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Abstract

The Vision Transformer architecture has shown to be competitive in the computer vision (CV) space

where it has dethroned convolution-based networks in several benchmarks. Nevertheless, Convolutional

Neural Networks (CNN) remain the preferential architecture for the representation module in Reinforce-

ment Learning. In this work, we study pretraining a Vision Transformer using several state-of-the-art self-

supervised methods and assess data-efficiency gains from this training framework. We propose a new

self-supervised learning method called TOV-VICReg that extends VICReg to better capture temporal

relations between observations by adding a temporal order verification task. Furthermore, we evaluate

the resultant encoders with Atari games in a sample-efficiency regime, procgen games for measuring

generalization and an imitation learning task for a fast and reliable comparison of the representations.

Our data-efficiency results show that the vision transformer, when pretrained with TOV-VICReg, outper-

forms the other self-supervised methods and the non-pretrained vision transformer but still struggles to

overcome a CNN. Our generalization results show some limitations in our method when used in more

visually complex games which leads to degradation of the generalization performance. Nevertheless,

we were able to outperform a CNN in two of the ten Atari games where we perform a 100k steps evalu-

ation and show a consistent data-efficiency gain in comparison to the non-pretrained vision transformer.

Ultimately, we believe that such approaches in Deep Reinforcement Learning (DRL) might be the key to

achieving new levels of performance as seen in natural language processing and computer vision.
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Resumo

A arquitetura para tarefas de visão baseada em transformadores (vision transformer) tem mostrado ser

competitiva na área de visão computacional (CV) onde tem destronado em enumeras benchmarks as

redes baseadas em convoluções. No entanto, a rede neural convolucional (CNN) continua a arquite-

tura mais usada como módulo de representação em aprendizagem por reforço (RL). Neste trabalho,

nós estudamos pré-treinar um vision transformer usando vários métodos estado-da-arte de aprendiza-

gem auto-supervisionada com o intuito de avaliar ganhos na eficiência e capacidade de generalização

por parte dos agentes que usam esses mesmos modelos. Nós propomos ainda um novo método

auto-supervisionado ao qual chamamos TOV-VICReg que estende o método VICReg para melhorar a

captura de informação temporal entre frames consecutivos. Os modelos pré-treinados são avaliados

em termos de eficiência de amostras em vários jogos Atari e generalização em jogos do procgen. Os

nossos resultados na eficiência de amostra mostram que o vision transformer, quando pré-treinado

com o TOV-VICReg, consegue superar os restantes modelos pré-treinados mas ainda não consegue

superar as CNN. Enquanto os nossos resultados na generalização mostram algumas limitações do

nosso método quando usado em jogos visualmente mais complexos que levam a uma degradação na

capacidade de generalizar. Mesmo assim, o nosso método foi capaz de superar as CNN em dois dos

10 jogos de Atari e obtemos um ganho consistente na eficiência de amostra em comparação com o

vision transformer não pré-treinado. Em última análise, acreditamos que este tipo de abordagens em

deep reinforcement learning poderão ser a chave para atingir novos nı́veis de performance como tem

acontecido nas áreas de lı́ngua natural e visão computacional.

Palavras Chave

Aprendizagem por Reforço; Aprendizagem Profunda; Transformadores; Aprendizagem Auto-Supervisionada;
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The Artificial Intelligence field has seen great successes in the last decade, in part due to the increase

of computational capacity of the graphical processors (GPU), which led to the massive adoption of

Deep Learning [1] methods that until then were too computationally expensive. Today we can use AI to

generate photographs of people that don’t exist, win against the world champion of Go, make diagnoses

in medicine, and even automatically generate news articles. One of the areas responsible for some of

those amazing applications and where, naturally, a lot of research is being made is called Reinforcement

Learning.

In Reinforcement Learning (RL) the problem is not about learning labels or hidden patterns, but

instead, about having an agent solve sequential decision problems by performing the best possible

actions. RL, and more recently Deep Reinforcement Learning (DRL), demonstrate a large potential to

solve problems that are currently impossible or very difficult for current Machine Learning algorithms.

Successes in robotics [2, 3], board games [4], and control problems [5, 6], validate this idea. However,

RL is still far from the promised impactful applications. For example, the work by Dulac-Arnold and

colleagues [7] presents nine challenges that need to be addressed to make the application of RL in the

real world more feasible. One of the challenges is ”Learning on the real system from limited samples”.

Current state-of-the-art (SOTA) algorithms require in some environments millions of examples to start

performing reasonably well while we Humans only need a few examples. In environments where the

agent doesn’t have full access to the current state (partially observable environments), this problem

becomes even more prominent, since the agent not only needs to learn the state-to-action mapping but

also a state representation function that tries to be informative about a state given an observation. In

contrast, humans, when learning a new task, already have a well-developed visual system and a good

model of the world which are components that allows us to easily learn new tasks. Previous works have

tried to tackle the sample inefficiency problem by using auxiliary learning tasks [8–10], that try to help the

network’s encoder to learn good representations of the observations given by the environments. These

tasks can be supervised or unsupervised and can happen during a pretraining phase or a reinforcement

learning (RL) phase in a joint-learning or decoupled-learning scheme.

In recent years, self-supervised learning has shown to be very useful in computer vision. The in-

creasing interest in this area has resulted in the appearance of new and improved methods that train

a network to learn important features from the data using only the data itself as supervision. To eval-

uate and compare such methods a linear layer is trained on a certain task, like ImageNet, using as

input the representations computed by a pretrained encoder. The results show high scores in different

benchmarks, which shows how well the current state-of-the-art methods can encode useful information

from the given images without being task-specific. Additionally, it has been shown that pretraining a

network using self-supervised learning (or unsupervised learning) adds robustness to the network and

gives better generalization capabilities [11].

2



Also recently, a new architecture for vision-based tasks called the Vision Transformer (ViT) [12]

has shown impressive results in several benchmarks without using any convolutions. This architec-

ture presents much weaker inductive biases when compared to a Convolutional Neural Network (CNN),

which can result in lower data efficiency. However, the Vision Transformer, unlike the CNNs, can capture

relations between parts of an image (patches) that are far apart from each other, thus deriving global

information that can help the model perform better in certain tasks. Furthermore, when the model is pre-

trained, using supervised or self-supervised learning, it manages to surpass the best convolution-based

models in terms of task performance. Despite these successes in computer vision these results are yet

to be seen in reinforcement learning.

Motivated by the potential of the Vision Transformer, in particular when paired with a pretraining

phase, and the increasing interest in self-supervised tasks for DRL, we study pretraining ViT using

SOTA self-supervised learning methods and use it as the representation module in the DRL algorithm.

Consequently, we propose extending VICReg (Variance Invariance Covariance Regularization) [13] with

a temporal order verification task [14] to help the model better capture the temporal relations between

consecutive observations. We named this approach Temporal Order Verification-VICReg or in short

TOV-VICReg. While we could have adapted any of the other methods, we opted for VICReg due to its

computational performance, simplicity, and good results in early experiments and metrics such as the

ones presented in Section 6.1.

We study this training framework in three sections: Chapter 5, where we assess data-efficiency

gains in Atari games when using a Vision Transformer pretrained with self-supervised learning methods;

Chapter 6, where we evaluate the representations computed by the pretrained models through metrics,

visualizations, and an evaluation task based on imitation learning and linear probing; and Chapter 7,

where we assess if agents using a vision transformer pretrained with our method can better generalize

to unseen levels using the procgen [15] games.

The results here presented were submitted and accepted at the 36th Conference on Neural Informa-

tion Processing Systems (NeurIPS 2022) Deep Reinforcement Learning Workshop.
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2.1 Reinforcement Learning

Reinforcement Learning is an area of Machine Learning that tries to make an agent learn to solve a

certain task by interacting with the environment. It differs from Supervised Learning since it doesn’t

use labeled datasets to learn the tasks, and also from Unsupervised Learning because the agent is not

trying to find hidden structures but trying to maximize the rewards received.

The problem of an agent learning to solve the task in a certain environment can be defined as a

Markov Decision Process (MDP). A MDPM is defined by the tuple ⟨S,A,R, T ⟩, where S is the set of

states, A the set of actions, R the reward function, and T the transition function. At each timestep the

agent is in a state s ∈ S and takes an action a ∈ A. Upon performing the action the agent receives from

the environment a reward r ∈ R and a new state s′ ∈ S which is determined by the transition function

T (s′, s, a). Figure 1 shows this exact interaction loop. The MDP assumes that the Markov property

holds in the environment, i.e. the state transitions are independent and the agent only needs to know

the current state to perform an action P (at|x0, x1...xt) = P (at|xt).

For the agent to decide what action to take it uses a policy function π, which gives a distribution over

actions given a state, at = π(st). This policy is evaluated using the function V π(s), which estimates the

expected total discounted reward of an agent in a state s and which follows a policy π, or the function

Q(s, a) given state-action pair.

A policy π is better than π′ if and only if vπ(s) ≥ vπ′(s), ∀s ∈ S. The policy that has a value greater

than or equal to all the other possible policies is called the optimal policy. Since the goal of Reinforcement

Learning is to develop agents that perform in an optimal or nearly optimal way when given a certain MDP

we can define the RL problem as the maximization of the value function v⋆(s) = maxπvπ(s). The case

here considered is the finite-horizon model which is very simple but sufficient to demonstrate the base

idea [16,17].

Figure 2.1: Reinforcement Learning interaction loop
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2.1.1 Online Reinforcement Learning -

When we talk about Reinforcement Learning we are referring to what is called Online Reinforcement

Learning. In Figure 2.2 we can observe an example of a learning loop where the agent interacts with

the environment for a certain amount of time which is called a rollout and then uses the data collected in

that rollout to update the current policy πk to a new policy πk+1. Note that this is just a simple example

and different algorithms might have different learning loops.

Figure 2.2: Online Reinforcement Learning learning loop

2.1.2 Offline Reinforcement Learning -

In many cases learning from scratch while interacting with the environment is just too expensive, making

Online RL unfeasible in many applications. Offline Reinforcement Learning, also called Batch RL, on the

other hand, doesn’t rely on the interaction loop with the environment, instead, the policy is learned from

a dataset with many transitions related to the task the agent is trying to solve. The goal in Offline RL is

that the policy learned is equal to or better than the policy used to collect the data. Note that in some

cases, after learning the policy, some fine-tuning might be needed, i.e. the agent improves the policy by

interacting with the environment. Figure 2.3 shows an example of the learning scheme [18].

2.2 Deep Reinforcement Learning

The successes of Deep Learning methods in Supervised Learning quickly transferred to the Reinforce-

ment Learning realm. In the last decade, we have witnessed the rise of Deep Learning based RL

algorithms capable of solving problems that until then were considered impossible [4]. These successes

can be explained by the capabilities of deep neural networks to find features from high-dimensional data
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Figure 2.3: Offline Reinforcement Learning learning loop

with no previous knowledge.

Although these successes are impressive and exciting, other problems have arisen. One main prob-

lem is the sample efficiency of deep neural networks. Neural networks start learning from tabula rasa

and need, in many problems, millions of examples to start performing well. As an example, the algorithm

Muzero, a successor of AlphaGo, trains for 12 hours in board games while using 16 TPUs for training

and 1000 TPUs for selfplay [19].

However, neural networks are not the only limitation in terms of sample efficiency. The RL algorithm

itself is where a lot of work can be done to improve how fast the agent learns to solve a task. EfficientZero

[20], for example, proposes three main changes to Muzero that significantly improve sample efficiency

without losing general performance and none of those changes is related to the models used. A lot

of work is being done to improve RL agents in different types of environments and tasks: Imitation

Learning: the agent learns with an expert demonstrating some kind of behaviour that we want the

agent to replicate; Intrinsic Motivation: extends the classic concept of reward with the introduction of

intrinsic rewards, in an attempt to force the agent to explore, be curious, and learn by itself, especially

in environments with few or no extrinsic rewards (the normal reward) [21]; Model-Based: usually the

agents try to learn 3 functions: representation, dynamics, and behaviour which the agent can use to plan

a good sequence of actions to make better decisions; Hierarchical RL: has been explored for several

decades using frameworks like the Options and Feudal [22, 23]. More recently these frameworks have

seen the introduction of neural networks with the FeUdal Networks [24] and the Option-Critic papers [25];

Meta-RL is concerned with the development of agents that can rapidly adapt to new tasks that they never

encountered during training. A Meta-RL policy is very similar to the normal RL, but it considers not only

the current state but also the previous state and previous action. The idea is for the agent to get an idea

of the history which will help it adapt to unseen circumstances.

Although sometimes even without changing the algorithm or the models, we can obtain significant

performance improvements like in the case of agents that use a Replay Buffer, where just changing the
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way the saved transitions are sampled can make a huge difference. For example, the Prioritized Replay

Buffer [26] changes the probability of a transition being sampled according to how relevant, in terms of

learning, each trajectory is. This simple change doesn’t affect the core algorithm of the agent but can

drastically improve the agent performance.

2.2.1 DQN and Rainbow

DQN [27] is one of the most famous and influential Deep RL algorithms. The algorithm is a very straight-

forward value-based method. We have a network with parameters ϕ that given a state s outputs a predic-

tion of the distribution of Q values over actions, Qϕ(s, a). To update the network the following equation

is used as target: y = r + γ maxa′Qϕ(s
′, a′) and compute the mean squared error: (y − Qϕ(s, a))

2.

Algorithm 2.1 shows the pseudocode for DQN. Figure 2.4 shows a simplified diagram of the DQN struc-

Algorithm 2.1: DQN algorithm
for episode← 1 to M do

for t← 1 to T do
With probability ϵ: at = random(), otherwise: at = argmaxa′ Q(s, a′);
Execute at and observe s′t and rt;
Store transition {st, at, rt, s′t} in the replay buffer D;
Sample a mini-batch of transitions {sj , aj , rj , s′j} from D;
yj = rj + γ maxa′

j
Qϕ(s

′
j , a

′
j);

ϕ← ϕ− α
∑

j
dQϕ(sj ,aj)

dϕ (Qϕ(sj , aj)− yj);

ture and functioning. Several works followed the DQN algorithm and introduced changes to improve

its stability, data-efficiency, and general performance. Rainbow [28] combines six of those improve-

ments. Double Q-Learning [29] introduces a second estimator of the Q function to avoid the problem

of overestimating the action values; Prioritized Experience Replay [26] introduces a new experience

replay which samples important transitions more frequently; Dueling Networks [30] that separates the

last linear layers into two separate estimators: state value function and advantage function; Multi-step

Learning [16] that accumulates the rewards across n-steps and uses the n + 1 greedy action to boot-

strap the Q value when calculating the Q target; Distributional RL [31] changes the model to predict a

discrete distribution over values instead of a single value; and Noisy Nets [32] that replaces the normal

linear layers of the model with noisy linear layers, which are composed by a normal linear layer stream

and a noisy stream, allowing for the model to explore more in the first iterations and removing the need

for an ϵ-greedy policy. All these changes combined result in an algorithm that is more stable and sample

efficient. Even though it was proposed in 2017, Rainbow is still one of the state-of-the-art algorithms in

the category of Model-free Reinforcement Learning.
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Figure 2.4: DQN

2.2.2 PPO

PPO [33] is an on-policy algorithm from the family of policy gradient methods which learns to perform a

task by maximizing the expected return using stochastic gradient ascent [17].

In the case of a simple policy gradient consider that we have a policy πθ, where θ denotes the pa-

rameters of the network that computes the policy function, and we want to maximize the expected return

J(πθ) = Eτ∼ρθ
[R(τ)], where ρθ is the probability distribution over trajectories given some parameter θ.

We can then define the goal as being the search for a θ that maximizes J , θ⋆ = argmaxθJ(πθ), using

stochastic gradient ascent the optimization step can be defined by Equation 2.1 (a complete derivation

of J can be found in Appendix A.1).

θt+1 = θt + α∇θJ(πθ)|θt

= θt + α E
τ∼ρθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]
(2.1)

This expectation can be estimated using the arithmetic mean, Equation 2.2

∇θJ(πθ) ≈
1

N

N∑
i=1

(
T∑

t=1

∇θ log πθ(si,t|ai,t)

)(
T∑

t=1

r(si,t, ai,t)

)
(2.2)
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A simple policy gradient algorithm that uses this estimation to optimize the policy is the REINFORCE

algorithm 2.2.

Algorithm 2.2: REINFORCE algorithm
Initialize network parameters;
Initialize memory;
for i← 0 to S do

Collect trajectories using πθ;
for j ← 0 to B do

Sample action at from policy πθ;
Execute at and observe s′t and r′t;
Save transition into memory;

θ ← θ + α 1
N

∑N
i=1

(∑T
t=1∇θ log πθ(si,t|ai,t)

)(∑T
t=1 r(si,t, ai,t)

)
;

While PPO can be considered a policy gradient method it actually falls in a subset of algorithms

called policy iteration. These methods use an objective function, usually called surrogated advantage,

that measures a certain policy performance relative to an old policy by maximizing the trajectory of a

new policy using the advantage estimator trained in the previous policy, Equation 2.3. The resulting loss

function can be found in Equation 2.4 and a complete derivation of both equations at Appendix A.2.

PPO uses this objective function and applies a clipping that discourages the new policy from getting

too far from the old policy, Equation 2.5, where D is the set of trajectories. To estimate the advantage

function an additional network is used, which computes the state values by optimized the loss function

in Equation 2.6, where R̂t is the reward-to-go at time t.

argmaxθJ(πθ′)− J(πθ) = argmaxθ E
τ∼ρθ′

[∑
t

γtAπθ (st, at)

]
(2.3)

L(θ′, θ) = E
s,a∼πθ

πθ′(a|s)
πθ(a|s)

Aπθ (s, a) (2.4)

L(s, a, θ′, θ) = 1

|D|T
∑
τ∼D

T∑
i=0

min
(
πθ′(a|s)
πθ(a|s)

Aπθ (s, a), clip(
πθ′(a|s)
πθ(a|s)

, 1− ϵ, 1 + ϵ)Aπθ (s, a)

)
(2.5)

L(s, ϕ) = 1

|D|T
∑
τ∼D

T∑
i=0

(Vϕ(st)− R̂t)
2 (2.6)

Current SOTA PPO implementations also take advantage of several other implementation details that

help the model achieve a better performance. This includes Generalized Advantage Estimation (GAE)

[34], orthogonal initialization of weights and constant initialization of biases [35], value loss clipping,

entropy bonus term, and advantages normalization.
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2.3 Transformers

2.3.1 Attention

The American Psychological Association defines attention as ”a state in which cognitive resources are

focused on certain aspects of the environment rather than on others and the central nervous system is in

a state of readiness to respond to stimuli.” [36]. When the attention mechanism was first introduced in the

context of Deep Learning [37] it was used in an RNN encoder-decoder framework for natural language

translation. The authors used the attention mechanism in the decoder so the encoder didn’t need to

encode all the information in the source. Further work [38] developed the concept of attention with the

introduction of the concepts of local and global attention and the study of different score functions.

2.3.2 Self-Attention

Intra-attention or self-attention [39] is a mechanism that relates different positions of a sequence to

create representations between the different tokens in that sequence. It has been, for example, used

in machine translation where the system learns correlations between the current word and the others

which allows it to pay more attention to the more important words.

2.3.3 Transformer

The Transformer [40] is an architecture that solely uses attention mechanisms removing entirely the

Recurrences and Convolutions largely used until that point. Before the Transformer, we would probably

use a seq2seq model (Encoder-Decoder) using Recurrent Neural Networks (RNN) or a Long Short Term

Memory (LSTM) network. These models process the input sequentially, which is a problem when we

have long sequences since these models start losing information from old inputs, and for that reason, the

encoded information stops having information from words it might have seen some timesteps ago [41].

The Transformer on the other hand doesn’t compute the input sequentially, it takes the complete input

and takes advantage of the self-attention mechanism to focus on the most important parts. Another

advantage of the Transformer is the explainability it introduces compared to the RNNs and LSTMs,

since we can easily analyze the learned relations between tokens and use them as a good explanation

for the output obtained.

The canonical Transformer model architecture, in Figure 2.5, has two main components: an encoder

and a decoder. The encoder receives an input, e.g. a complete sentence in English, and creates a latent

representation of this input, while the decoder receives that latent representation and the ground-truth

output shifted right, i.e. the tokens are shifted one position to the right and the first token becomes the

beginning of sentence token (<BOS>) and outputs a value that will feed a linear layer. The output of
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Figure 2.5: The Transformer model architecture

the linear layer after normalisation using a softmax is used as the probability of a set of words being the

next token in the sentence.

Inside both the encoder and decoder, we can find the so-called Multi-Head Attention layer. This

layer is the composition of several heads, where each head is computing attention in parallel (Figure 2.6

and Equation 2.7). The capacity of the Multi-Head Attention layers to ”jointly attend to information from

different representation subspaces at different positions” [40] in parallel is the reason why Transformers

models are so fast and scalable.

MultiHead(Q,K,V) = [head1; . . . ;headh]W
O (2.7)

The attention computed inside each head is the scaled dot-product with a scaling factor, Figure 6.4

and Equation 2.8, where Q, K, and V are called the Query, Key, and Value and are defined as follows:

qi = xiW
Q, ki = xiW

K , vi = xiW
V where qi, qki and vi are the i-th row of the matrices Q, K, and V ,
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Figure 2.6: Multi-Head Attention layer with h heads

respectively.

Attention(Q,K,V) = softmax(
QK⊤
√
n

)V (2.8)

The Q, K, and V notation is inspired by the information retrieval systems. In these systems, we have

a dataset where each entry has two columns: Key, and Value. When we perform a query, the value

of the query is compared against multiple keys. If we imagine that the queries and keys are vectors

with equal dimensions, then one way of comparing those vectors would be (just like self-attention) with a

dot-product operation. And consequently, the result of that operation would allow us to obtain a weighted

map of the most relevant values.

2.3.4 Vision Transformer

The Vision Transformer, or ViT, [12] (Figure 2.8) is a model for image classification tasks that doesn’t

rely on CNNs. The architecture was designed to be as close as possible to the original Transformer

making only changes where necessary. A major change is how the input is handled because process-

ing pixels as tokens would be unfeasible, the vision transformer instead splits the image into patches.

The patches are projected into an embedding vector (usually using a learnable projector, for example,

a convolution followed by a flatten operation) and placed in a linear sequence. Then, a representation

token embedding is concatenated to the sequence, a positional encoding is added to each embedding

and then the resulting sequence is fed into the Transformer. For image classification tasks, this vector is
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Figure 2.7: Scaled Dot-product Attention

then fed into an Multi-Layer Perceptron (MLP) that will compute the class probabilities. The representa-

tion token is used in order for the complete model (ViT and MLP) to be able to classify an image, using

the representation of the image, which corresponds to the representation token embedding after being

computed by ViT. When compared to CNNs, ViT presents weaker image-specific inductive biases which

can impact the sample-efficiency of the model during learning [42], however, it has been shown that with

enough data the image-specific inductive biases become less important [12]. Moreover, ViT can capture

relations between patches that are far apart from each other, thus deriving global information that can

help the model perform better in certain tasks

2.3.5 Other Variations

The results shown by the Transformer created a big interest from the research community in proposing

new variations that can work in different domains including RL. The Transformer-XL [43] introduces

a recurrence mechanism for state reuse to maintain information after each computation, and so be

able to make recurrent computations. The Feedback Transformer [44] is an autoregressive model that

targets the limitations of the canonical Transformer in sequential token prediction tasks. This architecture

processes a sequence sequentially instead of the parallel way found in the canonical Transformer. While

this won’t allow having the computational gains that parallel processing has, the authors argue that the

Feedback Transformer will instead be able to exploit ”the sequential nature of the input”.
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Figure 2.8: ViT architecture

2.4 Self-Supervised Learning

The term unsupervised learning was used to encapsulate some of the methods that we currently call

self-supervised learning. The transition to this new term is mostly due to the ambiguity of the word since

it suggested that there was no supervision which is not true. Self-supervised learning methods, as the

name better suggests, are trained using the data as supervision [45]. This area of Machine Learning

creates an opportunity to solve problems where the annotation of the data is expensive or where we

just want to use a big dataset of unlabelled data. Moreover, it allows us to learn good representations,

which can be used to bootstrap a model that will be fine-tuned in a different task. Furthermore, the

previous results indicate that self-supervised pre-training can lead to better generalization in neural

networks [11], so the successes of models like BERT [46] might, in time, be seen in other areas of

Machine Learning (ML).

The field has seen in recent years an increase in interest and subsequently a fast growth in published

work and methods. Especially with the rise of more expressive models like the Transformer, the use of

self-supervised learning in pre-training became common practice. Currently, we can consider the follow-

ing big categories of self-supervised tasks (also called pretext tasks): Generative: the model learns a

good representation of the training data to better generate new samples of data [47]; Self-prediction:
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instead of predicting the complete sample like the Generative methods self-prediction methods only pre-

dict parts of the sample which have been masked [46]; Innate Relationships: these tasks consist in

learning relations between parts of the same sample, for example, in the case of an image we can split

it into several patches, swap the patches’ positions and make the model predict the original position

of each patch [48, 49]; Contrastive: consists in the process of learning to discriminate between two

inputs that might be similar (positive) or different (negative) [50, 51]; Non-Contrastive: these methods

are somewhat similar to contrastive methods, especially if we consider that most methods in these two

categories usually use a siamese network. However, non-contrastive methods don’t have the notion

of negative samples. Instead, they approximate positive samples while avoiding collapse into a trivial

solution with the use of stop-gradient operators, non-symmetrical siamese networks, regularization loss

functions, and others.

In the following subsections, we will explore some pretext tasks that might be relevant to this work.

2.4.1 Self-Prediction

One of the most used self-prediction tasks is masked prediction, which consists in masking parts of the

input and making the model predict the content of those masked parts. In an NLP context, we can mask

tokens, while in Computer Vision we can mask patches or even individual pixels. BERT [46], for example,

is a language representation model that pre-trains a Transformer Encoder using a masked prediction

task where 15% of the sentence is masked. Then the masked input is computed by the model that tries

to predict the masked tokens using a cross-entropy loss. Denoising autoencoder [52], on the other hand,

is a computer vision model that learns in a self-supervised way by denoising a corrupted image. The

model is fed with noisy images, i.e. some pixels masked, and tries to learn general representations that

are robust against small changes in the input.

2.4.2 Contrastive

The goal of contrastive tasks is to learn such a representation that makes similar samples, also called

positive, stay close to each other in representation space while dissimilar ones, also called negatives,

are far apart.

2.4.2.A Contrastive Objectives

A key component is the contrastive training objective, which uses the positive and negative samples to

adjust the representations of the model. One of the earliest objectives is the Contrastive Loss [53, 54].

Imagine we want to use the loss function to train a function fθ(xi) to learn a good embedding for the input

xi, meaning that samples from the same class have a similar embedding, while samples from different
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classes have different embeddings. The loss function, in Equation 2.9, is very straightforward, we have

two cases: yi = yj and yi ̸= yj . In the first case, the function tries to minimize the distance between

the computed representations, in the second case, the function maximizes the distance between the

representations lower bounded by a hyperparameter ϵ.

Lcont(xi, xj , θ) = I[yi = yj ] ∥fθ(xi)− fθ(xj)∥22 +

I[yi ̸= yj ]max(0, ϵ− ∥fθ(xi)− fθ(xj)∥2)
2

(2.9)

A more recent objective, and also currently a popular choice, is the InfoNCE loss [55] which uses a

cross-entropy function. In Equation 2.10 we present the loss function as proposed in the original work,

where fk(xt+k, ct) is given by the Equation 2.11 and zt+k is the result of encoding xt+k. Note that fk

is somewhat similar to a dot product, so we can also see it as a similarity score function between the

encoding of the input, zt+k, and a prediction, ẑt+k = WkCt, similar to the score function in the Self-

Attention section. To minimize this function we want to maximize the numerator, i.e. the similarity score

of the positive sample to be large, and minimize the denominator, i.e. the similarity score of the negative

samples to be small.

LCPC = −E

[
log

fk(xt+k, ct)∑
xj∈X fk(xj , ct)

]
(2.10)

fk(xt+k, ct) = exp(z⊤t+kWkct) (2.11)

2.4.2.B SimCLR

SimCLR [50] is a state-of-the-art model that learns visual representations by using a simple contrastive

learning framework, Figure 2.9. The two separate networks try to maximize agreement on the respective

representations using a contrastive objective, called NT-Xent or normalized temperature-scaled cross-

entropy loss, Equation 2.12. The process starts with the sample being augmented by two different

operators resulting in different but correlated augmentations, then each augmented sample is computed

by a network f(.), in this case, a Residual Network [56] that outputs a representation h. Subsequently,

the representations are computed by a simple one hidden layer MLP, g(.), which will result in z. This

last function g(.) is only used in training time since it only exists to help the contrastive loss and it is

not necessary for generating the real representation of the sample. Unlike the contrastive objectives we

have previously seen, the NT-Xent doesn’t sample negative samples for each datapoint per se. Instead,

it samples N datapoints each resulting in 2N augmented samples and therefore for each example the

other 2(N − 1) examples will be negatives.
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Figure 2.9: SimCLR framework

LSimCLR = − log
exp(sim(zi, zj)/τ)∑2N

k=1 I[k ̸=i]exp(sim(zi, zk)/τ)
(2.12)

2.4.2.C MoCo

Another work in the area of visual representation learning is MoCo [51], which is in many ways very

similar to SimCLR but still different enough to be worth talking about, Figure 2.10. The core idea behind

MoCo is to have a dynamic dictionary with a queue and a moving-averaged encoder. Like SimCLR we

have a siamese network although this time the representations are called a query and keys. MoCo intro-

duces a queue of keys that contains the N previous and the current mini-batch is used, since contrastive

methods benefit from large sets of negative samples, in this case, keys. Additionally, it also changes

the key’s encoder to be a momentum encoder, i.e. the encoder parameters are updating slowly using

Equation 2.13, instead of using gradient descent or a simple copy of parameters from the query encoder.

The contrastive loss used by the method is an InfoNCE loss, with temperature, of the dot product of the

queries with the keys, Equation 2.14.

θk ← mθk + (1−m)θq (2.13)

Lq = −log
exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

(2.14)

In MoCov2 [57] the authors follow some ideas from the SimCLR and propose adding a simple MLP

layer after both encoders to project the representations to a space that is more contrastive loss friendly.

For MoCov3 the authors study changing the backbone from a ResNet to a ViT, and introduce changes
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Figure 2.10: MoCo framework

like removing the memory queue, increasing batch size (in part to compensate for the removal of the

memory queue), changing the optimizer to a AdamW, adding an extra prediction head, and freezing of

ViT’s patch projection.

2.4.3 Non-Contrastive methods

2.4.3.A DINO

DINO (self-distillation with no labels) [58], like MoCov3, comes from a study of the impact of using self-

supervised learning with ViT, however the approach, in this case, is a non-contrastive method based on

knowledge distillation [59], as shown in Figure 2.11. This method consists of a siamese network where

each encoder is fed with a random transformation of the input. One encoder is called Teacher, more

precisely a momentum encoder, and the other encoder is called Student, and their goal is to minimize

the cross-entropy between their normalized output probability distributions, computed using a softmax

with temperature scaling, given two views of the same source, as shown in Equation 2.15, where Pt(x),

and Ps(x), are the probability distributions computed by the teacher and student networks, respectively,

x1 and x2 are the global views, and V is the set of views. The teacher computation path contains

two extra operators when compared to the student, stop-gradient and centering, that contribute to an

asymmetry that helps the method avoid collapse. The centering operation consists in adding a bias c

to each representation computed by the teacher, where c is a moving average of the mean over the

batch of representations computed by the teacher, as shown in Equation 2.16. Unlike, most methods,

DINO creates more than 2 augmentations of the same source, more precisely it creates a set of views

composed of two global views and several local views. All views are computed by the student network

while only the global views are computed by the teacher network, which pushes the student to create a
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local-to-global correspondence.

L = min
∑

x∈{x1,x2}

∑
x′∈V
x′ ̸=x

H(Pt(x), Ps(x
′)) (2.15)

c← mc+ (1−m)
1

B

B∑
i=1

yit (2.16)

Figure 2.11: Simplified diagram of DINO’s architecture
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3.1 Pretraining representations

Previous work, similarly to our approach, has explored pretraining representations using self-supervised

methods which led to great data-efficiency improvements in the RL phase [8, 60] or superior results in

evaluation tasks, like AtariARI [61]. Others have pretrained representations using RL algorithms, like

DQN, and transfer those learned representations to a new learning task [62].

PIE-G (Pretrained Image Encoder for Generalizable) [63] uses an encoder pre-trained on ImageNet

to improve generalization in environments where the backgrounds are changing.

3.2 Temporal Relations

Other works have explored learning representations that have temporal information encoded. ATC (Aug-

mented Temporal Contrast) [9] trains an encoder to compute temporally consistent representations using

contrastive learning, and the ST-DIM (SpatioTemporal DeepInfoMax) [61] captures spatial-temporal in-

formation by maximizing the mutual information between features of two consecutive observations.

3.3 Joint learning

In recent years, adding an auxiliary loss to the RL loss, usually called joint learning, has become a com-

mon approach by many proposed methods. Curl [64] adds a contrastive loss using a siamese network

with a momentum encoder. Another work studies different joint-learning frameworks using different self-

supervised methods [65]. SPR [66] uses an auxiliary task that consists of training the encoder followed

by an RNN to predict the encoder representation k steps into the future. PSEs [67] combines a policy

similarity metric (PSM), that measures the similarity of states in terms of the behaviour of the policy in

those states, and a contrastive task for the embeddings (CME) that helps to learn more robust repre-

sentations. PBL [10] learns representations through an interdependence between an encoder, that is

trained to be informative about the history that led to that observation, and an RNN that is trained to

predict the representations of future observations. Proto-RL [68] uses an auxiliary self-supervised ob-

jective to learn representations and prototypes [69], and uses the learned prototypes to compute intrinsic

rewards which will push the agent to explore the environment.

3.4 Augmentations

While we only use augmentations in the pre-training phase, their use during reinforcement learning has

also been studied. Methods like DrQ [70] and RAD [71] pair an RL algorithm, like SAC, with image
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augmentations to improve data efficiency and generalization of the algorithms. Their use is not trivial

and both methods explore the impact of the different augmentations commonly used in computer vision

tasks. RAD, for example, that different games might benefit more from different augmentations, but in

general ”random translation” and ”random crop” have the highest impact.

3.5 Vision Transformer for vision-based Deep RL

Recent works, also compare the Vision Transformer to convolution-based architectures with a similar

number of parameters and show that ViT is very data inefficient even when paired with an auxiliary

task [72].

3.6 Self-Supervised Learning from image sequences

Previous works also explore learning temporally coherent representations through a diverse set of ap-

proaches. Shuffle-and-Learn [14] introduces an unsupervised temporal order verification task, which

we use for this work, and that was originally used to train a model to predict human poses in videos.

VITO [73] pretrains an encoder over image sequences instead of images by approximating a source t

and a source t + k where k is sampled using a normal distribution with center at zero. Transporter [74]

learns to transform source frames from Atari games into another, temporally distant, frame which allows

the model to learn the important features present in the frame. For object recognition in videos, it has

explored the use of a ranking loss function, which is similar to a contrastive loss and that trains the

encoder to be invariant to changes in the patch being tracked [75]. Another previous work proposes an

approach that uses a low-level motion-based grouping to pretrain an encoder in an unsupervised way

for object segmentation in video [76].

Multiple works not related with RL also propose simple pretext tasks to train encoders to capture

information from image sequences. These pretexts tasks can be playback speed classification [77], a

temporal order classification [14,78,79], a jigsaw game [80] or a masked modelling task [81]. A different

approach consists of using contrastive learning. In this category, we can find methods that maximise the

similarity between image sequences [82], use autoregressive models to predict frames multiple steps in

the future [83], and maximize the similarity between temporally adjacent frames [84].

3.7 VICReg

VICReg [13] is a non-contrastive method that trains a network to be invariant to augmentations applied

to the inputs while avoiding a trivial solution using losses that act as regularizers over the embeddings.
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While VICReg is agnostic concerning the architectures used and even the weight sharing, in this work

we consider the version where paths are symmetric, the weights are shared, and each path is com-

posed of an encoder (also called backbone) and an expander, as shown in Figure 3.1. In addition, the

expander also removes information that is not common to both representations. Besides the invariance

loss, which trains the model to be invariant to augmentations by minimizing the L2 loss of the embed-

dings, z and z′, from the two computation paths, two additional loss functions are used, called variance

and covariance. The variance loss is a hinge loss that pushes the variance of the variables from the em-

bedding to be above a certain threshold. The covariance loss regularizes the embeddings by minimising

the sum of the squared off-diagonal coefficients of the embedding covariance matrix and consequently

decorrelating the variables of the embedding. Furthermore, the expander increases the dimension of

the representation vector in a non-linear way allowing the covariance loss to reduce dependencies and

not only correlations of the representation vector. Thanks to its regularization losses, which ensure that

the final method won’t suffer from any type of collapse, VICReg offers a simple and non-contrastive

framework that can be easily extended.

Figure 3.1: VICReg architecture
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4.1 TOV-VICReg

VICReg uses three loss functions: invariance is the mean of square distance between each pair of

embeddings from the same original image, as shown in Equation 4.1, where Z, and Z ′ are two sets

of embeddings, of size N , that result from computing two different augmentations of N sources, and

zj denotes the j-th embedding in the set; variance is a hinge loss that computes, over the batch, the

standard deviation of the variables in the embedding vector and pushes that value to be above a certain

threshold, as shown in Equation 4.2, where d denotes the number of dimensions of the embedding

vector, and Zj is the set of the j-th variables in the set of embedding Z; covariance is a function that

computes the sum of the squared off-diagonal coefficients of a covariance matrix computed over a

batch of embeddings, as shown in Equation 4.3, to decorrelate the variables from the embedding. While

the invariance loss function tries to make the model invariant to augmentations, i.e. output the same

representation vector, the other two functions regularize the method by pushing the variables of the

embedding vector to vary above a certain threshold and decorrelating the variables in each embedding

vector.

i(Z,Z ′) =
1

N

N∑
j

∥∥zj − z′j
∥∥2
2

(4.1)

v(Z) =
1

d

d∑
j

max(0, γ −
√

V ar(Zj)) (4.2)

c(Z) =
1

d

∑
i ̸=j

[Cov(Z)]2i,j (4.3)

TOV-VICReg or Temporal-Order-Verification-VICReg extends VICReg to better capture the tempo-

ral relations between consecutive observations and consequently encode extra information that can be

useful in the deep reinforcement learning phase. To achieve that we add a new temporal order verifica-

tion task, as seen in Shuffle-and-Learn [14], that consists of a binary classification task where a linear

layer learns to predict if three given representation vectors are in the correct order or not. Like the other

losses, we also employ a coefficient for the temporal loss. Figure 4.1 visually illustrates TOV-VICReg.

At each step we sample 3 consecutive observations, {xt−1, xt, xt+1}, xt is processed by two dif-

ferent augmentations, and like VICReg these are the augmentations used in BYOL [85], while xt−1 and

xt+1 are processed by two simple augmentations composed of a color jitter and a random grayscale,

as shown in the pseudocode available at Appendix A.8. The xt augmentations are computed by the

VICReg computation path and the resultant embeddings are used for the loss functions, i.e. variance,

invariance, and covariance. In the temporal order verification task we encode the augmentation of

xt−1 and xt+1, and concatenate those two representations with one of the representations of xt, in our
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Figure 4.1: TOV-VICReg architecture

case we used the one that was augmented without solarize, obtaining the vector {yt−1, yt, yt+1}. At last,

we randomly permute the order of the representations in the vector and feed the resultant concatenated

vector to a linear layer with a single output node that predicts if the given concatenated vector has the

representations in the right order or not. The temporal loss used to optimize the model for this task

is a Binary Cross Entropy loss, as shown in Equation 4.4. Lastly, the complete loss used to optimise

TOV-VICReg is presented in Equation 4.5. TOV-VICReg’s pseudocode can be found in Appendix A.7.

t(r̂, r) =
1

N

N∑
j

−(r log r̂ + (1− r) log (1− r̂)) (4.4)

L(Z,Z ′, r, r̂) = inv coef×i(Z,Z ′)+var coef×(v(Z)+v(Z ′))+cov coef×(c(Z)+c(Z ′))+temp coef×t(r̂, r)

(4.5)

4.1.1 Loss coefficients

As we stated all four objectives are added into a singular weighted sum. However, choosing different

values for these coefficients can lead to very different results. So to start we used VICReg’s default

values for the respective losses and picked a similar value for the temporal loss, as shown in Table

4.1. However, these values caused a lot of instability which would result in losses exploding. To solve
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this problem we decreased the temporal coefficient until we got a stable pretraining, which resulted

in this value changing to 0.1. When we evaluated the representations using the metrics presented in

Section 6.1 we also observed that the correlation coefficient was higher than expected (∼ 0.15). So,

we tested increasing this value to reduce correlations and dependencies between the variables in the

representation vector and arrived at the value of 10.0. Where we found no improvement in the correlation

coefficient when using higher values for this loss coefficient. The final coefficients can be found in Table

A.7.

Loss Coefficient

Invariance 25.0
Variance 25.0
Covariance 1.0
Temporal 25.0

Table 4.1: Original coefficients for each loss

4.2 Pre-Training Methodology

We pretrained four encoders, one using our proposed method TOV-VICReg and three using state-of-

the-art self-supervised methods: MoCov3 [86], DINO [58] and VICReg [13]. For this study, the encoder

used is a Vision Transformer, more precisely the ViT tiny with a patch size of 8. We chose this patch

size based on experiments that show that this value performed well in terms of data-efficiency when

compared to 6, 10, and 12 without being too computationally intensive (Appendix A.1). Moreover, the

implementation we use is an adaptation of the timm library [87] implementation, which can be found in

the source code of the DINO method. The dataset used is a set of observations from 10 of the 26 games

in the Atari 100k benchmark, all available in the DQN Replay Dataset [88]. For each game, we use three

checkpoints with a size of one hundred thousand data points (observations), which makes up a total of

three million data points ( 55 hours). The pretraining phase is 10 epochs with two warmup epochs. We

used the official code bases of all the self-supervised methods and tried to change the least amount of

hyperparameters. Appendix A.9 contains the tables with the hyperparameters used for each method.

4.3 Alternative methods explored

Beyond the temporal order verification task we also explored several different pretext tasks that also

tried to distil some temporal information into the encoder.

• In our first approach we tried a spatio-temporal loss, with the goal of making observations close

in time also close in space. The loss is a hinge function that minimizes the L2 distance until a
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certain threshold, as shown in Equation 4.6. Looking back we think we could have improved it

more by considering more than consecutive frames (t+ k and t− k, where k = 1) and instead, for

example, sample a value for k in a Gaussian distribution. However, the temporal order verification

task ended up proving to be very effective and we didn’t further explore this approach.

• The third approach we explored was a trivial continuation of the temporal order verification task,

which consisted in changing the task from a binary to a multi-class classification problem. In this

case, the temporal loss was a Cross entropy loss instead. This task proved to be too difficult for

the network to solve, where the loss value stayed constant for the entire pretraining.

L(Z,Z ′) =
1

N

N∑
j

max(0, ν −
∥∥zj − z′j

∥∥2
2
) (4.6)
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5.1 Training Methodology

In this section, we study the pretrained Vision Transformers, from the previous section, in the context

of data-efficiency regime in DRL. And compare them against a randomly initialized ViT tiny and two

convolution based networks, the Nature CNN [89], and a ResNet with an amount of parameters similar

to ViT tiny (Appendix A.3) that has a size roughly similar to the ViT tiny. To achieve this we took the

Rainbow network, replaced the representation module, in this case, a CNN, with different encoders and

trained the agent in an Atari game for 100 thousand steps. Figure 5.1 depicts the complete process of

pretraining an encoder model (in our case a Vision Transformer) using a self-supervised method and

using it in the network employed by the Rainbow algorithm.

To study the data-efficiency of the algorithm Simple [90] in Atari games the authors proposed a new

benchmark, called Atari 100k, which consists in training an agent with a smaller amount of training

data. Instead of the typical 25 or 50 million environment steps, the agents are trained with only 100

thousand steps (with a frame skip of 4, meaning that in reality, it’s 400 thousand steps). Several works

[8, 20, 64, 66, 70, 71, 91–93] have followed this approach to test data-efficiency in Atari games and we

consider it as well for this work.

We trained our agents using a PyTorch implementation of the Rainbow algorithm available on GitHub

[94], which offers enough flexibility to adapt it to our needs. In Table 5.1 we present a comparison

between the implementation used and the official results reported by DER [92] and Table A.10 contains

the hyperparameters used. We observed a similar performance in most games except for Assault,

and Frostbite, where the official results are significantly higher. Despite these differences, we validated

the implementation code and are confident that the results here presented are trustworthy. To allow the

agents to play the Atari games we used the gym library [95], where for all games we used the 4th version

without frame skip, e.g. ”AlienNoFrameskip-v4”, and wrapped it with the DQN wrappers. Appendix A.5

contains the code used to wrap the environments in Gym.

Game DER DER (ours)

Alien 739.9 446.6 ± 224.7
Assault 431.2 178.7 ± 87.1
Bank Heist 51.0 23.8 ± 14.3
Breakout 1.9 1.93 ± 1.43
Chopper Command 861.8 696.0 ± 274.6
Freeway 27.9 27.8 ± 2.0
Frostbite 866.8 127.7 ± 25.8
Kangaroo 779.3 448.0 ± 648.0
MsPacman 1204.1 1015 ± 487.1
Pong -19.3 -18.6 ± 4.4

Table 5.1: Comparison between DER scores and our implementation scores
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Figure 5.1: Simplified diagram of the model transfer

5.2 Results Methodology

Results in Reinforcement Learning suffer from a lot of uncertainty, especially in settings like the Atari

100k. To reduce this uncertainty one can perform more training runs across different seeds but this

is computationally expensive. In this work, we present our results using the RLiable framework [91].

This consists in using stratified bootstrap to sample from the set of normalized scores obtained for each

game. Meaning that all games are proportionally represented in the set of sampled scores, which is

then used to compute the different metrics and the 95% confidence intervals.

5.3 Results

Figure 5.2 shows the aggregate metrics on 10 Atari games with training runs of 100k steps. Starting with

the non-pretrained models (ViT, Nature CNN, and SGI-ResNet Large) we can assess that, observing the

mean, Nature CNN is the most sample efficient model followed by SGI-ResNet Large, and ViT, respec-

tively. Regarding the pretrained models, ViT, when pretrained with our method, performs better than the

other models and the non-pretrained ViT in all metrics. It is worth noting that we report a higher variance

in the results of our proposed method when compared to the remaining methods and non-pretrained

models. ViT+TOV-VICReg when compared to Nature CNN, which has far fewer parameters, and SGI

ResNet Large, with a similar number of parameters seems to closely match their sample-efficiency

performance (Appendix A.3). Furthermore, the difference between the non-pretrained ViT and ViT pre-

trained with TOV-VICReg shows that a good self-supervised method that explores temporal relations
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and 3 million data points can help close the sample-efficiency gap while remaining a more complex

and capable model. Regarding the remaining self-supervised methods, MoCo seems to perform con-

siderably well obtaining even a median very similar to TOV-VICReg and is then followed by DINO and

VICReg, respectively. All pretrained ViTs show an improvement in comparison to the non-pretrained ViT.

score− random score
average human score− random score

(5.1)

Figure 5.2: The eval runs across the different games are normalized and treated as a single task. The IQM cor-
responds to the Inter-Quartile Mean among all the runs, where the top and bottom 25% are discarded
and the mean is calculated over the remaining 50%. The Optimality Gap refers to the number of runs
that fail to surpass the human average score, i.e. 1.0.

5.3.1 Unseen environments

Table 5.2 shows a comparison of the non-pretrained and pre-trained (using TOV-VICReg) Vision Trans-

former in Atari games that were not used in the pre-training phase. In general, both models seem to

perform very similarly as indicated by the Inter-Quartile-Mean (IQM) over the aggregated normalized

scores, except for two games, RoadRunner where the pretraining seems to degrade data-efficiency and

Venture where pretraining improves data-efficiency. In short, we don’t find any advantage in using a

pre-trained vision transformer for games that were not used during pretraining. We don’t find this re-

sult surprising given the lack of variety present in the dataset used for pretraining which reduces the

possibility of the encoder finding features that can be used elsewhere.

Games ViT TOV-VICReg+ViT

Asterix 443.5 ± 225.6 445.0 ± 214.9
Krull 944.5 ± 525.8 708.9 ± 572.3
RoadRunner 2687.0 ± 2884.3 913.0 ± 1289.9
SpaceInvaders 184.3 ± 117.0 155.9 ± 91.0
Venture 4.0 ± 28.0 76.0 ± 152.4

IQM 0.0174 0.0186

Table 5.2: Mean and standard error results of the evaluations across 10 different training runs, where at each
evaluation the agent plays 10 episodes of the game. The agent was trained using the Rainbow algorithm
for 100k steps.
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In this chapter, we explore some metrics and visualizations that can help us compare the different

pretrained encoders. Some are more objective such as the metrics and cosine similarity while others,

like the attention maps and t-SNE, are more subjective and are intended to give an intuition of their

properties. Together they can help us explain the results in the previous chapter. We also propose

using an evaluation task which consists of imitation learning using a frozen encoder and a linear layer

(also called linear probing) for the action prediction that helps evaluate the pretrained encoders more

efficiently and with less uncertainty.

6.1 Metrics

A significant phenomenon when doing self-supervised training is the collapse of the representations,

which can be seen in three forms: representational collapse, dimensional collapse, and informational

collapse. Representational collapse refers to the features of the representation vector collapsing to a

single value for every input, meaning the variance of the features is zero, or close to zero. In dimensional

collapse, the representations don’t use the full representation space, which can be measured by calcu-

lating the singular values of the covariance matrix calculated over the representations. Informational

collapse defines the case where the features of the representation vector are correlated and therefore

are representing the same information.

6.1.1 Dimensional Collapse

To compute the dimensional collapse metric we first calculate the covariance matrix of the representa-

tions generated by the different encoders we are exploring hover a batch of observations from all the 10

games we used for the pretraining. Then we compute the singular of the resulting matrix using singular

value decomposition and plot them ranked by value.

All methods seem to avoid dimensional collapse, i.e. most dimensions have a singular value larger

than zero, as observed in Figure 6.1. However, we notice that some methods make better use of the

space available since they present higher singular values. TOV-VICReg, in particular, seems to excel

in this metric, even improving the results obtained by VICReg. It is worth noting that both VICReg and

TOV-VICReg employ a covariance loss that helps decorrelate the embedding variables which may be

contributing positively to these results. Furthermore, we used a covariance coefficient of 10 for TOV-

VICReg and 1 for VICReg, a change that according to our experiments culminates in the increase here

observed.
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Figure 6.1: Logarithm of the singular values of the representation vector’s covariance matrix sorted by value.

6.1.2 Representational Collapse

Results in Table 6.1 show the computed standard deviation of the representation vector over a batch of

thousands of data points. DINO, VICReg and TOV-VICReg show a value well above zero, meaning that

none of the methods suffered from representation collapse during training. On the other hand, MoCo

shows a much smaller value of 0.178, which is still far from a complete collapse. Both VICReg and

TOV-VICReg use a hinge loss that pushes the representation vector to have a standard deviation of 1 or

above. While VICReg slowly converges to this value our method converges to roughly 1.65, which might

be the result of adding a temporal order verification task.

DINO MoCo VICReg TOV-VICReg

0.979 0.178 1.003 1.648

Table 6.1: Average standard deviation of the representation vector

6.1.3 Informational Collapse

We report in Table 6.2, the comparison of the average correlation coefficients of the representation

vectors. TOV-VICReg performs better than the other methods, including VICReg, which present very

similar coefficients. Like in the dimensional collapse, this result is in part due to the higher covariance

coefficient used in TOV-VICReg which by design helps the model to decorrelate the representation’s

features. Increasing the coefficient in VICReg results in a lower correlation coefficient as well, but is still

higher than TOV-VICReg.
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DINO MoCo VICReg TOV-VICReg

0.1764 0.1538 0.1531 0.0780

Table 6.2: Average correlation coefficient

6.2 Visualizations

In this section, we present different visualizations to better understand the representations learned by

each of the methods. Our goal with the following visualizations is to help us better understand the

learned representations and give some intuitions about their properties.

6.2.1 Cosine similarity

Figure 6.2 presents a similarity matrix of the representations where we can observe that TOV-VICReg

can better distinguish between observations of different games but also observations from the same

game, as shown in Figure 6.3. MoCo, on the other hand, seems to make a good distinction between

observations from the same game. However, we can observe in the colour bar that all the representa-

tions are very similar to each other, which corroborates the results obtained in Section 6.1. Oppositely,

VICReg and DINO manage to spread representations more, as we can see in the colour bars, but the

yellow squares in the diagonal show that the representations from the same game are more similar to

each other which is corroborated by Figure 6.3. Given the empirical results, we believe that this capacity

to distinguish observations from the same game might be a good indicator.

Figure 6.2: Similarity matrices of the representations computed by MoCo, DINO, VICReg, and TOV-VICReg re-
spectively. There are a total of 64 data points, from 4 different games: Alien, Breakout, MsPacman, and
Pong, where from 0-15 are from Alien, 16-31 are from Breakout and so forth.

6.2.2 Attention maps

The research work that proposes DINO shows that the Vision Transformer is able to attend to important

parts of the input after training using DINO. Inspired by these results, we try to make the same evaluation
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Figure 6.3: Similarity matrices of the representations computed by MoCo, DINO, VICReg, and TOV-VICReg re-
spectively, of observations from MsPacman.

for the several self-supervised methods we are studying, including TOV-VICReg, and try to understand if

any of the encoders can attend to interesting parts of the input. In Figure 6.4, we can see the results of all

methods for an observation from the game of Pong, where each method produces three attention maps,

one for each self-attention head of the last block of the Vision Transformer. All pretrained ViT seem to

attend at some level to important game features like the ball and the paddles. However, TOV-VICReg

is the only method that doesn’t spread the attention to other parts of the frame that we don’t consider

important to describe the current state of the game. When comparing to VICReg’s attention maps we

believe that the temporal order verification task greatly helped the attention of the model. In more visually

complex games, e.g. Freeway or MsPacman, these attention maps start to be more difficult to analyse

but it is still possible to discern some important features.

Figure 6.4: Attention maps for Pong
Attention maps produced by the pretrained ViTs. We fed a pretrained ViT with an observation from the

game Pong and obtained the attention maps from the three heads in the last block.
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6.2.3 t-SNE

A commonly used method to visualise representations generated by networks in 2D is the t-SNE algo-

rithm [96]. t-SNE is a tool that can reveal interesting phenomena that might hint into what is happening

when we train the Vision Transformer using different self-supervised learning methods.

In Figure 6.5, we observe that some structure seems to emerge at the embeddings generated by

the t-SNE algorithm from the TOV-VICReg and MoCo representations. In both it is possible to discern

a path of points with the same colour, meaning that the correspondent observations are close in time

and are also close in the representation space. On the other hand, DINO appears to present clusters of

points with similar colours but are more dispersed when compared to MoCo and TOV-VICReg. VICReg’s

t-SNE shows some clustering of points with similar colours but are less well defined than the others.

Figure 6.5: t-SNE of the representation space generated by Vision Transformer pretrained with different self-
supervised methods. All points correspond to observations from the game Pong.

6.3 Evaluation Task

Evaluating representations computed by a pretrained encoder is a difficult task. One possible option

is assessing improvements in data efficiency in a reinforcement learning task, as we did in the previ-

ous section. However, the results usually suffer from a high level of uncertainty which requires us to

run dozens of training runs, thus making it computationally expensive. Another possible path would be

using previously proposed benchmarks like the AtariARI benchmark [61], which tries to evaluate repre-

sentations using the RAM states as ground truth labels. However, this only works for 22 Atari games

(out of 62) and requires the encoder to use the full observation provided by the environments (160x210).
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Randomly initialized encoder Pre-trained encoder W/o freeze

Random
Classifier

Nature
CNN

ResNet ViT ViT+TOV-
VICReg

ViT+DINO ViT+MoCo ViT+VICReg ViT+TOV-
VICReg L

Nature
CNN

Game

Alien 0.0556 0.0077 0.0558 0.0147 0.1003 0.0470 0.0646 0.0695 0.0988 0.1021
Assault 0.1519 0.1497 0.2270 0.1770 0.3044 0.2536 0.2557 0.3704 0.3065 0.6673
BankHeist 0.0608 0.0780 0.1312 0.0756 0.1622 0.1059 0.1083 0.1467 0.1523 0.2080
Breakout 0.2509 0.1311 0.3850 0.2183 0.3285 0.3591 0.2765 0.4077 0.3099 0.5907
Chopper
Command

0.0563 0.0145 0.0647 0.0176 0.3225 0.0383 0.2019 0.1298 0.3088 0.2660

Freeway 0.3999 0.6808 0.6850 0.6843 0.7041 0.6850 0.6972 0.6971 0.6942 0.8885
Frostbite 0.0565 0.0302 0.0730 0.0367 0.1021 0.0517 0.0744 0.0664 0.1001 0.1019
Kangaroo 0.0603 0.0311 0.1039 0.0562 0.2184 0.0877 0.1374 0.1259 0.2126 0.3311
MsPacman 0.1121 0.0388 0.1419 0.0780 0.1527 0.1215 0.1168 0.1400 0.1500 0.2063
Pong 0.1644 0.0692 0.1702 0.0718 0.2853 0.1447 0.2730 0.2337 0.3042 0.4340

Mean 0.1369 0.1231 0.2038 0.1430 0.2680 0.1894 0.2206 0.2387 0.2637 0.3796

Table 6.3: F1-scores for each game evaluated and mean. We trained all the encoders in all games seperatly for
100 epochs over a dataset of 100k observations and evaluate in 10k new observations. The rightmost
column show the results of a Nature CNN encoder that was not frozen during train and which we use as
a goal for the remaining.

For those reasons, we propose using a different evaluation task that is more efficient, allowing us to

test more pretrained models during the research process ( 50min per game), and flexible, meaning that

we can use it in different environments. Our evaluation task is a simple Imitation Learning task where

we train a network, composed of a frozen pre-trained encoder and a linear layer, i.e. linear probing, to

correctly predict the action that a certain policy will perform given its current observation. The intuition to

use such an evaluation is that a representation that allows an agent to efficiently learn an environment

must encode state information that can be recovered by a linear layer and which can be used to learn

other tasks efficiently.

We present the results in Table 6.3, we compare against a random classifier, i.e. uniform sampling,

randomly initialized networks and a non-frozen encoder which we use as a goal score. All methods

were trained for 100 epochs except the latter which we trained for 300. We use the DQN Replay dataset

to obtain the observations and the actions we obtain the datapoints from the last checkpoint of each

game, where we consider the policy to be less stochastic. The train dataset is composed of 100 thou-

sand observations from the game we are testing and the test dataset is composed of 10 thousand.

ViT+TOV-VICReg L corresponds to a ViT tiny pretrained with TOV-VICReg on the 26 Atari games from

the Atari100k.

To validate our evaluation task we calculate the Pearson correlation coefficient between the mean of

the average human normalized scores, obtained in the Reinforcement Learning, and the mean of the

F1-scores, from the evaluation task of all pretrained models. We report a Pearson correlation factor of

0.6985. Even though we are not in the presence of a strong correlation there is a clear trend for the RL

scores to increase when the evaluation scores also increase, as observed in Figure 6.6. Despite the

promising results, more data points are needed, especially using different pre-training methods, which

would allow us to better validate this evaluation task. Nevertheless, we believe that the evaluation task

might be a compelling tool for future methods that try to learn good representations for a Reinforcement

Learning task.
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Figure 6.6: Relation between the mean average human score obtained in RL and the mean F1-score obtained in
the evaluation task of several experiments
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Generalization is used to refer to the capability of a model to maintain its performance when used

in previously unseen data. In this work, we evaluate generalization using the procedurally generated

environments available at procgen [15], which contains several arcade games each with an almost

infinite number of distinct levels. During training, the agent only has access to a subset of the available

levels and at the end of the training, we test the trained agent in ten thousand episodes sampled from

previously unseen levels. With this approach, we can understand if the agent is learning generalizable

features and behaviours by measuring the gap between the train and test run.

7.1 Evaluating generalization

For this section, we will follow the experimental protocol proposed for procgen [15] where we train an

agent using the PPO algorithm for 25 million steps at difficulty ”easy” and with only 200 levels available

(seed 0-199). As in Chapter 5 we will study different models for the representation module of the network.

However, in this study we will only consider three models: Impala ResNet, Vision Transformer, and Vision

Transformer pretrained using TOV-VICReg.

We use the PPO implementation available in the CleanRL library [97]. A benchmark of the imple-

mentation in several procgen games can be found in Appendix A.13 and the hyperparameters used in

Table A.11.

7.2 Dataset generation

For the Atari games we took advantage of the DQN Replay Dataset. However, to the best of our knowl-

edge, there is no dataset for procgen games with the same quality and publicly available. For this reason,

we created our dataset, which is composed of observations from 9 different games: BigFish, BossFight,

Chaser, Climber, CoinRun, Dodgeball, Leaper, Maze, and Miner. To obtain the observations we trained

an agent using the PPO algorithm with the Impala ResNet for 10 million timesteps. Each environment

set to easy and the agent only played in the levels from 0 to 199, the same levels where we train the

agents when evaluating generalisability. Like, in the DQN Replay Dataset we separate the dataset into

checkpoints, with 1 million steps each.

We follow a similar training methodology as in Section 4.2. Our final dataset used to train Vision

Transformer (ViT) using TOV-VICReg is composed of the first 100k steps of the checkpoints 0, 5, and 9

from the nine games mentioned above.
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7.3 Results

For this experiment, we compare the pretrained ViT tiny against the non-pretrained ViT tiny and the

Impala ResNet [98] in four different games: Maze, Miner, CoinRun, and Climber. Figure 7.1, shows the

average normalized learning curve and average normalized testing score. As we assessed in Chapter

5 the pretrained ViT presents much better data-efficiency. However, this time the model is far behind

the convolution-based network. In terms of generalization, the results show a larger gap between the

train and test scores corresponding to TOV-VICReg+ViT than the ViT scores gap, even though the test

score is higher. This result contrasts with previous works which show generalization improvements when

using pretrained encoders [63,67]. We hypothesise that the lack of diversity present in the dataset used

during pretraining can be a limitation in our approach since it doesn’t allow the encoder to be more

robust to unseen data. Despite this, when we analyze the scores for each game, Figure 7.2 we also find

that the test score in two games (Maze, Climber) is lower despite having a higher final training score.

This result contrasts with previous work that showed improvements in generalization from agents using

pretrained encoders [63]. Note that in the case of procgen it’s not possible to play a single level while

changing different sprites, like the background, in between episodes. A feature that would allow us to

evaluate only the generalization capabilities of the encoder. For that reason, the gaps observed in the

plots are partially the result of poor generalization of behaviour. Nevertheless, the observed test score

degradation shows more than an inability to generalize behaviours and for that reason, the problem must

be in part due to poor representations.

Figure 7.1: Average normalized learning curves and average normalized test scores for all games

To better understand these results we further analyse them using the games Climber and Miner,

where we observed a degradation and an improvement, respectively, of the test score. The games are

visually different, as shown in Figure 7.3, and also change visually in different ways.

Miner, for example, has a static background at the entire level which in the beginning is obstructed
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Figure 7.2: Average normalized learning curves and average normalized test scores for each game

by dirt blocks and gets more exposed every time the agent removes a dirt block. Climber, on the

contrary, has a background that fills the majority of the frame and that moves downwards every time the

agent climbs the level or jumps. So, such visual differences might be, in part, responsible for the result

obtained, especially if we take into account how TOV-VICReg works. Our method during the pre-training

phase tries to distil temporal information using three consecutive frames. While in the game Miner this

will make the model attend to the agent and dirt blocks that the agent might remove in the game Climber

the model will be prone to attend to elements in the background which are not relevant to solve the level.

Figure 7.4, shows attention maps across four timesteps at the game miner of ViT+TOV-VICReg. The

Figure 7.3: On the left we nine different levels from the game Climber and on the right nine levels from the game
Miner
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Figure 7.4

attention maps seem very localized and the different heads of the encoder appear to attend to different

parts of the image, with head 1 attending to dirt blocks close to the agent including the block that the

agent removes at t+3 and head 2 attending to the agent.

Figure 7.5

For the game Climber, Figure 7.5, the attention is much more spread across the image particularly

the background, leaving the important features (platforms, player) unattended. While the agent during

training can somewhat improve in the limited number of levels available when tested in unseen levels

it most likely will fail due to poor representations given by the encoder that is not invariant to visual

variations.

This analysis reveals a good hypothesis for the test score degradation and consequently a limitation

of TOV-VICReg. Using such a small time window during the pretraining phase can negatively impact the
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learned representations when non-important visual features, like random backgrounds, change during

the level. We also hypothesise that an alternative to avoid such a problem could lie in using a larger

time window like in SPR [66], where an RNN is trained to predict the representation of an observation k

steps ahead, pushing the encoder to encode temporal information of the next k steps. This can result in

an encoder being more invariant to elements that don’t give the information needed to solve the level.
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8.1 Reproducibility

Our work can be fully reproduced using the source code, pseudocode and hyperparameters listed below:

• Vision Transformer:

– Source code: https://github.com/facebookresearch/dino/blob/main/vision transformer.py

– Hyperparameters: Appendix A.2

• ResNet: https://github.com/mila-iqia/SGI/blob/master/src/networks.py and Appendix A.3

• Self-supervised learning methods:

– DINO: https://github.com/facebookresearch/dino

– MoCo v3: https://github.com/facebookresearch/moco-v3

– VICReg: https://github.com/facebookresearch/vicreg

– TOV-VICReg: https://github.com/mgoulao/tov-vicreg

– Hyperparameters for all methods: Appendix A.9

• Rainbow:

– Source code: https://github.com/Kaixhin/Rainbow

– Hyperparameters: Appendix A.10

• PPO:

– Source code: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo procgen.py

– Hyperparameters: Appendix A.11

• RLiable: https://github.com/google-research/rliable

• Linear Probing for Reinforcement Learning evaluation task: https://github.com/mgoulao/Linear-

Probing-for-RL

8.2 Future Work

Even though we applied the temporal order verification task to VICReg, it can be used with any method,

including MoCo that shows good results even without this extension. Moreover, our generalization re-

sults showed limitations in TOV-VICReg that we believe are related to the small temporal window. Explor-

ing self-supervised methods that consider larger temporal windows can lead to encoders more invariant

to non-important information in the observations.
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Regarding the proposed evaluation task, we believe that it can be useful for evaluating future rep-

resentation learning methods. Our evaluation task showed limitations in the encoders produced by all

self-supervised methods we studied, for example, being able to predict the action when the game has

more than seven actions available. Overcoming these limitations might be an interesting research path

which can culminate in more data-efficient Reinforcement Learning agents.

8.3 Discussion & Conclusions

In this work, we presented a study of ViT for vision-based deep reinforcement learning using self-

supervised pretraining and proposed a self-supervised method that extends VICReg to better capture

temporal relations between consecutive observations. Our results showed that the agent using a Vision

Transformer that was pretrained with our method managed to surpass all other Vision Transformers,

pretrained and non-pretrained, in sample efficiency and also achieves results very close to convolution-

based models with far fewer parameters. Which reinforces the importance of encoding temporal rela-

tions between observations in the representation model, as shown by previous works, and also shows

that even vision models with weaker inductive biases and more parameters, when pretrained with a

competitive self-supervised method, can achieve similar results in sample efficiency.

Our results in generalization, unlike previous works [9], didn’t show any improvement. Our under-

standing is that our dataset is not diverse enough to create a robust encoder that is more invariant and

future work could explore using encoders that were first pretrained on more diverse datasets like Im-

ageNet. In addition, we identified limitations in our method, which leads the encoder to pay attention

to dynamic elements that are not important features for the gameplay, which is a result that should be

considered by future self-supervised methods. Lastly, we only used procgen games which are designed

for behaviour generalization using an infinite amount of levels with different sprites and layouts. Meaning

that results in environments where the task remains the same and only the visual components change,

like backgrounds, could be more positive.

Another important part of our work is the evaluations used and which can be a good reference for

future work. We have presented three metrics to evaluate collapse and consequently, the quality of the

representations learned with the different self-supervised learning methods during pretraining. Three dif-

ferent visualizations that give intuitions about the quality of the representations and some interpretability,

which is the case of the attention maps. And a new linear probing evaluation task based on imita-

tion learning, which can be very valuable for future work and even used as a benchmark when better

validated.

Despite the focus of this work being the Vision Transformer, the results here shown should translate

for convolution-based networks. Furthermore, the ability to use larger models, with millions of parame-
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ters, that are as sample efficient (or more) as some of the most popular CNN-based models (like Nature

CNN or Impala ResNet) and that can generalize to unseen observations is an important direction of

research. Since it opens the door to using Deep RL in even more complex problems where smaller

models (non-pretrained) tend to struggle to perform well. In this work, we try to advance the knowledge

by studying the pretrain of a vision transformer using self-supervised methods. This approach has seen

successes in natural language processing [46, 99], and computer vision [100]. Hence, we believe that

similar approaches in RL have the potential to unlock new levels of performance [101].

54



Bibliography

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May

2015.

[2] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. M. A.

Eslami, M. Riedmiller, and D. Silver, “Emergence of Locomotion Behaviours in Rich Environments,”

arXiv:1707.02286, Jul. 2017.

[3] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,

M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan,

W. Zaremba, and L. Zhang, “Solving Rubik’s Cube with a Robot Hand,” arXiv:1910.07113, Oct.

2019.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,

I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the

game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,

Jan. 2016.

[5] M. G. Bellemare, S. Candido, P. S. Castro, J. Gong, M. C. Machado, S. Moitra, S. S. Ponda, and

Z. Wang, “Autonomous navigation of stratospheric balloons using reinforcement learning,” Nature,

vol. 588, no. 7836, pp. 77–82, Dec. 2020.

[6] J. Degrave, F. Felici, J. Buchli, M. Neunert, B. Tracey, F. Carpanese, T. Ewalds, R. Hafner, A. Ab-

dolmaleki, D. de las Casas, C. Donner, L. Fritz, C. Galperti, A. Huber, J. Keeling, M. Tsimpoukelli,

J. Kay, A. Merle, J.-M. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter, C. Sommariva, S. Coda,

B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, and M. Riedmiller, “Magnetic control of

tokamak plasmas through deep reinforcement learning,” Nature, vol. 602, no. 7897, pp. 414–419,

Feb. 2022.

[7] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of Real-World Reinforcement Learn-

ing,” arXiv:1904.12901, Apr. 2019.

55



[8] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin, R. D. Hjelm, P. Bachman,

and A. C. Courville, “Pretraining Representations for Data-Efficient Reinforcement Learning,” in

Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 12 686–12 699.

[9] A. Stooke, K. Lee, P. Abbeel, and M. Laskin, “Decoupling Representation Learning from Rein-

forcement Learning,” in Proceedings of the 38th International Conference on Machine Learning,

Jul. 2021, pp. 9870–9879.

[10] D. Guo, B. A. Pires, B. Piot, J.-b. Grill, F. Altché, R. Munos, and M. G. Azar, “Bootstrap Latent-
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A
Appendix

A.1 ViT’s patch size

The patch size of a Vision Transformer can largely affect the performance of the model and the number

of computations per data sample. A patch size of 1 is equivalent to using the pixels as tokens while a

patch size of 16 converts patches of 16x16 pixels to a single token, i.e. the hyperparameter affects the

number of tokens quadratically. On the other hand, larger patches might not allow the model to learn

as good representations, therefore it is necessary to find a patch size that balances the computational

cost with task performance. For this work, we explored several different sizes and evaluated their data

efficiency by training Rainbow in the Atari game MsPacman for 100k across 10 different seeds. Our

results, Table A.1, show marginal differences between a patch size of 8 and 10, however, we didn’t

observe a significant difference in the training time and for that reason we decided to use a patch size of

8 for all our experiments.
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Patch size Score Mean Time

6 305.7 ± 71.0 4:56.33
8 801.9 ± 523.9 3:22.4
10 778.0 ± 324.0 3:10.2
12 627.0 ± 284.0 3:12.8

Table A.1: Scores obtained for different patch sizes

A.2 Vision Transformer hyperparameters

In this work, we used the ViT tiny which corresponds to using the hyperparameters at Table A.2.

Hyperparameter Value

Patch Size 8
Embedding dimension 192
Depth 12
Number of heads 3
MLP ratio 4
Use bias in QKV True
Normalization Layer Normalization
Normalization: epsilon 1.0× 10−6

Use Dropout False

Table A.2: Hyperparameters used for the Vision Transformer

A.3 ResNet architecture

The ResNet we used is based on the ResNet used for SGI, which uses three inverted residual blocks with

an expansion ratio of two, where each block is a sequence of Conv2D, Batch Normalization, and ReLU,

as shown in Figure A.1. However, to have a number of parameters similar to the ViT tiny we added an

additional residual block and changed the channels of each block to 64, 128, 256 and 512. Additionally,

we change the strides of each block to 2 for all blocks. The encoder computes representations vectors

with size of 18432.

Figure A.1: ResNet residual block
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A.4 Models sizes

Model Name # parameters

Nature CNN 75.936
ResNet 4.932.524
ViT tiny 5.526.720

Table A.3: Number of learnable parameters of each model we used

A.5 Gym’s wrappers setup python code

1 env = AtariPreprocessing(env , terminal_on_life_loss=True , scale_obs=True)

2 env = TransformReward(env , np.sign)

3 env = FrameStack(env , 3)

Listing A.1: Gym Atari Wrappers

A.6 PPO derivations

∇θJ(πθ)|θt = ∇θ E
τ∼ρθ

[R(τ)]

= ∇θ

∫
τ

ρθ(τ)R(τ)

=

∫
τ

∇θρθ(τ)R(τ)

=

∫
τ

ρθ(τ)
∇θρθ(τ)

ρθ(τ)
R(τ)

=

∫
τ

ρθ(τ)∇θ log ρθ(τ)R(τ)

= E
τ∼ρθ

[∇θ log ρθ(τ)R(τ)]

= E
τ∼ρθ

[
∇θ log

(
P (s0)

T∏
t=0

πθ(at|st)P (st+1|st, at)

)
R(τ)

]

= E
τ∼ρθ

[
∇θ logP (s0) +

T∑
t=0

(log πθ(at|st) + logP (st+1|st, at))R(τ)

]

= E
τ∼ρθ

[
∇θ

T∑
t=0

(log πθ(at|st))R(τ)

]

= E
τ∼ρθ

[
T∑
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∇θ log (πθ(at|st))R(τ)

]

(A.1)
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J(πθ′)− J(πθ) = J(πθ′)− Es0∼ρ0
[V πθ (s0)]

= J(πθ′)− Eτ∼ρθ′ [V
πθ (s0)]

= J(πθ′)− Eτ∼ρθ′

[ ∞∑
t=0

γtV πθ (st)−
∞∑
t=1

γtV πθ (st)

]
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γt (γV πθ (st+1)− V πθ (st))

]
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t=0

γt (γV πθ (st+1)− V πθ (st))

]

= Eτ∼ρθ′
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γtr(st, at)

]
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t=0

γt (γV πθ (st+1)− V πθ (st))

]

= Eτ∼ρθ′
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t=0
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[ ∞∑
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γt (Qπθ (st, at)− V πθ (st))

]

= Eτ∼ρθ′

[ ∞∑
t=0

γtAπθ (st, at)

]

(A.2)

A.7 TOV-VICReg Pseudocode

1 # N: batch size , D: dimension of the embedding

2 # mse_loss: Mean square error loss function , off_diagonal: off -diagonal

elements of a matrix , relu: ReLU activation function

3 # shuffle: shuffles elements in a certain dimension according to a

permutation index

4 for u, v, w in loader: # load a batch with N samples

5 # u -> x_{t}

6 # v -> x_{t-1}

7 # w -> x_{t+1}

8

9 # apply augmentations

10 u_a = augmentation_1(u)

11 u_b = augmentation_2(u)

12 v = augmentation_3(v)

13 w = augmentation_3(w)

14
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15 # compute representations

16 y_u_a = encoder(u_a)

17 y_u_b = encoder(u_b)

18 y_v = encoder(v)

19 y_w = encoder(w)

20

21 # compute embeddings

22 z_u_a = expander(y_u_a)

23 z_u_b = expander(y_u_b)

24 z_v = expander(y_v)

25 z_w = expander(y_w)

26

27 shuffle_indexes = randint(0, 6) # sample from 0 to 3 permutations of 3

28 labels = where(shuffle_indexes == 0, 0, 1)

29

30 # concat and shuffle (N, 3, D)

31 c = concat(p_u_a , p_v , p_w)

32 c = shuffle(c, shuffle_indexes , dim=1)

33

34 # temporal loss

35 preds = linear(c) # Linear layer Dx6

36 temp_loss = Binary_Cross_Entropy_Loss(preds , labels)

37

38 # invariance loss

39 sim_loss = mse_loss(z_a , z_b)

40

41 # variance loss

42 std_z_a = torch.sqrt(z_a.var(dim =0) + 1e-04)

43 std_z_b = torch.sqrt(z_b.var(dim =0) + 1e-04)

44 std_loss = torch.mean(relu(1 - std_z_a)) + torch.mean(relu(1 - std_z_b))

45

46 # covariance loss

47 z_a = z_a - z_a.mean(dim =0)

48 z_b = z_b - z_b.mean(dim =0)

49 cov_z_a = (z_a.T @ z_a) / (N - 1)

50 cov_z_b = (z_b.T @ z_b) / (N - 1)

51 cov_loss = off_diagonal(cov_z_a).pow_ (2).sum() / D + \

52 off_diagonal(cov_z_b).pow_ (2).sum() / D
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53

54 # loss

55 loss = inv_coef * inv_loss \

56 + var_coef * var_loss \

57 + cov_coef * cov_loss \

58 + temp_coef * temp_loss

59

60 # optimization step

61 loss.backward ()

62 optimizer.step()

Listing A.2: Pytorch-like TOV-VICReg pseudocode

A.8 TOV-VICReg augmentations

1 # Augmentation 1 / tau

2 RandomResizedCrop (84, scale =(0.08 , 1.)),

3 RandomApply ([

4 ColorJitter (0.4, 0.4, 0.2, 0.1)

5 ], p=0.8),

6 RandomGrayscale(p=0.2),

7 RandomApply ([ GaussianBlur ((7, 7), sigma =(.1, .2))], p=1.0) ,

8 RandomHorizontalFlip ()

9

10 # Augmentation 2 / tau prime

11 RandomResizedCrop (84, scale =(0.08 , 1.)),

12 RandomApply ([

13 ColorJitter (0.4, 0.4, 0.2, 0.1)

14 ], p=0.8),

15 RandomGrayscale(p=0.2),

16 RandomApply ([ GaussianBlur ((7, 7), sigma =(.1, .2))], p=0.1) ,

17 RandomSolarize (120, p=0.2) ,

18 RandomHorizontalFlip (),

19

20 # Augmentation 3 / tau two prime and tau three prime

21 RandomApply ([
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22 ColorJitter (0.4, 0.4, 0.2, 0.1)

23 ], p=0.8),

24 RandomGrayscale(p=0.2),

Listing A.3: Pytorch-like pseudocode of TOV-VICReg augmentations

A.9 Self-Supervised methods hyperparameters

Hyperparameter Value

Drop path rate 0.1
Freeze last layer True
# local crops 8
Local crops scale interval [0.05, 0.5]
Learning rate 5.0× 10−4

Min learning rate 1.0× 10−6

Teacher ema coefficient 0.996
Normalize last layer False
Optimizer AdamW
Out dimension 1024
Use batch normalization in head false
Teacher warmup temperature 0.04
# warmup epochs for teacher temperature 0
Weight decay 0.04
Weight decay final value 0.4

Table A.4: DINO hyperparameters

Hyperparameter Value

Random crop min scale 0.08
Learning rate 0.6
Number of features 256
Momentum encoder ema coefficient 0.99
MLP hidden dimensions 4096
Softmax temperature 1.0
Optimizer LARS
Weight decay 1.0× 10−6

Table A.5: MoCo v3 hyperparameters
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Hyperparameter Value

Base Learning Rate 0.2
Weight decay 1.0× 10−6

MLP dimensions 1024-1024-1024
Invariance coefficient 25.0
Variance coefficient 25.0
Covariance coefficient 1.0

Table A.6: VICReg hyperparameters

Hyperparameter Value

Base Learning Rate 0.2
Weight decay 1.0× 10−6

MLP dimensions 1024-1024-1024
Invariance coefficient 25.0
Variance coefficient 25.0
Covariance coefficient 10.0

Table A.7: TOV-VICReg hyperparameters
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A.10 Data-Efficient Rainbow hyperparameters

Hyperparameter value

Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K
Update Distributional Double Q
Target network update period every 2000 updates
Support of Q-distribution 51 bins
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: first moment decay 0.9
Optimizer: second moment decay 0.999
Optimizer: 0.00015
Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4 → 1
Noisy nets parameter 0.1
Min replay size for sampling 1600
Memory size unlimited
Replay period every 1 step
Multi-step return length 20
Q network: hidden units 512
Optimizer: noisy nets learning rate 0.0001
Optimizer: encoder learning rate 0.000001

Table A.8: Hyperparameters used for Rainbow
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A.11 PPO hyperparameters

Hyperparameter value

# timesteps 25 000 000
# parallel environments 64
# step per rollout 256
Optimizer Adam
Optimizer: moment decay 0.00005
Optimizer: linear layers learning rate 0.0005
Optimizer: encoder learning rate 0.000005
Value loss coefficient 0.5
Entropy loss coefficient 0.01
Clip Value Loss True
Gradient clipping max norm 0.5
Normalized advantage True
Policy update # epochs 3
# mini batches 8
GAE lambda 0.95
Discount factor 0.999
Anneal learning rate False

Table A.9: Hyperparameters used for PPO

A.12 SSL methods computational performance

Table A.10 shows a comparison of the total time that took to train a ViT tiny using the different self-

supervised learning methods. We also show the number of workers used to load the batches from

memory, which includes applying the augmentations, and the batch size. Both hyperparameters impact

the total time and ideally, we would have liked to use the same values for all methods. However, in the

case of the batch size, this value needs to be adjusted to keep the VRAM used by the training script

below 30GB.

Method # workers batch size Time

DINO 10 160 2d 18h 31m 55s
MoCov3 8 1024 15h 28m 42s
VICReg 8 1024 15h 48m 45s
TOV-VICReg 8 512 18h 53m 32s

Table A.10: SSL methods computational performance comparison
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A.13 CleanRL PPO benchmark

Figure A.2

A.14 RL data-efficiency results table
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Games Nature CNN ResNet ViT ViT+TOV-VICReg ViT+DINO ViT+MoCo ViT+VICReg

Assault 355.1 ± 105.2 452.0 ± 349.1 322.7 ± 146.9 366.3 ± 124.5 493.3 ± 254.7 493.3 ± 181.1 408.5 ± 156.6
Alien 210.8 ± 133.1 186.9 ± 104.4 250.6 ± 142.6 197.6 ± 114.4 275.1 ± 153.2 380.8 ± 194.7 187.3 ± 118.8
Bank Heist 37.6 ± 29.5 30.6 ± 18.6 58.3 ± 115.4 34.5 ± 18.8 18.6 ± 10.7 21.0 ± 30.1 29.6 ± 13.6
Breakout 5.1 ± 3.3 4.7 ± 2.1 3.2 ± 2.6 4.3 ± 2.7 2.8 ± 2.1 2.7 ± 1.6 3.1 ± 1.6
Chopper
Command

828.0 ± 323.8 737.0 ± 354.0 747.0 ± 268.5 853.0 ± 312.2 760.0 ± 249.0 968.0 ± 673.0 668.0 ± 274.9

Freeway 30.4 ± 1.2 26.5 ± 2.5 21.2 ± 1.4 25.9 ± 2.7 25.0 ± 2.0 22.5 ± 2.1 23.7 ± 2.4
Frostbite 120.1 ± 25.9 107.9 ± 26.8 127.5 ± 15.6 143.7 ± 106.7 132.7 ± 14.1 111.3 ± 37.0 120.0 ± 18.2
Kangaroo 776.0 ± 1035.4 405.0 ± 226.4 60.0 ± 91.7 704.0 ± 1076.7 316.0 ± 233.5 384.0 ± 531.0 268.0 ± 244.5
MsPacman 781.3 ± 417.1 757.7 ± 413.2 618.9 ± 259.9 639.5 ± 378.4 698.9 ± 374.5 586.4 ± 257.5 633.0 ± 372.1
Pong -13.6 ± 9.7 -12.0 ± 8.6 -21.0 ± 0.0 -6.2 ± 13.4 -18.4 ± 3.4 -17.6 ± 4.3 -15.1 ± 3.9

Table A.11: Table of results (mean and standard error) from experiments presented in Chapter 5.The bold values represent the best scores for the corresponding
game
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