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Int2IT: An Intent-based TOSCA IT Infrastructure
Management Platform

Manuel Duarte Mascarenhas

Abstract—The introduction and widespread adoption of cloud computing has opened the door to the possibility of designing and
building large scale systems with tremendous raw computing capabilities for dealing with an ever-increasing volume of data. However,
the infrastructure required to support these systems became too complex for manual efforts, so practices such as Infrastructure-as-
Code (IaC) and Development and Operations (DevOps) methodologies with programmatic orchestration and provisioning of cloud
infrastructures became increasingly common. Int2IT is presented here as a solution to this specific problem alongside a proof-of-
concept implementation named Int2IT-Lite. It is an “intent-based” infrastructure management platform that incorporates autonomic
computing concepts in order to manage cloud deployments autonomously, using a TOSCA-based cloud application description. The
proposed solution will be able to capture the user’s “intents”, which describe the system’s end-goals, and translate them into a TOSCA-
based cloud application. As a result, it can then be deployed to the cloud and autonomously managed, by utilizing a Monitor-Analyze-
Plan-Execute over a shared Knowledge (MAPE-K) autonomic deployment life-cycle capable of adapting to the outside environment,
ensuring that the end-goals are met to the greatest extent possible.

Index Terms—Infrastructure-as-Code (IaC); DevOps; Cloud Computing; Intent-Based; OASIS TOSCA; Intent-Based.
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1 INTRODUCTION

THE cloud computing paradigm has forever changed
the landscape of Information Technology (IT) in

terms of raw processing capability and high availability
services, which is evident by the ever growing number
of organizations who, in the last decade, perceive the
cloud as a cost-effective and scalable solution that con-
trasts with the traditional acquisition, provisioning and
management of local infrastructure.

Cloud providers such as Google Cloud Platform
(GCP), Amazon Web Services (AWS) and Microsoft
Azure offer a multitude of resource virtualization ser-
vices diverse in capacity and price, ranging from in-
frastructure provisioning to data-driven serverless com-
puting capabilities. Naturally, this wide range of ser-
vices resulted in an exponential growth in complexity,
thus its management has become increasingly important,
which led to the creation and development of tools and
methodologies designed to scale down such complexity,
allowing for a more automated control over the cloud
environment and enabling a more systematic approach
to application deployment supported by version control
and modular releases.

The DevOps culture is the practice of blending the
traditional Development and Operations teams into a
unified unit operating under a Continuous Integration/-
Continuous Delivery (CI/CD) life-cycle, where there is a
focus on frequent smaller releases, the “need-for-speed”
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alluded to as per Artac et al. [1]. This life-cycle is
supplemented with continuous testing and version con-
trol through “as-Code” practices yielding in re-usability,
greater error detection and error correction prior to full
production deployment.

IaC is one of these practices which attempts to enable
descriptions of complex infrastructure deployments in a
programmatic manner, typically in a declarative fashion,
despite the initial trend geared towards traditional im-
perative programming, as per Bellendorf et al. [2]. In the
past, it has been described as “the DevOps practice of
describing complex and (usually) Cloud-based deploy-
ments by means of machine-readable code.” as per Guer-
riero et al. [3]. The main advantage of this practice is that
it allows for a systematic approach to the management
of infrastructure provisioning, avoiding typical human
induced errors whilst simultaneously enabling a “fast
track” developmental approach for the provisioning and
maintenance of machine instances. Nevertheless, this
practice is not without its downsides, such as the lack
of standardization at an industry level, the prevalence
of bad practices such as “hardcoding” and the lack of
design time tools with inherent testing capabilities.

The Organization for the Advancement of Structured
Information Systems (OASIS) Topology and Orches-
tration Specification for Cloud Applications (TOSCA)
presents itself as a standardized implementation of IaC
widely studied in academia whilst having a small market
share in business environments, despite appraisal and
interest from the experts who have utilized it, according
to Guerriero et al. [3]. TOSCA has three main objectives,
as per Brogi et al. [4]:

(a) “Automated application deployment and manage-
ment”; (b) “Portability of application descriptions and
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their management”; (c) “Interoperability and reusability
of components”.

1.1 Motivation
Unfortunately, DevOps methodologies and IaC practices
can only go so far and, while they have a measurable
effect on diminishing impactful human-prone errors,
they may have even increased the likelihood of “operator
errors”, as per Vetter et al [5], due to the increase in
deployment releases and to dependencies on low-level
changes in requirements, for example, changes in ports
to be used in an application context.

Despite the fact that these methodologies and practices
enable a more systematic approach to the application
life-cycle through continuous testing and version control,
there is a looming reliance on systems administrators’
knowledge of specific details and requirements, divert-
ing their attention away from the holistic perspective
of said system. Furthermore, while IaC allows for a
program-like description of the system, it fails to capture
the system’s business-level holistic perspective; in other
words, it does not allow for a description of the system’s
requirements or the metrics that allow their verification.
In today’s world, systems have grown to such complex-
ity and scale that manual efforts to manage them have
become unfeasible, error-prone, and inefficient, accord-
ing to Kephart [6].

As a result, the adoption and development of auto-
nomic systems, was required to shift some of the ad-
ministrators’ responsibilities in order to achieve freedom
from operation and maintenance details, while keeping
sets of machines operating at their maximum capabilities
at all times, as per Kephart [6].

Nonetheless, autonomic systems will need to be pro-
vided with intentions and policies, by their adminis-
trators, such that these constraints guide their actions
towards the desired optimal system, based on high-level
end-goals, as per Kephart [6].

These are the exact conditions which this work at-
tempts to contribute to solve, with the development of
a proof-of-concept for an autonomic intent-based OASIS
TOSCA infrastructure management tool.

The developed tool, named Int2IT, aims to expand
and demonstrate the work proposed in a paper that
was published and presented in the Iberian Conference
on Information Systems and Technologies (CISTI), under
the same name [7].

1.2 Goals
Int2IT is an Intent-Based autonomic infrastructure man-
agement platform that uses OASIS TOSCA for IaC stan-
dardization and infrastructure provisioning. Therefore,
the goals of this paper can be summarized as:

(a) Introduce intent-based descriptions to infrastruc-
ture deployments; (b) Adopt an autonomic perspective
in the infrastructure deployments to provide adaptability
so as to comply to business-level metrics; (c) Expand

on previous TOSCA orchestration related work while
motivating further research into automation and simpli-
fication of the operational side to systems development.

2 BACKGROUND

In this section some background concepts and clarifi-
cations are provided for the most relevant topics that
this work will contribute to, such as Intent-Based and
Autonomic systems, as well as focusing on the primary
topic of the OASIS TOSCA standard and its current
state of the art, whilst at the same time, reviewing
and introducing a subset of previous works and their
contributions.

2.1 Intent-Based
Intents can be defined as a high-level abstraction for
specifying a system’s end goals without mentioning how
those goals will be achieved or delving into concrete low-
level details, and they are frequently defined in a more
“natural” language rather than a more programmatic
declaration. Intents can provide qualitative definitions
of service quality as well as quantitative thresholds
for the metrics associated with said services. Davoli et
al [8] define both Quality Of Service (QoS) features and
thresholds as, respectively, being qualitative towards the
specified service, for example “guaranteed bit rate or
limited delay” and quantitative towards a specific metric
of interest, e.g., “minimum bit rate or a maximum delay
value”.

Nefkens [9] presents a great analogy where, when
designing a large office building, the blueprints offer
guidelines and a perspective of the future overall outline
aspect of the building, nevertheless, it does not supply
the contractor’s with the specifications of the materials to
be used during construction nor the functionality which
the office’s will provide. Since intentions do not specify
the “how” to achieve the defined end-goals, there is a
need to translate them into procedural steps which can
then be applied so as to meet the end goal desired. One
good example of this translation is provided, as well,
by Nefkens [9]. Consider the intention of “taking out
the trash in the kitchen”. We can deconstruct this into
several steps, for example: (a) Taking trash from bin in
kitchen and wrapping it; (b) Carry it outside and dump
it in the containers; (c) Replenish the bin’s trash bag.

Intents are frequently confused with the concept of
policies, but conceptually, despite some similarities, they
refer to different abstractions. As previously stated, in-
tents are concerned with the high-level outcomes of a
system without defining events or actions. Policies, on
the other hand, are collections of rules that define actions
to be taken when certain conditions are met but do not
refer to desired outcomes.

For example, a possible definition of an intent could
be “The database server’s Central Processing Unit (CPU)
utilization should be maintained between 15 and 75
percent”, whereas a policy could be If the database server’s
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CPU utilization exceeds 75 percent or is less than 15 percent,
then modify the number of replicas by X.

2.2 Autonomic Computing
Autonomic computing surges as a paradigm designed
to handle the increasing complexity, heterogeneity and
dynamism in services and applications by emulating
strategies employed by biological systems, as per Hariri
et al. [10]. Specifically it has its basis in the autonomous
nervous system present in humans which is capable
of adapting, in face of uncertainty, so as to ensure the
survival of the system. Hariri et al. [10] also remark that
the system, when conditioned, internally or externally,
will attempt to return to a state of equilibrium.

Restoring the system to said state however, requires
the capability of self-adaptation often described as the
self-* properties which can be deconstructed into four el-
ements, being: self-configuration, self-optimization, self-
healing and self-protection, as per Kephart and Chess [6].

For the solution here proposed, it will mainly cover
the capability of self-configuration and self-optimization,
which is present in the automatic creation, provisioning
and optimization of a specific deployment’s infrastruc-
ture. Although not being heavily focused on, there is
still some capabilities to self-heal in the form of recovery
from certain failures, such as an operation which could
not be completed successfully.

While Int2IT is not an autonomic tool, it does leverage
from some of the self-* principles previously mentioned,
when managing cloud deployments. In particular, it
employs a self-adapting life-cycle model similar to the
well-known MAPE-K model, which represents the com-
ponents of an autonomic manager that manages a single
element. The model is made up of five components:
Monitor, Analyze, Plan, Execute, and Knowledge. In Sec-
tion 3.3, these will be explored in more detail as they are
represented directly by the components in deployment
management life-cycle.

2.3 OASIS TOSCA
The OASIS TOSCA standard presents itself as a language
standardization in the realm of IaC , allowing for the def-
inition and modelling applications and services through
a declarative definition in a language named YAML Ain’t
Markup Language (YAML), despite originally geared
towards a more Extensible Markup Language (XML)-
like definition. TOSCA is capable of covering the entire
life-cycle of cloud-based environments by depicting, as
Lipton et al. [11] remarked, “their components, rela-
tionships, dependencies, requirements and capabilities
of orchestrating software”. Additionally, TOSCA also
allows the definition of policies which can be used for
the purposes of automatic scaling of applications, as
presented in Cankar et al. [12]. At the same time, it is ca-
pable of specifying policies which cover, as Waizenegger
et al. [13] demonstrated, non-functional requirements,
such as cost or security.

TOSCA application topology is a directed graph struc-
ture made up of nodes and edges that serves as the foun-
dation for TOSCA application description. A node in
the graph represents a component of the application, re-
gardless of the application layer to which it contributes,
in other words, a node can refer to software elements
or even physical components, whereas edges depict the
relationships between nodes. The “Service Template” of
TOSCA encompasses all the major elements that define a
service which includes the application topology and the
types of nodes and relationships, as well as the “Plans”
that manage the complete service life-cycle, as per OASIS
TOSCA standard [14].

Following this overview of some background infor-
mation on the core concepts of TOSCA, a perspective
on previous works and their main contributions will be
presented, as well as some context on works done at a
similar time.

2.4 Timeline of TOSCA Works

The following subsection intends to provide a high level
overview of some of the most relevant works accom-
plished by some of the most influential authors and
experts in the field of TOSCA IaC.
The Building Blocks (2012-2014): Winery 1 is a web-

based graphical TOSCA modeling tool that supports
the entire OASIS TOSCA standard as well as type
definition. It is made up of three parts: the Topology
modeler, the Element Manager, and the Repository.
Winery, as a tool, is intended to be used in conjunc-
tion with other tools that can benefit from its model-
ing capabilities such as OpenTOSCA, presented by
Binz et al. [15], an imperative runtime for processing
TOSCA applications, where the deployment and
management flow is based on defined plans that are
then executed by the engine.
Waizenegger et al. [13] present a formal policy
definition based on the OASIS TOSCA standard, in
which each policy is defined based on its impact,
the stage of the cloud service life-cycle, the topol-
ogy layer, and the effect to be produced. Further-
more, policies define the property over which the
policy operates and store the desired value, such
as a database encryption policy with an AES256
property denoting the encryption type. An offering
consists of multiple policies and a formal TOSCA
service template, which users will select based on
whether it meets their needs. Finally, the authors
present two approaches for policy-aware cloud pro-
visioning: plan-based (P-Approach) and implemen-
tation artifact based (IA-Approach).

Advanced tooling and connectivity (2014-2018):
Brogi et al. [16] present systematic mappings
of TOSCA interconnection constraints to formal
conditions that must be guaranteed for a TOSCA

1. https://projects.eclipse.org/projects/soa.winery

https://projects.eclipse.org/projects/soa.winery
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application to be valid, as well as the Sommelier
validation prototype.
The Sommelier validation prototype (created by
Brogi et al. [17]), helps TOSCA application develop-
ers by validating application topologies and ensur-
ing that they meet all interconnection restrictions,
allowing for validation at design time, which was
previously done manually.
Brogi et al. [17] also present a solution for im-
proved support in the deployment and manage-
ment of cloud applications based on TOSCA and
Docker2. The authors contributions are twofold: a
new TOSCA-based representation that allows users
to depict solely the elements that compose the
application and the associated software dependen-
cies that each requires; the TosKerizer tool, which
can find a “best-fit” completion of the necessary
Docker containers for the application, from incom-
plete TOSCA specifications.
Sampaio et al. [18] present a novel approach that
uses Cloudify3 and a Cloud Crawler to automate
the performance of cloud topologies based on the
OASIS TOSCA standard and their many possible
configurations. Essentially, the user specifies the var-
ious topology specifications for that particular ap-
plication, as well as the test parameters required for
deployment evaluation, which is then broken down
into scenarios by the Cloudify Manager and pro-
vided to Cloud Crawler, while Cloudify orchestrates
the deployment to the specified Cloud Provider
(CP). The Cloud Crawler is then in charge of eval-
uating each of the virtual machines that comprise
the deployment using the specified parameters and
reporting the results to the users.

Multi-component tooling and meta-analysis (2019-2021):
Tamburri et al. [19] provide an overview and key
designs of TOSCA-based intent modeling concepts
and their main properties provided in TOSCA
using concise and representative examples: its
substructural hierarchy, symmetric idempotence,
Top-down intentionality, higher-order scope, meta-
centric design, and, finally, resource-centric intent
unfolding.
Wurster et al. [20] present TOSCA Light as a sub-
set of TOSCA that is compliant with the Essential
Deployment Metamodel (EDMM), with the goal of
closing the gap between the state of academic re-
search and the industry. EDMM’s have been shown
to be able to be transformed into various deploy-
ment automation technologies, such as Terraform4,
therefore TOSCA Light being EDMM-compliant en-
ables the translation of technology-agnostic descrip-
tions into more tool specific descriptions. Further-
more, the authors present the TOSCA Light end-to-

2. https://www.docker.com
3. https://cloudify.co
4. https://www.terraform.io

end toolchain, implemented as a proof-of-concept,
which essentially depicts the flow from a TOSCA
deployment model that is validated for TOSCA
Light compliance, which is then transformed into a
tool specific deployment model that can be executed
by said tool.
Bellendorf et al. [2] present the findings of a sys-
tematic review of the literature on TOSCA in which
they identify the main contributions to existing
research, emerging trends in academic works, and
potential topics for future research. Previous works,
the authors conclude, have primarily focused on the
application of TOSCA, methodologies for process-
ing TOSCA models, or provided extensions to the
standard.
Bogo et al. [21] present a novel approach for de-
ploying multi-component applications defined by
the OASIS TOSCA standard specification, while re-
maining decoupled from the containers that host
each component, using existing (and industry stan-
dard) container orchestrators such as Docker Swarm
and Kubernetes5. The authors present a toolchain
comprised of the TOSKOSE Packager, Unit, and
Manager, the first of which extracts Docker-based
artifacts from TOSCA specifications, the second of
which manages components present in a container,
and the third of which manages the entire TOSKOSE
Units that comprise the application.
TORCH, as presented by Tomarchio et al. [22], in-
tends to address multi-cloud orchestration, a recent
trend in cloud computing, while also combating
vendor lock-in and promoting a more equitable mar-
ketplace in cloud services. The approach is primar-
ily concerned with converting TOSCA application
models into Business Process Model and Notation
(BPMN) work and dataflows that can then be pro-
cessed by any “off-the-shelf” BPMN engine. After
processing the model, TORCH employs “pluggable
connectors”, as defined in the paper, that can be
deployed on a variety of cloud providers. As a
result, all coding efforts are now focused on devel-
oping these additional plugins, which are respon-
sible for connecting BPMN workflows to platform-
specific Application Program Interfaces (APIs). The
connectors used and developed by the authors were
specifically based on two of the industry’s most
popular orchestration tools, Kubernetes and Docker
Swarm.
DesLauriers et al [23] utilize a TOSCA-based ap-
proach which serves as the basis for the descrip-
tion of an application in MiCADO, a framework
for applications with multi-cloud and auto-scaling
capabilities. In their paper, the authors demonstrate,
in essence, the ease in portability and flexibility,
provided by MiCADO, when changing from a de-
ployment in AWS to a deployment on the private

5. https://kubernetes.io

https://www.docker.com
https://cloudify.co
https://www.terraform.io
https://kubernetes.io
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OpenStack cloud of the University of Westminster
and, finally, to Microsoft Azure.

3 INT2IT
Int2IT is composed of four different layers, intent pro-
cessing, TOSCA processing, autonomic deployment cy-
cle and orchestration, each serving a specific purpose in
order to be able to achieve the different goals proposed
for this proof-of-concept.

3.1 Intent Processing

The primary purpose of this stage is to process the
captured intents via the Graphical User Interface (GUI)
or Command Line Interface (CLI), transforming them
into TOSCA definitions and representing them via an
intermediary representation that serves as an abstraction
from the extensive intent description, storing only the
relevant information required, while being much more
compact and simple than the complete TOSCA code
definition.
Parser: The Parser component is in charge of accepting

intent descriptions provided by the developer writ-
ten in a more Natural-like language, and parsing
those intents, into an intermediary representation
(which is referred to as an Order from now on)
where only the relevant infrastructure, policies, and
metadata is stored. An Order serves as a bridge
between the described intents and the entire TOSCA
YAML infrastructure-as-code definition files, allow-
ing for a more compact and simpler representation
of what is necessary for that specific deployment.

Translator: The Translator component is responsible for
receiving the Order previously produced by the
Parser and translate it into TOSCA YAML defini-
tions following the recommendations and examples
published in the OASIS documentations for TOSCA
Simple YAML version 1.3. Following the recommen-
dations the Translator will create the deployments’
IaC files, depicting all the infrastructure configura-
tions as well as the policies and plugins required for
the correct orchestration of the service.

3.2 TOSCA Processing

The primary goal of this stage is to validate the de-
ployment in terms of authentication and any external
resources required, such as plugins or tools, based on
the TOSCA definition established in the previous phase.
Finally, a set of topologies is generated based on the
TOSCA definition, but also on the business-level goals
associated with the deployment and the level of con-
fidence provided, indicating how strictly Int2IT should
adhere to these goals.
Discovery: The Discovery component is in charge of

communicating with the various required services
to determine their availability, as well as ensuring

that the machine hosting Int2IT has the necessary
plugins and tools specified in the Order.

Validator: The Validator component is in charge of
analyzing the TOSCA Order definition and ensuring
that it contains all of the information required to
deploy the specified infrastructure via a “dry-run”,
in which the deployment is attempted, but without
committing its creation in the cloud (which is al-
ready a feature on tools such as Terraform). Further-
more, the Validator should ensure the authentication
side by using a tool such as OAuth2 and, if using a
public cloud such as AWS, confirming the existence
of a “project” associated with the deployment.

Topology Generator: The Topology Generator compo-
nent is responsible for generating various infrastruc-
ture topologies which meet the demands specified
in the TOSCA infrastructure definition and, in addi-
tion, selects the one which, from a priori knowledge
from works such as Sampaio et al. [18] and col-
lected data from previous deployments, most likely
results in a near optimal configuration, according
to the specified level of confidence as mentioned
previously.

Registry: The Registry database is where the mappings
between TOSCA blueprint definitions and original
intent descriptions are stored. It also saves the rel-
evant Order representation, as well as the current
topology and health state of each deployment.

3.3 Autonomic Deployment

The primary goal of this stage is to apply autonomic
computing concepts of self-* properties in order to au-
tonomically manage each deployment which is currently
online.

Monitor: The Monitor component is in charge of col-
lecting data about the various infrastructure com-
ponents used in each deployment in order to de-
termine the current performance and health of said
deployment. Traditionally, cloud environments pro-
vide native tools to monitor instances and other
resources, such as AWS CloudWatch, however, in the
case of TOSCA-based cloud applications, Sampaio
et al. [18] proposes a method for evaluating the
topologies of the applications by utilizing Cloud-
Crawler. Additionally, other orchestration tools such
as Kubernetes and Docker Swarm also provide the
capability of self-monitoring.

Analyzer: The Analyzer component is in charge of ana-
lyzing and processing the data previously collected
by the Monitor in order to determine if there is any
breach of the end-goals specific to that deployment.
For example, if the deployment requires a CPU
utilization of 15-75%, the detection of an instance
that is determined to be “overloaded” (or “under-
loaded”) must result in the execution of mitigation
actions that will eventually correct that infraction.
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Optimizer: The Optimizer component is analogous to
the Plan stage in the typical MAPE-K model for
autonomic systems. Its main goal is to plan which
mitigation actions should be taken in order to re-
solve any breaches of end goals that the Analyzer
has previously identified. It is important to note
that the actions to be taken will have an impact
on the system, therefore, they must be applied with
some interval of time between them, allowing the
system to stabilize and allowing the Monitor and
Analyzer to verify if the breaches have been fixed
or if additional actions are required.

Resource Manager: The Resource Manager is in charge
of keeping the deployed infrastructure in the desired
state by acting as an actuator manager, that is, it
manages the actuators, which have the ability to
perform actions that change the state of the deploy-
ment. As a result, just as the Optimizer is analogous
to the planner stage, the Resource Manager in the
MAPE-K model performs the functions of the ex-
ecutor stage.

Data Store: The Data Store database is where the mon-
itor component stores the monitored data, which
is associated with each deployment currently reg-
istered in the system, and where the analyzer com-
ponent accesses it later. In concrete terms, the Data
Store serves as the MAPE-K model’s knowledge
stage, containing a body of knowledge about the
past state and performance of each deployment, as
well as the state and performance of each infrastruc-
ture element within them.

3.4 Orchestration

The leading purpose of this phase is to connect the
internal flow’s artifacts produced by the system to the
external services that will publish the end results and,
essentially, make them available for consumption by
the user, in this case the developers. The Orchestration
stage will consume the set of instructions provided by
the Resource Manager for each deployment and will
handle communication with external entities such as
cloud providers, e.g., AWS, Azure, or GCP.

4 INT2IT-LITE

Int2IT-Lite was developed entirely with Python 3.8.6,
utilizing some key packages, namely: (a) cloudify-rest-
client/ cloudify-common 6 7; (b) pymongo 8; (c) pandas 9;
(d) pydantic 10; (e) pyaml/oyaml 11 12. In addition, some

6. https://github.com/cloudify-cosmo/cloudify-rest-client
7. https://github.com/cloudify-cosmo/cloudify-common
8. https://pypi.org/project/pymongo/
9. https://pandas.pydata.org/
10. https://pydantic-docs.helpmanual.io/
11. https://pyyaml.org/wiki/PyYAML
12. https://pypi.org/project/oyaml/

containerized applications were utilized for the cor-
rect functioning of the prototype, namely: (a) Cloudify-
Community:6.4 13 and (b) MongoDB:4.2.21-rc0 14.

MongoDB 15 was chosen as the implementation of the
Registry and DataStore components for three main rea-
sons: (a) the python library for MongoDB has been used
quite in many tools as it allows for easy access to the
databases main capabilities of operating over documents
in a schema-less fashion as key-value pair collections;
(b) the operations over the data model records did not
demand complex relational operations, consisting mostly
of retrieving documents by key; and (c) for the case of
the “store” collection of metrics, on which some query-
like filtering is done, sharding could be later applied for
each deployment 16.

Lastly, the prototype includes pre-configured re-
sources for the creation and provisioning of the nodes
generated for the use case example. The resources are
based on publicly available example blueprints 17, in-
stallation websites as well as fixes to known errors and
problems.

4.1 Architecture Design

The prototype has an architecture closely following the
one of the ideal Int2IT solution. However, some com-
ponents have been simplified or have been integrated
together with into others.

The interactive CLI component has been configured to
be capable of handling the five required operations, from
section 4.2, for the correct functioning of the prototype
namely: (a) Deploy; (b) Destroy; (c) Register; (d) Shut-
down; and (e) Update; In addition, it is complemented
by additional operations that facilitate the usage of the
tool. Therefore, the developers utilizing Int2IT-Lite are
able to have finer control over the handling of their
deployment and Order namely: (a) Backup; (b) List;
(c) Help; (d) Reset.

The database components, Registry and DataStore,
where merged into a single MongoDB component. The
data is separated into three collections in the same
database named “Int2IT”: (a) orders; (b) deployments; and
(c) store.

The first collection records documents regarding the
various Orders registered in the system, having all the
necessary information to be able to create a deployment
from it. The second collects documents of deployments
created during the process of deploying an Order for
the very first time. It keeps track of the most relevant
information necessary for the correct functioning of the
system during the autonomic management life cycle.
Lastly, the latter stores information collected by the

13. https://hub.docker.com/r/cloudifyplatform/
community-cloudify-manager-aio

14. https://hub.docker.com/ /mongo
15. https://www.mongodb.com/
16. https://www.mongodb.com/docs/manual/sharding/
17. https://github.com/cloudify-community/blueprint-examples

https://github.com/cloudify-cosmo/cloudify-rest-client
https://github.com/cloudify-cosmo/cloudify-common
https://pypi.org/project/pymongo/
https://pandas.pydata.org/
https://pydantic-docs.helpmanual.io/
https://pyyaml.org/wiki/PyYAML
https://pypi.org/project/oyaml/
https://hub.docker.com/r/cloudifyplatform/community-cloudify-manager-aio
https://hub.docker.com/r/cloudifyplatform/community-cloudify-manager-aio
https://hub.docker.com/_/mongo
https://www.mongodb.com/
https://www.mongodb.com/docs/manual/sharding/
https://github.com/cloudify-community/blueprint-examples
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Monitor component for all deployments, which have
an UP deployment status, so that the Analyzer may
afterwards process.

The components Topology Generator and Discovery de-
scribed in Int2IT are not featured prominently on Int2IT-
Lite, because they have either been simplified or incorpo-
rated into other components. Lastly, the Validator compo-
nent has been connected to the Cloudify connector due
to the fact that the Cloudify Manager already includes
and enforces TOSCA archive and blueprint validation,
based on Cloudify’s Domain Specific Language (DSL),
therefore making the validator component redundant.

4.2 Required Operations

This section provides a description of the implemen-
tation of the required operations as well as a short
comparison with the full fledged operations.
Register: The register operation in Int2IT-Lite starts by

collecting from the CLI an intent, described in a
YAML file. Next, the parser is called to firstly, using
the pyaml Python library, parse the YAML file into
an unprocessed intent i.e a key-value pair dictionary.
If the parsing is successful, then the Parser is once
again called to parse the unprocessed intent into
the Order representation. This process is done by
recursively passing the data within the unprocessed
intent into the construction of the various objects
in the data model. After an Order representation is
achieved, it is then passed into the Registry, which
stores it into the “orders” collection in the database.

Deploy: The deploy operation in Int2IT-Lite starts by
finding the Order associated with a user given iden-
tifier and, if possible, register and create the deploy-
ment for the Order. To create the deployment it is
needed to create an archive. This is done by creating
a directory for the Order where all the necessary
scripts, from the pre-installed Int2IT-Lite scripts, as
well as the TOSCA blueprint will be gathered into.
The blueprint is generated by the Translator, prior
to creating the archive, by iterating through each
component in the services of the order and mapping
it to a Cloudify TOSCA definition.
After having generated the archive, the deployment
is registered into the Registry, which stores it in the
“deployments” collection in the database. Having
completed the registration of the deployment, the
Resource Manager is utilized to deploy the deploy-
ment into the desired cloud with the appropriate
connector. In the case of Int2IT-Lite, the only sup-
ported CP and Orchestrator are GCP and Cloudify,
respectively. The Resource Manager then uploads,
registers and initiates an “install” execution, on
the deployment, through the Cloudify connector. If
the deployment had been previously deployed and
is in a “down” state, then a “start” executions is
started instead. Lastly, it awaits the conclusion of the
“install” (or “start”) execution on the Cloudify con-

nector and, if successful, updates the deployments
status to a live deployment through the Registry.

Update: The update operation in Int2IT-Lite starts by
finding the Order associated with a user given
identifier and, if possible, update the Order and
respective deployment if in live state. From the CLI,
the user provides both the identifier of the Order
they want to update and the collection of values,
as key-value pairs, that have to be updated. Since
it could be possible that multiple components have
identical keys, for some attributes at least, a process
of dictionary flattening was utilized so as o uniquely
identify each attribute. Lastly, the gathered selector
is utilized for a “deep update” with the Order, in a
dictionary format.

Shutdown: The shutdown operation in Int2IT-Lite
starts by finding the Order associated with a user
given identifier and, if possible, shutdown all re-
sources in the cloud provider. From the CLI, the user
provides the identifier for the deployment that they
want to shutdown. If the deployment is in a live
state, then the shutdown can start by utilizing the
Resource Manager to commence a “stop” execution
through the Cloudify connector. If the shutdown op-
eration was started through a destroy operation then
a “uninstall” executions is started instead. Lastly, the
deployments is updated with a “down” status after
the execution finishes.

Destroy: The destroy operation in Int2IT-Lite starts by
finding the Order associated with a user given iden-
tifier and, if possible, shutdown and eliminate all
resources in the cloud provider, as well as from
the Registry. From the CLI, the user provides the
identifier for the order and deployment that they
want to destroy. The shutdown operation is then ini-
tiated if there is a current live deployment with the
provided identifier. When the shutdown is complete
and no components are still deployed in the cloud,
a process of resource deletion begins. This deletion
effectively deletes all records associated with the
order and deployment from the Registry’s database
collections.

4.3 Autonomic Life-Cycle

In Int2IT-Lite, the autonomic life-cycle is implemented
through “Thread” processes. At the start of the pro-
gram, the Resource Manager component, after its creation,
initiates a thread on a function that cycles through
the different stages of the MAPE-K model every thirty
seconds.

Monitor: The implementation of the Monitor compo-
nent was achieved by iterating through each deploy-
ment and acquiring their metrics’ endpoint values,
in other words, creating a web Representational
State Transfer (REST) request to their endpoints and
retrieving the values for the respective metrics.
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For each metric value, a data point record is created
in a format of a key-value pair dictionary, containing
the following attributes: (a) id: randomly generated
unique id according to RFC 4122 18 19; (b) de-
ploymentID: the deployments’ id; (c) metricName:
name of the data points’ metric; (d) value: value of
the data point; (e) timestamp: a timestamp of the
current time in Y Y −MM−DD hh : mm : ss format.
Lastly, the data points collected are stored in the
“store” collection of the knowledge component,
which is incorporated into the Registry.

Analyzer: The implementation of the Analyzer compo-
nent was achieved by iterating through each deploy-
ment and retrieving the data points, for all of the
deployments’ metrics, that have been collected in
the last five minutes. For the metrics that have more
than five data points their rules are verified to be
in compliance, where the others are skipped so as
to allow for the collection of more data points and
having a more stable and precise set.
Compliance is verified, for each rule of every metric,
if the set of data points is at least 50% compliant
with the rule. Concretely, this means that if in the
last five minutes more than 50% of the data points
collected by the Monitor do not comply with the
rule, then an action needs to be taken.
After concluding that a specific deployment needs to
be acted upon, the Analyzer will inform the planner
that a target deployment is either under or over the
desired values.

Planner: In order to scale a deployment there are two
options: either scale horizontally or scale vertically.
The former consists of modifying the number of
computational resources, also called “scaling out-
/in”, while the latter consists of changing the con-
figuration of the resource itself, also called “scaling
up/down”.
For this prototype, only scaling in or scaling out
actions are available, because they are directly sup-
ported by Cloudify and since scaling up or down
actions would require changing the blueprint of the
deployments archive.
Since the only available rules are maximum and
minimum values, therefore if a data point set is
determined to be above the max, then a scale-in
action is need and vice-versa.

Executor: The implementation of the Executor, for the
Int2IT-Lite prototype, was achieved by starting
“scale” executions through the Cloudify connector.
The Executor iterates through the collection of ac-
tions received, determined by the planner compo-
nent, and applies the respective scale execution. The
executor then awaits the completion of each scale
execution and, afterwards, the autonomic life-cycle
is restarted.

18. https://docs.python.org/3.8/library/uuid.html#uuid.uuid4
19. https://www.rfc-editor.org/rfc/rfc4122.html

5 RESULTS

In this section, an overview is given over the use case
utilized for demonstration purposes of the capabilities
of the developed prototype.

As stated in the original GitHub’s repository 20, the use
case represents “A simple distributed application run-
ning across multiple Docker containers.”. More complex
examples were considered, especially ones that emulate
large applications through a microservices perspective.

The Docker voting app example is composed of five
services: (a) “voting-app” a frontend app where users vote
between cats and dogs; (b) “result-app” a web app where
the current results of the votes; (c) “worker” a backend
vote consumer; (d) “db” a permanent storage database;
and (e) “redis” as a collection queue for the votes.

5.1 Test-Bed Environment

Regarding the environment test-bed required for the
creation, development and evaluation of the proof-of-
concept proposed, a simple local machine or a private
cluster would be perfectly suitable, since the success
criteria of the prototype Int2IT-Lite depends on three
principal conditions:

• The prototype is able to create a TOSCA-compliant
archive which can be successfully deployed in
a TOSCA-compliant orchestrator to the cloud
provider specified;

• The components orchestrated are provisioned ac-
cording to the intent that described at an application
level, in other words, the software correctly installed
and functioning;

• The deployment can be monitored through the spec-
ified endpoint and, from values obtained through
said endpoint, scaling actions can be derived and
applied, thus changing the configuration of the de-
ployment in a predictable manner.

Given that the criteria aim to evaluate the efficacy
of the solution, not the performance or efficiency of
said solution, then it was justifiably sufficient to have
a personal laptop as the test-bed environment for the
prototype. As for the application nodes themselves, they
were installed on a default instance based on the “virtual
machines” archive supplied by the Cloudify team 21.

Lastly, for the monitoring part of the deployment a
Flask 22 Python server was created and configured to
provide an endpoint on localhost:5000, where the Monitor
component of the prototype will be able to retrieve
values for the “Throughput”. Specifically, a value of “90”
was hard-coded into the endpoint. This was chosen so
as to mock an under-performing deployment which, if
the prototype is successfully achieving the third criteria,
then it will trigger a scaling action.

20. https://github.com/dockersamples/example-voting-app
21. https://github.com/cloudify-community/blueprint-examples/

releases/download/6.3.0-10/virtual-machine.zip
22. https://flask.palletsprojects.com/en/2.2.x/

https://docs.python.org/3.8/library/uuid.html#uuid.uuid4
https://www.rfc-editor.org/rfc/rfc4122.html
https://github.com/dockersamples/example-voting-app
https://github.com/cloudify-community/blueprint-examples/releases/download/6.3.0-10/virtual-machine.zip
https://github.com/cloudify-community/blueprint-examples/releases/download/6.3.0-10/virtual-machine.zip
https://flask.palletsprojects.com/en/2.2.x/
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5.2 Voting-App Intent

In this section, it is presented a possible implementation
of a GCP deployment of the Docker Voting app use case
through the use of an intent, described in a declarative
YAML format, utilizing the Cloudify connector, present
in a YAML file named “webvote”. It is assumed that the
author behind the intent has configured everything cor-
rectly when it comes to the values and any endpoint con-
nections specified. In this intent, the metadata regarding
the deployment concretely specifies not only the cloud
provider to be used, but the specific orchestrator as well.
The services block in the intent describes three main
components of the deployment: (a) an “app” component
of type “Docker”, which will run containers using the
images provided, that has business metric to comply
with. A “Throughput” metric specifies to the system that,
in order to be able to monitor the component correctly,
it has to connect to the endpoint at port 5000. Finally,
the intent indicates that this Throughput has a minimum
value acceptable of 100; (b) a “redis” component of type
“Redis” with a general user. This node does not have
associated metrics, therefore will not be considered in
the Monitor process; and, lastly, (c) a “db” component
of type “PSQL” configured in an similar manner to the
redis node described before.

5.3 Deployment Results

A step-by-step analysis of the outcomes of the processing
and upholstering of the use case intent provided the
following results:

Firstly, the intent was provided to Int2IT-Lite through
the CLI by attempting a register operation on the web-
vote.yaml file. This operation completed successfully, as
indicated by the system, meaning that an Order repre-
sentation of the intent was recorded and stored in the
registry with id=1. Following, a list command was able
to show the contents of the Order, where it was possible
to verify that the contents of the intent are accurately
represented.

Secondly, a deploy operation was performed on the
registered Order so as to, effectively, deploy the appli-
cation to GCP, utilizing the Cloudify orchestrator, after
a translation process has been applied. This is neces-
sary in order to generate the appropriate TOSCA-based
archive, which includes a main TOSCA blueprint that
will be used to create the components in the CP. After
the generation, the archive was then uploaded, had its
blueprint registered and had a deployment created out
of it in Cloudify, which was then prompted to “install”
the deployment, in other words, to effectively deploy
it to the cloud. This process was clearly depicted in
the Cloudify Manager’s GUI which showcased not only
a TOSCA model of the deployment, but the complete
configuration, outputs and status progress of each node
in it. After the “install” execution has concluded, a
new virtual machine could be found on the Google

project specified, where it was possible to verify that the
software desired was installed.

As the second stage had completed successfully, there-
fore the first two criteria for the prototype’s success have
been achieved and, currently, only the autonomic life-
cycle was left to be proven and verified.

Throughout every stage that has been analyzed so
far, it was possible to observe logging information, in
the CLI, regarding the MAPE-K cycle. Since the current
deployment was the only one present in the system (and
was the only in a live status from this point on) all the
information stated that no deployments had to be acted
upon with any scaling action.

However, after some time elapsed, the Monitor compo-
nent had enough opportunities to record several metric
data points. This, in turn allowed the Analyzer to provide
an analysis over a relevant set of data points. This leads
to the conclusion that the deployment with id=1 had
been under-performing, therefore a goal to increase the
computational resources was given to the Planner. The
Planner, after receiving the analysis report, created a
plan to apply a positive horizontal scaling action to the
deployment and deliver it to the executor, which then
started a “scaling” execution on Cloudify. The system
then awaited for the conclusion of the scaling after which
the life-cycle continued for the specific deployment, since
during the execution the autonomic stage only considers
deployments which are “live” and ignores all other
deployments that are scaling or “down”. Eventually,
the scale operation concluded and another process of
deploying the TOSCA blueprint was successful.

In addition, a new entire virtual machine could be
verified to have been created in the GCP project, iden-
tical to the original one, similarly having the necessary
software components installed. With this, the stage of the
autonomic life-cycle showcase was concluded and the
third and final criteria for success had been achieved.

Lastly, all that was missing was the verification that
Int2IT-Lite allows for a successful clean-up of the re-
sources that were deployed. This was done by executing
an “uninstall” execution for the deployment, triggered
either with a shutdown or destroy operation from the CLI,
which concluded successfully, leaving an empty project
on GCP.

6 CONCLUSION

This document proposes a proof-of-concept solution to
autonomous cloud orchestration via descriptive high-
level abstractions referred to as “intents”, which is in-
spired by the very recent trend of Intent-Based Net-
working, and focuses on achieving business-level goals
while concealing a significant amount of low-level im-
plementation and maintenance details. Furthermore, it
aims to supplement popular DevOps methodologies and
practices, specifically the use of IaC via the OASIS
TOSCA standard, which has been extensively researched
in academia but has not yet been widely adopted by
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businesses, but with promising results and favorable
opinions from cloud experts who have adopted it at
some point. Before presenting the proposed solution, an
academic literature review was conducted to provide an
understanding of the already established current state of
the art in the topics of Intent Based Networking (IBN),
DevOps and IaC, autonomic computing, and concluding
with an in-depth review of the entire OASIS TOSCA
previous works timeline. The solution consists of an
autonomic infrastructure management platform called
Int2IT, which is divided into four layers: Intent pro-
cessing, TOSCA processing, an autonomic deployment
cycle, and a final orchestration layer. This solution was
verified experimentally by the development of a proof-
of-concept tool named Int2IT-Lite, through the imple-
mentation of the Docker voting app use case in the GCP
cloud provider.

To ensure the viability of this proof-of-concept, three
main criteria had to be satisfied: (a) creation and deploy-
ment of a generated TOSCA archive, based on an intent
description of the Docker voting app use case, into a
GCP project through the Cloudify orchestrator; (b) the
software components of the deployment are provisioned
correctly and functional; (c) the deployment is able to
be monitored, in an autonomic manner, and self-adapts
according to the high-level metrics defined in the intent.
It was shown the achievement of all three of these
success criteria, therefore making Int2IT-Lite a viable
proof-of-concept tool for the intent-based infrastructure
problem.
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C. Salinesi, M. C. Norrie, and Ó. Pastor, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, vol. 7908, pp. 171–186.

[5] A. Vetter, “Detecting Operator Errors in Cloud Maintenance Oper-
ations,” in 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). Luxembourg, Luxembourg:
IEEE, Dec. 2016, pp. 639–644.

[6] J. Kephart and D. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[7] M. D. Mascarenhas and R. S. Cruz, “Int2it: An intent-based
tosca it infrastructure management platform,” in 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI), 2022,
pp. 1–7.

[8] G. Davoli, W. Cerroni, S. Tomovic, C. Buratti, C. Contoli, and
F. Callegati, “Intent-based service management for heterogeneous
software-defined infrastructure domains: Intent-based service
management for heterogeneous software-defined infrastructure
domains,” International Journal of Network Management, vol. 29,
no. 1, p. e2051, Jan. 2019.

[9] P.-J. Nefkens, Transforming Campus Networks to Intent-Based Net-
working, 2020.

[10] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar,
and H. Liu, “The Autonomic Computing Paradigm,” Cluster
Computing, vol. 9, no. 1, pp. 5–17, Jan. 2006.

[11] P. Lipton, D. Palma, M. F. Rutkowski, M. F. Rutkowski, and D. A.
Tamburri, “TOSCA solves big problems in the cloud and beyond,”
IEEE Cloud Computing, 2018.

[12] M. Cankar, A. Luzar, and D. A. Tamburri, “Auto-scaling Us-
ing TOSCA Infrastructure as Code,” in Software Architecture,
H. Muccini, P. Avgeriou, B. Buhnova, J. Camara, M. Caporuscio,
M. Franzago, A. Koziolek, P. Scandurra, C. Trubiani, D. Weyns,
and U. Zdun, Eds. Cham: Springer International Publishing,
2020, vol. 1269, pp. 260–268.

[13] T. Waizenegger, M. Wieland, T. Binz, U. Breitenbücher, F. Haupt,
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