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Abstract

Cloud databases are nowadays available in various deployment models. When deciding which type
of storage to employ for an application, one approach stands out regarding cost efficiency: Infrastructure
as a Service. Every major cloud provider offers various types of infrastructure on which customers
can deploy their database software solution of choice, with different types of nodes being cost optimal
for specific types of workloads. Nowadays tendencies see cloud architects deploying homogeneous
infrastructures, i.e. made of an arbitrary number of nodes of the same type. However, when the data to
be stored features diverse usage patterns, there is no clear advantage in adopting such strategy, other
than simplicity of deployment. On the other hand, deploying a heterogeneous cluster made of different
node types is a non-trivial task, and certainly a complex one. So complex, in fact, that it is hard, if not
impossible, for human operators to consistently find infrastructure configurations that optimally minimize
the costs. Let alone periodically modifying the infrastructure to maintain cost-efficiency when facing
significant workload changes. This thesis is framed in a larger project: PlutusDB, an autonomic system
which aims at addressing the issue of using cost-wise suboptimal homogeneous IaaS clusters. PlutusDB
instantiates potentially multiple database instances, each of them associated with an independent
IaaS cluster. The system accurately sizes each sub-cluster to maximize resource usage and therefore
minimize the overall cost. PlutusDB is also the first system that approaches data placement with cost
optimization in mind, transparently analysing the data items as a whole and autonomously deciding their
optimal placement. This dissertation, after providing a complete and detailed view of PlutusDB, focuses
on the design and implementation of its core component: the Optimizer.
Keywords: NoSQL, Data Placement, Data Migration, Linear Optimization, Cost Efficiency

1. Introduction
The advent of cloud-based database services
opened new possibilities for small businesses and
enterprises. Currently, multiple cloud database
technologies and paradigms are available, each
being optimized for specific types of workloads.
The more popular deployment models for cloud
databases when cost efficiency is the priority is un-
doubtedly Infrastructure as a Service (IaaS).

All major cloud providers offer a wide variety of
types of Virtual Machines (VMs) for customers to
choose from, based on the properties of the appli-
cations they intend to run. Most of the time, the in-
frastructure for running a database system is com-
posed of nodes of the same type, to facilitate the
process of choosing and maintaining it.

When the data to store in an IaaS database
system is known to uniformly generate a specific
workload pattern, choosing which node type to de-
ploy in multiple instances is not a challenging task.
However, modern applications need to store un-

balanced sets of data where access characteris-
tics vary significantly among data items. In these
scenarios, there is no clear advantage in adopting
such a strategy other than the simplicity of deploy-
ment.

On the other hand, deploying a heterogeneous
cluster made of different node types is a non-trivial
task and certainly a complex one. So hard, in
fact, that it is hard, if not impossible, for human
operators to consistently find infrastructure con-
figurations that optimally minimize the costs. Let
alone periodically modify the infrastructure to main-
tain cost efficiency when facing significant work-
load changes.

An ideal cost-efficient database system should
be deployed on a heterogeneous cluster of ma-
chines, and selectively store data items in (possi-
bly different) nodes whose cost characteristics are
best suited for their access pattern. Such a sys-
tem must tackle several critical topics in order to
be functional, such as how to perform decisions on
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the placement of the items, how to effectively track
it at runtime, whether to relocate items whenever
the access pattern changes and how to do it, and
many more.

Data placement, scaling approaches, and migra-
tion techniques have been extensively researched
in recent years. However, very few projects ad-
dress a cost-oriented approach, often aiming at de-
veloping performance-oriented algorithms and sys-
tems.

This thesis presents PlutusDB: an autonomic
system that, from a client perspective, acts as any
other commercial cloud database. Its architecture,
however, includes (potentially) multiple IaaS clus-
ters, each with an independent database instance.
The system aims at exploiting the advantages of
using diversely specialized cloud infrastructures by
placing data items in the optimal nodes based on
their access frequency, therefore minimizing the
overall costs. PlutusDB solves an Integer Lin-
ear Optimization (ILP) problem to achieve an ideal
placement that minimizes operational costs. It then
performs an autonomous decision on whether or
not to migrate data items and eventually transfers
them without interrupting the service.

1.1. Objectives and Contributions
This thesis is developed around three main objec-
tives:

1. Presenting PlutusDB in its entirety, through
an overview of its internal model, a detailed
description of each component, and addi-
tional design proposals for the main opera-
tional functions.

2. At this point, the reader should have a com-
plete idea of the concept behind the design of
PlutusDB and the tasks that each of its compo-
nents must accomplish. The thesis can then
presents the implementation of the Optimizer.
This component is the main building block for
PlutusDB, around which all other elements are
designed.

3. Showing the reader performance, usability,
and limitations of the Optimizer as a stan-
dalone tool.

This master thesis contributes with presenting
the challenging project of PlutusDB: its architec-
ture, a clear definition of the execution flows, a de-
tailed explanation of the interactions among the in-
ternal components, and finally, the proposal of a
proprietary algorithm for data transfer.

The second and main contribution is the imple-
mentation of the Optimizer.

The Optimizer has been tested and evaluated
with datasets inspired by a popular benchmark for

NoSQL databases, YCSB[7], with the aim of find-
ing datasets that, given their workload character-
istics, are cost-wise better suited to be stored in
hybrid clusters. That is, clusters composed of in-
stances of multiple machine types.

This study proves that there exist datasets that
could benefit from instantiating a database in hy-
brid clusters, with hourly cost-saving up to 84%
compared to the cost of the best non-hybrid, tra-
ditional cluster configuration.

2. Methodology
This master thesis proposes a distributed system
deployed in the cloud, which leverages scaling
mechanisms, data placement techniques, and a
data migration algorithm. After an overview of ex-
isting cloud delivery models, the three topics have
been explored in detail. From each of them, we
report recent publications and state-of-the-art re-
search.

2.1. Scaling cloud components
Given the stateful nature of distributed databases,
we focus on solutions for scaling stateful compo-
nents in the cloud. Scaling stateful components
is a complex task. Data must be redistributed,
and new cluster members need to be brought up
to date, possibly by existing members, to serve
requests. Capacity planning is another challeng-
ing aspect of scaling stateful components: as the
number of nodes in the system grows, the per-
formance of distributed databases exhibits explicit
nonlinear behaviors. Such behaviors are attributed
to the effects of contention of physical and logical
resources. Studied papers address these issues
with different approaches and for different types of
systems. Some of them are described next.

Transactional Auto Scaler Transactional Auto
Scaler (TAS) [12] is a system for automating the
elastic scaling of replicated in-memory transac-
tional data grids such as Red Hat Inifinispan.

The system collects statistics concerning load
and resource utilization across the set of nodes
in the data grid via a distributed monitoring sys-
tem. Statistics are then aggregated and fed to the
load predictor that forecasts the workload volume
and its characteristics. The performance predic-
tor, through the joint usage of Analytical Modeling
and Machine Learning models, using the workload
characteristic and the platform scale, outputs sev-
eral indices which are used to identify the optimal
platform size.

Apache Cassandra An example of scaling for
stateful services such as key-value stores is pro-
vided by Apache Cassandra [17]. In Cassandra,
nodes are responsible for a range of item keys.

2



When a new node is added to the system, it splits a
range of keys that some other heavily loaded node
was previously responsible for, alleviating it.

As demonstrated [2], Cassandra’s scalability is
linear with a correct and optimal keyspace config-
uration, which makes capacity planning straightfor-
ward once the workload is known.

2.2. Data Migration
One additional issue with scaling stateful services
regards data migration. Adding machines to a
stateful component requires transferring data to in-
volve the new nodes in the cluster and to make
them able to process requests. One of the chal-
lenges of data migration is the ability of the sys-
tem to keep serving requests by having the min-
imum possible downtime and by using the lower
possible amount of resources [18]. Following, is
an overview of some of the analyzed papers that
address data migration.

Albatross. Albatross [9] proposes a live migration
technique for multitenant databases to ensure Ser-
vice Level Agreements (SLAs) to the tenants when-
ever the machines they are deployed on get over-
loaded. Albatross’s migration protocol is divided
into phases.

Phase 1 starts with a snapshot of the source
database cache (src) that is then transferred to the
destination VM (dst). src continues serving trans-
actions while dst is initialized with the snapshot.
Therefore, the cached state of dst will lag that of
src.

In Phase 2 (iterative phase), at every iteration,
dst tries to “catch up” and synchronize the state
of src. Src tracks changes made to the database
cache between two consecutive iterations. In itera-
tion i, changes made to src’s cache since the snap-
shot of iteration i− 1 are copied to dst. This phase
terminates when approximately the same amount
of state is transferred in consecutive iterations, or
a configurable maximum number of iterations have
completed.

Phase 3 (Atomic Handover) is where the exclu-
sive read/write access of src is transferred from src
to dst. Src stops serving tenant’s requests, and
the final handover is performed before the service
comes back live. The successful completion of this
phase makes dst the owner and completes the mi-
gration.

Zephyr. Zephyr [13] is a similar system focused
on shared-nothing architectures, which makes it
more suited to migrate data in stateful services.
The critical innovation of Zephyr is the “dual mode”
where, during migration, both src and dst execute
transactions.

ShuttleDB. Another rather innovative approach to
data migration is proposed in ShuttleDB [5]. The
system combines VM elasticity with lower-level,
database-aware elasticity. After identifying when
to initiate elastic scaling, which tenants to migrate,
and where to move the tenants, ShuttleDB auto-
matically chooses the “best” elasticity mechanism
for each elastic operation on a given tenant.

2.3. Data Placement
Most existing distributed systems assign data to
nodes to achieve optimal load balancing, lower ac-
cess latency, and higher fault tolerance [24, 19].
This thesis’ goal and innovative approach is to op-
timize data placement based on cost-efficiency as
the primary objective, which has not often been a
concern to cloud providers or researchers.

One basic, although widely used, approach to
distributing data among several nodes, used by
state-of-the-art key-value stores [11, 17, 11, 10] is
consistent hashing. Systems leveraging consistent
hashing assign ranges of keys to the nodes upon
joining the cluster by virtually placing nodes on a
virtual ring. When there is an incoming request for
a new key, a hash is generated for it and is mapped
on the same circular ring, in a distributed hash ta-
ble way. The node whose ring placement is after
the key hash is responsible for storing that key.

More advanced systems leverage data streams
and real-time analysis to automatically place data
in the “best” locations, according to more meaning-
ful information, such as generated bandwidth.

Schism. Schism [8] focuses on the throughput of
distributed transactions being clearly worse than
if involved data were placed on the same node,
due to several more messages required to avoid
distributed deadlocks, implement distributed joins,
etc.

It uses a graph-based approach to represent a
database and its workload, where tuples are repre-
sented by nodes and transactions are represented
by edges connecting the involved tuples. The sys-
tem applies graph partitioning algorithms to find
non-overlapping and (ideally) balanced partitions
that minimize the weight of cut edges. Schism
replicates the tuples that are shared between parti-
tions in order to maximize performance by exploit-
ing data locality and minimizing the number of dis-
tributed transactions.

AutoPlacer. AutoPlacer [20] works with NoSQL
key-value stores such as Red Hat Infinispan and
Apache Cassandra [17] and aims at optimizing the
placement of only those items that are deemed
critical for the system performance, which are the
ones that generate the largest number of remote

3



operations (the more expensive to perform). For
the placement of the remaining items, an approach
based on consistent hashing is used.

AutoPlacer uses a round-based distributed op-
timization algorithm: in each round, the system
decides on which nodes to place the top-k critical
items to increase the correlation between the data
each node is requesting and storing.

AutoPlacer adopts a state-of-the-art stream
analysis algorithm to identify the top-k most fre-
quent items of a stream. It then instantiates an ILP
problem to find the optimal placement of only the
top-k items, to significantly reduce the number of
decision variables.

3. Proposed Solution
When deploying database systems as IaaS, the
choice of the underlying infrastructure is always
a critical point. Cloud architects often choose to
deploy an underlying infrastructure composed of
the same types of nodes, as selecting multiple
types of nodes requires performing complex eval-
uations that often become an overhead. How-
ever, choosing which single type offers the best
price/performance ratio according to the expected
application load model can still be an overwhelm-
ing task.

In face of the need to store an unbalanced set
of data, where access characteristics vary signif-
icantly among data items, using only one node
type might be sub-optimal regarding resource us-
age, and therefore cost efficiency. Consequently,
an ideal solution would be to use a non-uniform
infrastructure and to place each data item in the
right node type that is specialized for its usage
pattern. For instance, throughput-oriented nodes
should be more cost-efficient for highly popular
items (the ones that generate the highest amount
of bandwidth). In contrast, they should be less
cost-efficient than other node types when storing
low-throughput items.

PlutusDB is a novel NoSQL, Key-Value database
system that, based on the current data set usage
model, chooses the best underlying infrastructure
and then places the items in the right nodes to
maximize cost efficiency. The system tries to al-
locate the most cost-efficient infrastructure for any
application workload and performs optimizations
periodically to maintain cost-optimality.

PlutusDB uses multiple instances of backend
databases as underlying infrastructure, each with
its dedicated nodes. The idea is that, in specific
conditions, the generated hybrid configuration of
nodes might be cheaper than using instances of
a single node type to store the whole data set. Plu-
tusDB aims at adopting a customizable approach
by letting the end user choose the granularity of the

optimization (grouping single physical data items
into fewer logical ones) to improve performance
and scalability.

3.1. PlutusDB Architecture
We start with a high-level overview of PlutusDB’s
architecture (illustrated in Figure 1).

This concept represents the vision of the end
product, which is a complex system that we do not
aim to develop fully. Instead, this thesis will focus
on the core component and main innovation of Plu-
tusDB: the Optimizer, implementation of the idea
on top of which the whole architecture is designed.

Managed Element. The Managed Element is the
set of underlying IaaS sub-clusters. Each corre-
sponding to a database instance, which is self-
contained.

Autonomic Manager. This component allows the
whole system to be (potentially) self-optimized. It
includes four sub-components: Knowledge, Moni-
tor, Analyze+Plan, and Execute.

Database Proxy. This is the proxy of the system,
which will serve as the entry point for interacting
with the database system.

PlutusDB aims at being a fully autonomic sys-
tem that periodically evaluates the optimal items’
placement to maintain cost-efficiency when facing
workload changes. This periodic evaluation, which
could also be triggered manually by the database
manager, consists of a sequence of steps that in-
volve all the following components of the Auto-
nomic Manager:

• Knowledge: Stores the current data place-
ment information and the up-to-date through-
put of the data items.

• Monitor: Retrieves the throughputs from the
Knowledge component and performs the nec-
essary transformations to prepare the data
(access statistics) for the optimization phase.

• Analyze + Plan: This is what we call the Op-
timizer. It is a standalone component that
can also work on its own. Through the solv-
ing of an ILP problem, it produces an optimal
data placement that minimizes the costs of us-
age of the cloud infrastructure. This phase
should also decide whether any data should
be transferred among the backends, although
this functionality is not implemented in this the-
sis.

• Execute: Takes as input the list of data to be
transferred, the output of the preceding stage,
and executes the transfer with the algorithm
described in section 3.1.
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Figure 1: PlutusDB Architecture.

Being a Key-Value store, PlutusDB operates
with a per-item granularity, and it offers support to
atomic reads and writes in the form of:

value = read(key)

status = write(key,newValue)

Writes either insert the item if the key is not
present, or overwrites the value if the key is already
stored in one of the backends.

Optimizations are the focal point of this research.
Each optimization starts with the Monitor com-

ponent retrieving the most up-to-date data ac-
cess statistics, stored in the Knowledge compo-
nent. The Monitor component eventually performs
data transformations, preparing the statistics for
the next stage: the optimization. At this point, the
Optimizer component, upon receiving the statis-
tics, solves an ILP problem, which generates an
optimal theoretical data placement (one that does
not take into account parameters such as where
the data is currently stored or the cost of the current
placement). Then, the current placement and the
ideal one are compared, and a calculation of the
cost required to transfer data between backends
(to achieve the ideal configuration) is performed.

Time and cost of items’ transfer are outside of
the scope of this contribution, and therefore have
not been precisely modeled in this research.

Once the items to transfer are identified, the Op-
timizer hands the list off to the Execute component,
which physically moves the designated items. All

of the operations (including the items transfer) are
ideally performed transparently with virtually zero
downtime.

The internal components of PlutusDB are:

Knowledge component. The goal of the Knowl-
edge component is to store information regarding
the system’s situation at any point in time, which in-
cludes placement and up-to-date statistics of cur-
rently stored data items, operational costs, and sta-
tus of the managed database clusters.

Monitor component. This component is in charge
of retrieving up-to-date statistics from the Knowl-
edge storage and feed them to the Optimizer.
Statistics must be in a specific format for the Op-
timizer to work correctly. If the Knowledge com-
ponent does not store statistics in such format,
the Monitor component is in charge of processing
them.

Analyze + Plan component. The optimization
phase is going to be the core contribution of this
thesis. It is the “brain” of the system that orches-
trates and directs the data placement and, with it,
the data transfers.

PlutusDB introduces a novel approach that ex-
plicitly models the cost dynamics of cloud IaaS
databases to control data placement purely based
on cost efficiency. PlutusDB’s placement engine
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is a program that defines and solves an ILP prob-
lem that, through the minimization of the cost of the
overall infrastructure (objective function), achieves
an optimal data placement (decision variables).

One cost optimization is ideally defined over a
period of time T , which represents an estimation of
a stability period: a period during which the stored
data’s access characteristics are likely to be stable,
without significant changes. The current prototype
implementation assumes that the tracked workload
characteristics are constant/stable over time. Un-
der these assumptions, the optimization process is
a one-shot problem: it only needs to be instantiated
once and the resulting placement policy is guaran-
teed to be optimal in the future. This is a simplify-
ing assumption that might be lifted in the future to
match the needs of dynamically shifting workloads.

Execute component. The Execute component is
in charge of transferring the data items among sub-
clusters to achieve the ideal and cost-optimal con-
figuration, output of the Optimizer component.The
Execute component should transfer the items be-
tween back-ends in a fully transparent way and
with virtually zero downtime. To achieve this, Plu-
tusDB aims at using an incremental transfer proce-
dure inspired by the algorithms described in sec-
tion 2.2. A proposal of an algorithm that might
achieve the desired goal is now presented. At this
stage we do not specify any implementation de-
tail, although we envision the Execute component
performing the orchestration of the algorithm, i.e.,
reading and writing from the targeted source and
destination sub-clusters and updating the place-
ments details stored in the Knowledge component.

In the first phase of the algorithm (Static Phase),
the Execute component takes a snapshot of the
status of the data that must be transferred (at the
source database). All the involved data items are
then transferred to the destination database while
the sending database keeps serving requests and
logging them to a local operations log.

The second phase (Dynamic Phase) is an it-
erative procedure which goal is to progressively
transfer the operations recorded during the first
phase, trying to bring the destination database up
to date. Each round i starts with comparing the
present status of the items that have been trans-
ferred during round i − 1. We call this difference
“Delta”. The Delta, if not empty, is then trans-
ferred while the sending database keeps serving
requests and recording them in the local log. Once
the destination database has finished applying the
Delta, round i + 1 can start, comparing snapshots
at the start and at the end of round i. The itera-
tive procedure continues until the number of oper-
ations in the last Delta is ∅ (or containing only a

few operations), declaring the end of the Dynamic
Phase. As proved in Albatross [9], the Deltas typi-
cally decrease in size, eventually becoming empty
and therefore terminating the algorithm.

At this point, both sending and receiving
databases must briefly stop serving user requests
(Termination Phase) to allow the destination to
apply the last Delta, ensuring at the same time that
no operations target any items that are part of the
last Delta. After the last Delta has been applied,
the system resumes serving client requests and
the new configuration is effective.

3.2. The Optimizer
Any IaaS cluster, at its most basic configuration, is
a set of computing nodes. Each node consisting of
a computational instance with an attached volume.
The term “node type” defines a unique combination
of VM type and volume type. For this implementa-
tion, we refer to AWS [1] as the provider of refer-
ence for the cost models. Virtual Machines of dif-
ferent families (i.e., optimized for different types of
workloads) and multiple volume types were consid-
ered, to explore a wide range of workload-specific
node-types. Moreover, for this analysis, we as-
sume that the managed database is deployed fol-
lowing DataStax’s recommendations[3, 15], where
each instance has a dedicated volume with a 4TB
capacity.

The cost model of an IaaS cluster is identified
by the sum of the cost components of instantiated
VMs and volumes:

i) Cost of usage of the instantiated VMs.
ii) Cost of volumes storage.
iii) Cost of volumes bandwidth usage.
iv) Cost of volumes IOPS usage (defined as a

function of the bandwidth usage).
As described in section 3.1, the Optimizer, imple-

mentation of the Analyze+Plan component, aims
at generating a possibly hybrid cluster and accord-
ing data placement that minimize the operational
costs of the overall database. There might be sit-
uations, in fact, in which the access characteristics
of a specific subset of the data items entail a type of
node to be more cost-efficient when storing them.
At the same time, another cluster made of a dif-
ferent node type might be more cost-efficient when
storing the remaining items. In such situations, the
Optimizer will instantiate the two sub-clusters and
generate a data placement that reflects the expec-
tations. Naturally, we do not expect hybrid clusters
to be the most cost efficient configuration for every
type of workload. However, in these cases, the Op-
timizer could still be an extremely valuable tool that
directly tells the user which is the best machine that
suits the input workload, making the choice of the
infrastructure straightforward.
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The optimal placement is achieved through the
solving of an ILP problem, whose main decision
variables represent the placement of data items.
The goal is to potentially have multiple database
instances, each associated with a sub-cluster, and
each sub-cluster made of a single node type. Each
item will be stored and replicated in one sub-
cluster, which implies that each database instance
must be deployed across a minimum of RF nodes.
Therefore, each item’s generated bandwidth will
be a function of the nominal, application-generated
throughput, and RF. Under these circumstances,
we define the problem as a mathematical formula-
tion that precedes the implementation.

The main set of decision variables, which we
call X, is modeled as a 3-dimensional matrix. As
is usual in ILP problems whose goal is to identify
an optimal data placement in a distributed context
[16, 22, 23], the decision variables in the matrix are
binary. X is defined over:

• The x-axis represents data items (indexed by
a unique ID)

• The y-axis represents all the possible node
types, which we identify with the set P : the
Cartesian product of VM types and volume
types.
P = {(a, b)|a ∈ VM types, b ∈ volume types}.

• The z-axis represents all the possible in-
stances that can be instantiated for a given
node type, which go from 0 to a predefined
maximum of K.

We optimize the formulation by introducing the con-
cept of logical instances, which are groups of RF
physical machines. This approach effectively re-
duces the size of the matrix by RF times. We state
that each sub-cluster can be made of [0..K − 1]
logical instances.

The meaning of each bit in the 3-dimensional
placement matrix is explained in equation 1.

Xijk =


1 Item i is stored in logical instance k

of type j

0 Otherwise
(1)

The constants used in the mathematical formu-
lation are:

• s⃗: item sizes, si ⇒ size of item i [GB]

• t⃗r and t⃗w: IO Per Second, tri ⇒ read access
ratio of item i, twi ⇒ write access ratio of item
i, both in [OPS/s]

• max size: size of attached volumes.

• RF : Replication Factor

• ⃗iops and t⃗p, defined ∀j ∈ P : maximum IOPS
and maximum throughput per each node type.

• ⃗cost: costs per hour of each node type.

• ⃗cost
storage

, ⃗cost
iops

and ⃗cost
tp

: Cost of Stor-
age, Cost of IOPS and Cost of Throughput of
each node type.

• σ is a constant to transform the bandwidth in
billed IOPS according to AWS’s specifications.

The other set of decision variables, bi-
dimensional matrix z, tracks whether each logical
instance k of each node type j is instantiated or
not, and is defined per every possible (j, k)|j ∈
P, k ∈ [0..K − 1] pair).

zjk =


1 Logical Instance k of node type j is

instantiated
0 Otherwise

(2)
The correlation between X and z is defined in

eqs. (3a) and (3b):

N−1∑
i=0

Xijk = 0 ⇐⇒ zjk = 0 (3a)

N−1∑
i=0

Xijk > 0 ⇐⇒ zjk = 1 (3b)

The problem formulation is shown in Appendix
A. The decision variables are highlighted in red for
better readability. Following, an overview of the ob-
jective function and constraints:

• eq. (8a) models the cost per hour of instanti-
ated nodes.

• eq. (8b) models the cost of the allocated stor-
age. AWS bills the provisioned storage, re-
gardless of how much of it is actually used.

• eqs. (8c) and (8d) model the cost of bandwidth
and IOPS usage.

• eqs. (9b) to (9d) set an upper bound on
the maximum allocated, respectively, storage,
IOPS, and bandwidth per node.

• eqs. (9e) and (9f) establish the correlation
between decision variables, expressed in in-
equations eqs. (3a) and (3b).

• eq. (9g) ensures that each item is placed in
only one logical instance.

The unit conversions are omitted for readability
in the mathematical formulation, although they are
implemented directly in the Python code, publicly
available on GitHub [14].
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After defining the optimization problem, we must
be able to compare the solver’s solution (which, in
some cases, might be hybrid) with the best homo-
geneous solution, to calculate the cost savings, if
any. We achieve this by reusing the solver with an
additional constraint that forces the number of al-
located node types to be 1. We then introduce a
new array of binary decision variables: y, which
meaning is shown in eq. (4).

yj =

{
1 Node type j is instantiated at least once
0 Otherwise

(4)
eqs. (5a) and (5b) show the correlation between

y and z.

K−1∑
k=0

zjk = 0 ⇐⇒ yj = 0 (5a)

K−1∑
k=0

zjk > 0 ⇐⇒ yj = 1 (5b)

The constraints that must be added to the prob-
lem are expressed in eqs. (6a) and (6b).

K−1∑
k=0

zjk ≤ M · yj (6a)

K−1∑
k=0

zjk ·M ≥ yj (6b)

Finally, we can insert the final constraint that
guides the solver towards choosing only one node
type (eq. (7)). ∑

j∈P

yj = 1 (7)

3.3. Software Choice
The mathematical model must be implemented in a
programming language to be able to create a tool
that allows an existing solver to process it and to
parsing and manipulating the results in a mean-
ingful way afterward. A choice has been made to
use Python due to its flexibility and the possibility
of using Gurobi [4, 6, 21]. Gurobi is a robust solver
that, due to the academic license offering, and in
combination with Python, allows for highly expres-
sive problem modeling and excellent solving per-
formance without incurring any costs. The imple-
mentation of the Optimizer has been made publicly
available on GitHub as a fully open-source project
[14].

4. Results & discussion
We now show experimental data to demonstrate
the effectiveness of the solution in real-world sce-
narios. YCSB[7] was used as a reference for the

characterization of the chosen workloads. Since
YCSB normally generates vast amounts of individ-
ual data items, we must operate with a coarser
granularity. This can be done by logically mapping
n physical data items, each of them with size s,
throughput tp and IOPS io to a larger logical data
item with size s ·n, throughput tp ·n and IOPS io ·n.
The reason behind the use of logical items is scal-
ability, which will become clearer later. We take
inspiration from YCSB’s workloads and we extend
them to create data sets that can be fed into the
Optimizer to extract valuable results. In particular,
each data set is composed by N data items, all of
which with equal size. The total throughput of the
data set is tunable and the items’ access ratios are
distributed according to a zipfian distribution, with
skew 1. Finally, the ratio between reads and writes
is also customizable. Each experiment consists of
a run of the Optimizer according to a different input
data set.

The first study aims at exploring in which data
sets the Optimizer yields hybrid clusters as the best
configuration. Each experiment has been executed
with 300 logical items, varying items’ sizes, varying
total throughput, and reads % according to YCSB’s
Workload A (50% Reads/Writes). The levels for
the two varying parameters (total throughput and
items’ sizes) have been selected empirically. The
data is presented as a heatmap in fig. 2, where
each cell corresponds to a different data set and
contains the cost saving achieved by instantiating
the hybrid configuration over the best non-hybrid
configuration. Naturally, the cost saving is zero
when the Optimizer yields a homogeneous cluster
as the best outcome. These results suggest that

Figure 2: Cost savings for different throughputs and items’
sizes, 50% reads - 50% writes

data sets with higher total throughputs are more
suited for hybrid clusters, as the overall throughput
variability among items is more significant (proba-
bly since the popularity is modeled according to a
zipfian distribution). We can also infer that the size
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of individual items does not affect the cost savings,
probably due to the data sets containing items with
the same size.

We now analyze the scalability of the Optimizer.
For this purpose, we present two studies (figs. 3
and 4) that track, respectively, the runtime and the
peak Resident Set Size (RSS, or total required
RAM) of two experiments for increasing numbers
of total items. In particular, one experiment will be
characterized by a low total throughput and one
with a high total throughput, to show the impact
that this parameter has on optimization times. All
the data points have been collected by perform-
ing experiments with the corresponding N, a to-
tal throughput of either 0.001GB/s (blue line) or 1
GB/s (orange line), a constant items’ size of 0.1
GB, and the read/write ratio of Workload A (50%
Reads, 50% Writes).

Figure 3: Optimizer processing time for high and low through-
put datasets, increasing numbers of logical items

Figure 4: Peak Resident Set Size of the Optimizer process for
increasing values of logical data items

In both high throughput and low throughput sce-
narios, experiments until N=400 yielded a hybrid
placement, while experiments with 500 and 600
items did not. This explains a runtime and peak
required memory decrease with N=500, as the

problem is easier to solve. Moreover, the runtime
and RSS increasing trends are steeper with high
throughput data sets.

These studies suggest that controlling the num-
ber of logical items is critical to achieve better
performance and lower hardware requirements.
Therefore, we can infer that the grouping of physi-
cal items into logical items is a significant require-
ment for the performance of the Optimizer. Pro-
grammers must define groupings in a way that re-
sults in the number of logical items to be below a
specific threshold, which depends on the desired
values of what we can call Key Performance Indi-
cators (KPIs): runtime and pear Resident Set Size.

5. Conclusions
This thesis approaches the problem of optimizing
the costs of cloud databases and aims at helping
users choose the right cloud infrastructure for de-
ploying an IaaS database system.

The thesis presents the architecture of Plu-
tusDB, a system that aims at reducing the oper-
ational cost of cloud-based applications by:

i) Automatically identifying the most cost-
efficient infrastructure definition in cloud-
oriented data storages and the corresponding
placement of data items

ii) Dynamically migrating data across different
types of cloud storage platforms to achieve
and maintain the most cost-efficient configu-
ration

PlutusDB is an autonomic system that from the
user’s perspective behaves like a standard IaaS
database. The system, however, is a set of inter-
dependent components that exchange information
and work together in a pipeline executed periodi-
cally to achieve a common goal: a cluster config-
uration and an optimal placement of the items that
minimize the user costs. The goal is achieved by
using some of the concepts analyzed in section 2.
PlutusDB is a complex system, and the focus of
this thesis is primarily on its key component: the
Optimizer.

The Optimizer analyzes the data statistics and
produces an optimal IaaS configuration, along with
the according placement of the items. Its imple-
mentation is presented in section 3 and is publicly
available on GitHub [14]. Section 4 analyzes the
potential benefits of using the Optimizer, highlight-
ing some real-world scenarios that could benefit
from instantiating hybrid clusters. It then concludes
by tackling some scalability aspects of the solution.

We believe the architecture of PlutusDB to be a
solid base for an innovative system that could sig-
nificantly improve the high costs of managing the
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database systems of modern applications. Plu-
tusDB’s framework leaves wide margins for imple-
mentation decisions and strategies of the single
components, only defining their general behavior
and ultimate goal. It also gives some significant
and precious suggestions regarding possible im-
plementation strategies, facilitating the work of fu-
ture researchers.

Finally, we must highlight how the Optimizer,
which has been made publicly available on GitHub,
could be an extremely functional tool for decid-
ing which cluster(s) to instantiate according to the
data items’ characteristics. This capability is useful
aside from the potential cost gains arising from hy-
brid clusters, and therefore regardless of its func-
tion in PlutusDB. This is probably the most impor-
tant contribution of the thesis, which shows how the
Optimizer, other than being framed in a more com-
plex architecture and being its core component, is
a solid tool for modern cloud architects that can
be used right out of the box and instantly support
business-aware, critical decision making.

5.1. System Limitations and Future Work
The major limitation of the Optimizer is scalability.
As we have seen in section 4, the number of de-
cision variables significantly impacts the runtimes.
The task of the application programmers is then to
define items groupings in a smart way, to achieve
the best tradeoff between cost saving and opti-
mization time. Another possible approach to im-
prove scalability could be revisiting the formulation
to try to reduce complexity. Moreover, approximate
methods could be used to accelerate it and enable
optimizations for higher numbers of logical items.

Let us now address the cost savings obtained
from hybrid clusters. As shown in fig. 2 specific
scenarios might benefit from cost savings of up to
around 84%. Although this might seem appealing
at first glance, storing data in hybrid clusters raises
non-trivial issues, related to how to efficiently im-
plement two main mechanisms:

i) Migrating data across storage back-ends

ii) determining their placement in real-time

More in detail, there are some components of the
PlutusDB architecture that need to be fully de-
signed ad implemented, namely:

• An efficient data placement structure. Exam-
ples of similar components are distributed or
centralized directories, and approximated data
structures as proposed in [20].

• The Execute component, which, through an
efficient implementation of the proposed algo-
rithm, transfers the items to achieve any given

placement. This component must be carefully
designed to avoid data corruption while main-
taining efficiency and incur little to no down-
time.

• The integration of a workload stability pre-
dictor is required to account for workload
changes, and the problem formulation must be
updated accordingly.
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Appendices
A. Mathematical Formulation

C =
∑
j∈P

K−1∑
k=0

zjk ·RF · costj + (8a)

∑
j∈P

K−1∑
k=0

zjk ·RF ·max size · coststoragej + (8b)

N∑
i=0

∑
j∈P

K−1∑
k=0

Xijk · (tri + twi ·RF ) · si · costtpj + (8c)

N∑
i=0

∑
j∈P

K−1∑
k=0

Xijk · (tri + twi ·RF ) · si · σ · costiopsj (8d)

min
X,z

C (9a)

subject to:
N−1∑
i=0

(Xijk · si) ≤ max size ∀j ∈ P, ∀k < K (9b)

N−1∑
i=0

(Xijk · (tri + twi ·RF ) · si) ≤ tpj ·RF ∀j ∈ P, ∀k < K (9c)

N−1∑
i=0

(Xijk · (tri + twi ·RF ) · si) · σ ≤ iopsj ·RF ∀j ∈ P, ∀k < K (9d)

N−1∑
i=0

Xijk ≤ M · zjk ∀j ∈ P, ∀k < K (9e)

N−1∑
i=0

Xijk ·M ≥ zjk ∀j ∈ P, ∀k < K (9f)

∑
j∈P

K−1∑
k=0

Xijk = 1 ∀i < N (9g)
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