
1

Development of a SCION router towards a secure
Internet
Bernardo Conde

Email: bernardoconde@tecnico.ulisboa.pt
Instituto Superior Técnico

I. ABSTRACT

Today’s Internet architecture, while a marvel of software
engineering, is plagued with serious security issues, mostly
due to some of its early design decisions. These issues are
extremely hard to fix with incremental solutions, prompting the
question of whether we should design a new, future Internet
architecture, capable of delivering the same service we have
grown to love, without all the security problems it entails.
SCION is a new Internet architecture with a focus on security
and availability. SCION’s clean-slate approach means that
its architecture is not compatible with the current network
infrastructure. To gain traction, it is therefore fundamental
to address a hard challenge: SCION has to achieve at least
the same level of packet processing performance as current
Internet routers. As a step in this direction, in this work we
present an implementation of a terabit speed SCION data plane
router. We implement our solution in a state of the art network
device, a Programmable Switch, powered by an Intel Tofino
ASIC. These devices allow for the definition of their network
functions to be done in software, using the P4 programming
language. However, in order to achieve line-rate speeds, their
computation model is restrictive, exacerbating the challenge.
We show that our solution is able to achieve terabit per second
line-rate speeds in our target, while performing the required
on-demand cryptographic operations, which represents more
than two orders of magnitude speedup over the state of the
art.

II. INTRODUCTION

Today’s Internet is an undeniable success, having com-
pletely revolutionized global communications and created mul-
tiple indispensable services, becoming the backbone of our
modern, everyday life. However, the current Internet architec-
ture was conceived 50 years ago, without any expectations that
it would achieve the success that it has. As such, some of its
early design decisions have caused multiple severe limitations,
particularly with respect to security.

To make matters worse, today’s Internet architecture suffers
from an “ossification” of its network layer, due to the forceful
use of the Internet Protocol [19]. IP allows hosts to forward
packets to one another. Unfortunately, due to its design, it
makes the paths each packet takes completely opaque to its
hosts, not allowing any control over the path to use nor
to know which path a packet took towards its destination.
Another issue is that it forces routers to maintain state, namely

forwarding tables, making it more expensive to maintain,
evolve, and scale the network infrastructure. Finally, IP packets
are not authenticated, allowing a malicious host to lie about
its identification, spoofing an IP address of another host. This
enables possible Denial-of-Service attacks that have caused
serious disruptions [26].

Another “ossified” protocol is the inter-domain control plane
protocol of the Internet, the Border Gateway Protocol [27]
(BGP) . This protocol is responsible for deciding how packets
get routed across the Internet, through the exchange of routing
and reachability information. Unfortunately, due to the lack
of authentication in this exchange, the protocol is susceptible
to many security attacks that, when exploited, can result in
interception of users’ information or the complete blackout of
essential services. While there have been extensions to this
protocol [20, 17] that address some of these issues, these
solutions also come with problems of their own.

In order to fix these issues, a new secure-by-design In-
ternet architecture, called SCION [18], has been proposed
and created. SCION is a “path-aware Internet architecture,
designed to provide complete route control, failure isolation,
and explicit trust information for end-to-end communications”.
An advantage of SCION is the clean separation between the
data plane protocol (the part of a network that carries user
traffic) and the control plane protocol (the part of a network
that carries signaling traffic and is responsible for routing)
that it uses. Because of this separation, it is possible to
have different protocols in each plane, while still respecting
the SCION architecture. The SCION data plane is currently
EPIC [13], a family of protocols focused on increasingly and
incrementally adding stronger security guarantees. It has 4
versions, from EPIC L0 (the minimum offer of security) to
EPIC L3 (the most secure, offering all the security guarantees
from EPIC L0 to L2, plus others). These guarantees will be
detailed in Section IV-A.

III. MOTIVATION

SCION is a production-ready Internet architecture, currently
offered by 12 SCION-native Internet Service Providers [8].
However, for SCION to be even more broadly adopted, it is
necessary for its data plane to deliver similar performance
to today’s Internet. Recent work [25] has implemented an
initial prototype of EPIC L0 in hardware, to an FPGA target,
achieving 40 Gbps throughput. In this work we move forward
in three fronts. First, we will design and implement a SCION-
compatible router data plane in a programmable switch, with



2

the goal of increasing the data plane performance by more than
two orders of magnitude. Our specific target is the Intel Tofino
ASIC, capable of 12.8 Tbps. Second, we will implement both
the EPIC L0 and the (more secure) L1 protocol versions. These
protocols offer more security guarantees than SCION, fixing
possible attack vectors. Our implementation will be done
fully on the data-plane of the programmable network devices,
allowing it to run at terabit speeds. Finally, we will implement
our prototype using P4 [4], a domain-specific language for
packet processing that can be compiled to various targets, from
SmartNICs to programmable switching ASICs. Programming
in P4 will facilitate porting to other targets.

In this work we will:
• Design and implement a SCION-compatible router, run-

ning the EPIC L1 protocol fully on the data-plane, which
offers better security guarantees than regular SCION. We
will target a programmable network switch, capable of
terabit speeds and we will implement our router using
the P4 programming language.

• In order to achieve this, our router will need to perform
one cryptographic operation per-packet. Due to limita-
tions of previous work, we will propose and adopt a
lightweight cryptographic construct, the Simplified Even-
Mansour. We will implement this construct for our target
in an efficient manner, so our implementation is able to
achieve the required throughput

• Finally we will evaluate our implementation against the
state of the art and show that, in all cases, we are able
to achieve comparable or better performance, in terms of
throughput, while providing better security guarantees

IV. BACKGROUND

The Internet is a global, decentralized network, comprised
of tens of thousands of interconnected networks, or AS. Each
AS is normally under the control of a single administrative
entity. Information travels between ASes using one out of
many paths, chosen by a routing protocol, which exchanges
information about the reachability of every destination.

While the rapid development of Internet services and tech-
nologies make it clear that the Internet is progressing quickly,
the same is not true of its architecture. While its top (Applica-
tion and Transport) layers and bottom (Datalink and Physical)
layers have evolved significantly, the Internet middle stack has
stagnated for decades (shown in Figure 1): both the data-plane
and the inter-domain routing have been dominated by two
protocols, IP [19] and BGP [27], respectively.

Flaws with IP The Internet Protocol, or IP, is one of
the fundamental protocols in the current Internet architecture,
responsible for the forwarding of packets between hosts. For
this, each sender only needs to know the receiver’s address,
which will then be written on each of the packets’ header and
disseminated through the network.

Unfortunately, while this approach is simple, it has many
drawbacks. One of these drawbacks is the fact that the path
for a packet is opaque both for the sender and the receiver.
Due to a lack of specification of any path in a packet, neither
the sender nor the receiver have any ability to influence the

Fig. 1. The Internet Hourglass Problem: while application-level protocols and
physical level protocols can be changed/upgraded very easily, today’s Internet
architecture has a very hard dependency on its network-level protocol, the
Internet Protocol, making it extremely hard to fix its problems or replace it
with another, better protocol.

path a specific packet can take, nor the information to know
which path a packet took. This makes it impossible to prevent
a packet from being routed through non-trusted networks, or
to choose a more suitable path through a desired metric.

Another serious issue is the fact that routing and forwarding
are bound together, since packet forwarding depends on the
state of forwarding tables in routers, which can change over
time. This means that a working path can change or even break
after an update to the forwarding tables’ state, which can occur
at any point, potentially causing serious connectivity issues.

Additionally, due to each router’s necessity to maintain
forwarding tables, and to perform a lookup for each packet,
each router’s hardware must have special memory constructs
to deal with these constraints. These components are very
expensive and energy-intensive, leading to an increase of
hardware’s expenses. Plus, various Denial-of-Service attacks
can come from attackers that exhaust a router’s memory by
filling forwarding tables maliciously [3].

Finally, IP lacks any security guarantees over routing and
packet deliverance: a packet can pass through any intermediate
hop at any time due to its lack of path authentication. This
makes enforcing the use of specific paths for certain hosts
extremely challenging.

Flaws with BGP Unfortunately, while BGP works well
most of the time, one of its main limitations is security [5].
In BGP, the control plane and the data plane are not cleanly
separated: each AS advertises its reachability information
about its list of IP prefixes as a BGP UPDATE message that is
sent using the data plane. This lack of separation often causes
packet forwarding to fail when a valid route changes (due to
the acceptance of a BGP UPDATE), seriously affecting the
underlying traffic [12].

Another issue with BGP is the lack of fault isolation: since



3

it is a completely distributed system with no hierarchy or
isolation, any BGP client can affect the whole network, which
means that any client can seriously disrupt global connectivity.
As an example of this, in 2008 a single wrongly-configured
router from Pakistan Telecom made YouTube unreachable to
the whole world for hours [21]. Because each update needs to
be sent to every AS as well, BGP tends not to scale very well,
and due to the time it takes to disseminate a message through
the whole network, a consistent global view of all correct and
available routes can take several minutes, which can provoke
service outages for users (in fact, it has been shown that
for certain situations, BGP may never fully converge [11] or
converge non-deterministically [10]).

BGP also only selects a single path, providing no multi-
path support. This can lead to bottlenecks when BGP selects
a legitimate but inefficient route through a congested link.
Because of the inability of the end hosts to choose their own
path for their packets to take, they have no choice but to wait
until ASes in the Internet modify policies such that a more
appropriate path gets chosen.

Moreover, BGP performs no authentication nor authoriza-
tion of paths, allowing a malicious Autonomous System to
perform a hijack (as the Pakistan incident above) or intercep-
tion attack, giving a malicious entity the ability to passively
monitor and collect traffic, or to create a blackhole.

To address these and other security problems, two mecha-
nisms, the RPKI [20], and BGPsec [17] have been proposed.
These standards allow an AS to cryptographically sign a
BGP route announcement, thereby making the above attacks
impracticable.

However, the RPKI and BGPsec do not solve all problems.
For instance, while the RPKI offers origin authentication and
thus works against the IP hijack attacks, it still allows other,
more sophisticated attacks to occur [15]. For example, a mali-
cious AS trying to hijack a particular IP prefix can still send a
BGP UPDATE message claiming that it is directly connected
to its legitimate owner. Recipients of such an announcement
would accept it as the legitimate owner of the addresses, as
the malicious AS is noted as the last AS in the BGP UPDATE
and would then start sending the traffic destined for those IP
addresses to the attacker, who can then inspect, reroute, or
drop it.

BGPsec addresses this issue by signing the entire path, but
attackers are still able to create so called ”wormhole” attacks
[14] (two ASes conspire with each other to generate valid
BGPsec signatures, in order to convince victim ASes to use
them for communication) and cause forwarding loops.

BGPsec has also been reported to work poorly unless all
ASes use and enforce BGPsec [16]. When used in a partial
deployment scheme (only some ASes enforce BGPsec, while
others do not), BGPsec can lead to severe issues like insta-
bility. Due to backwards compatibility requirements, BGPsec
is also prone to downgrade attacks (where attackers fake not
supporting BGPsec in order to more easily attack the network).

Another problem with BGPsec is the existence of circular
dependencies [7]. In order to be able to participate in the
network securely, one must be able to fetch and exchange
cryptographic keys and RPKI certificates. In turn, in order to

fetch these, one needs to already be able to participate in the
network. This creates a circular dependency.

Another problem is the ability of enforcement of network
sovereignty, as organizations at the root of the RPKI hierarchy
have the power to create or revoke certificates. Depending on
the jurisdiction, local courts of some of the countries of origin
for these organisations may gain the power to shut down parts
of the Internet (with the obvious possibility of abuse).

Finally, BGPsec exacerbates BGP scalability issues. Under
BGP, in order to provide global connectivity, every single
global AS in the world needs to know how to reach every other
AS. This requires a large number of BGP UPDATE messages,
the processing of which requires much more resources in
BGPsec, due to the additional cryptographic checks. Further-
more, prefix aggregation, which is used to combine multiple
IP prefixes to reduce the number of routes and announcements,
no longer works in BGPsec. This is particularly cumbersome
as the increasing fragmentation of the IP address space and the
trend towards announcing ever smaller IP address ranges have
caused a strong growth of the number of paths that internet
routers need to store and exchange. All these problems have
hindered the widespread adoption of BGPsec.

A. SCION: Secure Future Internet architecture

SCION [18], short for Scalability, Control, and Isolation
On Next-Generation Networks, is a new, clean-slate, path-
aware, Internet architecture, aiming at “offering complete route
control, failure isolation, and explicit trust information for end-
to-end communications”. SCION groups existing Autonomous
Systems into ISD that connect with each other to provide
global connectivity (Figure 2). Each ISD is administered by a
subset of its ASes, called the ISD core, which is responsible
for setting the ISD policy. These ISD cores establish the
available paths for communication inside and outside the ISD
(this is called the path-exploration process), which will be
disseminated through all of the hosts of each ISD. These
hosts will then specify which path to use for each packet,
by making them explicit in the packet’s header. Every packet
sent outbound the ISD must pass through the ISD core,
allowing each ISD to set strong forwarding policies and
to prevent malicious path creation. It also enables defenses
against network attacks: since the full path of a packet is
carried in the packet itself, finding out the original sender of
a packet is possible, allowing the receiver and the network to
deal with them accordingly. SCION also completely separates
the control plane from the data plane, ensuring that forwarding
cannot retroactively be influenced by control plane operations.
For the control plane, SCION uses SCMP, analogous to ICMP.
It provides functionality for network diagnostics, such as
ping and traceroute, and error messages that signal packet
processing or network-layer problems.

EPIC EPIC [13] is a family of data plane protocols de-
signed to be used in path-aware internet architectures like
SCION. It presents 4 different versions, each designed to
provide increasingly strong security properties, while allowing:
network operators to be able to impose their own policies; end
hosts to verify that their forwarding decisions are followed



4

Fig. 2. SCION ISD model (from [18]): Multiple different ASes that trust
each other join together, becoming ISDs. For each ISD, there is a group of
special ASes, called the ISD core, responsible for enforcing rules over all the
traffic sent to other ISDs. These ISD cores also are responsible for creating
and disseminating the authorized paths to each of their own ASes, as the ISD
policy seems fit.

by the network; and intermediate routers and recipients to
authenticate the source of packets.

The EPIC family of protocols is made up of four different
versions:

• EPIC L0: EPIC L0 is a simplified version of the original
data plane protocol used in SCION. During the path-
exploration process, each AS generates a Hop Authenti-
cator: a static MAC, using each AS key, over the paths’s
starting timestamp, the hop information, and the previous
Hop Authenticator, truncated to lenha bytes. When each
source obtains a path, including all Hop Authenticators
for that path, it will send their Hop Validation Field as
just each Hop Authenticator; every intermediate router
checks if the packet came from the correct interface and
if the Hop Validation Field corresponds to the correct
Hop Authenticator. L0 has a clear problem: if the Hop
Authenticator length lenha is not big enough, its security
properties can be broken with an online brute-force
attack, generating valid Hop Authenticators for invalid
paths. Since Hop Authenticators will be used as Hop
Validation Fields, and these Hop Authenticators can be
reused for different packets, one only needs to do this
costly attack once.

• EPIC L1: EPIC L1 solves the brute-force attack problem
by making each Hop Validation Field dependent on
packet timing information, thereby making sure that they
cannot be reused. Each Hop Validation Field is a MAC of
the packet timestamp, plus source and the host address,
using the Hop Authenticator of each AS as a key.

• EPIC L2: EPIC L2 extends the previous security guaran-
tees by also allowing intermediate routers to authenticate
the source of a packet and the destination to authenticate
its payload. Each intermediate AS generates a new key,
derived from the source host and AS information. The
source host will then generate, for each Hop Field Value,
a MAC using the same information as L1, but using

this new, generated, AS-unique key. For the destination,
another new key will also be generated, based on the
source and destination’s host and AS, which will then be
used by the source to create a MAC of the contents of
the packet, plus information about the path. Since all the
information to derive these keys is public, all keys can
be locally generated.

• EPIC L3: Finally, EPIC L3 provides the strongest security
properties, adding also the ability for both the source
and the destination to perform path validation. For that
purpose, each on-path AS overwrites their Hop Validation
Field with a proof that they have processed the packet.
This proof is the higher part of the non-truncated MAC
used to generate each Hop Validation Field. Since, at the
start, these fields contain the lower part of the MAC,
truncating it so it fits, and since this is information that
both the source and the destination already have, both
can check that each packet has passed through each AS.
The destination gets this updated information right when
it receives the packet; in order for the source to get it, the
destination sends this information as an EPIC L2 packet,
in order to prevent cyclical confirmations.

TABLE I
SECURITY GUARANTEES PER EPIC PROTOCOL VERSION

Version Path
Authorization Freshness Packet/Source

Authentication
Path

Validation

L0 Yes No No No
L1 Yes Yes No No
L2 Yes Yes Yes No
L3 Yes Yes Yes Yes

Overall, EPIC is a family of protocols that offers strong
security guarantees, while being lightweight enough that we
expect it may be possible to run it fully on a fast data plane,
such as a modern SmartNIC or a programmable switch.

B. Programmable switching ASICs and the P4 programming
language

Traditional routers and switches are fixed-function: the way
they process packets is fixed during the chip design phase.
A new class of programmable switching ASICs has recently
emerged that allows packet processing to be specified by
a program, and to be reconfigured in the field, improving
the flexibility of modern networks [1]. The architecture of
switches tends to follow a multi-stage pipeline process, where
different stages of the pipeline look and act on different header
fields of each packet. While this process tends to add end-to-
end latency to each packet, it also allows for multiple packets
to be processed simultaneously, since different stages of the
pipeline can run concurrently in different packets.

The pipeline of a programmable switching ASIC is often
refereed to as the Protocol Independent Switch Architecture,
or PISA (see Figure 3). This architecture starts by running
a programmable parser on each packet, responsible for rec-
ognizing the header fields and matching them to later stages.
Then, a sequence of Match/Action rules runs over all matched



5

packets, tasked with potentially acting upon one or more
of the identified header fields. Finally, there is a deparser,
that serializes the packet metadata, obtained from all the in-
memory header fields processed by earlier stages, into the
packet, in order for it to be transmitted into the output link.

Fig. 3. PISA is made of 3 steps: the parser (red), a pipeline comprised of
multiple Match/Action units (blue) and finally a deparser (green). In order
to achieve fast speeds, the computations in each Match/Action unit are very
constrained.

P4 In recent years, the Programming Protocol-Independent
Packet Processors [4] language, better known as P4, has
received a lot of support, becoming the de-facto way of
programming programmable data planes, including ASICs,
FPGAs, SmartNICs, and even x86 software switches. P4 is a
domain-specific language, custom-made for programming the
data-plane functions of programmable network devices.

A P4 program is structured into several different compo-
nents:

• Headers: The specification of the header formats, as
structures with named fields and their lengths.

• Parsers: A finite state machine defining how to parse each
header into one of the previously defined structures.

• Tables: Description of multiple match/action rules, and
which actions are to be performed for each match.

• Actions: Set of primitive functions to build more complex
sequences of actions.

• Control Programs: Specification of the order that
match/action rules shall be applied for a packet, defining
the control flow of the packet processing.

Each packet processing unit starts with the processing of ar-
riving packets by the parser, which extracts each header. These
header fields are then sent through a series of match/action
tables divided in two parts: the first is the ingress pipeline,
that determines the egress port and queue order of the packets,
besides other functions; and the egress pipeline, responsible
for defining the destination ports and number of instances of
the packet to send, besides other programmer-defined actions,
again.

The flexibility of P4 targets lends themselves as viable
targets to become the infrastructure elements of a new Internet
architecture, as it allows the precise definition of the packet
processing of the network data plane.

V. PREVIOUS WORK

This section discusses previous implementations of SCION
compatible data planes. To the best of our knowledge, there
are currently three implementations of the SCION data plane:
the official, software-based, x86 64 implementation [24]; a
NetFPGA-based one by Soucková [25]; and a P4-based one,
targeting a Intel Tofino, by Joeri and Schutijser [22]. In this

section, we will present them one by one, and analyze their
advantages and disadvantages.

A. x86 64 SCION official implementation

The SCIONLab institution offers a free, open-source, com-
plete implementation of all the SCION protocols [24], includ-
ing a full specification of designs. Our solution follows this
specification, in order to be compatible with existing software.
This implementation is written in the Go programming lan-
guage. It is only a reference implementation, useful for testing
purposes. It is not intended for use in large-scale networks, as
its performance is limited.

B. NetFPGA SUME hardware implementation

The NetFPGA SUME [28] is an FPGA-based PCI Express
board with I/O capabilities for 100Gbps operation, capable of
running P4-based programs. In 2019, Soucková [25] presented
an implementation of the SCION data-plane, very similar to
EPIC L0, running on a NetFPGA SUME. By reconfiguring
the internal FPGA into an extremely optimized AES module,
they showed parts of an implementation processing packets at
40Gbps, in a device with 4 10Gbps ports.

The most important part of this design was the fact that
the cryptographic operation was ran online: for every packet,
a MAC was computed by the FPGA module and checked
with the one contained in the packet, for authentication pur-
poses. This work was extremely important in showing that an
implementation of EPIC L0 that performs its cryptographic
operations per packet is possible.

The main drawback of this design is its throughput: in this
day and age, 40Gbps is not enough for a production-ready
router. Also, this design implements the original SCION data-
plane protocol, that is vulnerable to MAC brute-force attacks.
Our objective is to improve the performance of these metrics
by at least two orders of magnitude, while making it more
secure against this type of attacks.

Worth of note is that the implementation failed to be
completed due to latency issues: in order to be able to process
packets at line-rate, they were required to have the entire
processing pipeline fit in a 5ns window; however, their only
able to fit their fastest implementation in 5.08ns. However,
parts of it were still able to be evaluated independently. We
will use these independent results in the evaluation against our
solution.

C. Intel Tofino implementation of EPIC L0

Recently, Joeri and Schutijser [22] presented an imple-
mentation of the SCION data-plane protocol running on an
Intel Tofino. In order to be able to run on the Tofino, they
were forced to do two things: the first was to pre-compute
all cryptographic operations; the second one was to heavily
refactor the headers of a SCION packet in order to be easier
to parse.

Since AES is too expensive to be done on the data-
plane of a Tofino, Joeri and Schutijser had to move all the
cryptographic operations to outside the data-plane. Instead,



6

during path discovery, the general CPU on the device would be
responsible for performing all the cryptographic computations,
precomputing a MAC for every possible path and storing them
in a table, accessible by the data-plane. Since, on EPIC L0,
each MAC only authenticates information related to a path,
this allows the cryptographic operation for each packet to
become a simple table read and comparison operation. If, for
a specific path, the MAC on the precomputed table is them
same as the one in the packet, then the packet is authenticated
and can pass through.

The main advantage of this implementation is its data plane
throughput: due to running in a programmable switch, this
implementation is capable of running at 12.8Tbps, with each
port running at 100Gbps. Another advantage is its portability:
as long as a switch implements the same open-source interface
as the Tofino, porting to it is a simple matter of compiling the
P4 program.

However, there is a drawback: due to the fact that the
cryptography is all precomputed offline, it is impossible to
implement the more secure EPIC L1 protocol. For EPIC L1,
the MAC not only protects the path but also the timestamp
in the packet. While this protects against brute-force attacks,
it also means that it is impossible to precompute all possible
MAC values.

VI. PROPOSED SOLUTION

The following section describes the implementation of a
SCION data plane router, running on Tofino-enabled pro-
grammable switches, implemented in the P4 programming
language. First, we expose the challenges of implementing
cryptographic primitives targeting a programmable network
switch. We then present our solution to these challenges, and
the resources used by our implementation of these primitives.
Finally, we give an in-depth overview of our data plane
design and implementation, describing each of its pipeline’s
functions.

A. Fast Cryptography in the data-plane
Unfortunately, in order to be able to process packets at

12.8 Tbps, the computational model of P4 programmable
switches is extremely limited. In these pipelines, we are only
allowed to do a very small number of single operations
(very small number of ALU operations and small number of
table accesses, typically limited to one read/write operation
per stage). It is therefore very challenging to implement on-
demand cryptography, namely running one full MAC operation
per packet in one pipeline pass. In order to execute an
expensive cryptographic scheme, like AES, in the data-plane
of one of these devices, we would be forced to recirculate
packets: pass the packet through the pipeline multiple times
until the computation is complete. While this would eventually
get us a valid MAC, it suffers from a performance penalty as
recirculation limits throughout. For example, the fastest current
implementation of AES in the data-plane on these devices can
only output less than 11 Gbps [6].

Our solution was to implement a different, but more
lightweight cryptographic scheme, that can run in one full pass
through the pipeline: the Simplified Even-Mansour scheme.

B. The Simplified Even-Mansour scheme

The Simplified Even-Mansour scheme [9], or SEM, created
by Orr Dunkelman, Nathan Keller, and Adi Shamir, is a one
round Even-Mansour scheme where both the pre-whitening
key (key applied before the permutation) and post-whitening
key (key applied after the permutation) are the same:

SEM(M) = (P1(M ⊕K)⊕K) (1)

where P1 is a N -bit permutation.
The maximum security upper bound it can offer is 2n

D ,
where D is the number of known ciphertexts. With n = 128,
we can offer up to 280 security if the attacker has at most D =
240 = 1.0995116e+12 known ciphertexts. We chose this as it
is the simplest possible construction of a block cipher which
has a formal proof of security.

As for the n-bit permutation, we decided to implement a
Substitution-Permutation-Substitution layer where each substi-
tution is different depending on the byte position. In order to
implement the scheme efficiently in a programmable switch,
we made two important design decisions.

The first was that all operations are done at the byte level.
While the P4 Language Standard demands support for bit-slice
operations, due to the design of the Tofino’s ALU, operations
on data with size different than a multiple of 1 byte are
extremely costly. Not only this, but operations on bit-slices
can introduce data dependencies. These data dependencies
can block possible optimizations and instruction reordering
from the Tofino compiler, which would lead to an increase
on the number of stages necessary due to the need for more
computations, resulting in an inefficient implementation. Due
to this, we decided to implement all the scheme’s operations
entirely at the byte level, parsing bigger words into smaller,
byte-sized variables. Each SBOX and the permutation layer
also act only at the byte-level, allowing the Tofino compiler
to further optimize the code at each stage.

The second was that all SBOXes were implemented as
statically allocated P4 tables. This allows us to translate this
substitution primitive as a main function of the Match/Action
units, making it extremely efficient. In order to guarantee even
more data-parallelism, we also instantiate multiple copies of
each SBOX, so that every table lookup is independent of all
other lookups.

With these two methods, we are able to fit this scheme into
the full pipe-line of the Tofino programmable switch, and only
use 8 stages (of the 12 available in our switch).

C. SCION EPIC L1 entirely in the data-plane

The proposed solution is implemented on top of a pro-
grammable switch, with a Tofino ASIC, using the P4 pro-
gramming language. In order to be fast, the router only deals
with well-constructed, valid, packets. Since the main purpose
of this work is to show the viability of implementing EPIC L1
in a programmable switch, features like error generation are
not implemented: if a packet is invalid, for whatever reason
(bad parsing, wrong MAC, invalid path, etc.), the packet is
sent directly to the general-purpose CPU where it can then be
dealt with accordingly.



7

The router is divided into 3 parts: the packet parser, which
parses the packet into P4 data structures, while checking for
correctness in its fields; the MAC generator, that takes the data
from the packet, generates a MAC and compares it with the
MAC from the packet to authenticate it; and finally the packet
header fixer, that updates the packet header values so the next-
hop can process the packet correctly, according to the EPIC
protocol. These last two are fully implemented in the Ingress
part of the Tofino ASIC.

An overview of the protocol implemented is as follows:

1) Parse the incoming packet according to the EPIC header
structure. In case of error, send to the CPU.

2) Extract and parse both the current hop field and the
previous hop field headers. If we are the originating
hop field, we only parse this one. Otherwise, parsing
the previous hop field is necessary since its MAC will
be used in the data block for our own MAC verification.

3) Verify that the ingress interface in the packet corre-
sponds to the port it originated from. The path ex-
ploration phase records which ASes are connected to
each of our ports. If we receive a packet from an AS
connected to a different port than recorded, send to the
CPU.

4) With all of the information parsed, compute the MAC
over the packet data. Check if the computed MAC
matches the MAC present our packet hop field. If it
does not match (meaning that the MAC in the packet is
incorrect), send to the CPU.

5) If the destination AS is our AS, then forward it to the
correct port, accordingly to intra-AS rules stored in the
switch’s tables.

6) If the destination AS is not our AS, we are an interme-
diate hop. We update the packet’s values, so the next AS
can correctly parse the fields related to it.

7) Forward the updated packet to the next AS, identified
through the ingress interface in the packet.

Packet Parser The packet parser is implemented as a
state machine, where each state parses specific header fields.
The trickiest part of implementing the parser was parsing
the Info and HopField headers (part of the SCION header
specification [23]), since their number is variable and depends
on previous header information. While P4 has support for
variable size fields, high speed P4 targets as the Tofino switch
do not support them given its complexity, and the requirement
of guaranteeing line rate performance. For parsing the Info
headers, we used multiple different states in the parser state
machine, one for each possible number of fields (3 states
in total). However, for the HopField headers, this is not a
suitable solution. The maximum number of HopFields in
a header is limited to 64. Adding 64 different stages only
for parsing these structures would make the parser inefficient
and clutter the code. Due to this, we decided to exploit a
design decision of SCION. In SCION packets, we only need
to access, at most, two HopField headers: the current header,
and, if it exists, the last header before the current one. This
is because these two headers contain all of the information
necessary to perform the MAC computation. While we must

include the full hop field information in every packet we
process, we don’t need to parse them all into individual
structures, since we won’t be accessing their data. Because of
this, we can parse all of the unimportant HopField headers
into large-size buffers, and jump over them. We only need to
be careful to correctly parse the two above-described headers
into their correct structures.

MAC Generation and Authentication The MAC au-
thentication is ran during packet processing and consists of
generating a full MAC, with the Hop Authenticator as a key,
based on a 128-bit block, constructed with data present in
the packet. Each router computes the MAC for its own hop,
and compares with the MAC value present in its Hop Field
header. As for the MAC construction, we do a full round of
the Simplified Even-Mansour scheme, described in VI-B, on
a 128-bit block.

The main difference between MAC construction between
EPIC L0/previous SCION implementations and EPIC L1 is
the presence of a new packet timestamp, generated when this
packet is sent. This timestamp, when included in the data block
used by the MAC function, acts as a freshness value, assuring
that MACs are not only dependent on the path a packet will
take but are also dependent on this timestamp. This means that
an attacker can not brute force a valid MAC for one specific
path, since if the timestamp in the packet is too old, a hop can
simply choose to discard it. This forces the attacker to update
the timestamp in the packet, which in turn changes the MAC
value.

The EPIC paper [13] suggests small MAC sizes, truncating
the full computation to 3 bytes per hop, in order to diminish
the necessary overhead in packet header sizes. However, in
order to have stronger guarantees against brute-force attacks,
the original SCION header specification [23] mandates MAC
sizes of 6 bytes. In order to be more compatible with the
SCION protocol, we only support 6-byte MAC fields.

Fixing Packet Header Values Finally, if the packet was
processed correctly, we now must send it to the correct port.
However, if we are an intermediate hop, we must also update
the packet header values to reflect that we have successfully
validated the packet and to make it possible for the next hop
to find its own correct header fields.

VII. EVALUATION

In this section, we present the evaluation of our solution.
We compare our own implementation of the EPIC L0 protocol
against our implementation of the EPIC L1 protocol, which
was the main contribution of this work, and show that there
are no meaningful differences in performance between the
two, and that both are able to process packets at line-rate.
In addition we compare our solution to the previous state of
the art, and show that we are able to maintain or surpass the
throughput of previous solutions, while providing the stronger
security guarantees that EPIC L1 offers.

A. Comparison between EPIC L0 and EPIC L1

We compare our implementation of EPIC L0 with our
implementation of EPIC L1, both targeting a programmable



8

switch backed by an Intel Tofino. We evaluate them both on
resource usage of the Tofino chip (how many stages each use,
how many resources they use on each stage through the PISA
pipeline), and on throughput. We conclude by showing that
resource usage of both implementations is similar, with both
are able to achieve terabit speeds on existing hardware.

Resource usage We start by asking one question: do we
need more resources to implement EPIC L1 versus EPIC L0.
Due to the additional security guarantees that EPIC L1 offers
(freshness), our expectation was that EPIC L1 would consume
more resources than EPIC L0. However, this is not the case:
our implementation of EPIC L1 has very similar resource
usage than EPIC L0 (see Table II). They use the same number
of stages (8 out of 12), so they will have the same latency for
every processed packet. Difference between implementations
in total of resources used is minuscule, making the overall
resource usage near indistinguishable.

Throughput Both implementations were tested on a APS
Advanced Programmable Switch BF2556X-1T, powered by
a Barefoot BFN-T10-032D-020 Tofino 2.0T chip. The con-
troller was programmed and results were collected using
the P4Runtime API, running on the Ubuntu 20.04 operating
system.

We test throughput by utilizing the packet generation feature
included in the Tofino chip and checking if we are able to
process it all at line-rate.

The compilation of both EPIC L0/L1 implementations was
successful on the Tofino compiler, which means both solutions
can run at terabit speeds, with enough servers (64) in our
testbed (each server connected to one 100Gbps port). However,
we do not have such a setup. As such, we utilized the packet
generation feature (capable of around 50Gbps with small
packets) in order to test our implementations. We found that
the size of payload and hop fields leads to the same line rate
result, which shows that indeed we achieve line rate.

B. EPIC L0/L1 against the state of the art
In this section, we compare our implementations of EPIC

L0 and EPIC L1 with the state of the art. We will compare
them mainly on two metrics: the security guarantees that
each solution provides, and the performance, in terms of
throughput, of each solution. We will show that our solution is
capable of either matching or exceeding the packet processing
performance of previous work, while delivering better security
guarantees. Table III provides a high level overview of our
results.

Security Both Soucková’s [25] and Joeri and Schuti-
jser’s [22] solutions implement a version of the EPIC L0 data-
plane protocol. The main difference between them is the type
of cryptography operations. Soucková’s NetFPGA solution
performs the cryptographic MAC computations online, once
per-packet. By contrast, Joeri and Schutijser’s Tofino-based
solution precomputes all valid MACs, stores them on a table
and, in order to check the packet MAC’s validity, it performs
a table lookup to see if the MAC present on the packet is also
present in the table.

Both our EPIC L0 and EPIC L1 implementations do on-
demand cryptographic operations per packet. This is specially

important for the EPIC L1 implementation: since this protocol
includes a freshness guarantee for each packet, by adding
a packet’s timestamp to each packet’s header, this is not
compatible with Joeri and Schutijser’s table-based approach,
since it is not viable to do all precomputations ahead of time.

Performance We compare our results with the state of
the art of Soucková’s [25] and Joeri and Schutijser’s [22]
works. Soucková’s implementation target was an NetFPGA,
a device capable of a maximum throughput on all of its ports
of 40Gbps (4 ports of 10Gbps). Their implementation was not
able to fully fit onto this device, as explained in Section V-B.
However, they were able to perform throughput measurements
on a partial design, while accounting for different frame sizes
(1500B and 115B frames). We compare our implementation
measurements with these.

Joeri and Schutijser’s [22] implementation was able to run
at line-rate, while targeting a Tofino device, the same type of
device as our solution. They performed measurements on a
single 100Gbps port of the device, which is sufficient to show
that the implementation runs at line-rate (a 128-port Tofino
ASIC chip is capable of processing up to 12.8Tbps). We run
similar measurements on our implementation as well, in order
to allow better comparisons with this solution.

Our implementation is able to achieve the same speeds as
Joeri and Schutijser’s implementation and over two orders
of magnitude faster than Soucková’s theoretical maximum.
However, like Soucková’s implementation and unlike Joeri and
Schutijser’s, we do all of the cryptographic operations per-
packet. This means our implementation of EPIC L1 is able
to run at terabit speeds, while providing increased security
guarantees, in the form of MAC freshness.

TABLE III
PROPERTIES OF EACH IMPLEMENTATION.

NOTE∗ : SINCE SOUCKOVÁ’S FULL IMPLEMENTATION WAS NOT CAPABLE
OF FITTING IN THE TARGET, THIS IS THE ADVERTISED THEORETICAL

MAXIMUM, TESTED ONLY ON THEIR PARTIAL DESIGN.

Implementation
Type of

Cryptography
implemented

Maximum
throughput Freshness

Soucková’s [25] On-demand ≤ 40 Gbps∗ No

Joeri and
Schutijser’s [22] Table-based 12.8 Tbps No

Our EPIC L0
implementation On-demand 12.8 Tbps No

Our EPIC L1
implementation On-demand 12.8 Tbps Yes

VIII. CONCLUSION AND FUTURE WORK

In this work, we made the case for the need of a new
Internet architecture, that can overcome the security problems
present today, while still being able to deliver the level of
service we have come to expect. SCION is the first, new,
production-ready Internet architecture, with a focus on security
while still remaining efficient enough for today’s use-cases.
We have implemented a SCION-compatible router data plane
in a programmable switch, powered by an Intel Tofino ASIC,
with increased performance of over two orders of magnitude



9

TABLE II
RELATIVE RESOURCE USAGE DIFFERENCE BETWEEN EPIC L0 AND EPIC L1, IN EACH STAGE AND IN TOTAL. RESULTS TAKEN FROM BAREFOOT P4

INSIGHT TOOL. DIFFERENCES BETWEEN IMPLEMENTATIONS ARE ALMOST ZERO, MAKING THEM VIRTUALLY IDENTICAL. VARIATION IN SPECIFIC
STAGES WHERE THE TOTAL BECOMES 0% CAN BE ATTRIBUTED BY SMALL, IRRELEVANT DEVIATIONS BY THE COMPILER.

Resource S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Total

Action Data
Bus Bytes 0.78% 0% 1.56% 2.34% 0% 0% 0.78% 0.78% 0% 0% 0% 0% 0.52%

Exact Match
Input Xbar -0.78% -0.78% 0.78% 0.78% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Gateway 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Hash Bit -2.40% -2.40% 2.40% 2.40% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Logical Table ID -6.25% -6.25% 6.25% 6.25% 0% 0% 0% 0% 0% 0% 0% 0% 0%

SRAM -1.25% -1.25% 1.25% 1.25% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Stash -6.25% -6.25% 6.25% 6.25% 0% 0% 0% 0% 0% 0% 0% 0% 0%

VLIW Instruction 0% -4.55% 4.55% 6.25% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exact Match
Search Bus 0% -6.25% 6.25% 6.25% 0% 0% 0% 0% 0% 0% 0% 0% 0.52%

Exact Match
Result Bus -6.25% -6.25% 6.25% 6.25% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Ternary
Result Bus 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

over the previous state of the art. We have implemented both
EPIC L0 and EPIC L1. This last one provides more security
guarantees than SCION, by being more resistant against brute
force attacks. Both our implementation were written in P4, in a
cross-platform manner, targeting any PISA-compatible device.

One of the major challenges in this work was the imple-
mentation of cryptographic primitives in our target, that were
able to run at line-rate. In order to do this, we adapted the
Simplified Even-Mansour cryptographic scheme and ported
it to our target, since previous implementations of other
cryptographic schemes were insufficient to get the throughput
that we required. The permutation used on this implementation
was based on a Substitution-Permutation-Substitution layer,
where all substitution were performed by non-linear SBOXes,
mapped to P4 tables for maximum efficiency. The permutation
network was adapted from previous lightweight ciphers like
GIFT-128 [2]. Overall, we were able to implement a full
cryptographically-secure scheme in 8 stages of the device.

Finally, we compared our implementations with the previous
state of the art solutions, showing that we were able to
get comparable or faster throughput speeds, while providing
improved security guarantees.

Our results show that both the EPIC family of protocols, and
the SCION Internet architecture are viable solutions at high
speeds, since they are suitable for hardware-backed implemen-
tations. As such, both can be considered for world wide large-
scale deployments. We have also shown that programmable
network devices, programmed with P4, can be use to imple-
ment relatively complex protocols while still performing at
line-rate. This makes these devices extremely useful tools that
can simplify the development and implementation of network
protocols for a variety of different targets, while still providing
enough performance for real-world cases.

Designing and implementing secure and efficient protocols,
targeting these new programmable network devices, is a very
promising area to explore. This allows us to solve long-
standing architectural problems in our current infrastructure,
while still being able to process great amounts of traffic, which
is extremely important in maintaining the level of service we
have come to expect from it. Some topics that could improve
our work include:

• Implement the EPIC L2 and EPIC L3 protocols in modern
programmable network devices: after implementing EPIC
L0 and EPIC L1, the next logical step would be to
implement the most secure siblings of this family of
protocols. Further analysis can be made in order to find
out how much each added security property contributes
in the overall performance of each implementation.

• Design and implement better and safer cryptographic
primitives in the data-plane: while the Simplified Even-
Mansour scheme may be considered sufficient for various
use cases, very little work has been done on developing
cryptographic primitives for PISA devices. Further work
can be done either by improving, both in efficiency and
security, the current Simplified Even-Mansour primitive,
or by creating a new cryptographic primitive, custom-
made for this new architecture.

REFERENCES

[1] Changhoon Kim Anurag Agrawal. Intel Tofino2 – A
12.9Tbps P4-Programmable Ethernet Switch. Intel Cor-
poration. Aug. 18, 2020. URL: https: / /hc32.hotchips.
org / assets / program / conference / day2 / HotChips2020
Networking Tofino.pdf.



10

[2] Subhadeep Banik et al. “GIFT: a small present”. In:
International conference on cryptographic hardware
and embedded systems. Springer. 2017, pp. 321–345.

[3] Steven M Bellovin. “Security problems in the TCP/IP
protocol suite”. In: ACM SIGCOMM Computer Com-
munication Review 19.2 (1989), pp. 32–48.

[4] Pat Bosshart et al. “P4: Programming protocol-
independent packet processors”. In: ACM SIGCOMM
Computer Communication Review 44.3 (2014), pp. 87–
95.

[5] Kevin Butler et al. “A survey of BGP security issues
and solutions”. In: Proceedings of the IEEE 98.1 (2009),
pp. 100–122.

[6] Xiaoqi Chen. “Implementing AES encryption on pro-
grammable switches via scrambled lookup tables”. In:
Proceedings of the Workshop on Secure Programmable
Network Infrastructure. 2020, pp. 8–14.

[7] Danny Cooper et al. “On the risk of misbehaving
RPKI authorities”. In: Proceedings of the Twelfth ACM
Workshop on Hot Topics in Networks. 2013, pp. 1–7.

[8] Alex Davidson et al. “Tango or Square Dance? How
Tightly Should we Integrate Network Functionality
in Browsers?” In: arXiv preprint arXiv:2210.04791
(2022).

[9] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Min-
imalism in cryptography: The Even-Mansour scheme
revisited”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques.
Springer. 2012, pp. 336–354.

[10] Tim Griffin and Geoff Huston. BGP wedgies. RFC
4264. IETF, 2005. URL: https : / / datatracker. ietf . org /
doc/html/rfc4264.

[11] Timothy G Griffin, F Bruce Shepherd, and Gordon
Wilfong. “The stable paths problem and interdomain
routing”. In: IEEE/ACM Transactions On Networking
10.2 (2002), pp. 232–243.

[12] Nate Kushman, Srikanth Kandula, and Dina Katabi.
“Can you hear me now?! it must be BGP”. In:
ACM SIGCOMM Computer Communication Review
37.2 (2007), pp. 75–84.

[13] Markus Legner et al. “EPIC: Every Packet Is Checked
in the Data Plane of a Path-Aware Internet”. In: 29th
USENIX Security Symposium (USENIX Security 20).
2020, pp. 541–558.

[14] Qi Li, Yih-Chun Hu, and Xinwen Zhang. “Even rockets
cannot make pigs fly sustainably: Can BGP be secured
with BGPsec”. In: Workshop SENT’14, 23 February
2014, San Diego, USA, Copyright 2014 Internet Soci-
ety: Proceedings. Internet Society. 2014.

[15] Qi Li et al. “BGP with BGPsec: Attacks and counter-
measures”. In: IEEE Network 33.4 (2018), pp. 194–200.

[16] Robert Lychev, Sharon Goldberg, and Michael Schapira.
“BGP security in partial deployment”. In: Is the juice
worth the squeeze (2013).

[17] K. Sriram M. Lepinski. BGPsec Protocol Specification.
RFC 8205. IETF, Sept. 2017. URL: https://datatracker.
ietf.org/doc/html/rfc8205.

[18] Adrian Perrig et al. SCION: a secure Internet architec-
ture. Springer, 2017.

[19] Jon Postel. INTERNET PROTOCOL. RFC 791. IETF,
Sept. 1981. URL: https://datatracker.ietf.org/doc/html/
rfc791.

[20] R. Austein R. Bush. The Resource Public Key Infras-
tructure (RPKI) to Router Protocol. RFC 6810. IETF,
Jan. 2013. URL: https://datatracker.ietf.org/doc/html/
rfc6810.

[21] NCC Ripe. “Youtube hijacking a ripe ncc ris case
study”. In: http://www. ripe. net/news/study-youtube-
hijacking. html (2008).

[22] Joeri de Ruiter and Caspar Schutijser. “Next-generation
internet at terabit speed: SCION in P4”. In: Proceedings
of the 17th International Conference on emerging Net-
working EXperiments and Technologies. 2021, pp. 119–
125.

[23] SCION Header Specification. Anapaya Systems. 2021.
[24] SCIONLab. SCION. https : / / github . com / scionproto /

scion.
[25] Kamila Soucková. “FPGA-based line-rate packet for-

warding for the SCION future Internet architecture”.
MA thesis. ETH Zurich, 2019.

[26] Daniel Wagner et al. “United We Stand: Collabora-
tive Detection and Mitigation of Amplification DDoS
Attacks at Scale”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security. 2021, pp. 970–987.

[27] T. Li Y. Rekhter. A Border Gateway Protocol 4
(BGP-4). RFC 1654. IETF, July 1994. URL: https : / /
datatracker.ietf.org/doc/html/rfc1654.

[28] Noa Zilberman et al. “NetFPGA SUME: Toward 100
Gbps as research commodity”. In: IEEE micro 34.5
(2014), pp. 32–41.


