
CROSS City Cloud:
Location-Certification-as-a-Service

Lucas de Haan Vicente
Instituto Superior Técnico, Universidade de Lisboa, Portugal

lucasvicente@tecnico.ulisboa.pt

Abstract—Lisbon is one of the world’s most visited cities,
attracting millions of tourists each year and many of them use
smartphone applications to discover points of interest. Although
these applications heavily rely on location information, most of
them are susceptible to location spoofing. Location certificates
can be used to thwart these attacks.

CROSS City is a smart tourism application that rewards users
for completing tourist itineraries and one of its strengths is the
use of location certificates. The location verification relies on the
periodic collection of wireless network observations by multiple
users to make sure the travelers went to the tourist attractions.

In this work, we introduce CROSS City Cloud, a cloud-
native and improved location certification system, capable of
producing and validating time-bound location proofs using data
collected from publicly available Wi-Fi network infrastructure.
The architecture was extended to efficiently compute the stable
and transient networks of a given location required to determine
location and time-of-visit. We deployed to the Google Cloud
Platform, including an additional control plane to ease service
operation. The smart tourism application was utilized to demon-
strate the feasibility of our Location-Certification-as-a-Service.
The merits of the solution were validated with performance
evaluations and real-world scenario assessments stressing each
component of the system in various aspects, such as its scalability
and feasibility.

Index Terms—Location Spoofing Prevention, Location Proof,
Context-Awareness, Security, Internet of Things, Cloud Deploy-
ment.

I. INTRODUCTION

Modern mobile applications and services rely heavily on
location to provide users with context-aware information.
Practical use cases of these services include: map navigation,
smart tourism, weather services and location-based games.
Several techniques can be used to provide location context to
applications. However, many of these services do not verify the
location information they consume, making them vulnerable to
various location spoofing attacks [1]. To combat and provide
protection against these attacks, location proof systems [2]–
[4] provide a means for producing reliable digital certificates
attesting an individual’s presence at a geographical location
and specific time. The generated certificates can subsequently
be utilized to validate location claims.

An initial version (v1) of CROSS1 City [5] was developed
for a smart tourism use case; tourists use their smartphones
to interact with existing infrastructure at points of interest
in the city. They periodically collect data. And in the end,

1The CROSS designation refers to loCation pROof techniqueS for consumer
mobile applicationS

rewards are awarded for completing tours, which in turn
motivates them to continue using the application. However,
rewards also entice bad actors to illegitimately obtain them. To
combat this, CROSS offers multiple strategies for producing
location proofs, namely, scavenging of Wi-Fi identifiers, one-
time codes broadcast by Wi-Fi beacons, and user interaction
with kiosks. Robust attestation for the time of visit requires
the use of the mentioned Wi-Fi beacons. To reduce the need
for this additional infrastructure, further improvements can
be performed on the scavenging strategy [6]. The improved
location proof generation process relies on data collected
from smartphone sensors and its analysis against previously
obtained Wi-Fi data from a given location, to proof visits
with temporal granularity. CROSS City v1 lacks the nec-
essary components and protocols to properly support these
enhancements. Moreover, the initial version of CROSS was
a prototype not designed with production properties in mind,
such as reliability, availability, scalability, and performance.
It also lacks an automatic approach for deploying its various
components. CROSS v1 does not offer health status of the
back-end or a way to determine the cause of failures. If all
the aforementioned issues were solved, we would be close to
providing a Location-Certification-as-a-Service platform.

In this paper we propose CROSS City Cloud, a cloud-
native location certification system with support for time-
bound location proofs, serving as a testbed to demonstrate the
feasibility of embedding location certification into public cloud
computing technology to provide novel Location-Certification-
as-a-Service capabilities.

We will provide background and details on the implemen-
tation, as well as the results of the experiments.

II. BACKGROUND

Maia et al. [5] proposed CROSS (v1) that implements a set
of location proof techniques for consumer mobile applications.
While doing itineraries through points of interest in the city,
tourists interact with Wi-Fi and other existent infrastructure
using their mobile devices which records traces of information
(trip logs). Three entities are defined, prover (makes a claim
with location evidence), witness (endorses claims with their
collected evidence), verifier (analyzes evidence and makes the
decision to issue - or not - a location certificate).

CROSS v1 uses a client-server model consisting of a
mobile application and a centralized server with a database

1

component. The server is responsible for handling the val-
idation of location evidence submitted by the tourists. The
server contains a persistent module with domain data such as
user information, points of interest, tourism routes, estimated
rewards and the set of Wi-Fi Access Points (identified by their
SSIDs) expected to be present at each location.

CROSS v1 is able to employ three distinct strategies for
location verification. Each strategy provides different levels
of security by trading off infrastructure needs and operational
costs:

• Scavenging: User collected Wi-Fi traces compared
against the list of known networks at that location. Has a
reduced setup cost, however it provides a weaker level of
confidence, since an attacker could forge a trip log after
knowing the list of networks;

• TOTP: Leverages a Time-based One-time Password sim-
ilar to the proposed in RFC 6238 [7], in the broadcast
SSID. Requires the deployment of a customized Wi-Fi
AP dynamically changes its broadcast SSID in a set
period. Only the Wi-Fi AP and the CROSS server share
a secret which is used to produce and validate the codes.
Attests for both a user’s location and visiting period, at
the expense of setup cost;

• Kiosk: Clients produce location proofs by interacting with
a trusted kiosk device, which signs the information later
verified by the server. This strategy is more inconvenient
for the clients and requires an extra infrastructural com-
ponent.

A. Time-Bound Location Proofs Based On Scavenging

Aligned with the CROSS application, Claro et al. [6]
collected a dataset of Lisbon hotspots, as well as developed
a data model and algorithms to determine the location and
time interval of a tourist visit. More specifically, their ap-
proach leverages diverse ad-hoc witnesses to observe long-
lived hotspots and short-lived hotspots to detect the location
and prove the time of visit, respectively, of other tourists.
A prover’s location claim uses as evidence a collected set
of Wi-Fi Access Point SSIDs, referred to in the model as
observations. Three time windows are defined in the model to
bound the observations for verification:

• Epoch: The most encompassing time frame. Only obser-
vations collected within this time window will be used
to compute the stability of the Wi-Fi networks at each
location for the following epoch;

• Period: A subdivision of an epoch. Only observations col-
lected within this time window will be used to compute
the volatility of the Wi-Fi networks at a given location;

• Span: A subdivision of a period, a span is the interval
formed by the time of visit in the location claim (tp)
and an additional parameter delta (δ) between tp− δ and
tp+ δ. Prover and witness must share observations in the
same span.

B. Data Processing Architectures

Now that we have a model to implement, we studied
possible architectures. Most data-sensitive systems require
real-time data analytics. These systems require asynchronous
data transformations with minimal delay without sacrificing
processing of historical data, meaning to reprocess past input
data, to cope with change. Lambda and Kappa are two widely
utilized architectures to address the challenges outlined above.

1) Lambda Architecture: Proposed in 2011 [8] with the
goal of achieving both real-time and historical data processing
capabilities by combining both batch and stream methods. The
Lambda architecture, as illustrated in Figure 1, is composed of
three distinct layers: a batch layer, a speed layer and a serving
layer. Data is fed to both the batch and speed layers. The batch
layer stores the immutable master dataset and recomputes a
series of batch views that facilitate the computation of arbitrary
queries over the dataset. Running batch jobs to maintain these
precomputed views of the dataset takes a significant amount
of time. Furthermore, any queries made during this process
lack access to the data captured during this period. Therefore,
to compensate for high latency updates the speed layer is
responsible for incrementally computing a series of realtime
views of recent data. Queries are handled by the serving layer
against the merged results of both the batch and realtime
views [9]. These capabilities increase the complexity of code
maintainability, since two separate processing systems need
to be indefinitely maintained. Both are also required to be
synchronized to correctly integrate the missing updates that
occur during a batch job [10].

Speed layer

Stream

Processing

job

BATCH LAYER

Master

dataset

batch

Processing

job

SERVING LAYER

BATCH

VIEWS

REALTIME

VIEWS

MERGE

queries

Responses
INCOMING DATA

Client

Fig. 1: Overview of the Lambda data processing architecture.

2) Kappa Architecture: Proposed in 2014 [11] to overcome
the limitations of the Lambda Architecture. In the Kappa
architecture there is no notion of batch, every data is treated
as a stream and therefore only a stream processing engine is
required. As illustrated in Figure 2, it consists of two distinct
layers: a stream processing layer and a serving layer. Data
is fed as streams to the stream processing layer which is
responsible for running the real-time data processing jobs
and then queries are handled by the serving layer against
these results. It is important to note, that data may still
be reprocessed by simply streaming through historical data.
This architecture achieves a “general-purpose” solution with
both real-time and reprocessing capabilities without the added
complexity of maintaining two separate systems by trading-off
latency/throughput and efficiency when reprocessing historical
data [10].

2

INCOMING DATA

Stream processing layer

Stream

Processing

job

SERVING LAYER

Database

queries

Client
Responses

Fig. 2: Overview of the Kappa data processing architecture.

III. ARCHITECTURE

We now discuss the extension made to the CROSS data
management layer to ingest, aggregate and integrate scavenged
network observations for time-bound location proof validation.

A. Data Management Layer Architecture

Before starting a specific trip, the client application fetches
the catalog of possible itineraries. During the trip, the client
application logs the visits to each point of interest while
sensing Wi-Fi signals, and either stores these locally (offline
connection) or immediately publishes them to the API server
(online connection). At the end of the trip, the application
submits all of the collected information, to the back-end and
claims each point of interest visited. Based on this flow, we
could either opt for a minimal Lambda architecture with solely
batch processing, sufficient to provide us offline data process-
ing capabilities or a Kappa architecture ensuring both offline
and real-time data analytics. Real-time capabilities allow us to
relax the assumptions that the start and end of a trip coincide
with the beginning and end of a period, and that during the
period no location claim request is made for that particular
period. Solely with offline or batch processing, any location
proof requests made during a period would necessarily have
to be purposely delayed until a period reached its completion
or multiple high latency batch jobs would have to be triggered
during the period.

To avoid this, we extend the CROSS architecture data
management layer based on the Kappa Architecture, with
three distinct layers: a domain layer, a stream layer and a
serving layer. The domain layer is responsible for storing and
handling queries related to entity relation data, such as the
user information, points of interest and tourism routes. The
stream layer stores the raw streams of Wi-Fi signal observation
data as atomic and immutable facts, kept as the truth within
a given epoch time window, through the use of publish time
timestamps, which is useful for recomputing views historically.
Additionally, the stream layer is responsible for executing
stream processing jobs that produce stream views containing
precomputed aggregated results to assist stable or volatile set
queries. The serving layer indexes and uses the precomputed
results, received from the stream layer, to serve the stable or
volatile set query requests. Figure 3 illustrates the resulting
CROSS City server-side architecture.

B. Collection of Network Observation Data

Networks collected by tourists must be continuously inte-
grated onto the operational dataset, nonetheless to ensure that
only valid network observations are integrated, the CROSS

Location Proof
Veri�er

API
Request
Handler

Reward Assigner

Intermediate
Data Sets

Database

CROSS City Server

CROSS
Mobile Client

API
Internet

Serving Layer Stream Layer

Raw Network
Observations

Stream
Storage Network

Observations
Processor

Domain Layer

Catalog
&

User Info

Database

Wi-Fi
Access PointKiosk

System
Operator

Tourist

Fig. 3: Overview of the extension to the CROSS server-side
architecture.

City Cloud lifecycle, illustrated in Figure 4, is split into
two stages: Pre-Live and Live. The Pre-Live stage is a fi-
nite time interval with a total duration equal to the system
epoch, referred to as epoch0. Throughout the Pre-Live stage,
only trustworthy entities such as the system operators submit
network observations of each existing point of interest, with
the goal of deriving the initial/genesis stable network sets.
Since the system trusts system operators, verification of their
submissions is therefore not required. The Live stage is a
sequence of epoch intervals, with the initial one named epoch1.
Throughout the Live stage, untrusted entities interact through
trip submissions. Tourists/Provers are meant to complete trips
across multiple point of interest visits and collect the net-
works observed. Each visit (location claim) contains a set of
evidences (network observations) which are validated against
the claimed point of interest stable network set of the former
epoch. For epochn, the stable network set of epochn − 1 is
used for validation. Only if the claimed location confidence
threshold is fulfilled does the visit get accepted and its network
observations submitted to be integrated in subsequent stable
and volatile network sets.

C. Computation of Intermediate Observation Set

The stream layer’s sole goal is to produce network ob-
servation views to be queried efficiently, in a low-latency
manner. Hence, we are adopting an incremental computation
approach over recomputation, avoiding the execution of our
function logic over the entire set of observations. To be
efficient, the views should contain intermediate results of the
expected queries: Most observed networks, over an epoch,
for a given point of interest (stable network set) and Least
observed networks in a span interval, over a period, for a
given point of interest (volatile network set).

The key idea of the intermediate views is to maintain a count
of the number of observations per network at each point of
interest, for the most encompassing range of time. Note that
the usage of higher time intervals increases query performance
by trading-off proof validation accuracy. We now reason about

3

P
ro

ve
r

S
ys

te
m

 O
p

er
at

or
C

R
O

S
S

 C
it

y
C

lo
ud

Pre-Live
{Epoch}

Stable Set Collection

Submit WiFi AP
Observations

Submit Trips

Stable and Volatile Set Collection

{Epoch}

{Epoch}

{Epoch}

{Epoch}

Period 1 2 3 4 5 6 7 8 9 10 11 12 13

{Epoch}
Live

Scavenging

Idle

Scavenging

Idle

Fig. 4: UML timing diagram of the CROSS City Cloud
lifecycle across epoch0 and epoch1 with the system operator
and prover entity lifelines.

the ideal time interval for each set and the kind of window used
for grouping (tumbling for fixed size non-overlapping time
intervals and hopping for fixed size scheduled overlapping
intervals [12]). Stable network sets are queried within an
epoch; since an epoch must always encompass a period,
the minimum time window granularity is a period. Volatile
network sets are queried within a span, and each of the
possible span time windows encompasses smaller intervals
of span’s greatest common divisor size. For example let the
spans = {15min, 10min, 5min}, given any span interval
with size equal to one of the spans, it can be represented
as a union of 5 min (the greatest common divisor) intervals.
We leverage the fact that the set of spans are known before
going live to compute every possible time interval of span’s
greatest common divisor size with minute granularity, during
a period, by aggregating network observations into one minute
periodic hopping time windows. This computation is feasible
as it results in, at most, 1440 windows per span interval (1440
minutes in a day) during computation time. Figure 5 represents
the pipeline’s DAG2, each network observation is first pulled
from the stream layer storage component, then aggregated in
two separate tumbling and hopping windows, based on its
publish time (event time), with size equal to the period and the
greatest common divisor of the spans, then keyed and summed
per point of interest and BSSID, and finally written to the
serving layer.

D. Computation of Stable and Volatile Observation Set

Both stable and volatile network set views are persisted
in the serving layer and partitioned by point of interest and
period, since the queries are expected to be tied to a particular
point of interest and require, at most, a period worth of data.
Hence, the usage of the horizontal partitioning method is an
efficient way to store these specific views. Each record in the

2Directed Acyclic Graph

Read Network
Observation

Window By Event
Time �Volatile Set
Hopping Window)

Sum Network
Observations per POI

and BSSID

Write Volatile Set
Intermediate Results

to Serving Layer

Window By Event
Time �Stable Set

Tumbling Window)

Sum Network
Observations per POI

and BSSID

Write Stable Set
Intermediate Results

to Serving Layer

Pull/Window

Transform

Load

Fig. 5: CROSS City Cloud pipeline for producing intermediate
stable and volatile network sets.

view maintains the number of observations for a particular
network within a time interval.

As soon as an epoch is completed the period intermediate
stable set views, that comprise the epoch, are used to produce a
materialized view containing the top 10% observed networks
over that epoch, off the critical path. Network observations
from past epochs are expected to remain unchanged, thus
the creation of an additional materialized view significantly
improves the efficiency when accessing a stable set. Further-
more, volatile set queries utilize the intermediate volatile set
views and the stable set materialized view to filter the top
10% observed networks of the previous epoch and retrieve
the bottom 10% observed networks within the claimed time
interval. We are considering 10% as the threshold value.

IV. CLOUD DEPLOYMENT

We now discuss the deployment selection for each compo-
nent of the three layers, based on the set of requirements it
must fulfill. Figure 6 details the deployed cloud architecture
on the Google Cloud Platform (GCP).

Load

Balancer

NGINX

Ingress

CROSS

Service

CROSS

Pod

Cert

Manager

CROSS

CA Issuer

Cloud

Pub/Sub

Cloud

Dataflow

BigQuery

PSQL

Service

PSQL

Pod

External

DNS

GoDaddy

DNS

GKE Cluster - europe-west1

Domain Layer - HA PostgreSQL

CROSS City Server - Java 11 REST API Stream Layer

Serving Layer
Monitoring Layer - Kube-Prometheus-Stack

Prometheus Grafana

Fig. 6: Overview of the CROSS City Cloud Google Cloud
Platform Architecture.

4

A. Domain Layer

The domain layer is comprised of two primitive compo-
nents: compute (API Server) and database (Domain Database).

The API Server is the client entrypoint for the CROSS
City services, and is mainly responsible for managing user
sessions, handle trip submissions and the respective location
claims for reward attribution. The interface is implemented
in Java with Maven3 as the build tool, and follows the
REST (REpresentational State Transfer) software architectural
style for web services. The client communicates with the
API server over HTTPS exchanging payloads defined and
encoded with protocol buffer4. Any existent FaaS or PaaS
cloud compute offering, such as GCP Cloud Functions or
App Engine, AWS Lambda or Elastic Beanstalk and Azure
Functions or App Service, is able to serve this kind of REST-
ful service. Nonetheless, to mitigate cloud provider lock-in,
Kubernetes-based cloud services, such as Google Kubernetes
Engine (GKE), offer managed orchestration tools as a service
providing a complete control over every aspect of container
orchestration, from networking, to storage, and observability
over each component.

The database component of the domain layer is respon-
sible for storing both user and tourism related data. User
information is used to serve the authentication service, and
provide specific information of each user account, regarding
their trip history and rewards received. Tourism information
is comprised of the available tourism routes, points of interest
and possible rewards, referred to as the catalog. We maintained
the use of a relational data model and PostgreSQL. The
deployment of the database could be attained through fully
managed services such as Google Cloud SQL, Amazon RDS
and Azure Database for PostgreSQL. However, considering the
use of GKE for the deployment of the CROSS API server, we
can leverage cluster multi-tenancy as a means to be more cost
effective, while maintaining a similar level of management.

B. Stream Layer

The stream layer is comprised of two primitive components:
data ingestion and data processing.

The data ingestion component has the purpose of ingesting
observation events, published by clients through the API, for
streaming into the data processing component. To increase the
level of tolerable faults and persist the streams, this component
is a message broker avoiding direct communication between
producers and consumers. Several options are available such as
RabbitMQ5, ActiveMQ6, Apache Kafka7, and Google Cloud
Pub/Sub8. Nonetheless, the message broker must support mul-
tiple producers and consumers on the same topic. Message
ordering is not necessary, since our intermediate results are ag-
gregated on event-time not dependent on their delivery order.

3https://maven.apache.org/
4https://developers.google.com/protocol-buffers
5https://www.rabbitmq.com/
6https://activemq.apache.org/
7https://kafka.apache.org/
8https://cloud.google.com/pubsub

Replaying previous events is required, thus message retention
with period of an epoch is necessary. To avoid the loss of any
network observations and duplicates from retries, at least once
delivery paired with exactly once processing semantics must be
guaranteed. To handle a diversity of consumers, a Pull-based
model where the consumer pulls messages from the broker is
preferable over a Push-based model. Google Cloud Pub/Sub
fulfills these requirements.

The data processing component, responsible for processing
the network observations to produce the intermediate results
for the stable and volatile set queries. The pipeline is meant to
aggregate network observations on event-time in two separate
tumbling and hopping windows - stable and volatile set
window. Late and duplicate network observations should be
expected. Aggregations should be performed on event-time,
not processing-time. State and resource management should
be automatic ensuring fault-tolerance and elastic scalability.
Additionally, since the data ingestion component solely assures
at least once delivery, we had to develop a way to guar-
antee exactly once processing semantics. Processing engines
that satisfy the described needs include Apache Spark9 and
Apache Flink10. Nonetheless, to be engine agnostic the Apache
Beam11 open-source framework for parallel, distributed data
processing at scale can be used. This allows us to plug
into other execution engines, such as Apache Flink, Apache
Spark or Google Cloud Dataflow. Google Cloud Dataflow is a
fully managed service for executing Apache Beam pipelines,
in Google Cloud, that fulfills our needs. Dataflow assures
at least once semantics, by default, however in order to
guarantee exactly once semantics sources and sinks must
produce deterministic results. Deterministic outcomes allows
the engine to deduplicate unacknowledged transformations
that are retried. We ensure determinism through the use of
deterministic unique IDs and specific I/O12 APIs provided by
the services used.

C. Serving Layer

The serving layer is composed of a single primitive com-
ponent: database. It is accountable for persisting the aggre-
gate intermediate results computed by the stream layer and
serve query requests related to the stable and volatile signal
sets. Both queries make use of a SUM aggregate function
over the intermediate results network observations count, and
either filter the resultant top 10% or bottom 10% observed
networks, for the stable and volatile set queries, respectively.
The database engine query language should allow us to express
all of this query logic directly through it. To guarantee proper
inter-layer operability and connectivity the database should be
easily integrated with both the data processing stream layer
component (Google Cloud Dataflow, detailed in Section IV-B)
and the API domain layer component (Kubernetes pod with
the Java REST server, described in Section IV-A). Writes are

9https://spark.apache.org/
10https://flink.apache.org/
11https://beam.apache.org/
12Input/Output

5

expected to be made in real-time, so the database component
must support streaming records to it, and reads may be
performed randomly. Additionally, the database must scale
as the size of the intermediate results increases and be fault-
tolerant. Based on these requirements, the most suitable cloud
service candidates are Google Bigtable (Key-Value - NoSQL)
and Google BigQuery (Relational - SQL). Both services are
fully managed with scalability, high availability and fault-
tolerance ensured by either service. We decided to utilize
Google BigQuery mainly due to its support of ANSI-standard
SQL, granting us a higher level of expressiveness, and the
seamless Google Dataflow integration for streaming records
through the Storage Write API13 with exactly once semantics.

D. Monitoring Layer

The monitoring layer collects, aggregates, and analyzes
metrics to aid the system operator understanding the behavior
of the system. Metrics are a measurement of a system at a
given point in time that are intended to provide a picture of the
system’s health. This layer increases the level of observability,
and ensures analysis capabilities over each aspect of CROSS
City Cloud. Observability refers to the degree to which a
system can be understood from its external outputs, such as
CPU and memory utilization, disk space, latency, etc. Analysis
refers to the activity of inspecting each observable data and
retrieving useful information from it. To achieve this set goal,
the monitoring stack used is comprised of Prometheus14 and
Grafana15.

E. CROSS City Certificate Authority

Due to the fact that CROSS City Cloud is meant to be
deployed to a public cloud provider, it is crucial to secure
network communications between clients and the server, and
provide a method for server authentication. The usage of
HTTPS16 protects the privacy and integrity of data transmitted
while it is in transit. HTTPS authentication necessitates the
use of a trustworthy third party to sign server-side digital
certificates, hence we deployed to the Kubernetes cluster
a CROSS City project private CA17. The deployment is
achieved through cert-manager18 a X.509 certificate controller
for Kubernetes workloads with the purpose of handling the
certificate management. The private CA is represented as an
Issuer Kubernetes resource19, able to issue signed certificates
by fulfilling CSRs20. The cluster’s Kubernetes Ingress resource
is secured through the request of TLS signed certificates with
additionally configured manifest annotations.

13https://cloud.google.com/bigquery/docs/write-api
14Prometheus is an open source, metrics-based monitoring system em-

ployed to collect and store real-time metrics as time series data -
https://prometheus.io/

15Grafana is an open source analytics and interactive visualization
web application, which allows us to query data stored in Prometheus -
https://grafana.com/

16HTTP over TLS
17Certificate Authority
18https://cert-manager.io/
19https://cert-manager.io/docs/concepts/issuer/
20Certificate Signing Requests

V. EVALUATION

After deploying our solution, we needed to validate it and
assess its performance with demanding request workloads. We
split the evaluation in two parts: the feasibility of providing
location and time-bound proofs, and the performance assess-
ments.

A. Experimental Setup

All of the performed evaluations, detailed in Section V-B,
Section V-C and Section V-D, follow the same setup proce-
dure. The selected benchmark tool alongside the test scripts are
first wrapped up into a Docker image, tagged, and pushed to
our google cloud project’s container private registry. Then, the
selected benchmark tool and CROSS City Cloud are deployed
to distinct Google Kubernetes Engine (GKE) clusters, com-
prised of one and two nodes, respectively, physically isolated,
in the europe-west1 region. A comprehensive specification of
the GKE clusters used is detailed in Table I. It is worth noting
that no resource limit was configured at any point to avoid
resource contention when performing the tests.

B. Stable and Volatile Set Match as Location and Time Proof

To the feasibility of our solution in providing location and
time-bound proofs, we used the real-world collected network
observation data of the LXspots dataset [6]. Each point-of-
interest has touristic relevance and different characteristics,
such as being outdoors or indoors, sparse or central, and cen-
tral or remote - Alvalade, Comércio, Gulbenkian, Jerónimos,
Oceanário and Sé. Each smartphone - one Samsung Galaxy
S9, one Huawei Mate 10 and one LG V10 thinq - represents
a distinct prover - Alice, Bob and Charlie. Each prover stays
at each point-of-interest for 15 minutes. We will consider the
seven consecutive day epoch from 2019-07-29 to 2019-08-04
and the one day period of 2019-08-19.

1) Stable Set Match as Location Proof: To proof presence
at the location, the prover’s collected network observation set
is compared against the set of stable networks, throughout
a previous epoch, at the claimed point-of-interest. Table II
presents the percentage of match between these two sets.
Considering a 50% match threshold to determine successful
proof, all provers visits are attested at four out of the six
locations (except for Alice in Sé). Given the total 18 visits,
this equates to a stable set success rate of 61.11%. Stable
sets produced through our solution seem viable to attest
presence at a location. Locations lacking stable networks such
as Jerónimos and Comércio, due to their characteristics, would
favour from either a lower match threshold or the deployment
of known Access Points (TOTP).

2) Volatile Set Match as Time Proof: To proof the visiting
period, the prover’s scavenged network observation set is
compared against the set of volatile networks, throughout the
span, at the claimed point-of-interest. The match percentage
between these two sets is shown in Table II. The 15 minute
visit is split into four span intervals - 15, 5, 3 and 1 min.
Considering a 50% match threshold to determine successful
proof, visiting period attestation was achieved for all locations

6

TABLE I: Evaluation Google Kubernetes Engine clusters specification.

Stack Machine
Family

Machine
Type OS Kernel

Version CPU RAM
Size

Disk
Size

Disk
Type

Additional
Disk
Size

Additional
Disk
Type

Network Docker
Ver

Kubernetes
Ver Region Locations

CROSS
City

Cloud

General-
-Purpose

e2-
-highcpu-

-4

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(4)

4
GB

20
GB

Standard
persistent

disk
- - Default 20.10.12 1.21.11-

-gke
europe-
-west1

europe-
-west1-b,
europe-
-west1-c

k6
Benchmark

Tool

General-
-Purpose

e2-
-highcpu-

-8

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(8)

8
GB

20
GB

Standard
persistent

disk
200 GB

Regional
Standard
Persistent

Disk

Default 20.10.12 1.21.11-
-gke

europe-
-west1

europe-
-west1-b

Real-Time
Client

General-
-Purpose

e2-
-highcpu-

-8

Container-
-Optimized

OS
5.10.107

Intel Xeon or AMD EPYC Rome
@ 2.00+ GHz

(8)

8
GB

20
GB

Standard
persistent

disk
200 GB

Regional
Standard
Persistent

Disk

Default 20.10.12 1.21.11-
-gke

europe-
-west1

europe-
-west1-b

TABLE II: Prover’s Stable and Volatile Set Match Percentage
for each Point-of-Interest. (percentage ≥ 50% in green and
< 50% in red)

Point-
-of-

-Interest
Prover

Stable
Set

Match

Stable
Set

Success Rate
(≥ 50.00%)

Volatile Set Match for
Claimed Span Interval

Volatile
Set

Success Rate
(≥ 50.00%)

15
min

5
min

3
min

1
min

Alice 100.00% 100.00% 87.50% 100.00% 90.00%
Bob 100.00% 0.00% 61.53% 50.00% 58.33%Alvalade

Charlie 92.85% 0.00% 30.76% 62.50% 46.15%
Alice 27.77% 20.00% 50.00% 0.00% 100.00%
Bob 30.55% 57.14% 100.00% 100.00% 100.00%Comercio

Charlie 27.77% 80.00% 0.00% 100.00% 100.00%
Alice 100.00% 0.00% 12.50% 50.00% 91.66%
Bob 60.70% 54.54% 41.66% 33.33% 46.15%Gulbenkian

Charlie 100.00% 44.44% 50.00% 78.57% 83.33%
Alice 9.30% 30.00% 50.00% 60.00% 75.00%
Bob 27.90% 9.09% 30.00% 25.00% 40.00%Jeronimos

Charlie 20.93% 54.54% 50.00% 33.33% 100.00%
Alice 85.00% 83.33% 100.00% 100.00% 100.00%
Bob 65.00% 0.00% 50.00% 50.00% 60.00%Oceanario

Charlie 75.00% 16.66% 14.28% 14.28% 50.00%
Alice 43.00% 60.00% 86.00% 33.33% 100.00%
Bob 50.00% 62.50% 66.60% 50.00% 75.00%Se

Charlie 54.00%

61.11%

0.00% 33.33% 50.00% 75.00%

63.89%

in at least 50.00% of the provers’ claimed span intervals.
Most notably, 75.00% of the claimed intervals in Comércio
and Sé were successfully attested. Given the total 72 claimed
intervals, this equates to a volatile set success rate of 63.89%.
Our solution’s volatile sets seem to be effective in attesting
for the visiting period. It is also important to note, that longer
intervals have a lower success rate than shorter intervals -
15 min (44.44%) and 1 min (83.33%). Due to the user’s
network scan collection period of 30 seconds, we can view
a longer interval’s volatile set as a union of several shorter in-
tervals’ volatile sets. This demonstrate a higher dependence on
consistent witness coexistence for long visiting period proof,
since ideally network observations are scavenged equally,
meaning by the same number of witnesses, throughout the
full duration of the interval. Nonetheless, touristic visits are
typically performed in specific groups and scheduled intervals,
thus the feasibility of the solution remains plausible.

C. Domain Layer Scalability and Performance

To assess the performance and scalability of the domain
layer, comprised of the API and database deployed to a
cloud environment, we synthesized a test workload based on
expected user access patterns. We will focus on the submission

of trip visits through the domain layer as this is the typical
path of a user’s interaction with CROSS. The integration
of scavenged network observations through the stream and
serving layer is done asynchronously and will be evaluated
separately. The workload is comprised of two stages with
distinct load duration and ramping user concurrency. Each
stage executes an identical user flow: the users sign in, retrieve
existing routes, fetch a specific route, and submit a visit to one
of the route’s point of interest with a sufficient amount of Wi-
Fi AP evidences to achieve the route’s waypoint set confidence
threshold (75%), as to claim that location.

Three separate configurations - A, B and C - of the domain
layer were evaluated. The baseline configuration is comprised
of a single replica (A), while the test configurations vary
from one to two replicas (B) and from one to four replicas
(C). Since preliminary tests demonstrate that the workload is
expected to be CPU bound, each configuration horizontally
auto-scales based on a pre-set average CPU utilization thresh-
old (40%), using the Kubernetes Horizontal Pod Autoscaler
resource, which provisions identical API server pods (replicas)
to accommodate a growing work demand.

During the execution of the workload utilizing the k621

benchmark tool, the request response time, rate of requests
and both the CPU and memory usage metrics were collected.

1) Scalability Model: Before delving into the experimen-
tal results and discussion, we briefly present the scalability
model used in the experiment. The Universal Scalability
Law (USL) [13] (Equation 1) extends Amdahl’s law [14]
(Equation 2) with an additional parameter (κ), allowing us
to model capacity degradation related to coherency losses.
Other scalability models exist such as the Exponential, Ge-
ometric and Quadratic. The USL, on the other hand, differs
from the other models in that it is defined in terms of two
parameters rather than a single one, accounting separately for
both contention (serial work) and coherence (crosstalk among
workers in the system such as nodes, CPUs, threads, etc).
The contention component (σ) of the system ends up limiting
asymptotically its speedup, while the coherence portion (κ)
limits the maximum system achievable size.

X(N) =
λN

1 + σ(N − 1) + κN(N − 1)
(1)

X(N) =
λN

1 + σ(N − 1)
(2)

21k6 is an open source load testing tool - https://k6.io/

7

TABLE III: Universal Scalability Law (USL) parameters for
each configuration.

Configuration λ σ κ

A 23.24 0.0409 0.0007583

B 23.57 0.0000 0.0006959

C 26.87 0.0000 0.0003925

X = throughput
N = concurrent users
λ = performance coefficient
σ = serial portion
κ = crosstalk factor

2) System Performance and Scalability: Using the through-
put measurements collected per level of user concurrency,
we are able to model the system’s scalability with the Uni-
versal Scalability Law. Table III summarizes the resultant
performance coefficient and scalability parameters estimations
for each configuration, with their respective model plots in
Figure 7. By comparing the estimated performance coefficients
(λ) at the unitary load, we can quantify the efficiency of the
system across sizes. Doubling the size of the system from both
configuration A to B and B to C we maintain approximately
51% and 57% efficiency, respectively. Despite the efficiency
values being lower than expected, these can be explained by
the fact that all configurations start the test workload execution
with the same amount of replicas (1), and only when the
scaling policy is met do configurations B and C provision
further resources. Regarding the scalability of the system,
the maximum useful user concurrency of each configuration,
calculated through the Equation 3 in relation to both scalability
parameters, is 35, 37 and 50 users for A, B and C, respectively.
Based on the maximum useful user concurrency, the maximum
speedup achieved between configuration A (247 req/sec) and
C (684 req/sec) is of approximately 2.77x.

Active VUs (#)

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

0

200

400

600

800

20 40 60 80 100

1 CROSS Replica
(A)

1 CROSS Replica
(A) USL

1 - 2 CROSS
Replicas (B)

1 - 2 CROSS
Replicas (B) USL

1 - 4 CROSS
Replicas (C)

1 - 4 CROSS
Replicas (C) USL

Fig. 7: Throughput over Active Concurrent Virtual Users for
each system size configuration and respective USL model.

Nmax =

√
1− σ

k
(3)

3) Request Performance: From a request performance prac-
tical standpoint, derived from the collected mean latency
measurements plotted in Figure 8, we note that for a latency
threshold of 100 ms, both configurations A and B are only
able to perform below set threshold solely until 17 and
37 concurrent virtual users, respectively, after which a high
level of degradation is noticeable. Despite an outlier peak
at 41 concurrent virtual users, configuration C is capable of
performing below set threshold for the full duration of the
test workload. Furthermore, in an effort to further quantify
the overall user experience and perception of the system with
each configuration, we have plotted the percentile 90 latency
(filters top 10% worse latencies) in Figure 9. Percentiles are
useful for us to determine the expected maximum response
time for a percentage of requests/users. In this particular case,
only configuration C is able to able to withstand a set latency
threshold of 200 ms (double the set mean latency threshold),
meaning we are able to conclude that for 90% of users,
within the tested range of user concurrency, will experience a
response time either as fast or faster than 200ms.

Active VUs (#)

La
te

nc
y

(m
s)

0

100

200

300

400

10 20 30 40

1 CROSS Replica
(A)

1 - 2 CROSS
Replicas (B)

1 - 4 CROSS
Replicas (C)

Fig. 8: Mean Latency over Active Concurrent Virtual Users.

Active VUs (#)

La
te

nc
y

(m
s)

0

250

500

750

1000

10 20 30 40

1 CROSS Replica
(A)

1 - 2 CROSS
Replicas (B)

1 - 4 CROSS
Replicas (C)

Fig. 9: Percentile 90 Latency over Active Concurrent Virtual
Users.

As expected configuration C reaches a higher level of
resource utilization on both CPU (A - 2.38 cpus, B - 3.90

8

cpus and C - 4.79 cpus) and memory (A - 2.06 GiB, B - 2.37
GiB and C - 3 GiB), albeit significantly within the cluster
limits of 8 cpus and 8 GiB.

4) Summary: For this specific synthetic workload, config-
uration C is capable of outperforming the other two configu-
rations with regards to both system and request performance
metrics, as observed and predicted. Moreover, we infer that
the system is able to scale horizontally, while maintaining an
acceptable level of performance and resource utilization.

D. Stream Layer Performance and Completeness

To estimate the trade-offs made in performance, complete-
ness and cost of the unbounded Apache Beam pipeline solu-
tion, a scenario was setup consisting of real-time submissions
of a dynamic set of network observations of a specific point of
interest as Wi-Fi AP evidences, simulating both user collection
and submission. During the execution of the test workloads a
set of metrics were collected including the rate of observations
processed, and the data watermark lag which refers to the
amount of time since the most recent output watermark -
network observation publish time. CPU and memory usage
were also monitored, but will not be further detailed.

Note that, as detailed in Section IV-B, Dataflow assures at
least once semantics by default, however in order to guarantee
exactly once semantics modifications had to be performed to
ensure that both the Pub/Sub source and the BigQuery sinks
were deterministic. As this factor (the level of correctness)
is expected to have the most impact on the performance of
this layer, we quantified its impact by comparing both the
pipeline’s processing semantics.

1) Impact on Throughput: In Figure 10, the plot shows a
speedup, of approximately 3.5x, with at least once semantics
all throughout the pull/window phase in which each stage
performs consistently at the same rate. Nonetheless, as noted
in the transform phase plot in Figure 11 the performance gains
obtained in the pull/window phase with at least once semantics
are lost, and both semantics end up performing at identical
levels (approximately 1.0x speedup), indicating a potential
bottleneck at these stages. In the load phase (Figure 12),
with at least once semantics the pipeline is able to sustain
the rate of observations from the previous phase, confirming
the bottleneck suspicion with these semantics, as opposed to
the pipeline with exactly once semantics which is not able to
maintain the rate at this phase, more specifically at the Write to
Big Query stages (the bottleneck stages with these semantics),
where we deduct a 165x speedup.

2) Impact on Output Data Watermark: The data watermark
lag, as previously explained, is the age up to which all data has
been processed by the pipeline, which allows us to quantify
the processing time in relation to the publish time of an
observation (the client collection time). In this specific test
workload, observations can be delayed at most 1 minute, thus
the expected data watermark lag is at least 1 minute plus the
cumulative processing time in the API server, Pub/Sub and
the pipeline. We observe that as expected both pipelines have
a data watermark lag of at least 1 minute, and in spite of

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0.00

200.00

400.00

600.00

800.00

Read WiFi
AP Obs

Proto from
Pub/Sub

Parse WiFi
AP Obs
Proto

Window
Stable Set

Obs

Window
Volatile Set

Obs

Exactly Once
Semantics

At Least Once
Semantics

Pull/Window Phase

Fig. 10: Mean throughput per pipeline stage in the pull/window
phase for each semantics.

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0

2

4

6

Sum Stable Obs per
POI and BSSID

Sum Volatile Obs per
POI and BSSID

Exactly Once
Semantics

At Least Once
Semantics

Transform Phase

Fig. 11: Mean throughput per pipeline stage in the transform
phase for each semantics.

two peaks at 2 and 7 minutes in the exactly once semantics
pipeline, both are performing at a similar level, as plotted in
Figure 13. The differences observed total to a speedup of
the at least once semantics pipeline over the exactly once
semantics pipeline of 1.08x and 1.05x for the mean and
median, respectively.

3) Summary: In summary, although the impact of us-
ing exactly once semantics is significant on the achievable
throughput, this impact is attenuated by the sum per key stage
of the pipeline (combine function) which is naturally present
in both pipelines, regardless of their processing semantics.
Additionally, the main goal of our stream pipeline is to provide
low-latency updates with the highest level of correctness, thus
based on the median data watermark lag speedup of 1.05x,
we conclude that the ability to provide correct updates, by
ensuring exactly once semantics, for this specific workload
out weights the minor performance impact.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented CROSS City Cloud, a cloud-
native location certification system for consumer mobile ap-
plications, capable of producing and validating time-bound lo-

9

Pipeline Stage

M
ea

n
Th

ro
ug

hp
ut

 (o
bs

/s
ec

)

0

2

4

6

Con
ve

rt S
tab

le

Con
ve

rt V
ola

tile

W
rite

 S
tab

le

W
rite

 V
ola

tile

Exactly Once
Semantics

At Least Once
Semantics

Load Phase

Fig. 12: Mean throughput per pipeline stage in the load phase
for each semantics.

Time (m)

D
at

a
W

at
er

m
ar

k
La

g
(m

)

0

1

2

3

4

5

0 5 10 15 20

Exactly Once
Semantics

At Least Once
Semantics

Fig. 13: Data watermark lag per pipeline processing semantics.

cation proofs. We used a smart tourism application as testbed,
and demonstrated the feasibility of a Location-Certification-
as-a-Service (LCaaS) platform embedded in cloud computing
environments.

CROSS City Cloud ingests, aggregates and integrates scav-
enged network observations in intermediate network sets,
which are subsequently used to fetch the stable and volatile
networks of a particular point of interest, both offline and in
real-time, producing and validating time-bound location proofs
solely using the publicly available Wi-Fi network infrastruc-
ture. Our contribution leveraged public cloud computing tech-
nology to deploy the system, including an additional control
plane to ease service operation. The evaluation stressed each
layer of the system in various aspects, such as performance and
scalability, through various real-world scenario assessments,
and validated our solution for the expected use case. Stable and
volatile set match success rates of 61.11% and 63.89%, respec-
tively, demonstrate location and time-bound proof feasiblity.
Scalability and performance analysis demonstrated that the
system is able to scale horizontally, maintaining the acceptable
performance level of under 100 ms under load with up to 50
concurrent users, at a 60% resource utilization. Additionally,
the pipeline solution is able to provide real-time low-latency

updates while enforcing a greater level of correctness.
In future work, we can explore additional window type

and size parameter adjustments tailored to lower latency
application use cases, such as transportation. The business
logic lifecycle of CROSS City can be automated. Moreover,
a system operator dashboard, as a single user interface used
to operate CROSS City Cloud, with the goal of offering both
health status information and query capabilities could further
improve the system operator user experience (UX) of the
LCaaS platform..

VII. ACKNOWLEDGEMENTS

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with refer-
ence UIDB/50021/2020 (INESC-ID) and through project with
reference PTDC/CCI-COM/31440/2017 (SureThing).

REFERENCES

[1] J. H. Lee and R. M. Buehrer, “Location spoofing attack detection in
wireless networks,” in 2010 IEEE Global Telecommunications Confer-
ence GLOBECOM 2010. IEEE, 2010, pp. 1–6.

[2] Z. Zhu and G. Cao, “Applaus: A privacy-preserving location proof
updating system for location-based services,” in 2011 Proceedings IEEE
INFOCOM. IEEE, 2011, pp. 1889–1897.

[3] E. S. Canlar, M. Conti, B. Crispo, and R. Di Pietro, “Crepuscolo: A
collusion resistant privacy preserving location verification system,” in
2013 International Conference on Risks and Security of Internet and
Systems (CRiSIS). IEEE, 2013, pp. 1–9.

[4] X. Wang, A. Pande, J. Zhu, and P. Mohapatra, “Stamp: Enabling privacy-
preserving location proofs for mobile users,” IEEE/ACM transactions on
networking, vol. 24, no. 6, pp. 3276–3289, 2016.

[5] G. A. Maia, R. L. Claro, and M. L. Pardal, “CROSS City: Wi-Fi
Location Proofs for Smart Tourism,” in International Conference on
Ad-Hoc Networks and Wireless. Springer, 2020, pp. 241–253.

[6] R. Claro, S. Eisa, and M. L. Pardal, “Lisbon hotspots: Wi-fi ac-
cess point dataset for time-bound location proofs,” arXiv preprint
arXiv:2208.04741, 2022.

[7] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “Totp: Time-based one-
time password algorithm,” Tech. Rep., 2011.

[8] N. Marz, “How To Beat The CAP Theorem,”
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html,
Thoughts from the Red Planet, 2011, Accessed: 01-12-2021.

[9] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[10] J. Lin, “The Lambda and the Kappa,” IEEE Internet Computing, vol. 21,
no. 05, pp. 60–66, 2017.

[11] J. Kreps, “Questioning the Lambda Architecture,”
https://www.oreilly.com/radar/questioning-the-lambda-architecture/,
O’Reilly.com, 2014, Accessed: 01-12-2021.

[12] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. ”O’Reilly Media,
Inc.”, 2017.

[13] N. J. Gunther, Guerrilla Capacity Planning: A Tactical Approach to
Planning for Highly Scalable Applications and Services. Berlin,
Heidelberg: Springer-Verlag, 2006.

[14] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: Association for Computing Machinery, 1967, p.
483–485. [Online]. Available: https://doi.org/10.1145/1465482.1465560

10

