
XTraN Green Driving App

João Eduardo Alves Nogueira
joao.alves.nogueira@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2022

Abstract

In a world currently facing an energy crisis and still trying to fight off global warming, the levels of
pollution caused by companies’ vehicle fleets have a considerable negative impact on this problem. One
way of mitigating this is for people to adopt environmentally friendly driving practices. This document
describes the work developed as part of the DriveGreen project, proposed by the Portuguese company
Tecmic - Tecnologias de Microelectrónica, S.A..

The goal was the creation and integration of a new eco-driving support module in the company’s
TeamMobile mobile application. This application is used by company fleets’ drivers belonging to Tecmic’s
clients, and provides features relating to GPS tracking and management of their overall daily work assign-
ments. The new module receives the vehicle’s sensor data from Tecmic’s XTraN unit installed on it, and
analyses and transforms that data into useful metrics related to ongoing and finished journeys: as a small
set of charts in a bottom bar available during the trip, and through a detailed screen with suggestions on
how to improve the user’s driving style based on the finished journey data, respectively.

The module was developed and integrated in the TeamMobile application, but it is not yet finished,
requiring additional tests related to its communication protocol with the XTraN unit and a new developed
web service. After this, the new module will be subjected to internal usability tests, before being made
available in a beta version to some of the company’s clients. This will ultimately lead to the official release
of this new version of the application.

Keywords: Mobile Application, Xamarin, Android, Eco-Driving.

1. Introduction

The DriveGreen project, proposed by the Por-
tuguese company Tecmic S.A., is a mobile applica-
tion module whose goal is to retrieve and analyse
vehicle sensor data and present it in the drivers’
screen in the form of charts, statistics and driv-
ing suggestions, available during and after each
journey. This is meant to help the user to im-
prove his eco-driving style and also reduce fuel
consumption. The module’s communication proto-
col is based on direct communication with a XTraN
unit placed on the vehicle, or with a web service
that retrieves data sent from this unit to the com-
pany’s central database. In the application the user
has access to this data during the journey, as a set
of four small charts placed in the background of
the mobile application screens, and after the jour-
ney, with a new screen that shows the journey’s
summary data along with eco-driving suggestions.

Tecmic’s TeamMobile, the system in which the
new DriveGreen module was incorporated, is a
mobile application used by the company clients’
drivers. These drivers perform different services in

their daily work, depending on the client company’s
field of operation, that require the driver and his
team to travel around the country. These workers
start their day by logging in the Activity screen and
selecting the first journey of the day in the Jour-
ney screen, which also features a GPS navigation
module. Each journey can contain multiple stops:
different places where there is work to be done,
and the application is used to register that work in
different forms specific to each client. At the end
of the day the user stops the Activity in its corre-
sponding screen. We can see that this application
is of massive importance to manage the workers’
every day aspect, and given the long journeys that
are executed, it is missing a eco-driving module,
which this project aims to fix.

In this document we start by taking a look at re-
lated eco-driving systems as well as a briefly re-
viewing what eco-driving really is. We then present
the system’s architecture and implementation de-
tails, the module’s testing and evaluation and finish
with some conclusions about the whole process.

1



2. Related Work
Here we take a look at eco-driving impact and good
practices, we present Tecmic’s Ecodriver module
for a different system, and we analyse and com-
pare existing eco-driving mobile applications.

2.1. Eco-Driving
Before looking at some eco-driving support sys-
tems it is important to know what eco-driving re-
ally is. Among the multiple available meanings,
one of the broader ones defines it as the ”adop-
tion of practices and behaviours that promote more
energy-efficient, safe and environmentally-friendly
driving” [1]. One way of contributing to this is to im-
prove the driver’s driving style, which is what this
project aims to achieve.

The main aspects to ensure the practice of a
eco-driving friendly style have to do with driving
speed, acceleration, deceleration and idling. Con-
cerning speed, the driver should try to maintain
constant speed whenever possible and of course
respect speed limits. As for acceleration and de-
celeration the driver should avoid aggressive brak-
ing and accelerating by practicing a cautious driv-
ing style, maintaining enough distance from other
vehicles and trying to predict upcoming problems
in the road. Finally, idling is a awful behavior which
heavily contributes to fuel consumption and emis-
sion of air pollutants, and should be avoided by
turning of the vehicle’s engine whenever stuck in
traffic or waiting for stoplights [2].

And do these methods actually yield results? Ac-
cording to several studies the answer is positive,
for instance in Finland [3] where an eco-driving
application used by Helsinki’s bus drivers resulted
in a 8.9% fuel consumption reduction as well as
an increase in the passengers reported comfort.
In Switzerland [4], fifty company fleet drivers also

used a mobile application that provided feedback
based on speed, acceleration, deceleration and
gear usage, resulting in a 3.23% fuel consumption
reduction.

2.2. Tecmic’s Ecodriver
Tecmic’s XTraN Passenger [5] is a passenger
transport management system for which was de-
veloped a eco-driving support module, the XTraN
Passenger Ecodriver. The module gathers infor-
mation directly from the vehicle’s CAN-Bus sys-
tem, and after analysing and transforming the data
presents it in the driver’s on-board Android con-
sole. This information is also saved in the system’s
central database, which allows the creation of eco-
driving reports available in the system’s web plat-
form.

The module’s application layout includes a set of
charts on a bottom bar visible in the main appli-
cation screens, and a detailed screen with journey
summary data. This second and main screen can
be seen in figure 1.

This module’s design and goals are very much
similar to the current project’s ones and as so
DriveGreen’s layout and functionality is heavily
based on it. However, one of the main features,
not present in this system that this project aims to
achieve, is giving its user feedback about how to
improve his driving style, based on all the data that
was gathered during each journey.

2.3. Eco-Driving Mobile Applications
Since other companies eco-driving systems details
such as Samsara’s [6] or INGTECH ’s [7] are made
private, we decided to study some mobile Android
or iOS applications regarding the same subject.
This analysis was done based on a overview of
the applications’ functionality and layout design in
comparison to the current project’s goals.

Figure 1: Main screen of the XTP Ecodriver module, from company’s internal document ”Manual do XTraN Passenger Web”.

2



Real Time
Data

Persistent
Data

Vehicle Sensor
Data

Simple/Non-Intrusive
Layout

Eco-Driving
Data

Car Scanner x x
Speedometer x x x
Drive Eco x x x
Ecologic x x x x
Torque Pro x x
Dash Command x x x
DriveGreen x x x x x

Table 1: Comparison between the analysed applications’ features and this project’s goals.

Six applications were analysed: 1) Car Scanner
ELM OBD2 [8], 2) ECO-Driving Speedometer [9],
3) Drive Eco [10], 4) Ecologic [11], 5) Torque Pro
[12], and 6) DashCommand [13].

In table 1 we can see whether or not these appli-
cations meet all of the DriveGreen project’s objec-
tives.

We concluded that none of them met all of the
project’s goals. Most of the applications focus on
collecting vehicle data using OBD (On-Board Di-
agnostics) and show a ton of complex data to the
user, that he will simply not access or understand,
much less during an ongoing journey. Only some
of them contain features that allow the user to ac-
cess the journey’s summary data after it is fin-
ished, and even though all of them claim to provide
eco-driving support characteristics, they are mostly
pretty lackluster.

An application such as the ECO-Driving
Speedometer [9], although extremely simple,
meets the goal of a clean, easy to understand
and non intrusive system that provides some
eco-driving data. While an application such as
Ecologic [11], even though presenting much more
detailed data, including past journeys history, it is
not adequate given its complexity and amount of
data that the user will never really make use of.

We want DriveGreen to gather the vehicle’s real-
time data and present it to the user in a simple way
that helps him improve his driving style, during and
after his journeys.

3. System Features & Development
In this chapter we present several aspects regard-
ing the architecture, features and overall develop-
ment of this system.

3.1. Technological Stack & Xamarin
The system relied on the following main technolo-
gies for its development: a) Xamarin to create
and add the new module to the existing TeamMo-
bile application; b) The MVVMCross library also
present in the main application; c) ASP.NET CORE
for the development of the web service; d) Google’s
Protocol Buffers to serialize the data passed be-
tween the application and the XTraN unit; e)

SQLite for the application’s internal database.
TeamMobile was developed using Native Xam-

arin, which is the reason why it is the main tech-
nology used in this project. Xamarin allows faster
development of cross-platform applications, since
all back-end code is shared, and only the screen’s
layout code has to be written separately for each
desired platform [14]. On top of this, TeamMobile
also makes use of the MVVMCross library [15],
which features data-binding, dependency injection
and unit testing tools, besides allowing the usage
of the MVVM architectural pattern in the applica-
tion’s development. The MVVM pattern, standing
for Model-View-ViewModel, separates the applica-
tion’s responsibilities between three main compo-
nents, the Model which contains the business layer
logic, the View which is the interface layout where
data is shown, and the View-Model that connects
these two components, defining the applications’
logic. [16].

3.2. Eco-Driving Data
The vehicle’s sensor data is obtained by the
equipped XTraN unit, and further transformed by
its ECSM (Energy, Comfort and Security Module)
module into relevant statistics. Among the long
list of provided measurements, the system will be
using: a) Counters such as total fuel consump-
tion, traveled distance, journey time, online engine
time and idling time; b) Number of penalties dur-
ing the journey, such as excessive speed, accel-
eration, deceleration, idling, engine temperature
and engine rotations; c) Total journey time spent
practicing speed, acceleration, deceleration, and
constant speed behaviours included in predefined
value ranges.

These last data values are used to create four
charts corresponding to those same behaviours.
These charts measure the drivers performance in
each behaviour in a certain time window, meaning
the last five minutes of the journey when displayed
in the module’s bottom bar, or the whole journey
when shown in the module’s main screen.

For the speed, acceleration and deceleration
charts, we represent three different values, corre-
sponding to adequate, acceptable and inadequate

3



Figure 2: DriveGreen’s main screen.

behaviours. Their relative amounts are displayed
according to the lengths of the green, yellow and
red bars, respectively.

As for the constant speed chart there are only
two different values, corresponding to whether or
not the driver is at constant speed, once again rep-
resented by the lengths of green and grey bars.

Besides these, the module is also responsible
for generating two new types of data, the journey’s
score and eco-driving suggestions. The score is
calculated given the number of penalties commit-
ted on that journey, based on a threshold of twenty
penalties for each 100 kilometers. The sugges-
tions algorithm generates a maximum of three rec-
ommendations based on the journey’s data. First
it checks whether or not the total idling time sur-
passes 5% of the total journey time, and if so dis-
plays a first suggestion regarding this behaviour.
Secondly it analyses the total journey penalties
and displays a suggestion regarding the behaviour
with the largest number of penalties. Lastly, the
four charts are analysed and similarly to the last
step, a suggestion is displayed for the behaviour in
which the red bar size surpasses a certain thresh-
old.

This basic algorithm was created keeping in
mind some rules. We don’t want the user to feel
discouraged by the system, as such we display a
maximum of three and minimum of zero recom-
mendations, and use language such as ”try to...”

instead of straight orders, while also greeting the
user after presenting these. Moreover, the gen-
erated recommendations are related with the data
that the user can check on the screen, the first re-
lating to a extremely prejudicial but easy to fix be-
haviour, idling, the second concerning the driver’s
penalties, which are also utilized to calculate the
score, and finally the charts, which also include a
behaviour which isn’t present in the previous data,
the practice of a constant speed while driving. All of
this was created based on the eco-driving analysis
explained in the beginning of the second chapter.

3.3. Screen Layout

The module’s main screen can be seen in figure 2.
Accessed in the application navigation bar to the
left, it shows the drivers’ journey data on a simple
layout with reduced user interaction. Its elements
are: 1) Driver and Journey identification; 2) A Spin-
ner used to change the selected journey. By default
when navigating to this screen, the latest journey’s
data will be shown, but the user can switch to any
other recent journey or see data regarding multi-
ple journeys done in a certain day; 3) A Timestamp
showing the last update time, meaning the last time
the system received new eco-driving data regard-
ing the driver’s journeys. If the user is currently
on this screen when new data arrives, the screen
(and timestamp) are automatically refreshed; 4) A
help button that opens up a small guide explaining

Figure 3: DriveGreen’s secondary screen.

4



Figure 4: New journey data sequence diagram.

the module’s features and purpose; 5) The over-
all journey data such as total time, distance, en-
gine time, idling time and fuel consumption and ef-
ficiency; 6) Penalty counters, regarding speed, ac-
celeration, deceleration, idling, engine temperature
and rotations; 7) Charts evaluating the drivers’ per-
formance regarding speed, acceleration, decelera-
tion and constant speed; 8) The journey score; 9)
And eco-driving suggestions.

The secondary screen corresponds to a set of
the already explained four charts displayed in a bar
at the bottom of the application’s screens during
ongoing journeys. This can be seen in figure 3.

This is basically part of the overlay surrounding
the several application screens, which consists of
the top toolbar, the navigation bar to the left, and
this new bottom bar. These charts are automati-
cally hidden whenever the user visits the module’s
main screen, when there is no ongoing journey, or
when filling complex forms in other screens.

3.4. Business Layer
In this section we take a look at the module’s busi-
ness layer, basically the main classes and inter-
faces needed to save, transform and show data
within the module. The protocol regarding the com-
munication of this data to the module is covered in
the next section.

Firstly we have DriveGreenData, a Model class
which defines the objects that hold the journeys’
data, which we also call a eco-driving report. The
reports attributes consists of the driver’s and jour-
ney’s identifiers, the journey’s starting time and
a list of objects of the DriveGreenVariable class,
which holds all the data measured during a jour-
ney. This simple class contains only two attributes,
an unique identifier corresponding to the variable
being measured, and of course its value. There’s
also a DriveGreenDB class, which is almost iden-
tical to the first one, except that its variables list is
now a string, since as the name indicates, it is the
class used for holding the application’s database
objects. Since the database uses SQLite, the list

Figure 5: User’s main screen module access sequence diagram.

5



Figure 6: DriveGreen communication protocol architecture.

has to be serialized to a string.
To access this database we have a DAL (Data

Access Layer) class, in which we define the meth-
ods which are essentially the queries ran in the
database. Regarding DriveGreen’s context, we
want methods that fetch the eco-driving reports
based on the current driver’s ID or a specific jour-
ney based on its codes (IDs).

We also make use of event classes, a C# prop-
erty used to send notifications and/or data to other
classes [17]. When the module receives new jour-
ney data it fires these events in order to update ele-
ments that are currently visible on the screen. For
ongoing journey data there is an event to update
the bottom bar charts, and for summary journey
data there is another one to update the module’s
main screen if the user is currently using it.

There is also a service, utilized for communicat-
ing with the new web service’s API, which is cov-
ered in the next section, but the most important and
more complex component is without a doubt the
controller, which manages the interaction between
all the classes, the DriveGreenBusinessManager.

We can consider two main operations or commu-
nication flows within this internal part of the mod-
ule’s business layer. The first one, regarding the
process when receiving new journey data, can be
seen in the sequence diagram in figure 4.

The module starts by receiving new journey data
(0), parsing and interpreting it. Again the details re-
garding this topic are explained in the next section.
Now the controller, having this data already trans-
formed to the DriveGreenData class sends it to the
corresponding View-Model (to the module’s VM if
receiving summary journey data or to the main ap-
plication’s VM if receiving ongoing journey data) by
firing an event (1). The View-Models then update

the corresponding views (2). Besides updating the
screen information, the data is also saved on the
application’s database, using the mentioned DAL
class (3).

A second sequence diagram, seen in figure 5,
can be considered regarding the user’s access to
the module’s main screen (1). The View-Model
triggers the GetDriverData() method from the con-
troller (2), which again uses the DAL class to re-
trieve the necessary data (3,4). The controller re-
turns the data to the View-Model (5) who updates
the corresponding View (6), automatically refresh-
ing its screen.

3.5. Communication Protocol
The module’s communication protocol in order to
receive journey data is composed of two different
parts. Direct communication with the XTraN unit
through Tags, and retrieving data from the cen-
tral database using a new web service. The first
method requires the application to be hosted on
a XTraN on-board console, while the latter occurs
when using a regular Android tablet. This can be
seen in figure 6, which will be referred to in the
coming sections.

3.5.1 Tags

The Tags are used to exchange information directly
between the application and the XTraN unit (figure
6 - connection 1, green). These Tags objects which
are interpreted in a particular way by the XTraN for-
matter and parser. When booting up, the applica-
tion sends a message to the XTraN unit to register
the Tags it wants to periodically receive.

The module uses five different Tags: 1) TagEco-
Dynamic where the information regarding ongoing
journey data is sent to the application, used to up-

6



Figure 7: Tags communication diagram.

date the bottom bar charts; 2) TagEcoSummary,
where journey summary data is sent to the appli-
cation, used to update the module’s main screen;
3) TagEcoEvent, which notifies the application of
new events regarding the discussed penalties; 4)
TagEcoRequest, sent to the XTraN unit to explic-
itly request a TagEcoSummary update; 5) and
TagService, sent to the XTraN unit to notify it of
the journey’s current status (ongoing/finished).

We can see this communication diagram in fig-
ure 7.

While TagService, an older application Tag, uti-
lizes common attributes in its class such as bytes
and strings (before being converted into byte ar-
rays), the other four new Tags use Google’s Pro-
tocol Buffers [18]. Protobuf is a format utilized to
create, define the structure and serialize data mes-
sages. It is first created a definition file, much like
a JSON file, which is then converted to a class file
in the desired language, in this case C#. This file
makes it so we can define these data types within
our system, all encased inside a single byte array
object.

3.5.2 WebService

Keeping in mind the diagram in figure 6, when
it isn’t possible to communicate directly with the
XTraN unit, the unit sends the journey data to the
company’s central database. This goes through a
TCP channel (connection 1, purple) and reaches a
Manager component which mediates the database
access (connection 2, purple). In order for the ap-
plication to retrieve the needed data, we need a
new web service to send API requests to (connec-
tion 3, purple), that then accesses the Manager
(connection 4, purple) in the company’s server.

The web service uses a REST architecture, de-
veloped using C# and ASP.NET Core. Its main
API, regarding the journey data, can be seen in a
diagram in figure 8. The controller, who receives
the API requests, has two access points, one that
obtains all the recent journey reports of a certain
driver, and another that retrieves a specific journey
report. The controller then communicates with the
XTraNServiceBusiness who is the one accessing
the Manager and retrieving the requested data in
JSON format. We can also see the data model
classes, identical to the ones presented before in
the Business Layer section.

On the application’s end, there’s a DriveG-
reenApiService class which contains the neces-
sary attributes (the HTTPClient and base URL)
and methods (to access the mentioned endpoints)
to execute asynchronous calls to the web service,
and transforming the JSON back to the business
layer’s model class objects.

Additionally, there is a second API, associated
with a variable catalog. The web service maintains
a small in-memory database table with a variable
catalog, which is a record of the different types of
variables regarding journey data that are present
at any time in the main central database. The
catalog consists of multiple VariableCatalog model
classes, each associated with a unique ID, name
and description, and its measured unit, again with
an ID, name and description.

The application can access this secondary API
to retrieve the updated variable catalog, which
makes it easier to update variable parameters in
the user’s screen. For example, if we consider
that each displayed journey variable, such as the
distance, has an associated text box for its value
and another for the measurement unit, if the vari-

7



Figure 8: Web service’s journey data API.

able catalog unit description for that variable is
changed, we can automatically update this infor-
mation on the module’s screen.

4. Evaluation & Testing
Throughout the project’s development multiple
tests were done to assure its quality. The module’s
functionality tests were done using an Android em-
ulator, simulating received journey data and mak-
ing sure the system behaves as it should. Regard-
ing the external communication protocol, tests will
be done using an XTraN unit and console, as well
as tests concerning the interaction with the web
service.

The initial goal was to have the end users per-
form usability tests, evaluating the module’s be-
haviour and impact in their work and driving style.
However this ended up not being feasible. The ap-
plication’s users were not expected to take their
time after a day’s work to answer our questionnaire,
and Tecmic wasn’t able to provide any type of in-
centive since these users aren’t their direct clients.
With this in mind, the planned usability tests will be
performed by a small team of Tecmic’s developers.
Later on, when a beta version of this new applica-
tion update is released, it will be made available
to some of Tecmic’s clients. This is the time when
some feedback can be gathered, coming from the
designated employee in each of these client com-
panies.

5. Conclusion
In this chapter we present some conclusions about
the development of this project, and refer future
work.

5.1. Conclusions
While the testing and release of this module isn’t
completely finished yet, we can still make some
conclusions about its development.

The project’s goal was to add a new eco-driving
support module to the TeamMobile application,

used by company drivers belonging to Tecmic’s
clients. The focus was on a simple, clean layout
that helps the user improve his driving style and
these goals seem to have been achieved. The ap-
plication now features a bottom bar with four differ-
ent charts that measure the driver’s performance
on the ongoing journey. This layout is small and
non intrusive and is hidden whenever necessary,
that is, when the user is filling work-related forms
in other screens or when there isn’t any journey
currently selected. The module also provides a
new main screen in which drivers can see the data
about a finished journey, or even the summary of
all the daily journeys, associated with a score and
a small list of suggestions to improve driving habits.
From a technological point of view, we added a new
mechanism to the communication between the ve-
hicle’s XTraN unit and the mobile application, the
Protocol Buffers, which simplify the creation and in-
terpretation of messages between them. We also
developed a new Web service that makes it easier
for the application to communicate with the control
center without having to rely on the XTraN unit.

5.2. Future Work
In a short-term point of view, the future work con-
sists in finishing the module’s external communica-
tion protocol testing phase, passing on to the us-
ability testing done by the company and releasing a
beta version of the application to some of its users.
Based on the feedback received from these tests,
some final adjustments will be made, which will ul-
timately lead to the official new application version
release.

However there also some other planned devel-
opments: a) The improvement of the score and
suggestions algorithm. Besides increasing the
amount of available suggestions we want to as-
sociate these two components with gamification
elements, in order to improve user engagement.
The score and suggestions should reflect on the

8



driver’s progress, and his effort to fix the recom-
mended behaviours; b) Adding features that allow
the creation of eco-driving reports on Tecmic’s Web
platform. This will be available to the drivers as well
as their supervisors.

References
[1] INGTECH, “What is eco-driving? - IN-

GTECH,” May 2020. Last accessed 30 Oct
2022.

[2] Y. Huang, E. Ng, J. Zhou, N. Surawski,
E. Chan, and G. Hong, “Eco-driving technol-
ogy for sustainable road transport: A review,”
Renewable and Sustainable Energy Reviews,
vol. 93, pp. 596–609, 2018.

[3] S. Innamaa and M. Penttinen, “Impacts of a
green-driving application in city buses on fuel
consumption, speeding and passenger com-
fort,” IET Intelligent Transport Systems, vol. 8,
no. 5, pp. 435–444, 2014.

[4] J. Tulusan, T. Staake, and E. Fleisch, “Pro-
viding eco-driving feedback to corporate car
drivers: what impact does a smartphone ap-
plication have on their fuel efficiency?,” in Pro-
ceedings of the 2012 ACM conference on
ubiquitous computing, pp. 212–215, 2012.

[5] Tecmic S.A., “Gestão Profissional de Trans-
portes de Passageiros - TECMIC,” Apr 2021.
Last accessed 30 Oct 2022.

[6] Samsara, “Eco Driving - Samsara,” Jan 2022.
Last accessed 30 Oct 2022.

[7] INGTECH, “ECO DRIVING - Intelligent Fleet
Management Solutions - INGTECH,” Jan
2022. Last accessed 30 Oct 2022.

[8] 0vZ, “Car Scanner ELM OBD2 – Apps on
Google Play,” Jan 2022. Last accessed 30
Oct 2022.

[9] East Software Coders, “ECO-Driving
Speedometer - Apps on Google Play,”
Oct 2021. Last accessed 30 Oct 2022.

[10] Hayandroid, “Drive Eco - Apps on Google
Play,” Nov 2021. Last accessed 30 Oct 2022.

[11] Ecologic.io, “Ecologic - Apps on Google Play,”
Dec 2021. Last accessed 30 Oct 2022.

[12] I. Hawkins, “Torque Pro (OBD 2 & Car) - Apps
on Google Play,” Jan 2022. Last accessed 30
Oct 2022.

[13] Palmer Performance Engineering, “Dash-
Command (OBD ELM App) - Apps on Google
Play,” May 2021. Last accessed 30 Oct 2022.

[14] Microsoft, “What is Xamarin? - Xamarin - Mi-
crosoft Learn,” Sep 2022. Last accessed 30
Oct 2022.

[15] MvvmCross, “Getting Started with Mvvm-
Cross - MvvmCross,” Sep 2022. Last ac-
cessed 30 Oct 2022.

[16] TechTarget, “What is Model-View-ViewModel
(MVVM)?,” Feb 2019. Last accessed 30 Oct
2022.

[17] V. Pecanac, “Events in C# - Code Maze,” Mar
2022. Last accessed 30 Oct 2022.

[18] Google, “Protocol Buffers - Google Develop-
ers,” Oct 2022. Last accessed 30 Oct 2022.

9


