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Abstract—In this work we study two topological photonic
systems: a reciprocal chiral metamaterial consisting of an array
of metal wires in the shape of elliptical helices; and a magnetized
plasma which is a naturally existing continuous medium. Both of
these structures display Weyl points which are topological band
degeneracies in 3 dimensions that arise at the linear crossing
between longitudinal plasmonic modes and transverse modes.
First, we analyse how nonlocality, a phenomenon present in these
materials, affects the emergence of these three-dimensional linear
degeneracies. Next, the topological properties of the magnetized
plasma are characterized by a first principles method. Specifi-
cally, a photonic Green’s function formalism is used in order to
study the influence of Weyl degeneracies on the topology in 3-
dimensional wave vector space and we calculate their topological
charge. We apply two different regularization procedures in
order to obtain well-defined topological invariants: introducing
the effects of charge diffusion due to electron-electron repulsive
interactions; and the application of a full wave vector cut-off.
With our approach, we are able to compute the topological
charge of Weyl points in metamaterials with in a computationally
efficient way.

Index Terms—Metamaterials, Helical Metamaterial, Band
Structures, Weyl Points, Chern Number, Topological Photonics

I. INTRODUCTION

Topological photonics has attracted much attention due
to the prediction of topologically protected edge states that
propagate without backscattering, enabling the flow of light
immune to disorder and imperfections such as sharp bends
or corners [1]–[3]. These chiral edge states are predicted
by a topological invariant called the gap Chern number [4].
This is an integer number and it is by definition given by
the sum of the individual Chern numbers of each set of
bands below the specific band gap. Additionally, the bulk-
edge correspondence principle [5], [6] states that when two
topologically inequivalent photonic systems share a common
band gap, the number of edge modes supported at an interface
between them is given by the difference of the gap Chern
numbers.

The standard theory used to calculate these topological
invariants requires the Berry curvature which depends on the
normal modes of the system [7]. However, the formalism
that will be adopted for this work makes explicit use of the
photonic Green’s function which is also linked with the Chern
invariants [8], [9], and it is more computationally efficient.
Specifically, the gap Chern number is given by an integral
of the photonic Green’s function along a line of the complex
frequency plane parallel to the imaginary axis. The line crosses
the real frequency axis on a chosen value ω′

gap and this value
should be confined between the lower and upper limits of

the respective band gap in the real frequency axis. The first
principles Green’s function formalism is described by:

Cgap =
1

(2π)2

¨

BZ

d2k

ω′
gap+i∞ˆ

ω′
gap−i∞

dωTr{∂1G−1
k ·Gk·∂2G−1

k ·∂ωGk},

(1)
where Tr is the trace operator, ∂ω=∂/∂ω and ∂jG−1

k =
∂G−1

k /∂kj for j = {1, 2} with k1 = kx and k2 = ky .
It is possible to topologically classify continuous media,

with no intrinsic periodicity, i.e with an underlying wave
vector space that is an unbounded open region as was shown
by M. G. Silveirinha [10]. However, a physical regularization
procedure must be applied to the material response in order
to overcome the problem of an ill-defined topology, i.e. non-
integer Chern numbers. A general solution to guarantee a well-
defined topology of a continuous system is to apply a full wave
vector cut-off which acts by suppressing the nonreciprocal part
of the material response, for large wave vectors.

The Chern invariants that relate to the existence of edge
states along one-dimensional boundaries are defined over
a 2-dimensional wave vector space, but there exists a 3-
dimensional topological phase described by the number of
Weyl points [11]–[16]. These physical entities are singular
points that emerge as linear crossings between two topolog-
ically inequivalent bands. They are monopoles of the Berry
curvature and come in pairs in symmetric points of momentum
space with opposite charge. Importantly, they only emerge
in systems with a broken time-reversal symmetry, a broken
inversion symmetry or both. It is only possible to remove them
by annihilating both points that make up one pair with each
other, thus leading to robust topological surface states, often
called photonic Fermi arcs [3].

There are two types of Weyl points. Type-I and type-II,
both being topologically nontrivial, but exhibiting different
physical properties. The isofrequency surface around a type-I
Weyl point is an ellipsoid, hence these are also referred as
elliptical Weyl points. In the case of the type-II Weyl point,
the isofrequency surface is a hyperboloid, thus these are called
hyperbolic Weyl points [12].

Firstly, in this work we study two photonic systems that
display Weyl points: the helical metamaterial which is studied
in section II; and a magnetized plasma which will is studied
in section III. In section IV we apply the Green’s function
formalism to topologically characterize two nonlocal models
of a magnetized plasma. Finally, In section V we derive the
main conclusions from this work.



II. HELICAL METAMATERIAL

The first structure under study is a metamaterial consisting
of an array of infinitely long wires shaped like elliptical
helices, made from perfectly electrical conductors (PEC) and
embedded in air. Its physical realization exhibits type-II Weyl
points due to its nonlocal response, as it will be shown. Its
geometry can be visualized in Fig. 1.

Fig. 1. Helical metamaterial - geometry and orientation. Picture taken from
[17]

Metamaterials can be regarded as continuous media if the
inclusions that constitute the unit cell are electrically small, i.e.
their dimension is much smaller than the wavelength of the
electromagnetic wave in the specific direction of propagation.
In this situation they can be described by effective constitutive
parameters which correspond to a homogenized model [18]–
[20].

Before we analyse the dispersion of electromagnetic waves
in a possible physical realization of this metamaterial, we
will focus on the class of materials where the homogenized
model of the helical metamaterial belongs to. We start with a
bianisotropic homogeneous medium that possesses no spatial
dispersion. The bianisotropy is due to chiral coupling (γ) be-
tween electric and magnetic fields and because the components
of the permittivity and permeability tensors are all different.
This type of media is described by the following constitutive
relations: (

D
B

)
=

(
ϵ i

√
ϵ0µ0γ

−i
√
ϵ0µ0γ µ

)(
E
H

)
(2)

The only nonvanishing component of γ is γzz = γ and the
permittivity and permeability tensors are as follows [12]:

ϵ

ϵ0
=

ϵx 0 0
0 ϵy 0
0 0 ϵz

 ,
µ

µ0
=

µt 0 0
0 µt 0
0 0 µz

 , (3)

ϵz = 1−
ω2
p

ω2
. (4)

As a first approximation, we consider ϵz to be the only dis-
persive constitutive parameter. It is characterized by Drude’s
dispersion and ωp is a resonance frequency, also known as
plasma frequency. This parameter is related to the geometry
of the metamaterial as will be shown.

As we will see, the Weyl points arise along the kz axis in
the wave vector space, so we will focus mainly on propagation
along the ẑ direction. The system supports three propagating
modes, two of them transverse and one longitudinal. The
transverse modes’ dispersion relations are given by

ω = ±ckz/
√
µtϵx, ω = ±ckz/

√
µtϵy, (5)

and so they are only degenerate when ϵx = ϵy . The longitudi-
nal mode’s dispersion relation is given by the solution to the
equation ϵz − γ2/µz = 0. It is a flat mode whose frequency
is fixed at

ω = ±ωp/

√
1− γ2

µz
= ±ω′

p, (6)

independently of kz . The Weyl points in this system arise
as crossings between this flat longitudinal mode and the
transverse modes. They have been shown to be indeed Weyl
crossings [12], because they are twofold degenerate (not three)
due to the anisotropy of the permittivity in the x̂ and ŷ
directions, and because they are linear in all directions due to
the chiral coupling. Without the chiral coupling, the dispersion
in the ŷ direction is quadratic.
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Fig. 2. Dispersion along the kz axis. Crossings between longitudinal mode
(green) and transverse modes (blue and yellow) are Weyl points. The param-
eters used here were ωp = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz = 1, γ = 0.8.

The Weyl points displayed in Fig. 2 are at the boundary sep-
arating type-I and type-II. To achieve either one, nonlocality
must be introduced. Nonlocality or spatial dispersion occurs
when a medium’s constitutive parameters depend on the wave
vector component of the propagating electromagnetic wave.
Metamaterials are known to exhibit this nonlocal effect [21],
hence we will now consider a different ϵz [12] that models
spatial dispersion:

ϵz = 1−
ω′2
p

ω2
+

γ2

µz
+ αk2z (7)

The nonlocality affects the longitudinal mode’s dispersion by
introducing a curvature or concavity that either tilts it up or
down. The alpha parameter controls this tilt and thus the type



of Weyl point generated in the crossing. Recalling that this
mode’s dispersion is the solution to the equation ϵz−γ2/µz =
0:

ω = ±
ω′
p√

1 + αk2z
(8)

By analysing the second derivative of Eq. 8 with respect to
the wave vector, it can be seen that is is positive for α < 0
and negative for α > 0 which means that with the first
condition we have an upwards concavity and a downward
concavity for the second one. Since in the plots of Fig. 3 there
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Fig. 3. Dispersion along the kz axis with a nonlocal ϵz . The parameters
used on both plots were ω′

p = 1, ϵx = 2, ϵy = 1.7, µt = 1, µz = 1.
For the plot on the left: α = 0.5, γ = 1 and for the plot on the right:
α = −0.1, γ = 0.71.

are two degeneracies, we need to distinguish them. We will
denominate the crossing between the yellow transverse mode
and the green longitudinal mode as the first or inner Weyl point
and the one between the blue and green modes as the second
or outer Weyl point. By plotting the dispersion curves around
one of the Weyl crossings, for example the second one, the
conclusion can be derived that for α > 0, the equifrequency
curves are elliptical, signifying that it is type-I, as seen in
Fig.4. On the other hand, for α < 0, the equifrequency curves
become hyperbolic, hence it becomes type-II, as seen inf Fig.5.

As we will see, for a physical realization of this metamate-
rial, it is only possible to obtain type-II Weyl points.

We will provide the link between the nonlocal bianisotropic
model described previously and the effective medium theory of
this metamaterial that is described in [17] and expanded in [12]
to include ellipticity. This homogenization provides significant
information about the physical realization of this metamaterial,
specifically about its geometry. For example, the fact that this
metamaterial’s unit cell is an elliptical helix is the reason the
values for ϵx and ϵy differ and consequently originate two
non degenerate transverse modes, for propagation along the
kz axis. There is also an effective chirality due to lack of
inversion symmetry of the helix (broken inversion symmetry).
From the effective parameter formulae, we have:

ϵz = 1− 1

β2/β2
p1 − k2z/β

2
p2

+
γ2

µz
, (9)

Fig. 4. Dispersion around second Weyl point with α > 0 in ẑ and ŷ. The
parameters used here were α = 0.5, γ = 1, ω′

p = 1, ϵx = 2, ϵy = 1.7, µt =
1, µz = 1.

Fig. 5. Dispersion around second Weyl point with α < 0 in ẑ and ŷ. The
parameters used here were α = −0.1, γ = 0.71, ω′

p = 1, ϵx = 2, ϵy =
1.7, µt = 1, µz = 1.

where β = ω/c is frequency normalized to speed of light in
the vacuum, βp1 and βp2 are positive real-valued frequency
independent parameters that depend only on the unit cell’s
geometry and lattice constant. We approximate the middle
term of ϵz as:

1
β2

β2
p1

− k2
z

β2
p2

≈
1

β2/β2
p1

(
1 +

β2
p1

β2

k2z
β2
p2

)
,

βp1

βp2

∣∣∣∣kzβ
∣∣∣∣ < 1.

(10)
The nonlocal permittivity model in Eq. (7) is the effective
permittivity ϵz in (9) with γ and µz given by the effective
medium formulas in [17]. The leftover constants ω′

p and α are
given by:

ω′
p = cβp1

α = −
β4
p1

β2
p2β

4

(11)

With this, we show that the alpha parameter is indeed neg-
ative, and so we conclude that this metamaterial possesses
hyperbolic or type-II Weyl points.



III. MAGNETIZED PLASMA

In this section we analyse the dispersion relation for one
local model and two nonlocal models of a magnetized plasma.

A. Local Model

A plasma is an isotropic medium that is parameterized by
its plasma frequency which is defined by the volume density
of the electrons N , their effective mass m, their charge q =
−e = 1.6× 10−19C and the vacuum’s permittivity ϵ0:

ωp =

√
Nq2

mϵ0
. (12)

When an external DC (direct current, or static) magnetic field
B0 is applied to the plasma medium, it becomes anisotropic.
The field’s effect is represented in the permittivity tensor
through the cyclotron frequency. This is the angular frequency
with which a free electron describes a circular cyclotron orbit,
when it is under the influence of the magnetic field and is
defined as:

ωc = −qB0/m, (13)

Throughout this work, the application of B0 is assumed to be
in the ẑ direction with positive orientation.

The permittivity tensor is an antisymmetric matrix with a
gyrotropic structure [20]:

ϵ =

 ϵt −iϵg 0
iϵg ϵt 0
0 0 ϵz

 , (14)

where each entry is

ϵt = ϵ0

[
1−

ω2
p

ω2 − ω2
c

]
, ϵg = ϵ0

[
−ωcω

2
p

ω(ω2 − ω2
c )

]
, (15)

and

ϵz = ϵ0

[
1−

ω2
p

ω2

]
. (16)

Since (14) is not symmetric ϵ ̸= ϵT , this medium has a
nonreciprocal response. The application of the bias field also
breaks time reversal symmetry. Because we are considering a
lossless case, these two notions are equivalent [10]. Further-
more, we will consider a nonmagnetic response µ = 1, where
1 is the identity matrix, and trivial magnetoelectric coupling
ξ = ζ = 0. Since the system’s material matrix does not depend
on the wave vector then this is a local model.

Our next objective is to obtain the dispersion characteristics
of the bulk modes. This is possible by simply deriving the
wave equation from Maxwell’s equations (without a source),
assuming a harmonic spatial and time variation of the type
ei(k·r−ωt):

k× (k×E) +
ω2

c2
ϵ ·E = 0 (17)

The wave vector of the solution for Eq. 17 satisfies the
dispersion relation [22]:(

ϵ2t − ϵ2g
)
ϵz
ω4

c4
−
([
ϵt (ϵt + ϵz)− ϵ2g

]
k2t + 2ϵtϵzk

2
z

) ω2

c2

+
(
ϵtk

2
t + ϵzk

2
z

) (
k2t + k2z

)
= 0,

(18)

where kt = ∥kt∥ = ∥kxx̂+kyŷ∥, with subscript t representing
wave vector components that are orthogonal to the static
magnetic field.

As previously stated, the magnetized plasma presents pho-
tonic Weyl degeneracies, otherwise known as Weyl points. Due
to the direction of B0, these appear along the kz axis, i.e.
only for wave vectors k = (0, 0, kz). Along this axis there are
straight horizontal bands at ω = ±ωp which are longitudinal
bulk plasmon modes that occur for ϵz = 0. The Weyl points
arise as crossings between this plasmon mode and transverse
modes and the location of these linear degeneracies in wave
vector space is given by [13]:

kWeyl
z = ±ωp

c

√
ωc

ωc ± ωp
(19)

By fixing the plasma frequency ωp and varying the cyclotron
frequency ωc, we vary the number of Weyl crossings:

• ωc < ωp: 1 pair of Weyl points in momentum space;
• ωc > ωp: 2 pairs of Weyl points in momentum space;

The dispersion diagrams for modes propagating in the direc-
tion of the applied static magnetic field are shown in Fig. 6,
for the regime ωc < ωp and for ωc > ωp. We can observe
that the number of crossings between the longitudinal (in red)
and the transverse (in blue) modes is indeed different between
the two cases: while there are 4 crossings in the left panel,
the right one shows 8. When ωc = ωp the outer Weyl points
go to infinity and for ωc < ωp they are purely imaginary and
so, in these conditions, only the inner Weyl points appear.
For propagation in the xoy plane, hence for a wave vector
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Fig. 6. Dispersion characteristics in the kz axis for ωc = 0.8ωp on the left,
ωc = 1.2ωp on the right and ωp = 0.5c in both plots. The longitudinal mode
is highlighted in red.

k = (kx, ky, 0), the plane waves supported by the medium
decouple into transverse electric (TE) waves (Ez ̸= 0 and
Hz = 0) and transverse magnetic (TM) waves (Hz ̸= 0 and



Ez = 0). The dispersion relations for these photonic modes
are, respectively:

k2 = ϵz

(ω
c

)2
, TE modes, (20)

k2 = ϵef

(ω
c

)2
⇔ k2 =

ϵ2t − ϵ2g
ϵt

(ω
c

)2
, TM modes. (21)

By examining the dispersion relation of the whole system
in (18), one can see that the dispersion characteristics have
rotational symmetry for planes in wave vector space which
are orthogonal to the kz axis (xoy plane). This is why there
is no difference in choosing ky or kx for dispersion analysis.

We can observe the dispersion characteristics of both the
TE and TM modes in Fig. 7:
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Fig. 7. Dispersion of the TM modes in blue and TE modes in red in the xoy
plane for ωc = 0.8ωp on the left, ωc = 1.2ωp on the right and ωp = 0.5c
in both plots.

Since we are interested in computing gap Chern numbers,
here follows a study of the existence of a full band gap
between between the low-frequency TM band and the TE
band (blue and red in Fig. 7, respectively). If we define the
function for the amplitude of the band “gap” in question as
ω1
gap = ω̃H −ωL, with ωL as the limit of the TM bands when

k → ∞ and ω̃H as the lowest point of the TE branch:

ωL =
√
ω2
c + ω2

p, ω̃H =
√
ω2
p = ωp, (22)

we can then solve the inequality ω1
gap > 0 to see if it is

possible to get a full band gap.

ω1
gap > 0 ⇔

√
ω2
p >

√
ω2
c + ω2

p ⇒ ω2
c < 0 (23)

There is no real valued ωc that satisfies the inequality, thus
there is no band gap between these two bands. This is a very
relevant result for this work, since we can only apply the
Green’s function formalism to compute the gap Chern number
for the low-frequency gap. It is to be noted that the TE modes
also present reflection symmetry over both axes, and so there
is no high-frequency band gap in the negative branches.

To work around the issue of an absent high-frequency band
gap, we studied other models for the permittivity. A solution
was achieved when shifting the plasma frequency as seen by

the EM plane waves solely in the ẑ direction, and so we only
change ϵz:

ϵz
ϵ0

= 1−
ω′2
p

ω2
, (24)

where ω′
p =

√
Kωp and K is a scalar. Considering that the

only modes affected by this permittivity tensor component are
the TE (20), for propagation in the xoy plane, we simply
substitute ωp in Eq. (22) with ω′

p which causes the modes to
suffer a vertical shift. We study the possibility of a full band
gap between this mode and the low-frequency TM mode, by
redefining ω1

gap = ω̃H,K − ωL, with ω̃H,K = ω′
p and so we

need to find K that satisfies ω1
gap > 0.

ωgap > 0 ⇔
√

Kω2
p >

√
ω2
c + ω2

p ⇒ K >
ω2
c

ω2
p

+ 1 (25)

The value of ω̃H,K must also be smaller than ωH which
is the lowest point of the high-frequency TM mode. This is
because the longitudinal mode appearing along the kz axis also
suffers a shift with this new model, with dispersion ω = ω′

p. If
this mode intersects the transverse modes that appear at higher
frequencies, specifically at ωH , with

ωH =
ωc

2
+

√(ωc

2

)2
+ ω2

p, (26)

it could potentially alter the topology, which is not our
objective. The constant must then be within an interval that
depends only on the constitutive parameters ωc and ωp:

ω2
c

ω2
p

+ 1 < K <
ω2
c

2ω2
p

+
ωc

ω2
p

√(ωc

2

)2
+ ω2

p + 1 (27)

This slightly changed model has one crucial effect that is
noticeable when looking at the dispersion in the kz axis. For
the regime ωc < ωp, the number of Weyl points is the same
as with the original model, but in the regime ωc > ωp the
outer Weyl points no longer emerge in this system. This can
be explained by analysing the low-frequency transverse modes
propagating in the ẑ direction. When kz → ∞, the frequency
of these modes will tend to a value ω → ωc which, due to
the plasma frequency shift, it is always smaller than ω′

p. Thus,
this model only possesses one Weyl pair. Their location in
momentum space is given by:

kWeyl
z = ±i

√
ω′
p(ω

2
p − ωcω

′
p − ω′2

p )

c2(ωc + ω′
p)

(28)

The achieved high-frequency band gap in the xoy plane is
highlighted in blue on the right plot of Fig. 8. We can see in
the same plot that by shifting the TE band upwards it intersects
the high-frequency TM band. This does not constitute a
problem because it has been shown in [22] that the TE modes
propagating in the xoy plane of a local magnetized plasma are
topologically trivial. This means that this band’s Chern number
is zero, so even if this mode is shifted up due to the influence
of ω′

p, intersecting the high-frequency TM mode, the Chern
number of the group formed by these two bands is equal to
the Chern number of just the TM mode. This also means that
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Fig. 8. Dispersion in xoy plane displaying only the TM modes on the left
and both the TM and TE modes on the right, with the new ϵz . The band
gaps are displayed in grey, blue and orange. TM modes are in blue and TE
mode is in red. Parameters used on both plots were ωc = 1.2ωp ωp = 0.5c.
Plasma frequency shift on the right is given by ω′

p =
√
2.8ωp.

this mode has a null contribution for the gap Chern numbers,
ergo the high-frequency band gap of the right plot in Fig 8 is
topologically equivalent to the band gap just between the TM
modes. The latter is the high-frequency band gap observed in
the left plot of Fig. 8. Furthermore the orange band gap is
exactly the same as the low-frequency band gap in grey. The
analytical results of the gap Chern numbers, for the band gaps
depicted in this figure are presented in [8], [10], [22]. The gap
Chern number of the high-frequency band gaps is C1

gap = +1
and the low-frequency band gaps have a gap Chern number
C2

gap = −1/
√
1 + ω2

p/ω
2
c which is not an integer far any non-

zero ωp.
The reason why the second gap Chern number is not an

integer number is because the topology of the low-frequency
TM mode is ill-defined, having a non-integer Chern number.
Hence, an extra step is required. Since we are dealing with
a continuous medium some cut-off should be included to
the material response, so as to ensure that its nonreciprocal
components are suppressed for large wave vectors.

B. Hydrodynamic Model

The hydrodynamic or drift-diffusion model of a magnetized
plasma is an extension of the system described in the previous
section, where the repulsive interactions between electrons are
accounted for. The permittivity tensor (kz = 0) of this model
is:

ϵhydro
ϵ0

(ω,k) = 1 −
ω2
p

ω2

(
∆

∆+ ω2
c

1t + ẑ⊗ ẑ− β2k⊗ k

∆+ ω2
c

)
+

1

ω

iωcω
2
p

∆+ ω2
c

ẑ× 1,

(29)

where β determines the strength of the diffusion due to charge
concentration, ∆ = β2k2 − ω2, k2 = k · k, ⊗ is the tensor
product and × is the cross product.

This model introduces spatial dispersion or nonlocality since
the electric displacement and the electric fields are linked by
differential operators, or in other words, the permittivity tensor

depends on the wave vector D = ϵ(ω,k) · E, with k = −i∇
(in the harmonic regime). The nonlocality only affects the
longitudinal modes [10], [20]. For xoy propagation, the low
frequency TM mode bends upward, so it no longer has the
limit

√
ω2
c + ω2

p, but now ω → ∞ as k → ∞. In the direction
orthogonal to this plane, in the kz axis, it is the longitudinal
mode that gets curved, no longer staying flat and ω → ∞ as
k → ∞.

Similarly with the helical metamaterial case discussed in
section II, the type of Weyl point changes with the introduction
of the nonlocality. The crossings between the longitudinal
mode and the transverse modes have isofrequency surfaces
around it which are hyperboloids. This means that we are
dealing with a type-II Weyl point, as one can observe in Fig. 9.
This is analogous to the case of a negative α parameter in the
helical metamaterial (see Fig. 3), and so we have a crossing
between a longitudinal mode and a transverse mode, both with
group velocities vg = ∂ω

∂k with the same sign.

Fig. 9. Dispersion surfaces and isofrequency curves around Weyl point in a)
x̂ and ŷ directions and in b) ẑ and x̂ directions. The parameters used here
were β = 0.6c, ωc = 0.2ωp and ωp = 0.5c.

With respect to the topological characterization of this
model, there is one crucial effect that arises with this specific
regularization procedure. The effect of the nonlocality on
the low-frequency TM mode in the xoy plane prohibits the
possibility of a high-frequency full band gap, even with a
plasma frequency shift in the ẑ direction. Hence only the low-
frequency band gap can be topologically characterized with
our formalism.

C. Full Cut-off Model

The full cut-off model implements a high-frequency spatial
cut-off to the material response of a system, as:

ϵcut−off (ω,k) = ϵ01 +
1

1 + k2/k2max

(ϵloc − ϵ01) , (30)

where ϵloc is the permittivity tensor of a local magnetized
plasma, given by Eq. (14), but with ϵz given by Eq. (24).
Just like the hydrodynamic model, the cut-off model of a
magnetized plasma is spatially dispersive. However, the high-
frequency material response is that of the vacuum and it
is independent of the wave vector, i.e. local. Importantly, it
becomes reciprocal because ϵ = ϵT .



The most significant effect is that the longitudinal mode
in kz axis bends downward, contrarily to the hydrodynamic
model, and instead of being a flat mode its limit is set by
ω → 0 as kz → ∞, for any real value of kmax. The immediate
consequence is that for this model there are always two pairs
of Weyl points in the kz axis, because the longitudinal mode
crosses two transverse modes.

The nonlocality also changes the type of Weyl point, but
this time the isofrequency surfaces that surround the crossing
are ellipsoids. Thus this model originates type-I Weyl degen-
eracies. We conclude that this is analogous to the case of a
positive α parameter in the helical metamaterial (see Fig. 3).
In these conditions, the group velocities of the longitudinal
and transverse modes have different signs.

Fig. 10. Dispersion surface and isofrequency curves around Weyl point ẑ and
x̂ directions. The parameters used here were kmax = ωp/c, ωc = 1.2ωp,
ω′
p =

√
3ωp and ωp = 0.5c.

IV. TOPOLOGICAL STUDY OF MODELS WITH
REGULARIZED RESPONSES

The first solution that we tried as a means to regularize the
response of a magnetized plasma is the hydrodynamic model.
For this study, we chose a set of constitutive parameters with
which there is only one pair of Weyl points, and their location
in momentum space will be referred to as kz = ±W (plus
sign for the one at a positive wave vector value and vice-
versa). The two regions of interest are highlighted in blue and
orange in Fig. 11. We can see a crucial consequence of this
model in this figure. The longitudinal mode in the kz axis lifts
up, for any positive value of diffusion velocity β.

Additionally, in Fig. 12, the low-frequency TM mode in the
kx axis (for kz = 0, top panel of the figure) also lifts up and
this results in the nonexistence of a full band gap between
the positive frequency modes, in any cross section at any kz
value. This makes it impossible to topologically characterize
the blue region in Fig. 11. However, important results can be
drawn from the topological study of the orange region. The
two regions of interest are highlighted in blue and orange in
Fig. 11.

Three cross sections were chosen with distinct kz values:
kz = 0, kz = W , kz = 3

2W , corresponding to a location
in momentum space which is before, at and after the Weyl
point, respectively. The band gaps that will be characterized
are shown in Fig. 12. The gap Chern numbers computed for
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Fig. 11. Dispersion of the hydrodynamic model in the kz axis exhibiting the
two regions of interest in blue and orange. The Weyl crossing is highlighted
with the green circle. The parameters used here were β = 0.6c, ωc = 0.2ωp,
ω′
p = ωp and ωp = 0.5c.

the three cases were the same: Cgap = 0 which means that
the three gaps are topologically trivial. This is expected for a
combination of reasons. First of all, the orange region exhibits
a full band gap in any cross section and for the interval kz ∈
] − ∞,+∞[, only the band gaps’ amplitude varies and in a
smooth way.

This means that, since there is no discontinuity, the gaps’
topological invariants (in each cross section) should always
be the same. Furthermore, as a result of the regularization, the
material’s nonreciprocal response for the low-frequency TM
mode in the xoy plane is suppressed for large wave vectors,
and specifically for k → ∞ the medium is reciprocal which
justifies the trivial topology.

The second solution to regularize the topology of a mag-
netized plasma is the implementation of a full spatial cut-
off. With this model, two Weyl points always arise in the
positive part of the dispersion characteristic, as observed in
Fig. 13. The first or inner Weyl crossing appears for the
wave vector value kz = W1 and the second or outer one
appears for kz = W2. This solution is quite different from the
hydrodynamic model, in the sense that we no longer have full
band gaps in every cross section situated in the orange region.
Specifically, the only values where a full band gap cannot
be observed in the cross section are the outer Weyl points,
kz = ±W2. Additionally, with this model we can observe
full band gaps in cross sections situated in the blue region as
well. Again, the only values where no band gap is observed
are the inner Weyl crossings, kz = ±W1. As a consequence,
we can topologically characterize two regions that are directly
influenced by each Weyl point, by computing gap Chern
numbers in cross sections before and after these crossings. The
regions of interest are illustrated in Fig. 13. This time, various
cross sections were considered in order to fully characterize
both regions: kz = 0, kz = 3

4W1, kz = W1, kz = 5
4W1,

kz = W2 and kz = 5
4W2. If we look at Fig. 14, we can see

the high-frequency band gaps in blue are present except at
the first Weyl crossing and the low-frequency band gaps in
orange are present except at the second Weyl crossing. The
gap Chern number C1

gap is relative to the blue region’s band
gaps and C2

gap is relative to the orange region’s band gaps. For
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Fig. 12. Cross sections of the 3-dimensional dispersion of the hydrodynamic
model for different values of kz . From top to bottom, kz = 0, kz = W and
kz = 3

2
W . The band gaps are highlighted in orange and the Weyl point with

the green circle. The parameters used here were β = 0.6c, ωc = 0.2ωp,
ω′
p = ωp and ωp = 0.5c.
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Fig. 13. Dispersion of the full cut-off model in the kz axis exhibiting the
two regions of interest in blue and orange. The parameters used here were
kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

|kz| < W1, C1
gap = +1 and for |kz| > W1, C1

gap = 0, so we
can clearly see an influence from the Weyl point. Specifically,
the blue band gaps in cross sections between the negative and
positive inner Weyl points are topologically non-trivial, and the
blue band gaps beyond these values are topologically trivial. A

similar result is observed for the low-frequency band gaps. For
|kz| < W2, C2

gap = −1, hence the orange band gaps in cross
sections between the positive and negative outer Weyl points
are topologically non-trivial, and they are trivial C2

gap = 0 for
|kz| > W2.
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Fig. 14. Cross sections of the 3-dimensional dispersion of the full cut-off
model for different kz values. On the left, from top to bottom: kz = 0,
kz = 3

4
W1 and kz = W1. On the right, from top to bottom: kz = 5

4
W1,

kz = W2 and kz = 5
4
W2. The high-frequency band gaps are highlighted

in blue, the low-frequency ones in orange. The inner Weyl point is the red
circle and the outer Weyl point is the red square. The parameters used here
were kmax = ωp/c, ωc = 1.2ωp, ω′

p =
√
3ωp and ωp = 0.5c.

This corroborates the fact that the Weyl points are indeed
sources and drains of Berry curvature, and so it is consistent
with the emergence of the non-trivial topological properties in
a magnetized plasma [13], because the cross section’s band
gaps in the regions confined between each pair were shown to
be topologically non-trivial. It also explains why the orange
band gaps of the hydrodynamic model are in turn trivial, since
they are not confined between any pair of Weyl points.

Finally, to complete this study and to conclude the main
objective of this thesis, we will quantify the Weyl points’
monopole charge by computing the difference in the gap Chern
numbers before and after the crossing, in a momentum space
path across it. The sign can only be attributed by defining the



order in which the difference is computed. We will assume the
negative orientation of the kz axis as a convention to determine
the order of the difference, which means that the minuend will
be the gap Chern number in a cross section with a higher kz
than that of the subtrahend. The topological charge of the inner
Weyl point with positive momentum is −1 since before the
crossing, the gap Chern number is C1

gap = +1 and after it is
C1

gap = 0. This is because the band gaps in the cross sections
after the crossing are trivial, so the sum between C1

gap before
the crossing and the topological charge of the Weyl degeneracy
should be zero. The outer Weyl point in the positive wave
vector space has a topological charge of +1, since before the
crossing the gap Chern number is C2

gap = −1 and after it is
C2

gap = 0, by the same logic. The topological charge of the
Weyl points that arise in the negative wave vector space have
symmetric values since a pair of Weyl points constitute one
source and one sink of Berry flux. The results are summarized
in Fig. 15.

Fig. 15. The plot on top is the kz axis dispersion of the hydrodynamic model
with the Weyl pair as green circles. The plot on the bottom is the kz axis
dispersion of the cut-off model with the inner Weyl pair as red circles and
the outer pair as red squares. The numbers in white circles represent the gap
Chern numbers obtained in each region. Near the Weyl points of the cut-off
model you can see the number that represents their topological charge. The
parameters used for the hydrodynamic model were β = 0.6c, ωc = 0.2ωp,
ω′
p = ωp and ωp = 0.5c and the ones used for the full cut-off model were

kmax = ωp/c, ωc = 1.2ωp, ω′
p =

√
3ωp and ωp = 0.5c.

V. CONCLUSIONS

To acquire Weyl points, it is necessary to break either
time-reversal symmetry or inversion symmetry. The helical
metamaterial has no inversion symmetry precisely because of
the helical geometry, but this alone does not guarantee the
twofold point-like degeneracies in the system. The permittivity
components in the x̂ and ŷ directions (for a helix oriented

along the ẑ direction) must also be different, or in other terms,
the system’s response must be anisotropic in planes that are
orthogonal to the helix orientation. This is the reason why the
unit cell has an elliptical helix.

In the case of the magnetized plasma, time-reversal sym-
metry is broken by the applied magnetic field. This is the
reason why it is nonreciprocal which is a necessary property
to obtain non-trivial topological invariants in this system [8],
such as the gap Chern numbers. The existence of Weyl
crossings in this medium is thus inherently connected with its
nonreciprocity since they have been shown to be responsible
for the non-trivial topological properties of the magnetized
plasma [13]. This is corroborated by the results in section V
of this dissertation.

The emergence of these Weyl degeneracies in both systems
is similar, in the sense that the point-like band crossings
occur along a single direction of propagation k, between one
longitudinal mode and transverse modes. Such direction is
determined differently for each medium. It is given by the
helices’ principal axis for the helical metamaterial, and in the
case of the magnetized plasma it is given by the direction of
the static bias magnetic field.

The Weyl point generated by the crossing between a flat
longitudinal mode and a transverse mode rests at the boundary
between type-I and type-II. To acquire either type, nonlocality
must be introduced into the system. If the nonlocality acts on
the longitudinal mode by bending it upward (second derivative
with respect to the wave vector is positive), the isofrequency
curves around the crossing turn hyperbolic, thus it changes into
a type-II Weyl point. If it bends downward (negative second
derivative), the isofrequency curves turn into closed ellipses,
thus changing it to a type-I Weyl point.

The introduction of spatial dispersion is a consequence of
the regularization procedure for the local magnetized plasma.
It was possible to replicate the two different types of Weyl
crossings with the two solutions explored in sections III.A-
III.B. On the other hand, the helical metamaterial possesses
intrinsic strong spatial dispersion for any frequency and even
in the very large wavelength limit [21]. By analysing the ef-
fective medium theory in [17], we showed that this nonlocality
can only originate the second type.

The most important and novel conclusions were derived in
section V, after the topological characterization of the band
structures of two nonlocal models of a magnetized plasma.
It was numerically shown that topologically non-trivial band
gaps exist in specific regions of the 3-dimensional dispersion.
These regions are confined between each Weyl point pair in
momentum space. By taking cross sections of the dispersion in
orthogonal directions (kx,y) relatively to the axis that connects
the pair (kz) and if we can guarantee the existence of full band
gaps in these cuts that are situated in the region of interest,
we can compute their gap Chern number. Our results show
that these band gaps are non-trivial. In fact, the gap Chern
number remains constant for any cross section in this region.
This is expected since the band gaps are all connected if we are
looking along the kz axis and they only change in amplitude



in an adiabatic way. The situation is completely different if
we consider cross sections immediately before and after the
Weyl crossing. As it was seen best in Fig. 15, the gap Chern
numbers are different in each situation, becoming trivial in
cross sections beyond the interval in wave vector space that
directly connects the pair. This is also expected since the gaps
in these cross sections are all connected even when kz → ∞,
consequently the gap Chern number must be constant, and
since in this limit the electromagnetic response is reciprocal,
it should be indeed zero.

The previous arguments explain why the gap Chern numbers
are trivial in cross sections situated in a region that is not
bounded by any Weyl points, as is the case of the low-
frequency (orange) region of the hydrodynamic model. Equiv-
alently, since there are no Weyl crossings in this region, there
is no Berry curvature flux being captured in the respective band
gaps of the cross sections with our Green’s function method.

The difference of the gap Chern numbers before and after
the crossing is the magnitude of the topological charge of
the Weyl point. However, the sign can only be attributed
by defining the order in which the difference is computed.
Such order is given by a trajectory with positive or negative
orientation in the direction of the axis that unites the Weyl
pair. This trajectory is defined before-hand as a convention
and maintained for the computation of topological charges for
all Weyl crossings. As we conclude in section V, for each
pair with opposite wave vector values, there is one with a
positive sign and another with a negative sign, representing the
existence of a source and a drain of Berry flux. Our method can
then quantify the magnitude of the topological charge and the
relative signs between pairs (Fig. 15), but cannot distinguish
which Weyl point has the positive or the negative charge out
of each pair.

In conclusion, we have applied a first principles method
to the calculation of topological charge of Weyl points in
continuous media. Unlike standard methods based on the direct
computation of the Berry curvature, this approach does not
require the calculation of the eigenvectors at each value of
the wave vector and is thus more computationally efficient.
Future work may include analysing the topology of the helical
metamaterial and study protected edge modes in these systems.
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