but with each subsequent observation
more information is obtained and the uncertainty on the feature’s depth decreases. When the
depth uncertainty is below an acceptable level the feature is considered fully initialized and the
information it provides is finally available for estimating the state. In this model, uncertainty
on the feature’s initial viewing direction is disregarded since this uncertainty is low compared
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to the depth uncertainty.

Updated parametrization - Inverse depth
Initialization of new features in the updated algorithm of the 2008 article is similar to the

previous’ year proposal. A feature is also represented by the camera pose with which it was
first observed. The difference is that its depth is now parametrized as inverse depth, (8) and
(9), which is proved in [8] to have better linearity properties, even at high uncertainty, than the
standard representation (7). This allows for the use of the information provided by each feature
as soon as it is initialized since it will not perturb the linearity assumption of the filter. At first
it can only provide information on the orientation of the camera and not its translation but with
more observations of the feature with enough parallax translation information is also conveyed.
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