
AuditChain: Blockchain views applied to auditing
Afonso Marques

Instituto Superior Tecnico, Lisbon
afonso.m.marques@tecnico.ulisboa.pt

ABSTRACT
Blockchain, an emerging technology, provides a decentralized, and
immutable data storage, replicated across untrusting peers. Con-
trary to common knowledge, private blockchain stakeholders can
have different views on the same distributed ledger, and thus several
challenges are raised. This happens because as soon as complexity
increases, different representations are possible and this way dif-
ferent business process views are created on the same blockchain.
Currently, it is hard to visualize data partitions within a blockchain
and perform arbitrary operations on it, for instance merging two
blockchain views to conduct a blockchain migration or audit. In
this document, we will explain the concept of view and how it can
be used for several purposes. We also present the entire process
required to obtain the data and subsequently create the blockchain
view. We will likewise identify the possible mechanisms and the
tool created BUNGEE, for this purpose. Subsequently, to the cre-
ation of the blockchain view, various stakeholders can prove its
internal state, contributing to blockchain interoperability, and en-
hanced the way audits are performed. This thesis aims to contribute
to blockchain interoperability and easing of blockchain audits by
leveraging the concept of blockchain view.

KEYWORDS
Blockchain audit, Blockchain View, Interoperability, BUNGEE, Au-
ditView

1 INTRODUCTION
In recent years the use of blockchain technology has increased
exponentially, a similar thing has happened with the development
of new tools and ways to use it, however, when it comes to the
auditing aspect, the same does not happen. Several studies have
been done on the advantages and importance of blockchain auditing,
although there are not many tools available to do auditing, and
those that do exist, many are just theoretical solutions and the rest
are very limited in terms of functionalities, being only useful when
the subject is Cryptocurrencies. This area of blockchain auditing is
a recent topic, however it has already sparked interest from quite a
few eager investors to be the first to invest in a pioneering solution.

In this document we will introduce what is blockchain technol-
ogy and its types, we will also introduce the concept of DLT View.
We are going to explain what auditing is, its use cases and also
blockchain auditing. We will identify the current problem and a
possible pioneering solution for it. We will present all the imple-
mentation decisions regarding the tools developed. We will also
talk about the reason that led us to use certain technologies over
others. It will be presented how each one of them was evaluated
and the tests used on each.

Throughout the document we will refer to DLT View several
times, however it will be presented as View for simplicity.

2 BACKGROUND AND RELATEDWORK
2.1 Blockchain
Blockchain is a technology firstly introduced in 2008 by a person
or a group with the pseudonymous Satoshi Nakamoto after the
realise of bitcoin whitepaper1. This technology has (slowly) be-
come one of the most frequently discussed methods for securing
data storage and transfer through decentralized, trustless, peer-to-
peer systems[16]. The blockchain technology provides a decentral-
ized, open, Byzantine fault tolerance transaction mechanism, and
promises to become the infrastructure for a new generation of Inter-
net interaction, including anonymous online payments, remittance,
and transaction of digital assets [5].

The idea behind this technology is relatively simple. Blockchain
technology is constituted by sequential blocks linked together, thus
forming a chain. Each block contains a specific group of information
(records), constituted by a timestamp and a hash of the previous
block in the chain. The first block is called the genesis block, it
differs from the others, since it has no block before and thus no
reference.

Hash is a cryptographic digest, produced by a hash function. This
function has some important characteristics such as, one way (non-
invertible), strong collision resistance (computationally infeasible
to find two inputs that give the same hash). These characteristics
are important since we validate the integrity of the blocks using
the hash. The validation process ensures that the records are valid
and therefore the block. After this step, the block will be added
if the participants reach a consensus. Consensus is reached by
participants of the network by a consensus algorithm.

Participants also called miners compete in order to generate the
next accepted block. This competition consists of solving a compu-
tationally heavy mathematical problem in the most efficient way
possible. During this competition, in case of more than one miner
solve the hash puzzle at the same time, the blockchain may "fork"
leading to parallel chains. Such a scenario is eventually resolved by
the miners picking the longest chain [10, 14]. This competitions is
associated with Prof-Of-Work (POW ) which is the consensus mech-
anism for Bitcoin, the first application of the blockchain technology
[12]. After the miners finish their tasks (generate the next block),
they are rewarded, this reward depends on the blockchain [5]. The
problem difficulty varies during the time, it is adjusted in order
to keep the block generation pace constant, e.g. More participants
means more miners competing for the next block, so more blocks
would be generated per unit of time, to avoid this, the difficulty
of the problem is increased. Naturally, the opposite happens with
fewer participants.

Blockchain was plenty of advantages compared with a central-
ized technology, however is not untouchable. There are a few

1https://bitcoin.org/bitcoin.pdf



known attacks, such as: Distributed denial of service (DDoS), 51%-
Attack, Race attack, Sybil attack, among many others.

The first attack, DDoS is hard to perform on the blockchain net-
work because of their nature, however is not impossible. When this
attack is performed, the intention is to bring down a server by con-
suming all its processing resources with numerous requests. DDoS
attackers aim to disconnect a network’s mining pools, e-wallets,
crypto exchanges, and other financial services. A blockchain can
also be hacked with DDoS at its application layer using DDoS
botnets.

An attack scenario against the consensus mechanism is called
the “51% attack.” In this scenario, a group of miners, controlling a
majority (51%) of the total hash power of the network, conspire to
attack. With the ability to mine most blocks, attacking miners can
spawn deliberate bifurcations in Blockchain, generate double-spend
transactions, or perform denial of service attacks (DoS) against spe-
cific addresses or transactions. A bifurcation attack or double-spend
attack is an attack where the attacker causes already confirmed
blocks to be invalidated by bifurcating a level below them, with a
later reconvergence in an alternate chain. With enough power, an
attacker can invalidate six or more blocks in a sequence, invalidat-
ing transactions that were previously considered immutable (with
six acknowledgments). Note that double spending can only be done
on the attacker’s transactions, for which the attacker can produce
a valid signature. Making a double spend of the transaction itself
is profitable when, by invalidating a transaction, the attacker can
receive an irreversible payment or product without having to pay
for it[8].

Race attack happen when an attacker sends two conflicting trans-
actions in rapid succession into the network. This type of attack is
relatively easy to implement in PoW-based blockchains. Merchants
who accepts a payment immediately with 55 “0/unconfirmed” are
exposed to the transaction being reversed. There are some possi-
ble countermeasures: "Listening period", "Inserting observers" and
"Forwarding double spending attempts" [13].

In a public blockchain we can have a sybil attack where one
hostile peer create lots of fake identities in order to defraud the
system to break its trust and redundancy mechanism.[19].

2.1.1 Public or Permissionless Blockchain. Permissionless means
that anyone may join or leave the network at will. Public means
that anyone, in principle, may propose a new state of the ledger[9].
Permissionless blockchain networks are decentralized ledger plat-
forms open to anyone publishing blocks, without needing permis-
sion from any authority. Permissionless blockchain platforms are
often open source software, freely available to anyone who wishes
to download them. Since anyone has the right to publish blocks,
this results in the property that anyone can read the blockchain
as well as issue transactions on the blockchain (through including
those transactions within published blocks). Any blockchain net-
work user within a permissionless blockchain network can read and
write to the ledger. Since permissionless blockchain networks are
open to all to participate, malicious users may attempt to publish
blocks in a way that subverts the system. To prevent this, permis-
sionless blockchain networks often utilize a multiparty agreement
or ‘consensus’ system that requires users to expend or maintain re-
sources when attempting to publish blocks. This prevents malicious

users from easily subverting the system. Examples of such consen-
sus models include proof-of-work and proof-of-stake methods. The
consensus systems in permissionless blockchain networks usually
promote non-malicious behavior through rewarding the publishers
of protocol-conforming blocks with a native cryptocurrency[18].

Proof-of-stake (PoS) aims to replace the way of achieving consen-
sus in a distributed system. Instead of solving the Proof-of-Work,
the node which generates a block has to provide a proof that it
has access to a certain amount of coins before being accepted by
the network. Generating a block involves sending coins to oneself,
which proves the ownership. The required amount of coins (also
called target) is specified by the network through a difficulty adjust-
ment process similar to PoW that ensures an approximate, constant
block time.[17]

2.1.2 Private or Permissioned Blockchain.

Similarly to the public blockchain, this one is also constituted
by connected blocks, however it has some particularities in what
concerns its members and the actions they can perform. It is con-
sidered private or permissioned since its participants are restricted
to a set of permitted actions. External participants cannot submit
or participate in transaction validation process[15].

In this type of blockchain users are added by a person/authority
(be it centralized or decentralized), and it is not possible to join
spontaneously. This type of blockchain is usually used when all its
participants/organizations are known, but not all of them can be
trusted. It is also used by organizations that need to more tightly
control and protect their blockchain. These characteristics pose the
problem of blockchain users having to trust on a single entity

Permissioned blockchain networks may thus allow anyone to
read the blockchain or they may restrict read access to authorized
individuals. This blockchain may be instantiated and maintained
using closed or open source software. The consensus model can be
determined by the organizations, based on howmuch they trust one
another.Beyond trust, permissioned blockchain networks provide
transparency and insight that may help better inform business deci-
sions and hold misbehaving parties accountable. This can explicitly
include auditing and oversight entities making audits a constant
occurrence versus a periodic event[17].

2.2 Audit
Before we explain what auditing is, it is important to note that there
are several types of auditing [11]. When most people think about
audit, they imagine IRS agents arriving in an unannounced way,
calculators in hand, ready to analyze countless boxes of receipts,
invoices and bills. That is one type of audit, but it is certainly not
the only one. Most audits have nothing to do with tax day and none
of them are unannounced.

Traded companies are required by the securities and exchange
commission to validate their financial position with an audit[6],
and although they’re not legally required to, privately held com-
panies often perform audits at the request of banks, investors, and
other key stakeholders. The goal is to ensure investors and other
stakeholders that their cashflows balance sheets and profit and loss
statements aren’t materially misstated.

2



Public or private companies that go through an audit have the
opportunity to gain valuable insight into how their businesses are
performing[7].

The word audit means, to evaluate. Auditors are the ones who
evaluate where money / information is coming from, where it’s
going, and what it’s doing each step of the way.

Auditors need to think critically in order to understand what
business decision drive the transactions. They also have to verify
if what the company states is correct. During the audit process,
they compare the documents the company uses in their day-to-
day operations against what they have recorded in their financial
statements.

Audit engagement can take between couple mouths till one year,
depending on the size of the client and the complexity of the project.

2.3 Blockchain Audit
Blockchain auditing has the same objective as auditing, but is
done differently, taking advantage of the characteristics of the
blockchain[2]. As explained before, blockchain is essentially a type
of database known as a distributed ledger that is decentralized with
no central administrator. When a "user" saves a transaction in the
database it is timestamped and saved in a block. Each "user" keeps
a copy of the distributed ledger, the data is replicated and synchro-
nized between all copies of the ledger in real-time. Since the ledger
is both shared and encrypted, an attacker who wants to change
the data contained in it, would have to simultaneously hack each
node of the network and overcame the encryption[1], even if the
attacker succeeded, users would be able to identify which data was
tampered with, thus eliminating one of the disadvantages of tradi-
tional systems, single point of failure. This high level of security
is one of the main attractions of the blockchain. It is increasingly
being used for a range of functions where it is important to transmit
data securely, particularly within the transaction-based financial
services industry. For example block blockchain technology can be
used to process payments, to create verifiable audit trails and to
register digital assets such as stocks and bonds. In fact blockchain
as the potential to change the way business in every sector oper-
ate. Once data stored in distributed ledgers is continually updated
it offers finance team the possibility of real-time[4] reporting to
both management and external auditors. This could free up auditor
to offer more value-added services to their clients, such as strate-
gic planning and support with wider business decisions. Like any
technology, this one also has some drawbacks including the cost
of implementation, privacy issues, lack of agreed standards and a
limited scalability of blockchains.

2.4 Blockchain View
This concept of blockchain view is relatively new and there is very
little related work. At this moment there are not many documents
that use this concept yet, however we believe that in the future it
will be widely used since it brings clarifications that were missing
until today.

Blockchain views are tools that promote data portability once
they enable blockchain interoperability. A view is an intermediary
standardized data format not dependent on a specific blockchain
(agnostic) that can be translated across blockchains. Views are self

describing because they are represented via a multi-hash. They
denote the commitment (e.g., via accumulators or Merkle trees) of
a state in a particular time from a stakeholder centric perspective
[3].

3 HYPERLEDGER FABRIC
Hyperledger Fabric2 is an enterprise-grade, distributed ledger plat-
form that offersmodularity and versatility for a broad set of industry
use cases. The modular architecture for Hyperledger Fabric accom-
modates the diversity of enterprise use cases through plug and play
components, such as consensus, privacy and membership services.

On Hyperledger network, only parties directly related to the
transaction deal are updated on the ledger, thus maintaining privacy
and confidentiality. Hyperledger primarily leverages the concept of
channels to ensure privacy and confidentiality. A channel is a virtual
blockchain network which sits on top of a physical blockchain
network and has its own access rules. They employ their own
mechanism for transaction ordering and thus ensure scalability,
thereby allowing effective ordering along with separation of data.

Chaincode3 is a program, written in Go, node.js, or Java that
implements a prescribed interface. It runs in a secured Docker
container isolated from the endorsing peer process. Chaincode ini-
tializes and manages ledger state through transactions submitted by
applications. Typically, it handles business logic agreed to by mem-
bers of the network, so it may be considered as a “smart contract”.
State created by a chaincode is scoped exclusively to that chaincode
and can’t be accessed directly by another one. However, within
the same network, given the appropriate permission a chaincode
may invoke another to access its state. To deploy a chaincode, a
network admin must install the chaincode onto target peers and
then invoke an orderer to instantiate the chaincode onto a specific
channel. While instantiating the chaincode, an admin can define
an endorsement policy to the chaincode.

Endorsement policy defines which peers need to agree on the
results of a transaction before the transaction can be added onto
ledgers of all peers on the channel.

Peer is a blockchain node that stores all transactions on a joining
channel. Each peer can join one or more channels as required.
However, the storage for different channels on the same peer would
be separate. Therefore, an organization can ensure that confidential
information would be shared to only permitted participants on a
certain channel.

Orderer is one of the key elements employed in the the Fabric
consensus mechanism. Orderer is a service responsible for ordering
transactions, creating a new block of ordered transactions, and
distributing a newly created block to all peers on a relevant channel.

Certificate Authority or CA is responsible for managing user cer-
tificates such as user registration, user enrollment, user revocation.
More specifically, Hyperledger Fabric is a permissioned blockchain
network that uses an X.509 standard certificate to represent per-
missions, roles, and attributes to each user.

Client is considered to be an application that interacts with Fabric
blockchain network. World State maintains the current state of
variables for each specific chaincode.

2https://www.hyperledger.org/use/fabric
3https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html

3



Hyperledger Fabric currently can support two types of World
State database including LevelDB and CouchDB. LevelDB is a fast
key-value storage library written at Google that provides an ordered
mapping from string keys to string values. CouchDB is a JSON-
based database supporting rich querying operations based on JSON
objects.

4 HYPERLEDGER CACTUS
Hyperledger Cactus4 is a framework for integrating distributed
ledgers. This tool was build under Hyperledger ecosystem aiming
to provide decentralized, secure and adaptable integration between
blockchain networks. One of the reasons why Cactus was created
was the need to suppress an existing lack of frameworks/tools that
would allow the integration of different environments, technologies
and systems within a company or even among several companies,
thus facilitating business. This framework is relatively new, how-
ever it already provides a pluggable architecture that enables the
execution of ledger operations across blockchains, allowing users
to make integration between different blockchains.

5 BUNGEE
BUNGEE (Blockchain UNifier view GEnErator) is a view generator,
a system composed of four software components that creates, and
processes views from a set of views, each one from a specific stake-
holder. BUNGEE constructs views from a set of states coming from
an underlying blockchain, giving them as input to a controller. The
controller component can process views (including merging views
or other processing after a view is merged). BUNGEE abstracts both
analysts and developers from the underlying data structures from
blockchains, and allow them to rationalize about the collected data
from a business perspective[3].

In order to build the View, the process was divided into two main
parts: taking a snapshot of the blockchain according to a specific
participant p and constructing the View considering the desired
time interval. Two important definitions that we must keep in mind
in order to understand the BUNGEE tool are View and Snapshot.

blockchain View offers a stakeholder-centric, generalizable,
self-describing commitment to the state of a blockchain, allowing
for representing states from different blockchains in a standardized
way.

Snapshot is the state of a system in our case blockchain at a
particular point in time.

6 VIEW
This concept of blockchain view is relatively new and there is very
little related work. At this moment there are not many documents
that use this concept yet, however we believe that in the future it
will be widely used since it brings clarifications that were missing
until today.

Blockchain views are tools that promote data portability once
they enable blockchain interoperability. A view is an intermediary
standardized data format not dependent on a specific blockchain
(agnostic) that can be translated across blockchains. Views are self
describing because they are represented via a multi-hash. They

4https://www.hyperledger.org/use/cactus

denote the commitment of a state in a particular time from a stake-
holder centric perspective [3].

7 AUDITVIEW
After we have developed BUNGEE, we decided that it would be
interesting to have the possibility to analyze the views without the
necessity of inspecting the JSON file. Therefore, we created a web
app in order to make it easier and more user-friendly to analyze
the View. Before we developed the software, several functional and
non-functional requirements were identified:

(1) Data Integrity, it should provide a service to detect unau-
thorized modification of data.

(2) Usability, the tool should be easy to operate by people with
advanced computer knowledge, but also beginners.

(3) Identifiability, it should be possible to identify who audited
the view.

(4) Non-repudiation, it should have a property that prevents
an entity from denying previous commitments or actions.

(5) Date Verifiability, it should provide the possibility to verify
creation date.

Let’s start by exploring data integrity, given that if data is changed
intentionally or unintentionally, the audit loses its value, and is
no longer valid. In order to ensure the data integrity, each auditor
has access to a set of asymmetric RSA 2048 bit keys, generated
at the same time as the auditor account is created. These pair of
keys allow each of them to sign the audit with their private key,
thus taking advantage of the properties offered by the asymmetric
keys. In order to create the signature for the audit file, the data is
first hashed using SHA-256, then the signature is created and later
included in the file.

Subsequently to the creation of an audit, it is possible to validate
its integrity. To do this, we will only need the author’s public key
and the audit file. In order to do this validation, AuditView recon-
structs the audit to memory, generates the corresponding hash and
verifies the signature using the public key. Once AuditView have
the result, it will show to the user if the audit still valid or has been
tampered with. Regarding the audit view, we identify the assets
that were audited, since AuditView gives the possibility to select
specific assets without having to analyze all of them. Further to the
View, we also present the id, hash and signature.

Concerning the auditing part, we have some pertinent informa-
tion, such as the date and time of the audit creation. There are also
the auditor’s information, name and email. This information can be
changed in the future and more information can be included, such
as the organization the auditor belongs to, phone number, among
others. One feature of AuditView is to verify the View integrity,
therefore, before the audit is performed, the auditor is informed if
the view is valid or if it was tampered with. In both cases we offer
the possibility to perform the audit, however in the final file we
display if the view is considered valid.

8 EVALUATION
This section will present the tests performed on each developed
tool and the outcame of these tests. In certain cases it is common
to compare the developed solution with previously existing solu-
tions, however, in our case, since we are working at the frontier of

4



knowledge, it is not possible to take advantage of this comparison,
since there are no tools to compare yet, thus making the evaluation
even more challenging.

9 BUNGEE EVALUATION
In order to evaluate BUNGEE, two types of tests were conducted,
namely unit tests and performance tests. It is important to highlight
that the obtained results were influenced by the performance of
the machine used, so if the same tests were executed on a different
machine, the values obtained would be slightly different.

The machine used as the following specs: Memory Ram 16Gb,
Processor Intel® Core™ i7-7700HQ CPU @ 2.80GHz × 8, Graphics
Card GeForce GTX 1050 Mobile.

For a tangible data set, 30 tests were performed for each number
of transactions (10, 100, 500). From these thirty tests, ten of them
were discarded in order to eliminate the outliers and have more
consistent data. This step is particularly important since outliers are
problematic. They represent measurement errors and/or processing
errors and therefore impairing the consistency of the data.

Initially, we started by using the Hyperledger Caliper tool, which
is a blockchain benchmark tool. Which allows users to measure the
performance of a blockchain implementation with a set of prede-
fined use cases. Hyperledger Caliper produce reports containing a
number of performance indicators to serve as a reference, having
the capability to analyze the Hyperledger Fabric blockchain. How-
ever, we soon realized that it was not feasible since the integration
with Hyperledger Cactus is still very limited, so we had to find
another strategy to solve this challenge.

To overcome this challenge we decided to measure how long
the most important functions took to perform. For this purpose
timestamps were placed throughout the code in order to record
the initial time when the function started and the final time when
it ended. After we had all these values, it was only necessary to
compute the elapsed time, subtracting from the final time the initial
time.

At the end of all tests being executed, the outliers were then
removed. To this end, we start by calculating the first and third
quartile (Q1 and Q3). Then evaluate the interquartile range, which
involves the subtraction between Q3 and Q1, IQR = Q3 - Q1. Once
we have the IQR, we calculate the lower bound (Q1 – 1.5*IQR) and
the upper bound (Q3 + 1.5*IQR). Lastly we remove all the values
below the lower bound and above the upper bound, thus obtaining
a more homogeneous dataset of values.

In the sequence we will introduce three figures that represent
the times required to perform the most important functions of
BUNGEE. It is important to take the scale into consideration when
these are analyzed, since they are all different. This decision was
made since the execution times of the functions have significantly
different ranges of values, therefore it was necessary to change the
scale to have a better representation.

The figure 1 represents the chart of time versus number of trans-
actions that each of the functions interacting with the blockchain
requires. In order to make the values more perceptible, they were
placed in the table 1.

The following figure portrays the time required by the Gen-
erateLedgerStates function to process the number of transactions

Figure 1: Number of seconds used by the functions: GetAl-
lAssetsKey, GetAllTxByKey, GetTxReceiptByTxID

Tx Number GetAllAssetsKey GetAllTxByKey GetTxReceiptByTxID
10 1,788347s 1,771108s 1,812183s
100 1,860473s 1,811004s 1,906563s
500 2,325358s 2,090279s 2,567222s

Table 1: GetAllAssetsKey, GetAllTxByKey, GetTxReceipt-
ByTxID Values

selected. As we can see, the value is higher than the functions
shown in the figure 2, this happens because the function Gener-
ateLedgerStates invokes the three previous functions. This means
that the time it takes is the sum of the previous times, plus the
processing time of the remaining function.

Figure 2: Number of seconds used by the function: Gener-
ateLedgerStates

Tx Number GenerateLedgerStates
10 5,671638s
100 6,218040s
500 7,582860s

Table 2: GenerateLedgerStates

5



Lastly, we have the figure 3, which, as the previous ones, repre-
sents the time spent by the functions GenerateSnapshot and Gener-
ateView in detriment of the number of transactions.

Figure 3: Number of seconds used by the functions: Gener-
ateSnapshot, GenerateView

Tx Number GenerateSnapshot GenerateView
10 0,018515s 0,035067s
100 0,021907s 0,116664s
500 0,027118s 0,507847s
Table 3: GenerateSnapshot, GenerateView Values

Regarding the size of the views a file with 10 transactions will
be about 21.1 kB, with 100 transactions it will be 202.8 kB and with
500 transactions it will be about 1Mb.

Our initial goal was to use a real use-case, however, since it was
not possible to obtain a real use-case from a company that uses the
technology, due to the sensitivity of the data, we created a use-case
as close to reality as possible. This consisted of exchanging assets
between peers. These had the possibility to sell and purchase assets.
This way, it was possible to have data about asset owner’s exchange
inside our View. That being said, the values presented above not
only vary with the change of the computer used to run the tests,
but also vary with the change of the use-case. The values presented
do not include the test ledger creation time nor the insertion of
transactions, since in a production context these actions would not
be performed by BUNGEE but by the peers in the blockchain.

It is important to note that BUNGEE was developed to meet the
definition provided in the paper [3], which was submitted to the
Journal of Parallel and Distributed Computing.During the develop-
ment, some limitations were found and, consequently, solutions to
overcome them were provided, thus helping to improve the paper.

10 AUDITVIEW EVALUATION
As a means of testing AuditView we have used three types of
methods, these were testing using low fidelity prototype5, user
testing with the tool completely developed and unit testing.
5Low-fidelity (lo-fi) prototyping is a quick and easy way to translate high-level design
concepts into tangible and testable artifacts. The first and most important role of lo-fi
prototypes is to check and test functionality rather than the visual appearance of the
product.

To perform the tests with the users, we started by understanding
who would be a potential user of the tool, therefore we recruited six
people. During recruitment, it was explained what the tests would
be comprised of. The recruited people are computer engineering
students, their ages range between twenty-one and twenty-three
years old, and they are proficient when it comes to computer skills.
The tests were divided into two sessions, the first session consisted
of: Presentation of the tool, its purpose, and interaction tests using
a low fidelity prototype. The second session involved testing the
fully developed tool. For both sessions, a script of directives was
made so that the users would know what was required and thus
perform the actions.

In the first session we started by presenting why the tool was
developed, then we presented the functionalities we intended to
develop, and finally we did the usability test using the low fidelity
prototype. This prototype was developed in Figma6 which is an
interface design tool. This test showed that after registration it
was important to give feedback to the user in order them to verify
that the actions had been carried out successfully and not redirect
directly to the main page, we realized that we should change the
way we presented the two main functions to be more intuitive to
use, and in the end we realized that it was important to have a
navigation bar to facilitate navigation through the tool.

The second user test took place some time later, when the tool
was already fully developed and the previous feedback incorporated.
We could conclude that there was no difficulty in carrying out the
requests made in the script for the users. Therefore, we can consider
that the first session was very important once it made the tool easier
and more intuitive to use, and this was confirmed in the second
session.

These tests introduced some degree of complexity since it was
necessary to take into account the availability of these six people,
the development of the functionalities, and the stipulated deadlines.

Finally, we have the unit tests, these were the simplest to do
since there was no need to manage logistics as in the previous tests.
In order to perform the tests, we have used the unittest framework,
which was originally inspired by JUnit. This tool gave us the possi-
bility to make test cases, thus verifying the specific response to a
particular set of inputs. Besides the unit tests, suit tests were also
performed, consisting of a collection of test cases executed together.
This way, all the functionalities presented were tested, and some
problems were detected and subsequently rectified. These unit tests
were performed between the first and second session with the users,
therefore allowing us to present a stable version of our tool.

11 FUTUREWORK
As we can see throughout this document, this work paves the way
to appealing future works.

One of the functionalities to be developed in BUNGEE would
be the View Merging part, which would be used when there are
two views that we want to see in a single (unified) view. This
functionality could be invoked on the fly after a view has been
generated, or even when two previously generated views already
existed.

6https://www.figma.com/

6



With the code that is already developed it won’t be hard to de-
velop this functionality, the steps needed would be only six and two
of these were optional. In order to develop this function, BUNGEE
would have to provide the ability to upload existing views and vali-
date their integrity or the ability to retrieve them. After having the
two views in memory, it would be necessary to reconstruct them
so that they could be represented by the classes that constitute
them, thus creating an extended state. The following step would be
to merge the classes in order to have a unified view. After having
the view unified, it would be necessary to do the signature of the
view. As optional steps, we would have the persistent publication
in the blockchain and its proof. At last, the unified view would be
returned to the client.

It would also be interesting to test BUNGEE using other blockchains
such as Ethereum. This change of blockchain would not introduce
much resistance since all the logic is already developed. It would
only be necessary to change the plugin and possibly rename some
functions in the smart contract to comply with the nomenclature
used in the Ethereum blockchain.

In the future, if we decide to develop something to complement
BUNGEE, it would be interesting to have a tool that could validate
each of the transactions returned in the snapshot section, and verify
the transactions related to an asset and its endorsements.

12 CONCLUSION
Blockchain audit is a rapidly advancing research topic. Neverthe-
less, state-of-the-art tools are still limited and can only be used
with cryptocurrencies. In this document, we describe how can we
visualize data partitions within a blockchain and perform arbitrary
operations on it, for instance generating blockchain views to con-
duct a blockchain audit.

We introduced state-of-the-art for fields like blockchain (private
and public), auditing, blockchain auditing even though it does not
have an extensive repository of articles and scientific papers.

We proposed a solution where we give the possibility to auditors,
cybersecurity experts, and in general, developers to have audits
facilitated because different data partitions can be analyzed from
a specific angle. We also discussed what would be the advantages
and disadvantages of our solution.

We believe that we have contributed to the state-of-the-art in
blockchain audit and blockchain interoperability by generally de-
velop a tool which allows users to use blockchain views and also
the possibility for stakeholders to audit the blockchain in an easier,
faster and more automatic way. In the future we expect to see au-
ditors, cybersecurity experts, and in general, developers using the
view concept to enhance audits, utilizing BUNGEE in this way. Dur-
ing development, we realized that there is a pronounced learning
curve, especially for those who are not experienced with blockchain
related technologies.

This is a much broader area than we might think, however, after
settling this curve, tool development becomes very straightforward.
Something important and very positive to highlight is the proximity
of the maintainers of all the Hyperledger projects to the developers.

In conclusion, as we can see, this theme is undoubtedly very
innovative, and can be applied to real cases, bringing great benefits
that until now did not exist.

REFERENCES
[1] Ashar Ahmad, Muhammad Saad, and Aziz Mohaisen. 2019. Secure and transpar-

ent audit logs with BlockAudit. Journal of network and computer applications 145
(2019), 102406.

[2] AA Baev, VS Levina, AV Reut, AA Svidler, IA Kharitonov, and VV Grigor’ev.
2020. Blockchain technology in accounting and auditing. Accounting. Analysis.
Auditing 7, 1 (2020), 69–79.

[3] Rafael Belchior, Limaris Torres, Jonas Pfannschmid, André Vasconcelos, and
Miguel Correia. 2022. Is My Perspective Better Than Yours? Blockchain Interop-
erability with Views. (2022).

[4] Derrick Bonyuet. 2020. Overview and impact of blockchain on auditing. Interna-
tional Journal of Digital Accounting Research 20 (2020), 31–43.

[5] David S Evans. 2014. Economic aspects of Bitcoin and other decentralized public-
ledger currency platforms. University of Chicago Coase-Sandor Institute for Law
& Economics Research Paper 685 (2014).

[6] Marshall A Geiger and Kanan Raghunandan. 2001. Bankruptcies, audit reports,
and the reform act. Auditing: A Journal of Practice & Theory 20, 1 (2001), 187–195.

[7] Ann Hylton. 2002. A KM initiative is unlikely to succeed without a knowledge
audit. Knowledge Board.[Consulta: 15 febrero 2009] (2002).

[8] Emanuel Ferreira Jesus, Vanessa RL Chicarino, Célio VN De Albuquerque, and
Antônio A de A Rocha. 2018. A survey of how to use blockchain to secure internet
of things and the stalker attack. Security and Communication Networks 2018
(2018).

[9] Tommy Koens and Erik Poll. 2018. What blockchain alternative do you need? In
Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer,
113–129.

[10] Roy Lai and David LEE Kuo Chuen. 2018. Chapter 7 - Blockchain – From Public
to Private. In Handbook of Blockchain, Digital Finance, and Inclusion, Volume
2, David Lee Kuo Chuen and Robert Deng (Eds.). Academic Press, 145–177.
https://doi.org/10.1016/B978-0-12-812282-2.00007-3

[11] John Mullarkey. 1984. Case for the structured audit. (1984).
[12] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system,”

http://bitcoin.org/bitcoin.pdf.
[13] Nidhee Rathod and Dilip Motwani. 2018. Security threats on Blockchain and its

countermeasures. Int. Res. J. Eng. Technol 5, 11 (2018), 1636–1642.
[14] Janusz J. Sikorski, Joy Haughton, and Markus Kraft. 2017. Blockchain technology

in the chemical industry: Machine-to-machine electricity market. Applied Energy
195 (2017), 234–246. https://doi.org/10.1016/j.apenergy.2017.03.039

[15] Siamak Solat, P. Calvez, and Farid Naït-Abdesselam. 2020. Permissioned vs.
Permissionless Blockchain: How and Why There Is Only One Right Choice.
Journal of Software 16 (12 2020), 95 – 106. https://doi.org/10.17706/jsw.16.3.95-106

[16] Paul J. Taylor, Tooska Dargahi, Ali Dehghantanha, Reza M. Parizi, and Kim-
Kwang Raymond Choo. 2020. A systematic literature review of blockchain cyber
security. Digital Communications and Networks 6, 2 (2020), 147–156. https:
//doi.org/10.1016/j.dcan.2019.01.005

[17] Pavel Vasin. 2014. Blackcoin’s proof-of-stake protocol v2. URL: https://blackcoin.
co/blackcoin-pos-protocol-v2-whitepaper. pdf 71 (2014).

[18] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. 2019. Blockchain technol-
ogy overview. arXiv preprint arXiv:1906.11078 (2019).

[19] Shijie Zhang and Jong-Hyouk Lee. 2019. Double-Spending With a Sybil Attack
in the Bitcoin Decentralized Network. IEEE Transactions on Industrial Informatics
15, 10 (2019), 5715–5722. https://doi.org/10.1109/TII.2019.2921566

7

https://doi.org/10.1016/B978-0-12-812282-2.00007-3
https://doi.org/10.1016/j.apenergy.2017.03.039
https://doi.org/10.17706/jsw.16.3.95-106
https://doi.org/10.1016/j.dcan.2019.01.005
https://doi.org/10.1016/j.dcan.2019.01.005
https://doi.org/10.1109/TII.2019.2921566

	Abstract
	1 Introduction
	2 Background And Related Work
	2.1 Blockchain
	2.2 Audit
	2.3 Blockchain Audit
	2.4 Blockchain View

	3 Hyperledger Fabric
	4 Hyperledger Cactus
	5 BUNGEE
	6 View
	7 AuditView
	8 Evaluation
	9 BUNGEE Evaluation
	10 AuditView Evaluation
	11 Future Work
	12 Conclusion
	References

