
Object-Oriented Database Edit and Analysis System

Nuno João Rodrigues Gomes

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Pedro Manuel Moreira Vaz Antunes de Sousa

Examination Committee

Chairperson: Prof. Nuno Miguel Carvalho dos Santos
Supervisor: Pedro Manuel Moreira Vaz Antunes de Sousa

Member of the Committee: Prof. Flávio Nuno Fernandes Martins

November 2022

Acknowledgments

I would like to thank my family for the financial and emotional support, encouragement and care over

all these years for always being there for me, without them this project would not be possible.

I would also like to acknowledge my dissertation supervisor Professor Pedro Manuel Moreira Vaz

Antunes de Sousa for their insight, support and sharing of knowledge that has made this Thesis possible.

Thank the employees at Link Consulting who helped me and gave me their feedback.

My teachers during my childhood, for helping me understand how important it was for me to educate

myself and to be educated by others.

Last but not least, to all my friends and colleagues who helped me grow as a person and who were

always there for me during the good and bad times in my life. Thank you.

To each and every one of you – Thank you.

i

Abstract

Nowadays possessing data is essential for companies, scientist, governments and for that it is really

important to have efficient databases to store that data. There are different types of databases, all have

the same goal to store data, but with different methods and with it’s advantages and disadvantages.

In this thesis the main goal was to develop a system to edit and analyze an object-oriented database,

to implement this system I used Excel with the help of Visual Basic for Applications (VBA) and some

Python scripts to interact with the Application Program Interface (API) which therefore interacts with

the database. The database is printed in the Excel sheets, every sheet is a different class, every row

an object and every column a property of the object, the user can than edit the cells and update the

database. It is also possible to create charts with the data from the database so the user can analyze

the data. After testing I was able to realize that Excel is a very good program to edit a database due to

its already implemented features to edit data simply and it’s very intuitive tabular view of the data.

Keywords

Database Edition Tool; Object Edition;Import Database;Make Charts from Database.

iii

Resumo

Atualmente, possuir dados é essencial para empresas, cientistas, governos e para isso é muito impor-

tante ter bases de dados eficientes para guardar esses dados. Há diferentes tipos de bases de dados,

todos tem o mesmo objetivo de guardar dados, mas com métodos diferentes e com as suas vanta-

gens e desvantagens. Nesta tese o objetivo principal era desenvolver um sistema para editar e analisar

uma base de dados orientada a objetos, para implementar o sistema eu usei o Excel com a ajuda do

Visual Basic for Applications (VBA) e alguns scripts de Python para interagir com a Application Program

Interface (API) que por si interage com a base de dados. A base de dados é impressa nas folhas de Ex-

cel, cada folha representa uma classe diferente, cada linha um objeto e cada coluna uma propriedade

do objeto, o utilizador pode editar as células e atualizar a base de dados. Também é possı́vel criar

gráficos com os dados da base de dados para o utilizador poder analisar os dados. Depois dos testes

eu apercebi-me que o Excel é um programa muito bom para editar a base de dados por causa das suas

capacidades já implementadas para editar dados de maneira simples e sua vista tabular dos dados

muito intuitiva.

Palavras Chave

Ferramenta de Edição de Base de Dados; Edição de Objetos;Importar Base de Dados;Criar gráficos de

uma Base de Dados.

v

Contents

1 Introduction 1

1.1 Context and Problem Description . 3

1.2 Goals . 4

2 Theoretical Background 5

2.1 Types of databases . 7

2.2 AppleScript . 11

3 Related Work 13

3.1 Tools for Database Editing . 15

3.2 Importing data into Excel . 15

3.3 Creating charts from a database . 17

4 Solution Description 19

4.1 ATLAS database meta-model . 21

4.2 System Architecture . 22

4.3 Example of Usage . 23

4.3.1 Instalation . 23

4.3.2 Control Panel . 23

4.3.3 Editing Data . 25

4.3.4 Create New Objects . 25

4.3.5 Create New Properties . 25

4.3.6 Generating Charts . 25

4.4 Implementation . 27

4.5 Error Display . 32

4.6 Implementation Challenges . 33

4.6.1 Concurrency Problems . 33

5 Evaluation 35

5.1 Comparing with the ATLAS web interface for editing . 37

5.1.1 Usability . 37

vii

5.1.2 Efficiency . 39

5.2 Pros and cons from Excel . 40

5.3 Efficiency Tests . 41

5.3.1 Setup Enviroment . 41

5.3.2 Import data from Database . 41

5.3.3 Update data to Database . 42

6 Conclusion 45

6.1 Conclusions . 47

6.2 System Limitations and Future Work . 48

Bibliography 51

A Appendix 53

A.1 Error Display Table . 53

viii

List of Figures

2.1 Hierarchical Database Model . 7

2.2 Network Database Model . 8

2.3 Object Oriented Database Model . 8

2.4 Relational Database Model . 9

2.5 NoSQL Database Model . 10

3.1 Database Import Popup . 16

3.2 Example of creating a chart in Superset . 17

4.1 Control Panel Interface . 24

4.2 Class List Table . 24

4.3 Add property to the table Interface . 24

4.4 Example of an imported class . 25

4.5 Example of input for a chart . 26

4.6 Example of a chart . 27

4.7 Implementation Diagram (1/4) . 28

4.8 Implementation Diagram (2/4) . 29

4.9 Implementation Diagram (3/4) . 30

4.10 Implementation Diagram (4/4) . 31

4.11 Example of an error . 32

5.1 Atlas Web App: List of classes with the list of Objects . 37

5.2 Atlas Web App: An object opened with a list of the properties 38

5.3 Atlas Web App: Tabular view . 38

5.4 Excel ATLAS: A sheet with the information of the Location class 39

ix

x

List of Tables

4.1 Update modes . 21

5.1 Efficiency Tests Table . 39

5.2 Import Performance Tests Table . 42

5.3 Create Objects Performance Tests Table . 42

5.4 Create Properties Performance Tests Table . 43

5.5 Alter Properties Performance Tests Table . 43

A.1 Error List . 54

xi

xii

Acronyms

API Application Program Interface

JSON JavaScript Object Notation

SQL Structured Query Language

VBA Visual Basic for Applications

OS Operating System

XML Extensible Markup Language

xiii

xiv

1
Introduction

Contents

1.1 Context and Problem Description . 3

1.2 Goals . 4

1

2

With the exponential increase of the usage of technology in our lives, it has became more and more

important to save data, data about us, data about our surroundings, data about other species, to store

that data we use databases, the data is stored in tables with rows corresponding to the number of

records of the table and columns with the properties we want to save for each record.

Having a system where it is possible to import a database and analyse the data, create charts,

tables and even being able to edit the database in a tabular view is very useful for an easy and intuitive

interaction with a database.

This thesis is about how to find a method to export, edit, analyze and then import again to the

database with an object oriented interface, it is also about facilitating the creation of charts and other

reporting information about a database, there are various types of databases, here there is more detailed

information about it in the Types of databases section.

1.1 Context and Problem Description

Link Consulting, the company with which I did this thesis in collaboration, has a product called ATLAS,

this product is used to help other organizations manage their projects and build an architecture for the

organizations. ATLAS has a timeline that helps the organizations seeing how the projects will develop in

the future, it has a time bar that can be moved to go in the past and future and see how the projects are

predicted to evolve and how they were in the past compared to the present. ATLAS is also very good at

collecting information from internal and external sources. [1]

ATLAS works with a database with an object-oriented interface, giving a small explanation, there are

repositories that work as a database, every repository has classes, the class has properties defined by

the creator of the class, it is possible to create objects that are associated with the class, and the user

can then fill the properties with values to store. For a more detailed explanation of how their database

meta-model works, it is explained in this section ATLAS database meta-model.

The ATLAS website is used to access the data in the repositories, every user has access to some

repositories, the user can see and edit the data in the website, but it is not very practical because the

user needs to edit object by object and class by class, so we decided to develop a system that helps

editing the database in an easier and more practical way.

Another problem Link Consulting wanted to solve was to find a program where they could create

charts, tables, or more statistics information to be able to make easier and more detailed reports about

the data they keep, which is very important taking into account that ATLAS helps organizations manage

their projects, so making reports with statistics about their strategies is really useful.

After researching about the already existing programs that could perform the tasks mentioned above.

Together we arrived at the solution, which was to use Excel to print the database data and from there

3

be able to create charts, tables, and more statistics from the data. Using a simple interface that, as

mentioned before, can also be used to update the database in a simple way, rather than needing to

update object by object and class by class.

When developing the program, I had some expected problems during the implementation of the code,

some of this problems will be explained in the Implementation Challenges section.

1.2 Goals

The objective of this work is to do a system with which we can have a intuitive, easy and efficient way

of editing a tabular database, the other objective was to have a way of creating charts of the data in the

database.

After unsuccessfully searching for already developed programs that would achieve this goals, we

came to the conclusion that a good program to develop this system would be Excel because it already

has a tabular view to see the data, it has a lot of developed features to create charts and more statistics

of the data, and it is a very intuitive program to use. When I started working on the Excel system, we

realized these goals would be applied:

• Importing classes from a repository: Every repository has multiple classes, the idea is to import

each class into a different Excel sheet, and every row represents an object and every column a

property of the objects.

• Edit Data and then update the database: To edit the data, the user can change the cells with the

properties values and then have a button that, when pressed, would see what was changed and

update the database.

• Create charts to analyze the data: Using Excel, it is really easy to create charts of data, using

the Excel interface the user chooses the chart type and then selects the cells with the data to do

the chart.

These goals were the initial ones, and of course, with the progress of the development of the system

and with the feedback of the ones who used it, there was an upgrade of what the program does. The

goals from the final result are more explained in the System Architecture.

4

2
Theoretical Background

Contents

2.1 Types of databases . 7

2.2 AppleScript . 11

5

6

2.1 Types of databases

”A database is a systematic collection of data. They support electronic storage and manipulation of data.

Databases make data management easy.” [2]

Here are some of the different types of databases:

• Hierarchical databases - As the name indicates, the data is arranged in a hierarchical way, can

be imagined as a parent-child relation, where the parent can have multiple children but the child

just has one parent. It works like an IT tree, the top node can have multiple child nodes, but the

child nodes can only have on parent. When representing in records like the common relational

databases every record has its own ID, the properties you want to save, and the parent ID which

points to their parent record. If a parent record is deleted, all it’s child records will be also deleted.

As advantage the database is really simple so it’s really fast to iterate it, as disadvantage the

database is really rigid, because for example if we want some child to have two parents, we need

to create two child records representing the same record. [3]

Figure 2.1: Hierarchical Database Model

• Network databases - It works the same way as the Hierarchical databases but the child can

have more than one parent, it is better to represent two-directional relations. It supports many to

many relationships which makes it easier to search in the database, giving it faster data access,

flexibility and accessibility. As disadvantage it is difficult for first-time users and it is not good for

maintainability, because it is really complicated to change the database model, any new information

can alter the entire database. [4] [5]

7

Figure 2.2: Network Database Model

• Object-oriented databases - A database that is made in object format, it is easier to call an object,

it is possible to refer to other objects using references. The objects can be really complex with a lot

of properties and methods, this model is excellent when using object oriented languages like Java,

so when using objects we can store the whole object in the database and retrieve the next time

we want it, to store an object in a relational database we would have to decompose the object to

store all the properties as a table. As an advantage it makes the code much simpler and cleaner if

using an object oriented language, there are no JOIN’s like in a Structured Query Language (SQL)

database so if it is necessary to do that, it would be more efficient. As disadvantage it is slower

doing a simple lookup in the database, and there is not a universal language like SQL to store the

data, every language might have it’s own syntax for the database usage. [6]

Figure 2.3: Object Oriented Database Model

8

• Relational databases - These are the most commonly used type of database, uses SQL as

Application Program Interface (API) to communicate with the database, stores in tables, each row

is an record with a key (unique identifier), each column is used to store a value. This makes it

easy to identify relations between the data, the relations between the tables is made using the

keys to identify the records. As advantage it is really good at categorizing data, you can modify the

database without having to restart everything or changing any application, easy to use for having

a common language to interact with the database, it has security because you can limit who can

access the database and it has multiple access to the database from different users at the same

time. As disadvantages, everything needs to be very well planned out, when doing the database,

it is required to have developers maintaining and optimizing the database, is inflexible because if

you want to add new data, you need to update the scheme model of the database and is not very

scalable because it does not have very good performance using multiple servers. [7]

Figure 2.4: Relational Database Model

• NoSQL databases - A NoSQL database does not have a rigid schema, which makes it easy to

scale and, therefore, good for large amounts of data. It allows for horizontal scaling, which is much

more affordable than vertical scaling that is needed in relational databases. There are four different

types of NoSQL databases:

– Key-value Pair Based: It is the most basic model, it saves a hash table where there is a key

that can correspond to a JavaScript Object Notation (JSON), blob, string, integer, etc. It is

used to avoid having to make a scheme of the data.

9

– Column-oriented Graph: It works with separate columns, so every column is treated sepa-

rately, so it delivers high performance on aggregation queries like ”SUM”, ”COUNT”, ”AVG”,

”MIN”, etc.

– Graphs based: It is a graph where every node is an entity and every edge is a relation

between nodes, a graph database is a multi-relational which makes traversing through their

relations very quick

– Document-oriented: Instead of using tables like in relational databases, it uses JSON or

Extensible Markup Language (XML) to store the data, as there are no prepared properties to

write on JSON each object can have different properties, making it very flexible.

As advantages it permits using Big Data, it allows horizontal scaling with fast performance, can

handle data that are structured and also data that are not structured, do not need a high-performance

server just for the database, simple to implement, and very flexible (easy to save different data).

As disadvantages, there are no standardized rules to develop, not good with relational data, has

a learning curve for new developers, and does not have consistency (having multiple transactions

performed simultaneously). [8]

Figure 2.5: NoSQL Database Model

10

2.2 AppleScript

”AppleScript is a scripting language created by Apple. It allows users to directly control scriptable Mac-

intosh applications, as well as parts of macOS itself. You can create scripts—sets of written instruc-

tions—to automate repetitive tasks, combine features from multiple scriptable applications, and create

complex workflows.” [9]

In the Solution Description I will mention how the system uses AppleScript in the Mac Operating

System (OS) version of the solution, so the program can call terminal commands, in our case it is

needed to call python scripts and it is also used to create an alias of the Excel file in the installer script.

AppleScript is a scripting language like, for example, shell scripting which is used in UNIX Operating

Systems, but is used to interact with the Mac OS features, here is a list of some of the capabilities of

AppleScript:

• Tells applications to run certain commands, the commands are very diverse like change configu-

rations, do tasks, etc...

• Interact with folders, files, for example: create folder, edit names of a file, move files, etc...

• Create an alias of a file

• Editing System Preferences, like change screen resolution, change desktop background, change

dock setting, etc...

• Call commands in terminal and retrieving the result of the command

AppleScript has a lot of more features, it can do almost everything an user manually can, it is really

useful to automate tasks and that is the reason I choose to use it.

11

12

3
Related Work

Contents

3.1 Tools for Database Editing . 15

3.2 Importing data into Excel . 15

3.3 Creating charts from a database . 17

13

14

After researching about solutions that are close to mine, I realized that there was really not much

made in this regard. I could not find any tool or prototype to edit an object-oriented database and not

even much about visualizing and analyzing. I was able to find some tools to do what we need, but only

for relational databases which are the most common ones, these tools could not be used because the

ATLAS meta-model does not work with a relational database, and for that reason it was necessary to

develop an independent solution without these tools.

3.1 Tools for Database Editing

On the Internet, it is possible find some examples of programs that allow an user to manage a relational

database, create SQL queries, create tables, add variables to the tables. This is very common, there

are a large number of applications that do it.

Then there are some programs that will let you, as an addition to those features mentioned just

before, edit the database inline, so the program will open a window with the data of the database tables

and will let you edit directly in the lines.

Here are some examples of programs that will let you do this:

• DbVisualizer [10]

• SQLGate [11]

• Postico [12]

These tools are used for relational databases, so they would not be able to solve the problem because

the goal is to be able to edit and visualize a database with an Object-Oriented interface, which would not

work with this programs.

3.2 Importing data into Excel

Excel has features that let the user import relational databases into Excel, it is a very good feature for

data analysis, to create custom tables, charts and do statistics about the database data.

In the Excel tab Data, there is an option called Get Data, which then has inside an option called

Get Data from SQL Server, then you need to insert the credentials to connect to the database and, of

course, log in the database to authenticate, then there are some different options like importing a table

or selecting just some columns from the table or running a SQL query to get some custom data.

15

Figure 3.1: Database Import Popup

In the Transform Data button that appears in Figure Database Import Popup is where we can choose

in a more custom way what to import in an interactive way using Power Query, it let you choose which

columns to import and it even has a very interesting feature called Column from Example, which lets you

write what you want to import as an example for the first row, for example if you have a column for First

Name and one for Last Name and you write in the example the first name and last name of the first row,

it will detect that you want those columns and will get those two columns for all the rows. So Excel really

has a lot of possibilities so we can import the data in the most useful way.

It is also possible to import data from a website, so if we have a website that has a table in it, for

example, we can connect the website to the Excel and it will detect the table and import that data, you

can also edit the data the same way before with the Transform Data button. When Excel has made a

connection with a database or a website, it will then have the option to refresh, which when clicked will

automatically get the data again in case it has been altered.

In the Windows OS there are also other options to import data, import from Azure, Microsoft Query,

Microsoft Access, you can also import from files: Text files, CSV, JSON, PDF, and some other options.

These options are only available on Windows OS, in Mac OS it is not possible to use them.

These functionalities are, of course, only used for importing data, the connection Excel makes with

the database is read-only, so it cannot be used to update the database.

16

3.3 Creating charts from a database

There are some online tools that create charts from databases, again the tools are prepared to receive

data from a relational database, with a tool called Superset, the user can connect to a database and

then do queries to get the data that will be later used to create the charts. The user can choose the

tables and columns to create a data set that can also be used to create charts. This tool has a big

number of types of charts that is possible to create, from traditional charts to more complex ones, maps,

3D charts, etc... [13]

Again, this tool cannot be used in this solution because the database we want to analyze is not

relational and does not use SQL.

Figure 3.2: Example of creating a chart in Superset

17

18

4
Solution Description

Contents

4.1 ATLAS database meta-model . 21

4.2 System Architecture . 22

4.3 Example of Usage . 23

4.4 Implementation . 27

4.5 Error Display . 32

4.6 Implementation Challenges . 33

19

20

Here I will explain how I did my solution, an explanation from the ATLAS database meta-model, a

clarification about how I implemented it, an example of how it is used and give a little look at some issues

I had during the development.

4.1 ATLAS database meta-model

In this section, I will explain how the metamodel for the ATLAS database works.

The database system works with repositories, every repository is like a small database, it has

classes, in which every class must have one and only one repository, and then there are objects which

are also from one and only one class. Then every object has properties to store information. The

database works like an object-oriented database, it has objects and relations between the objects.

There are six different types of properties that the system accepts, those are (Numeric, Text, Boolean,

Date, Hyperlink and Reference), that will of course change the way we need to write the values in the

Excel and the way we need to update to the database.

The Reference properties are used to reference other objects, there is also an option to have a Class

Restriction list, so that the reference can only be from object of classes that are in that list.

There are also profiles, profiles are like filters for the repositories, so if the user uses a profile in a

repository, it will only present the classes that are filtered for that profile, instead of all the classes from

that repository.

The ATLAS API is also ready when doing an update of the database to receive a parameter that is

called update mode, it lets the user choose which type of update he wants, for example, just to do an

update without erasing anything, or an update where it just adds new data, does not change anything

that was already there. Here is a table with the modes that exist:

Table 4.1: Update modes

Update Mode Explanation

Non Destructive - Additive It only adds the new properties, it does not change properties that
already have a value, this is the default mode.

Non Destructive - Update Only It does not add new values to empty properties, only updates prop-
erties already with a value.

Destructive Update It changes everything to be like in the requests we are doing, it over-
writes everything.

New Data Only It only writes new data, so in the Excel only let’s you create new
objects and properties.

Missing Data It can only edit blank properties, it can also create new objects.

Merge update It merges the information that is in the request with the information
already in the database.

Delete It deletes the objects that are referenced in a request with this mode,
does not work for this system because it is not made to erase objects.

21

4.2 System Architecture

The system uses two programming languages (Visual Basic for Applications (VBA), Python), there is

an Excel workbook, with a sheet called Control Panel, where there are inputs and buttons to do all the

actions available. The VBA code is used to manage the Excel workbook, it is also in the VBA code that

it is called the Python scripts. The Python code is then used to communicate with the ATLAS API. The

API then interacts with the database.

The system allows you to do the following actions:

• Importing all classes and properties from a repository

• Importing some chosen classes and properties from a repository

• Edit Data and then update the database

• Create new objects

• Create new properties

• Create charts to analyze the data

I decided also to create an Installer, to make it easier for the users to install this system, the user

chooses a folder to install and the script will copy the files and create a shortcut for the Excel file in the

Desktop.

The system has an error display feature, which will tell in which sheet and cell the user is making

mistakes when editing the data. So it is easy to understand what is wrong with what you are editing. It

will be further explored later in this chapter.

I started by developing the Python import script, as it is the best way to get familiar with the API and

the best way to know what I would be working with.

The import has 2 important parts, first we get information about the classes we are importing, and

prepare a object list, from that information, we will then get the information for each object of each class

and write in the object list. After obtaining all the necessary information, it’s written all in an Excel sheet

and in a JSON file, as we cannot write in a opened Excel file, we need to write in a extra one, and then

within the VBA copy it to the one opened by the user. I added later the option to import just some classes

and just some properties.

Then I decided to make the python script to update the database with the alterations the user had

made on the Excel file, for efficiency reasons, instead of updating all cells, we will use the JSON file and

the extra Excel to compare what are the differences between the edited one and the original one, after

verifying if the type of variable is correct and every edition is correct than we do the updates.

22

In the VBA code is implemented the control over the Excel workbook, it is used to call the python

scripts, clear the sheets if requested, create custom drop-downs depending on the data received, making

sure there are no errors and if there are create popups to inform the user of the errors.

The most complex VBA script is the chart creation, it will automatically get all the values from a

property in all the class’s objects, and it will create a chart with just a Y axis or with also an X axis. More

complex charts can be easily created using the intuitive user interface from Excel.

When the code was all finished and I started testing the code in a Windows computer, taking into

account I developed the code in the Mac OS, I realized that I needed to make a version just for Windows

because in Windows the calls to the Python scripts would have to be with a different method and the

installer also had to be different because installing in a Mac OS requires different Python libraries than

in Windows.

4.3 Example of Usage

4.3.1 Instalation

To start using the program, first the user needs to choose which operating system he is going to use

the system in, to install the program it’s used a Python script called install.py, it will ask the user for a

directory to install the program, then check if it was already installed there and if so ask the user if it

wants to repair the program by installing on top of the files. It will install the files, install the Python pip

libraries and create a shortcut for easy access to the user.

4.3.2 Control Panel

Then when the user opens the shortcut file, this is the start Interface from the Control Panel sheet, there

is one thing that is the most important and will only be written once and that is the path for your Python

executable, the path the computer calls when you run a Python file. The second obligatory input is

the repository name, it is needed to be able to import any repository, then there is the profile which is

optional and works like a filter for classes, so instead of importing all classes, it can have a profile already

prepared to just import a few chosen classes, then there is the update mode, which is a dropdown to

choose the mode you want to import with, it is only used in the Update Database function. To import a

repository, click on the Import All Repository button.

When you want to choose just a few classes then you need to click in the Get Class List button which

will give you a list of classes to choose from. There is a column called Option with three options: All

Properties, Only These and Except These, with All Properties it will import all properties of the class,

with Only These it will import only the ones on the list to the right, and with Except These it will import

23

Figure 4.1: Control Panel Interface

all but the ones on the list to the right.

Figure 4.2: Class List Table

Then two drop-downs, one for the class and another for the property will appear and a button called

Add Property will also appear to write the properties on the Properties column in the Class List Table.

Here is the list:

Figure 4.3: Add property to the table Interface

Showing now the result of an imported class, here is where you will be able to read, edit and analyse

all the data imported. Every class will be in a different Excel sheet, the first row is the type of the property,

the second row is the name of the property, and from there on, each row represents an object of that

class, and each column represents a property from the class, with their values from the objects. The

text in red font means that it is a reference.

24

Figure 4.4: Example of an imported class

4.3.3 Editing Data

As mentioned before, it is possible to edit the data, there are three types of edition the user can do:

alter a value to a different value, add a value to an empty cell, and erasing the value of a filled cell, if all

the types the user edited are correct, it will be updated in the database, after you click on the Update

Database button on the Control Panel sheet. In the Figure 4.1 you can also see an Import Mode input

that has a dropdown with a few different modes of updating the database, these are very important

because if you use the wrong one you may end up erasing most of the data, you also need to check

because some modes will only let you add new data, or just let you edit already filled data so it is really

important to choose the right update mode.

4.3.4 Create New Objects

The system also lets the user create new objects, for that the user needs to add a value to the name

column in the cell after the last filled row, it is only required to add a name property, but if wished, the

user can already add more properties, and it will all be added.

4.3.5 Create New Properties

The user can create new properties too, for that he needs to add to the cell next to the last filled column

in the sheet, it is required to add information to two cells, in the first row cell it is written the type of

property, in the second one just needs the name he wants for the property, like it is done for the other

properties, if it’s one from the regular types of properties, he would just need to write ”Type:Numeric” for

example, if it’s a reference you need to add a type with a name you wanted, it can be already created

or a new one, then it needs an inverse type, and if desired you can also restrict the classes for this

references using the Class Restriction.

4.3.6 Generating Charts

In the Control Panel, there is an option to easily create simple charts with one or two axis, the user can

create charts by choosing which property from each class to use, and the system will automatically get

the values and put them on the chart.

These are the types of charts the system can create:

25

• Bar

• Line

• Line with Markers

• Column

• Pie

• Area

• Doughnut

• Dispersion

• Dispersion with Soft Lines

• Dispersion with Soft Lines and Markers

If the user wants to create more complex charts with grouped data or with some more complex types

such as 3D charts, it can be easily created using the features of Excel to create charts.

This is an example of input the user can use to do a chart, the Title is the title of the chart, the Type

is the Type of chart, then chooses the Class he wants the properties from, after that two dropdowns will

appear with the properties of the classes so you can choose which values to use.

Figure 4.5: Example of input for a chart

This would be the result of a chart with these inputs, this chart was created from the data that

is shown in the Figure 4.4, with Employees Number as the Y Axis and Name as the X Axis, it then

automatically fills the legend for the Axis and for the title.

26

Figure 4.6: Example of a chart

4.4 Implementation

Here, I will explain paragraph by paragraph what each module and Python script does and I will also

present some diagrams with a general explanation of the system.

Starting with the installer, there are two versions of the installer, one for Windows and another for Mac

OS, but in reality it ends up doing exactly the same, just with different Python libraries. The installer is

a Python script called install.py that starts by asking for a directory to install the program, then it checks

if this directory was already used and if so asks if you want to repair the program, by installing on top

of what you already had, it will then copy the files to the designed folder and it installs the pip libraries

needed to run the program, in the Mac OS it needs to copy a AppleScript file that will then also be called

by the VBA, to end it will create a shortcut/alias in the Desktop for easy access to the program.

The VBA Module1 corresponding to the Import All Repository button starts by getting the inputs for

the Python script from the cells that the user is expected to edit, then it is called the login pop-up asking

for the username and password to authenticate in ATLAS API, it will store the login credentials, so the

user does not need to always insert the login data. After erasing any extra sheet if they exist, it calls

the importRepository.py script (when calling the Python scripts the code will differ in the Mac OS and

Windows version, in the Windows version you just have a method you can call to run commands on the

console, in Mac OS you need to call an AppleScript which will then receive your terminal commands

and run them), the script will get information from the ATLAS API depending on which parameters are

sent to the function. In this module, it will call to import all the repository so it will get all the classes

and properties from that repository. After the Python script ends, the VBA code will copy the workbook

27

created by the Python to the actual workbook that the user is now using. To finish this module it updates

the dropdown used in the Chart creating inputs, it will be further explained in the correspondent module.

The importRepository.py script is used to get information from the ATLAS API to the Excel system, it

is prepared to import all classes from a repository or just getting some classes and properties, depending

on the inputs the script receives. It has 3 Python classes to store information from the ATLAS API, the

Class, Object and Property. The script starts by organizing in a array which classes and properties

to get in case the user just wants some classes and not all of them. The backup Excel workbook will

then be configured to be written, and then the script starts calling the API to obtain the objects of the

repository. It verifies which type of variable the object is and print it in Excel using the function of the pip

library xlsxwriter for that type of variable, at the same time we save all the data in the Python classes

I mentioned earlier. After iterating over every object we set the size of every column depending on the

size of the string written there and it’s created a JSON file that stores the information of the Python

classes.

The VBA Module2 corresponding to the Erase Sheets button just erases all sheets of the Excel file

except the Control Panel sheet.

Figure 4.7: Implementation Diagram (1/4)

The VBA Module3 corresponding to the Update Database button, it gets the input from the Control

Panel cells, the python executable path and the update mode, it will do the login popup if the Excel does

28

not have the login data already stored, it will then call the updateDatabase.py script which will detect

the alterations to the Excel and update the database with them, after running the script it will read one

of two outputs from the Python script, one means everything updated without errors, the other means it

updated but one or more requests went wrong.

The updateDatabase.py script starts by creating a request queue, which is a class that stores every

request for the API to do at the end of the script, if there are no errors in the user alterations, it iterates

the backup workbook generated in the importRepository.py script and compares with the sheets the user

altered, when it detects any cell different, it verifies if the type of variable the user inserted is correct and

does a lot more verifications if it is a reference, all the errors that can happen are described in the Error

Display section, if there is no error, it will add the request to the queue. This is for the easy cases where

just some property is edited, then there are some cases where we need to do a lot of verifications, for

example, if the user creates a new property, it needs to check if the types and everything correlates. In

the end, if there are no errors, it will run all the API requests and return an output if there is no problem

with the requests, and another if some request does not work.

The VBA Module4 corresponding to the Get Class List button, the module gets the same inputs as

the VBA Module1 and will call the getClasses.py script which will get the name of the classes and the

name of the properties, after running it copies the table with the class names from another workbook

created by the script and prepares the dropdown by getting the property list from the script to add the

properties to the property column in the class list table.

Figure 4.8: Implementation Diagram (2/4)

29

The getClasses.py script is used to prepare the class list table, which will then be copied by the VBA

code, starts by getting information about all classes, and writes the table in a workbook, then writes also

a list separated by commas of all properties of each class, which will then be used in the dropdown to

add the properties to the column in the class list table.

The VBA Module5 corresponding to the Erase Class List button, it is used to erase the class list

table, and it also erases the dropdown to add properties.

The VBA Module6 corresponding to the Import Class List button, it imports the information from

the repository but only the classes and properties that were selected by the user, the code is almost

equal to the VBA Module1, the only difference is that when it calls the getRepository.py script, it’s sent a

parameter informing that it needs to only get some classes. Then the getRepository.py script will iterate

the Excel cells with the class list table in the Control Panel sheet and will store in an array the classes

and properties to obtain.

The VBA Module7 corresponding to the Create Chart button is the most complex VBA module, it

reads the info from the Chart inputs and immediately gives an error if any is not filled. Then it will get the

address of the cells the user selected to print in the graph, by comparing the name of the columns with

the property you chose. After that it creates a sheet called Charts to print the chart, then depending on

the type of chart chosen, it will have different code, when the chart is all configured with the name, name

of axis and the data inserted, it runs a mathematical function to calculate the coordinates of the chart so

it prints in grids of 2 charts by row.

The VBA Module8 corresponding to the Erase Charts button simply erases the sheet called Charts

where the charts are printed.

Figure 4.9: Implementation Diagram (3/4)

30

The VBA Module9 corresponding to the Logout button, erases the login data that VBA stored when

the user used the login pop-ups, it is helpful if the user wants to logout and login with a different account,

the Logout button only appears on the Control Panel when you have already logged in.

The VBA Module10 corresponding to the Add Property button, it reads the Class and Property inputs

and inserts the property chosen in the Properties column in the Class List table for the chosen class. If

there’s none there it just writes it, if there is already one, it adds with a comma. The inputs and the Add

Property button appear only when the Class List table is called in the Get Class List button.

Figure 4.10: Implementation Diagram (4/4)

There is also a code that runs when the user opens the workbook, it works like a listener that runs

every time the workbook is opened. The code prepares the Control Panel sheet for the utilization of

the user, it prepares the class and type dropdown in the Create a Chart section, and it adds the values

to the update mode dropdown, it also checks if the Class List table is present to get the Add Property

dropdowns.

To end, there are also two listeners that are expecting the user to change the Classes dropdowns, to

then change the Properties dropdowns. It is used in the Chart inputs and in the Add Property dropdown,

but with different methods, the chart listener will get the properties cell by cell existing in the sheet of the

corresponding class, the Add Property dropdown, it saves an array with all the properties when we get

the Class List table, so it just needs to assign the correct element of the array to the dropdown.

Color Legend:

• VBA Modules

• Button Names

31

• Python Scripts

4.5 Error Display

As we are using an application like Excel, it will give a lot of freedom to the user, that means that there

are a lot of space for errors that can happen.

There are two types of error displayed, the errors that will just give a simple error message, and

errors that will have information about which cell of which sheet is being incorrectly used. The system

will also print the error if there is an exception in the Python scripts.

There is also the fact, that this is not a system that is open to any user and is intended only to be

used by Link Consulting employees. That means that the users that are using the system already have

a lot of knowledge about it and after reading the User Manual it makes it even easier to use.

A table with a list of the errors that can happen and their explanation is presented in the appendix,

Error Display Table.

In the picture below, we can see an example of an error, when an user has edited the data and tried

to update the database, but he had an error in his edition, in this case it means that in the sheet/class

Location in the cell D8 it is expected a numeric value and the user inserted something else.

Figure 4.11: Example of an error

32

4.6 Implementation Challenges

The implementation issues started when we decided we were going to use Excel, because VBA would

have some missing functionalities we would need, for example it would not be possible to call the ATLAS

API, which is fundamental for the system to be able to import data from the database and to change the

data on the database also.

To solve this issue, I had to create Python scripts that make the interaction with ATLAS API and then

call these scripts in the VBA code.

In Windows operating system, it is really easy to call scripts with VBA, but as I was developing

with a Macintosh I quickly discover that to call a script in VBA using the Mac OS I would need to use

AppleScript, to be able to run the Python scripts.

Those were the main issues in terms of development, but then of course there were challenges

because it was my first time using VBA and it is not a very intuitive programming language.

Another issue I would definitely consider difficult, was to control what the user can do in the Excel

sheets, as Excel is such an open program, it let us do so many different things, I had to be really careful

with what the user could do that would crash the program.

4.6.1 Concurrency Problems

The solution does have some concurrency problems, concurrency means when two or more computers

are using an IT system at the same time, which by itself does not need to be a problem, nowadays

almost every system needs to be ready to receive multiple concurrent requests.

This is the main cause of problems that can happen when updating the database, so if a user

imported a repository and while editing someone changed something in the repository, once the user is

going to update the database, the update is going to be made based on how the repository was when he

imported it, in many cases there might be no problem from that, but next I will show some concurrency

problems that can happen in this case, how the solution reacts, and what could be improved:

• Creating an object with a name that was used by a concurrent user, if someone creates an

object with the same name we later created, then the system will give us an error, but nothing

unpredictable will happen to the database, simply that requests will not work and will report an

error to the user.

• Editing an object that was erased by a concurrent user, if an concurrent user erases an object

you are editing, the system will give an error because it is trying to edit an object that does not

exist and the alterations made will not occur because the object was deleted.

33

• Editing a property that was erased by a concurrent user, if an user deletes a property that you

are editing a value or adding a new value, the system will work normally and will not give an error,

but the values of that property in every object will all be erased.

• Using a reference to an object that was erased by a concurrent user, if someone erases an

object that you referenced, the system will create a new object with the name of the object that got

erased, of course the reference will work, but if the object had values in the properties that were

useful for the user, unfortunately all the values would be lost.

No solution for this problem ended up being implemented, but now I will suggest a couple of solutions

that could be done to solve this problem:

• One solution, that could solve this problem but would require an entire makeover of how the up-

dates to the database were made would be having a listener that every time the user edits a cell

it would automatically update the database, it would only need to verify if that property was edited

before the edition and if so give a warning to the user and if not update the data, this is the solution

that would be better to solve this problem in my opinion but would not be efficient at all, because

every time VBA calls a Python script, which would be needed, Excel does not let you edit until

the script is run. So it would be good to ensure everything is well updated without issues, but the

performance would be so bad that it would be practically unusable.

• Another solution would be to have a locking mechanism where there could be a button, for exam-

ple, to lock the repository or even just to lock some classes of the repository and while the user

was editing the data no other user would be able to do so, which would solve this problem, but

I also think it is not a very efficient solution because there is no need to stop other people from

editing the data at the same time, when there could be just one or two or even zero conflicts in the

edited data.

• The best solution in my opinion would be to do the edition as it is now, so the user edits what

they desire and then click on the update button, after checking if there are no errors and before

actually updating, using the logs from the ATLAS API updates to check if there are any conflicts

between what the user edited and some differences that might have happened. I think this is the

most balanced solution because it does not lock the database so everyone can still edit and in

terms of performance even though it would be slightly worse than it is now, it would not make a big

difference and would still be very usable.

34

5
Evaluation

Contents

5.1 Comparing with the ATLAS web interface for editing 37

5.2 Pros and cons from Excel . 40

5.3 Efficiency Tests . 41

35

36

Here I will evaluate my solution, first I will be comparing it in terms of editing the database with the

actual ATLAS web interface, to see which one is more practical and efficient, do an analysis of the pros

and cons of using Excel to do this program and show some performance tests.

5.1 Comparing with the ATLAS web interface for editing

In this section, I will compare what is better to edit the ATLAS database, the ATLAS web application, or

my solution, I will check in terms of usability and efficiency.

5.1.1 Usability

To visualize the database objects, in the web application, you choose a repository and have access to

the list of classes of that repository and when you click on a class, a list of objects for that class appears.

Figure 5.1: Atlas Web App: List of classes with the list of Objects

Then if the user wants to see the properties of an object, needs to click on an object to open a

popup which will then let him see the properties of the values, sometimes the properties are divided in

categories so the user needs to change between the categories to access all the properties.

To edit the properties on the web app the user needs to click on the pen icon on the right of the

properties, then a input box will appear to insert the value, then after editing it is necessary to click in a

confirmation icon, and after editing all the properties it is still needed to click on the Save button for the

alterations to be made.

37

Figure 5.2: Atlas Web App: An object opened with a list of the properties

The ATLAS web app also has a tabular view, in every class the user can open a tabular view, he

needs to click in the three tabs of the class, and then a couple of options will appear, one of them being

the tabular view. Once the tabular view is open, the user will be able to see a table with only the name

of the objects, if the user then wants to see the properties, needs to choose to add a property to see

using the plus button. So if the user wants to have a global view of the class he would have to choose

all the properties one by one, which is not very pratical, and when he wants to change from one class to

another he would have to go back to the page in the Figure Atlas Web App: List of classes with the list

of Objects and do the same for another class.

Figure 5.3: Atlas Web App: Tabular view

In my solution the user only needs to import the repository, after a few moments of the importing

loading, every class will have a sheet, in every sheet there is a list of objects row by row in which every

38

column is a property.

To edit properties the user just needs to edit the cells without having to click in an icon every time

he wants to change a property, than after editing everything desired, the user just needs to click in the

Update Database button that will verify if everything is correct to be updated and then it updates, if that

is the case. The user can also create objects just by adding a value to the cell after the last row with a

value, in the web app you need to click a button and then insert a name in a popup.

Figure 5.4: Excel ATLAS: A sheet with the information of the Location class

So as we can see in terms of usability, my solution is a lot more practical and takes a lot of less

time to edit a number of objects than using the ATLAS web app, the design of the web app is a lot more

appealing than my solution, but using a program like Excel does not let me do designs like in a web app.

5.1.2 Efficiency

In this section, we will check which solution is more efficient, I will use a table with different tests and the

time both solutions took to see each one is faster.

The table shows only the time it took to edit the objects, because when you run the update database

function in my solution, the time it takes to run will be highly dependent in the amount of data you have

imported in the Excel sheet, so it is not easy to test how many time it would take.

Table 5.1: Efficiency Tests Table

Test Details Excel ATLAS Time ATLAS Web App Time
Alter 6 properties in the same object 36s 40s
Alter 3 property of 8 different objects of the same class 55s 1m56s
Alter 3 property of 3 objects of different classes 1m3s 1m32s
Create 6 new objects of the same class 13s 31s
Create 2 new property, one of type text, and another of type reference 26s 37s

From these results, we can observe that my solution is easier to edit the data, because it is really

simple, you do not need to always be opening popups and it is all in one tabular page. The time it then

takes to update the database will depend on the amount of data inserted into Excel. But with these time

39

differences in editing the data, it will easily be faster even with the update function having to do a lot of

verification’s to check everything is correct and then as it uses Python is always going to be slower than

the languages used in website’s technology.

It is necessary to remember that these results are always going to depend a lot on the performance

of the computer used, the speed of the Internet, and some other external factors, so the same tests I did

here could have been completely different if tested in another computer, but even if it was used a slow

computer or slow internet, I believe that the difference of the times would be even more beneficial for my

solution.

5.2 Pros and cons from Excel

As every other development decision, there are advantages and disadvantages to using Excel for this

solution, as an advantage you have a very good program for a tabular view, with already very good

features for data editing and analysis, as disadvantages Excel allows the user to change everything, so

it is really hard to do an interactive interface, so the user cannot crash by editing the wrong cells. The

fact that the users will be all just employees of the Link Consulting company helps, so its known that

they are qualified to use the system.

Advantages:

• Very known and commonly used program: Microsoft Excel has existed since 1985, most com-

puter users are familiar with Excel.

• Intuitive Interface: As Excel is such a known program, it is really easy to use it, even if you as user

do not know how to do something, there is always a lot of tutorials online, so everything becomes

very intuitive.

• Easy to do charts from the data: Excel has features to create charts from the data in the sheets,

the user selects a type of chart and then chooses the cells with the data for the chart.

• Use formulas to analyse data: The formulas Excel has, helps the user do some mathemati-

cal calculations, those calculations can be useful to make statistics of the data, getting average

numbers, max, min and many other formulas.

• Other features that make it easy to edit data: Excel has also very interesting features to edit

data, it has a suggestion system that can help rewrite values that are similar or alike, there is also

the drag option to copy, where it can detect patterns and will continue the pattern for the cells you

dragged.

40

Disadvantages:

• Gives a lot of freedom to the user: Normally, giving freedom to the user is a good thing, but in

our case, since I built a system in which some cells cannot be edited without the system having

some bugs, it is a problem for me that the user can edit everything.

• Users need to know how to use the program, need to read the user manual: A first time

user maybe would have some trouble understating how the inputs and buttons work, that is why I

created a user manual.

• The user needs to have Excel and Python installed: With a web application, there is no need

to have anything installed on the computer, but with this solution the user must have Excel and

Python installed to use it.

• Does not have a very intuitive design: It is difficult to create a intuitive and attractable design in

an Excel sheet, so the design is very simple but very practical also in my opinion.

5.3 Efficiency Tests

5.3.1 Setup Enviroment

Here I will show the setup I used to do these tests:

• MacBook Pro (16 inches, 2019)

• CPU: 2,6 GHz Intel Core i7 of 6 cores

• RAM: 16 GB 2667 MHz DDR4

• GPU: AMD Radeon Pro 5300M 4 GB

5.3.2 Import data from Database

To test the importing from the database, I created 10 classes, each class with 50 similar objects with

only Name property, and I will import different amounts of classes and see how much time the system

takes.

This values are not definitive, this means that the values vary from test to test, but the values are

always around this numbers, we can see the system takes at least 4 seconds to be able to import one

class and then importing each one has a difference of around 0,30 seconds, of course this happens

because the classes are all similar with the same very simple objects, otherwise each class would have

a different import time.

41

Table 5.2: Import Performance Tests Table

Test Detail Time
Import 1 Class 4,44s
Import 2 Classes 4,71s
Import 3 Classes 4,79s
Import 4 Classes 5,15s
Import 5 Classes 5,38s
Import 10 Classes 7,67s

5.3.3 Update data to Database

Here I will do 3 different tests: Creating objects, Creating Properties, and Editing Properties.

Create Objects

To test the creation of objects I will do three different environments, one where Excel only has the

class we are creating the objects, one where it has extra 100 objects with two extra classes of 50

objects that are not being changed, and one with 300 objects with six classes of 50 objects that are also

unchanged.

Table 5.3: Create Objects Performance Tests Table

Test Detail Time with no extra objects Time with extra 100 objects Time with extra 300 objects
Create 1 Object 6,4s 7,39s 8,02s
Create 2 Objects 7,25s 8,77s 9,11s
Create 3 Objects 8,51s 9,47s 9,65s
Create 5 Objects 9,43s 10,1s 10,99s
Create 10 Objects 13,45s 13,74s 14,32s
Create 30 Objects 27,33s 28,12s 28,68s

We can see that running an update is always going to take at least around 6 seconds, taking into

account that after every update, all the classes that were previously imported will be imported again to

ensure everything is well updated, so that takes around 4 seconds according to the results of the table

Import Performance Tests Table, so 2 seconds to do the verifications and edit the database. We can see

that the extra objects to verify take sometime to be verified, even though nothing is altered in them.

Create Properties

In these tests I will only test with just the class we are editing, there is no need to test with extra

classes again, because the results would be the same as in the previous tests. There will be two

different tests, one where all the properties will be of type Text and another of new references, so the

system will have to create the reference type.

We can observe again that it takes a minimum of 7 seconds to run an update to create properties

42

Table 5.4: Create Properties Performance Tests Table

Test Detail Time of type Text Time of type Reference
Create 1 Property 7,03s 7,61s
Create 2 Properties 7,22s 9,48s
Create 3 Properties 7,52s 10,07s
Create 5 Properties 8,67s 13,1s
Create 10 Properties 11,23s 19,66s

and every extra property will only take around more 0,20 to 0,30 seconds, this for a regular type, when

creating references types it takes longer, because the system needs to verify everything is correct, create

the new basetype, and then create the property.

Alter Properties

To alter the properties, I am going to use the classes I created to test the imports, so the classes with

50 objects. I will alter one of their property, each test with a different number of alterations, and each

column is the amount of classes in which I alter.

Table 5.5: Alter Properties Performance Tests Table

Test Detail Time with 1 Class Time with 2 Classes Time with 5 Classes
Alter 1 Property 6,77s 7,11s 8,93s
Alter 2 Properties 7,06s 8,09s 11,05s
Alter 3 Properties 7,18s 8,54s 13,31s
Alter 5 Properties 8,25s 9,87s 17,32s
Alter 10 Properties 9,62s 14,14s 27,05s
Alter 30 Properties 18,95s 29,82s 1m 9,25s

As in the other tests, an updates takes around 6 to 7 seconds, and every other change takes 0.3

seconds, we can see that the times are fairly linear to the amount of objects we are changing.

In my opinion the performance is not very good, because taking 27 seconds to create 30 objects or

even 1 minute and 9 seconds to edit 150 properties is too much time, this is one of the areas that should

be improved in the future.

43

44

6
Conclusion

Contents

6.1 Conclusions . 47

6.2 System Limitations and Future Work . 48

45

46

6.1 Conclusions

I started by trying to find an open source program that would make charts from a database and as the

database is not a common relational database, it would have been harder to find a program for this

purpose. After an unsuccessful search I realized it was needed to do a program that would do the charts

from the ATLAS API. Excel came up as a very good option because it would let us import the database

into a very commonly used tabular view and it would be really easy to make charts from the data, due

to the already implemented features of Excel. Then we realized that it was a good opportunity to also

create a program that can be used to edit the data in the database.

I started by developing the Python scripts that interact with the ATLAS API and get the data from the

database, format the data to print in Excel, store the necessary information in a JSON file to then be able

to compare the difference if the user wanted to update the database, after that I did the update script

which compares the original Excel imported with the one that was edited by the user, over the time this

script evolved by making more verifications for errors or adding more features, like creating new objects,

or creating new properties.

After having a first version of the Python scripts, I started developing the VBA code to call the Python

scripts and getting all the Excel functions to work. When a first version of the program was done, we had

a feedback session where it was suggested to have a way of only importing some classes and some

properties, instead of all at the same time, and with that I developed the Python script that gets the

names of the classes and properties so that the user can choose what to import in Excel.

Then I developed the system to create charts from the data imported, the code for this functionality

is all done in the VBA, it will get the data from the sheets and will create a chart using the info selected

by the user.

After all the functionalities were done, I developed the error display system to help the user know

where they are making mistakes, I did some polishing of the code, did some testing to make sure

everything was working properly, then I did a Windows and a Mac version because some functionalities

of the VBA do not work in the same way for the different operating systems, to end, I did an installer for

the program and a user manual to help the users learn to use the system.

This thesis was highly educational for me, I was able to learn a new programming language, and I

learned to do an installer. It was very important to me that the system I was developing was actually

going to be used by users, which normally does not happen on the other projects in the IT courses,

it made me have to optimize and polish everything, do extensive testing, and make an error display

system.

47

6.2 System Limitations and Future Work

I believe that no program is ever perfect, there is always something that can be added or something that

can be upgraded. In every software project it is very important to set a time limit, otherwise the developer

will be working on the project forever, always adding some feature or optimizing some other feature.

In my opinion the biggest limitation of my solution is that it takes some time to run the API calls and

the python scripts. Python is already not recognized as a performance language, so it always takes a

little longer than most other languages, and then the API calls are not optimized for this program, so if

they were, the program would become exponentially much faster.

There is also the question of the concurrency, I mentioned in Concurrency Problems, there can be

some problems when someone else edits the repository, in between the user imports to Excel and

updates the repository. For this, I think it needs to be analyzed the trade-offs mentioned before in the

section and check what is better for the solution security/performance.

Here are some new features and upgrades that the system could receive in the future in my opinion:

• Making a design for the Control Panel sheet: At the moment, the design of the Control Panel

is very simple, but Excel is capable of doing some interesting designs with buttons, images, and

more, it would be nice to have a more interactive design.

• Restricting the cells the user can edit, for safety of the program: To ensure that the program

runs without errors, it would be good to lock all the cells that are not supposed to be edited in the

Control Panel, because otherwise the user can create some bugs, this problem is mitigated by the

fact that the users are all Link Consulting employees, so they are qualified to use the program.

• Doing more efficient API calls specific for this program: As I mentioned earlier, the API calls

are not optimized for this program, which means that API sometimes gets too much unnecessary

information, there are some API calls that need to be done class by class, and it would be much

faster if there were a call for all classes. This change would be critical to improve the performance

of the code, because API calls are the part of the code that takes the most time.

• Deleting objects: For better usability of the program, it would be nice to have an option to delete

objects, it could be done by erasing the whole row of that object or with a special string to indicate

to erase the object.

• Deleting properties: Deleting properties would also be very good, so the user does not need to

go to the web app to do so, it could be done by erasing the column with that property or having a

special string again to erase the column.

• Create classes: Another feature that could be added in the future would be to create classes by

48

creating new sheets in the Excel workbook, the name of the class would be the name of the sheet,

to create a class the only required parameter is the name.

• Delete classes: To delete classes, the user would erase the sheet of that class, but it would be

better to ask for confirmation, because the user could do it by accident and losing an entire class

by accident would not be good.

49

50

Bibliography

[1] L. Consulting. Atlas - link consulting. [Online]. Available: https://linkconsulting.com/what-we-do/

products/atlas/#CTA

[2] Guru99. What is a database? definition, meaning, types with example. [Online]. Available:

https://www.guru99.com/introduction-to-database-sql.html

[3] Hevo. Working with hierarchical database systems simplified 101. [Online]. Available:

https://hevodata.com/learn/hierarchical-database-systems/

[4] C#Corner. What is a network database. [Online]. Available: https://www.c-sharpcorner.com/article/

what-is-a-network-database/

[5] C. B. Research. Network database model - computer business research. [Online]. Available:

https://www.computerbusinessresearch.com/Home/database/network-database-model/

[6] MongoDB. What is an object-oriented database? — mongodb. [Online]. Available:

https://www.mongodb.com/databases/what-is-an-object-oriented-database

[7] T. Target. What is a relational database? [Online]. Available: https://www.techtarget.com/

searchdatamanagement/definition/relational-database

[8] Guru99. Nosql tutorial: What is, types of nosql databases example. [Online]. Available:

https://www.guru99.com/nosql-tutorial.html

[9] A. Developer. Introduction to applescript language guide. [Online].

Available: https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/

AppleScriptLangGuide/introduction/ASLR intro.html

[10] DbVisualizer. Sql client and editor - dbvisualizer. [Online]. Available: https://www.dbvis.com/

[11] SQLGate. Sqlgate - the most intelligent ide for database. [Online]. Available: https:

//www.sqlgate.com/

51

https://linkconsulting.com/what-we-do/products/atlas/#CTA
https://linkconsulting.com/what-we-do/products/atlas/#CTA
https://www.guru99.com/introduction-to-database-sql.html
https://hevodata.com/learn/hierarchical-database-systems/
https://www.c-sharpcorner.com/article/what-is-a-network-database/
https://www.c-sharpcorner.com/article/what-is-a-network-database/
https://www.computerbusinessresearch.com/Home/database/network-database-model/
https://www.mongodb.com/databases/what-is-an-object-oriented-database
https://www.techtarget.com/searchdatamanagement/definition/relational-database
https://www.techtarget.com/searchdatamanagement/definition/relational-database
https://www.guru99.com/nosql-tutorial.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://developer.apple.com/library/archive/documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
https://www.dbvis.com/
https://www.sqlgate.com/
https://www.sqlgate.com/

[12] Postico. Postico 2. [Online]. Available: https://eggerapps.at/postico/

[13] Superset. Creating your first dashboard — superset. [Online]. Avail-

able: https://superset.apache.org/docs/creating-charts-dashboards/creating-your-first-dashboard/

#creating-charts-in-explore-view

52

https://eggerapps.at/postico/
https://superset.apache.org/docs/creating-charts-dashboards/creating-your-first-dashboard/#creating-charts-in-explore-view
https://superset.apache.org/docs/creating-charts-dashboards/creating-your-first-dashboard/#creating-charts-in-explore-view

A
Appendix

A.1 Error Display Table

53

Table A.1: Error List

Error Name Error Description

Error: No repository name was given Happens when the user tries to import a repository without giving an
actual repository name to import

Error: No username was given Happens when the user tries to use one of the functions that call the
API without giving an actual login username

Error: No password was given Happens when the user tries to use one of the functions that call the
API without giving an actual login password

Error: No mode was given Happens when the user tries to call an update but does not choose
an update mode to use in the API

Error: The username or password are wrong Happens when the user tries to use one of the functions that call the
API without using a correct username and password

Error: There is no repository with that name Happens when the user tries to import a repository but the repository
he inserted does not exist

Error: There is no repository or profile with
that name

Happens when the user tries to import a repository but the repository
or the profile he inserted does not exist

Error: No Classes with objects to import Happens when the user tries to import certain classes from a repos-
itory but does not choose any

Error: No properties selected on the ... class Happens when the user tries to import a class with certain properties
but does not choose any

Error: Import List does not have a correct op-
tion

Happens when the user tries to import certain classes and properties
but does not use a correct Option

Error: No update to be done Happens when the user tries to update the database, but did not do
any alteration in the data

Error: (Sheet/Cell) It is expected a reference
but is not a reference

Happens when the user inserts anything that is not a reference in a
cell that is expecting a reference

Error: (Sheet/Cell) The reference class with
the name ... does not exist in this repository

Happens when the user tries to reference one class that does not
exist

Error: (Sheet/Cell) The reference class with
the name ... is not in the class restrictions

Happens when the user tries to reference one class that is not in the
class restriction of that property

Error: (Sheet/Cell) Invalid Numeric value Happens when the user tries to write something that is not a number
in a numeric cell

Error: (Sheet/Cell) Invalid Boolean value Happens when the user tries to write something that is not a boolean
in a boolean cell

Error: (Sheet/Cell) Invalid Date Happens when the user tries to write something that is not a date in
a date cell

Error: (Sheet/Cell) Invalid Hyperlink Happens when the user tries to write something that is not a hyper-
link in a hyperlink cell

Error: (Sheet/Cell) An object on the ... sheet
does not have a name property Happens when the user erases a name property from an object

Error: (Sheet/Cell) It is not possible to alter
the basetype information of an already cre-
ated property

Happens when the user tries to edit the basetype information of an
already created property which is not permitted

Error: (Sheet/Cell) It is not possible to alter
the name of an already created property

Happens when the user tries to edit the name of an already created
property which is not permited

Error: (Sheet/Cell) The basetype information
is not correctly formulated, insert a Type:

Happens when the user tries to create a new property but does not
use correct basetype information

Error: (Sheet/Cell) There is no name for the
new property

Happens when the user tries to create a new property but does not
insert a name for it

Error: (Sheet/Cell) One property you are try-
ing to create, has a non standart basetype but
does not have an inverse

Happens when the user tries to create a new property that is a refer-
ence but does not insert a inverse type for the reference

Error: (Sheet/Cell) The inverse type with the
name ..., already exists, change it’s name to
a basetype that does not exist

Happens when the user tries to create a new property but uses a
inverse type that already exists which is not permitted

Error: (Sheet/Cell) The class restriction with
the name ... does not exist in this repository

Happens when the user tries to create a new property that is a refer-
ence and uses a class restriction with a class that does not exist

Error: (Sheet/Cell) The new object does not
have a name property

Happens when the user tries to create a new object and does not
insert a value to the name property

54

55

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context and Problem Description
	1.2 Goals

	2 Theoretical Background
	2.1 Types of databases
	2.2 AppleScript

	3 Related Work
	3.1 Tools for Database Editing
	3.2 Importing data into Excel
	3.3 Creating charts from a database

	4 Solution Description
	4.1 ATLAS database meta-model
	4.2 System Architecture
	4.3 Example of Usage
	4.3.1 Instalation
	4.3.2 Control Panel
	4.3.3 Editing Data
	4.3.4 Create New Objects
	4.3.5 Create New Properties
	4.3.6 Generating Charts

	4.4 Implementation
	4.5 Error Display
	4.6 Implementation Challenges
	4.6.1 Concurrency Problems

	5 Evaluation
	5.1 Comparing with the ATLAS web interface for editing
	5.1.1 Usability
	5.1.2 Efficiency

	5.2 Pros and cons from Excel
	5.3 Efficiency Tests
	5.3.1 Setup Enviroment
	5.3.2 Import data from Database
	5.3.3 Update data to Database

	6 Conclusion
	6.1 Conclusions
	6.2 System Limitations and Future Work
	Bibliography

	Bibliography
	Appendix A

	A Appendix
	A.1 Error Display Table

