Towards Finite Field Primitives in Network Switches

Daniel Gouveia da Costa Seara
Instituto Superior Técnico
Lisbon, Portugal

Abstract

Finite Field arithmetic is the building block of many net-
working use cases, from Cryptography to Network Coding
and Forward Error Correction. The flurry of innovation trig-
gered by the ability to reprogram the network data plane
has recently enabled solutions that run simplified versions
of these complex use cases in the data plane. These experi-
ences have shed light on the difficult trade-offs involved in
the design and implementation of these operations under
the computational constraints of high-speed switches. We,
thus, find a challenge: can Finite Field operations be imple-
mented and run at line rate in current high-speed network
switches and are generic enough to fulfill the most common
requirements, or do the characteristics of existing architec-
tures fundamentally preclude any useful implementations
of these operations?

As a first step towards a solution for this challenge, the
work of this thesis examines common approaches for the
design of Finite Field primitives and discusses in-network
implementations of these operations for current high-speed,
production-level, programmable switches, as well as a proto-
type for a new switch architecture. Our findings showcase
that the current hardware can only perform Finite Field op-
erations on Field sizes with at most eight bits, and cannot
perform enough of these operations in parallel to counter
that fact. The more recent prototype presents better results,
achieving operations over 56-bit Fields for the multiplication
operation. These results show that, although the prototype
is a step in the right direction, it either needs to be refined,
or a new architecture needs to be created if we want to be
able to implement to real-life use cases.

Keywords: Finite Field Arithmetic, Programmable Switches,
Data plane architectures

1 Introduction

From the vast pool of networking applications present nowa-
days, a considerable percentage of them require some form
of Finite Field (FF) or Galois Field (GF) arithmetic. Cryp-
tography, Network Coding, and Forward Error Correction
are some concrete examples. To further attest to the im-
portance of said operations, modern CPUs already contain
dedicated, built-in instructions to efficiently perform Finite
Field arithmetic operations. However, the growing perfor-
mance, scalability, and security requirements of modern
distributed applications are pushing many functions to be
network-accelerated, running directly in the data plane of
network switches.

The main challenge is that, in order to process packets at
line rate and at Tbps scales, the modern switch hardware ar-
chitectures are restricted to a limited number of very simple
operations. As a natural consequence, the current specifica-
tion of P4, a language to program these devices, does not
allow for the execution of common operations in CPU, like
multiplication and division. Furthermore, memory is also a
scarce resource, meaning that stateful operations are also
very limited.

The question we thus ask in this thesis is as follows. Can
we implement Finite Field arithmetic efficiently and at line
rate in current network switches? Or do we fundamentally
need to redesign the data plane architecture? We try to an-
swer these questions in this thesis.

With these questions in mind, our main contribution is
to give a concrete look into the design and implementation
of Finite Field arithmetic in state-of-the-art programmable
switches. We explore different avenues to perform these
operations, looking at the two main approaches, memory-
based or computational-based. We implement algorithms of
each type and discuss their benefits and limitations. As a last
result, we make the case that current switch architectures
are insufficient to perform Finite Field arithmetic even for
the most basic use cases.

We also take a step forward by implementing these opera-
tions in the prototype of a newly proposed data plane switch
architecture. We show that this architecture improves over
the state-of-the-art, and by a significant amount in one of the
operations. We also discuss how these improvements are not
enough and some refinements or entirely new architectures
are necessary.

The remainder of this paper is composed of 5 Sections.
After presenting the back ground and related work in Section
2, Section 3 explains how to perform the most basic opera-
tions over Finite Fields: addition, subtraction, multiplication,
and division. Section 4 showcases the solutions we designed
and implemented to perform Galois Field operations in both
current hardware as well as new data plane architectures.
Section 5 evaluates the solutions, providing the grounds for
a discussion and the conclusion of our work in Section 6.

2 Related Work

A Field F [22] is a set of elements that have some properties
that need to be maintained for both addition and multipli-
cation operations. These properties are (1) F is an abelian
Group [26] with respect to the addition, (2) F* = F \ {0}
is a Group with respect to the multiplication (Note that it

does not need to be abelian), and (3) The multiplication is
distributive with respect to the addition. In other words, we
must have that forall x,y,z € F,x X (y+2z) =xXy+x Xz
and (x+y) Xz=xXz+yXz.

The Fields we are interested in have a finite number of
elements. These kinds of Fields are commonly known as
Finite Fields or Galois Fields [26]. The most common GFs
come from the set of integer numbers Z, but only considering
the elements up to, but not containing, a specific value p. In
this case, the operations are done modulo p. In general, for
a set Z, to be a Galois Field, the value of p must be a prime
number greater or equal to 2 [43].

Fortunately, we are not bound only to use positive integers
modulo p to create Galois Fields. We can work in the polyno-
mial space, where each element of the Field is a polynomial.
In computer science, the class of Fields more relevant to the
use cases we will explore later is GF(2™). These fields are
composed of polynomials with degree up to m, but crucially
the coeflicients of the polynomial are in GF(2), meaning
they can only be 0 or 1. This property means we can think
of any Finite Field GF(2™) as the set of all numbers that fit
in at most m bits.

Finite Fields have been applied in a plethora of use cases.
We present three - in-network Cryptography, Network Cod-
ing, and Forward Error Correction.

Implementing security solutions in the switch data plane
is an appealing idea that can drastically change the net-
work security landscape. New Internet architectures like
SCION [34] and its data-plane algorithms, EPIC [27] lever-
age AES for their cryptography needs. Notably, the level
of security provided by many cryptographic algorithms is
directly connected to the size of the Galois Field over which
their operations are performed. For instance, while the AES-
ECB mode uses a relatively small field (GF(2?)), this mode is
considered to be insecure and should never be used in prac-
tice [28]. Secure AES modes widely used in practice, such as
AES-GCM (e.g., as used in TLS and IPsec [9]), requires GF
operations on a Field with (at least) 128 bits (GF(2!%)) [8].

IP networks commonly use a store-and-forward mecha-
nism for packet forwarding. Network Coding (NC) [12] pro-
poses an alternative: store-code-forward. Network coding
uses GF arithmetic at its core. One of the first known ap-
plications was Avalanche [14], an NC-based P2P content
distribution system used for Microsoft Secure Content Dis-
tribution. Companies like Veniam [41] are also using NC
techniques to improve throughput in WiFi in the IoT space.
Recently, Network Coding has also been proposed to im-
prove the throughput of inter-datacenter bulk transfers [40].

Finally, Forward Error Correction (FEC) codes [37] are an
important mechanism for reliable network communication.
The encoding of data to create the FEC codes and the decod-
ing process are similar to that of Network Coding, which
was previously discussed. FEC codes have seen a lot of usage
in networking systems like low latency 5G networks [21],

media streaming over wireless networks [29], and multiple
description source coding [36].

If we want to perform Finite Field operations in the de-
vices, we cannot rely on traditional IP networks and their
hardware. Software Defined Networks (SDN) [10, 25] has
emerged as a new network paradigm aiming to remove tra-
ditional networks’ barriers. The main idea behind it is to
decouple the control plane from the data plane, which gives
greater flexibility to the network operator and an easier way
to test and deploy new protocols. This separation means
that the devices are now only forwarding network elements,
and the decision process is logically centralized in the SDN
controller.

P4 [3] was developed as a high-level programming lan-
guage that could program any compliant device in a unified
manner. P4 was designed to achieve three main goals (1)
target independence, (2) protocol independence and (3), recon-
figurability. Note that P4 is used for the functionality of the
data plane, not the control plane’s logic. That is still left
to the controller. The typical Southbound API is now the
P4Runtime [32].

The main goal of P4 was to program Packet Processors,
but other types of reconfigurable hardware exist, like FP-
GAs and CGRAs. One of the most recently proposed ways
to program these devices is the Spatial domain specific lan-
guage [24], based on the well-known Scala programming
language. Spatial’s main purpose is to simplify the program-
ming of this type of hardware, enabling easy development,
testing and optimization of the programs. Spatial provides
a set of control structures that can be used to express the
wanted algorithm in a concise manner, but let the compiler
identify and act upon parallelization opportunities.

The reason behind the creation of P4 was the appear-
ance of a new switch chip architecture [4]. This architec-
ture allowed the forwarding plane of the switch chip, the
Match-Action Tables, to be changed without replacing the
underlying hardware. This type of architecture is now called
Protocol Independent Switch Architecture (PISA) [35].

Although PISA is the main data plane architecture used
in switches nowadays, a few others have been proposed
recently. One of them is Taurus [38], an architecture for
performing per-packet Machine Learning. Taurus takes as
its basis a standard PISA switch, but it adds custom hardware
based on a MapReduce abstraction to the switch pipeline.

Finite Field operations have been implemented directly
in the hardware of various computing architectures, from
the common CPU[6, 16, 17] we see in personal devices to
FPGAs [11, 13, 20, 30] and networking switches ASICs [15],
the latter being a greater challenge. There is also, unsur-
prisingly, a plethora of software implementations of said
operations [1, 19, 33].

3 Finite Field Operations
3.1 Finite Field Addition and Subtraction

When we focus on Finite Fields defined by polynomials
(GF(p™)), addition and subtraction are the common opera-
tions over polynomials, meaning that we add, or subtract, the
coefficients of the polynomials that share the same degree.
But, crucially, the coefficients still need to remain in GF(p),
so the modulo operand must be applied. For the Finite Fields
that are important for our work, GF(2™), the coefficients
can only be 0 or 1. If we look at all possible combinations
of adding and subtracting 0 and 1, modulo 2, the results are
exactly the same as an XOR operation. As such, adding or sub-
tracting values in GF(2™) is straightforward. It is a simple
bit-wise XOR [42] over the operands.

3.2 Finite Field Multiplication

To perform Finite Field multiplication, one can choose to
go in one of two ways, depending on the size of the Finite
Field and the computational capabilities of the device where
it will be implemented, among others. We first start with an
approach that is more memory-intensive, and then move on
to the computationally-intensive approach.

The core idea behind the memory-intensive approach is
that the product of two numbers a and b, on a finite field F
with generator g, can be computed as axb = ' ©1°84® [42].
At first sight, one may think that this approach requires
the computation of multiple complex operations. A closer
inspection, however, unveils a critical advantage. Specifically,
it is possible to pre-compute all operations and store them in
memory in advance. In other words, a multiplication table
can be created only once and can then be reused as many
times as needed to compute the product between any two
numbers. By decomposing it this way, the multiplication
operation can be performed with a small number of table
accesses (usually three).

The computational-intensive approach relies upon using
number decomposition and manipulating the operands. The
most common solution that follows the number decomposi-
tion approach is the Russian Peasant Algorithm (RPA) [7].

RPA uses a doubling and halving method to multiply
whole numbers, in our case, a and b. Doing this transforms
the problem of multiplying two whole numbers into a much
simpler one based on multiplication and division by 2. It is
an iterative algorithm, and, in each iteration, a is multiplied
by 2, and b is divided by 2; this process is repeated multiple
times until b is equal to 1. When this point is reached, the
various values of a are summed together, but only for the
iterations where b was an odd number. As an important note,
for Finite Field multiplication, since we are multiplying the
value of a by 2 at each iteration, and we will sum these values
to get the result, there can be a case where a X 2 is a number
that does not belong to the Finite Field. As such, we need
to perform one more operation on a that ensures the result

will belong to said Field. This operation is an XOR with the
irreducible polynomial P since, in this particular case, it is
equivalent to executing the modulo operation [7].

3.3 Finite Field Division
The memory-intensive approach is easy to extend to perform

division by leveraging the fact that g can be expressed as

a X b~1. Based on this observation, to perform GF divisions,
we first need to compute the inverse of the second operand
and then use the multiplication table to calculate the product.
Fortunately, we can also pre-compute all the inverse values
beforehand. As such, division takes only one more table
access than multiplication.

The division operation using more computationally inten-
sive methods can be executed in two different ways. We can
leverage an algorithm that directly computes the result of
the division of the two operands, or we can use an algorithm
that first computes the inverse of the second operand so that
we can apply RPA afterward.

For the first option, we rely on the EBd algorithm [44],
which is a derivate of Stein’s algorithm to find the Greatest
Common Divider (GCD) between two numbers (i.e., a and
b). [18]. The EBd algorithm for Finite Field division contains
two additional helper variables, which we will call v and s.
The former is responsible for storing the result of the divi-
sion and will also manipulate the a operand. The latter is
used to store the value of the irreducible polynomial P and
will be used in the iterations of the algorithm to modify the
b operand accordingly. There is also a variable §, which will
track the difference between the degrees of the two poly-
nomials we are dividing. This is a significant value to keep
track of during the algorithm’s execution. This algorithm
finds a result after at most 2n — 1 iterations, where n is the
number of bits of the Finite Field. Inside each operation, sim-
ple SHITs and XORs are used. Still, we would like to point
out the (a/2)p operation, which is the division of a by 2 but
taken modulo P, which does not seem trivial at first but can
be performed using simple SHIFTs and XORs following these
rules [44]:

® ay_1 « ag
® ap «— a1 ® (ag - Pryr)for0 <k <n-2

The second option for Finite Field division relies on an
algorithm that finds the inverse of the second operand [23],
which is heavily inspired by the extended Euclid’s algorithm.
The algorithm of [23] also relies on multiple iterations over
the operands, using only simple SHIFTs and XORs as well.
This algorithm finds the inverse of a value after, at most, 2n
iterations, with n being the number of bits of the Finite Field.
This algorithm also uses three helper variables u, v and s, the
latter storing the irreducible polynomial P and manipulating
the operand b, as well as a variable § that tracks the degree
of the polynomial u.

)40 o
m GF(2%) A
GF(21)
GF(2%)
GF(2%%)
GF(2128)

10%

10%

>PXA<X00

10% 4
20 |

10 X

1015 4

1010

=
kX

10 20 30 40 50 60 70 80 90 100 110 120 130
Iterations needed with RPA (linear scale)

Switch memory required per table (in Bytes) (leg scale)

Figure 1. Memory cost vs iteration cost for various finite

fields

3.4 Analysis

In summary, memory-intensive approaches leverage the
properties of the logarithms and the fact that all the values
can be pre-computed beforehand. This fact, of course, means
that this approach has a memory cost that can quickly be-
come insurmountable once the size of the Finite Field starts
to grow.

Computationally heavy approaches leverage number de-
composition and perform several iterations to get the final
result. Each iteration executes some simple instructions that
manipulate the operands. The cost of this approach is the
number of required computational elements, cycles, and it-
erations. But the scalability is much better. The cost grows
linearly with the size of the field, whereas the tables’ size
scale exponentially.

We illustrate this point in Figure 1.

4 Implementation

We focused on implementing multiplication and division
operations over Finite Fields and did not implement addition
and subtraction because it is a simple XOR operation, natively
present in most switches. We start by implementing both ap-
proaches for multiplication and division in a programmable
switch, Intel Tofino, using the P4 language. Next, we imple-
ment the number decomposition-based algorithms in Taurus,
using an FPGA programming language, Spatial.

4.1 Finite Field Operations in a Programmable
Switch

We defined a new header as illustrated in Figure 2. The
first Field, op, serves as an identifier for the operation we
want to perform (multiplication, division or inversion) and
the approach we want to execute (memory intensive or
computationally-intensive). The following two fields store
the operands a and b and, finally, the result Field will store

2 bits

op a b result

wa
Fa
e
in

Figure 2. Header for Finite Field operations

the result of the operation. As a note, for the inverse algo-
rithm we do not need both operands, so we ignore one of
them.

For the memory-based algorithms, we pre-compute all
the necessary values (logarithm, anti-logarithm, and inverse)
and load them in the MATs of the switch. One challenge
we faced was that each logic MAT can only match with one
operand. So, if we want to perform axb, for example, we need
one MAT to find the logarithm of g, another for the logarithm
of b and the final one for the anti-logarithm of the sum, each
one with all the possible values of the Field. Of course, if the
division is the required operation, another table is needed
for finding the inverse of the b operand. For simplicity, we
will describe the implementation of this approach for the
Finite Field GF(2®), so all the values will have eight bits.

In the apply block of the Ingress pipeline, we start by
matching the a operand and extracting its logarithm value
using the table log_a table. We then use the op header to
decide whether we need to look up the value of the inverse of
b (table_inverse table) for a division operation or not, before
looking up its logarithm value, in the table_log_b table. After
having both values, we sum them together in the sum_vals
action, and we check if this value is greater or equal to 255.
If it is, we subtract 255 using the sub_max action, before
looking up the final value in the table_antilog table. The
action of this table automatically loads the value to the result
field.

Implementing the computationally intensive algorithms
in a P4 programmable switch proved, as expected, more chal-
lenging than the memory-intensive approach we showcased
previously. This challenge is mainly due to these devices’
pipelined architecture. For all the algorithms we first started
with trying to implement operations over the Finite Field
GF(2%). When, due to the switch’s constraints, that was not
possible, we reduced the size until we had a program that
could run in the device.

Starting with the multiplication algorithm, RPA, since the
Field has values with eight bits in our example, we know we
need to unroll the cycle of the RPA algorithm and repeat it
eight times. At each iteration, a flag is set to 1 when the b
operand is odd. This value is then used in an action to decide
whether or not to XOR a with the accumulator. This action is
also responsible for setting a flag, in case a needs to be XORed
with the irreducible polynomial. This operation is done by

looking at the most significant bit of a, which for this Finite
Field, is the eighth bit. Afterwards, the action multiplies a
by 2 and divides b by 2. These are simple SHIFT operations
by one bit. Since P4 is a pipelined architecture, in order to
calculate the correct values for multiplications over GF(28),
we had to repeat this process eight times.

The maximum size we were able to work with for the EBd
algorithm was GF(2%). In each iteration, we have to perform,
among other operations, (a/2)p, which we described in the
previous Section. Due to the absence of a ROR primitive, we
need to explicitly execute the rotate operation and change the
bits accordingly, which consumes many resources. We start
by saving the g bit, which is placed in the most significant bit
before the end of the iteration (a;). Afterward, we collect the
bits a;jag to help us compute what the new value of ag should
be. The irreducible polynomial P for GF(23) is x>+ x + 1 and
so the bit P; is 1. As such, we see if ay and a; have different
values. If they do, the new bit will be 1; else, it will be 0. In
the end, we save the value of the a, bit, since that will be the
new value of a; (the bit P, = 0, so the XOR is irrelevant here).

Finally, we implemented the inverse algorithm for the
Finite Field GF(2*). With this Field, we had to repeat each
iteration’s code eight times, limiting the maximum Finite
Field size we could reach. The main challenge of this algo-
rithm was working with the amount of auxiliary variables
needed, as well as the number of manipulations per iteration.
This translated in a high number of actions and instructions.

4.2 Finite Field Operations in Taurus

In the next section we will demonstrate how the programatic
restrictions of a switch ASIC significantly limit the Finite
Field sizes that can run at line rate. This led us to explore
a more recent switch data plane architecture, Taurus [38].
Since the memory constraints of both switches are similar,
and because we know of the scalablity limitations of this ap-
proach, that precludes its use for larger Field sizes, we opted
to focus only on the number decomposition algorithms. The
MapReduce block of Taurus is responsible for performing
the actual computations and is simulated with an FPGA. To
program this FPGA, we leverage a slightly modified version
of the Spatial language described in Section 2.

The operands and variables are stored inside FIFO queues
such that when an iteration begins, the program dequeues
the values from the respective FIFOs, operates on them, and
finally stores the new results in a new FIFO. The reason we
do not use the same FIFO for all iterations is that Spatial, as
of now, does not support multiple write operations to the
same queue. As such, each iteration, represented by one or
more Pipe blocks, needs to write to a new FIFO. It is by using
these FIFOs, as well, that we assure the correctness of the
algorithm since the iterations cannot be executed in parallel,
and we leverage the pipelining of the architecture.

As for RPA, the code we implemented follows the algo-
rithm precisely. We dequeue the results from the previous

iteration and use mutexes, which act like if-else constructs
where needed. If the least-significant bit of b is 1, then we
enqueue the XOR between a and result, else, we only need to
enqueue the current value of result. We then check whether
or not the most significant bit of a is 0 or 1 since when it
is 1, we need to XOR a with the irreducible polynomial after
multiplying it by 2. Finally, we enqueue the new value of b,
which is a simple division by 2. Our implementation works
for the Finite Field GF(2%) but could easily work for larger
Field sizes.

Continuing to Finite Field division, and just like with the
P4 version, the main challenge we faced was the (a/2)p oper-
ation of the EBd algorithm. We implemented this operation
over the GF(2%) Field. All the code of the first Pipe block is
a straightforward implementation of the algorithm, where
each new value of the variables is computed using the mux
construct. Since the algorithm has nested i f sections, we had
to place mutexes inside mutexes to compute the new values
correctly. In the end, we load to the FIFO a flag representing
if the least significant bit of a is 1. That is important for the
(a/2)p operation. In the second Pipe block, we execute a
Rotate Right operation by one bit. Spatial does not have a na-
tive Rotate operation, so we execute it by shifting the value
to the right by one bit and then placing the least significant
bit in the most significant position using a SHIFT to the left
by seven bits and an OR. Due to the specific Field we are
working on, we know we must only manipulate bits ay, as,
and as and keep the others unchanged. As such, we need
three Pipe blocks to operate on each of the bits and correctly
manipulate the value of a. The Pipe block that performs the
ROR operation also manipulates the gy bit. The final two Pipe
blocks use ay and as, respectively. However, these operations
must only apply if the least significant bit of a is 1. Therefore,
we use the previously mentioned flag in the mutex of the
final instruction of these blocks.

To conclude, regarding the inversion operation, our imple-
mentation also works for the Finite Field GF(2%). The code
is a direct algorithm implementation. We note, once again,
the usage of mutexes inside mutexes that are needed to re-
flect the several nested decisions that the algorithm requires
and ensure the correctness of our implementation. For the
concrete case of this Field, we had to copy the Pipe block
sixteen times.

5 Evaluation

In this Chapter, we evaluate the implementations we have
showcased previously. To guide the evaluation process, we
try to answer these six questions:

1. Are the algorithms correctly implemented in both ver-
sions, P4 and Spatial?

2. Can we execute the operations at line rate?

3. Can we execute the operations with a satisfiable Finite
Field size for both architectures?

4. How many resources are used with each approach and
algorithm?

5. Can the switch perform other actions while also exe-
cuting Finite Field operations?

6. How many multiplication operations can we execute
inside a single packet?

5.1 Evaluation with the Tofino Switch

First and foremost, we try to understand if our implementa-
tions, both memory and computationally intensive, correctly
compute multiplications, divisions, and inversions with ele-
ments of a Finite Field. For the memory-intensive approach,
with the GF(2%) Field, we copied the tables from [42] and
loaded them into the switch MATs. We loaded the program
in the simulator and sent packets via the Scapy tool [2], using
the header showcased in Figure 2.

As for the computationally intensive approaches, we em-
pirically tested their correctness. We also installed each pro-
gram in the switch and sent packets via the same tool using
the header presented in Figure 2.

We tested our programs for all possible combinations of
elements of the Fields. Then, we compared the results with
several online resources like [31] and got 100% of our com-
putations correct for both approaches.

Turning our attention over to the second and third ques-
tions from this chapter’s introduction, we know that for the
operations to be executed at line rate, we cannot have any
kind of recirculation of packets. As an important note, we
only focused on Finite Fields whose elements are represented
as a multiple of one Byte (or a fraction of one Byte when that
size was impossible). Finding these limits is straightforward
since the P4 compiler is responsible for allocating the re-
sources. In other words, if the compiler accepts the program,
it means it runs at line rate in the switch. Our results show
that the maximum Field size for the various operations and
approaches is:

e 16 bits (GF(2!%)) for multiplication, division, and in-
version using the table-based, memory-intensive ap-
proach

e 8 bits (GF(2%)) for the Russian Peasant Algorithm for
multiplication

e 3 bits (GF(2%)) for the EBd algorithm for division

e 4 bits (GF(2*)) for the inversion algorithm

e 3 bits (GF(2%)) for division using inversion and RPA

Looking at these values, it is clear that they are not sat-
isfactory for many of today’s use cases. We will do a more
thorough discussion of the implications in the next Section.

Moving on to the fourth and fifth questions, we used
P4i to extract the resources needed for each approach and
algorithm, using the maximum Finite Field sizes for each.
The results are showcased in Table 1.

Some interesting insights are taken from these results. All
of these approaches do not require much header space, with

Header size Logical
Stages | (K teny | VLIW | SRAM Tabgle o
Table 7 29 2.86% | 14.27% | 5.73%
approach
RPA 9 22 3.64% 1.35% 15.1%
EBd 11 32 5.73% 1.35% 28.13%
Inverse 12 28 7.29% 1.35% 29.17%

Table 1. Tofino resources used by the several approaches
and algorithms implemented

the EBd approach consuming the most but only 6.25% of the
total capacity. The discrepancy in header size from the three
computational intensive algorithms comes from the meta-
data used to execute them, which goes to the Packet Header
Vector (PHV). Although not computationally complex, the
table approach still requires seven stages due to the size of
the tables for GF(2'°) and a significant portion of the total
SRAM. As expected, all other approaches consume much less
SRAM, but the trade-off appears in the number of logical
table IDs, 2.6X to 5.1X more. The number of stages used
is also more significant, even though all these approaches
work on smaller Finite Field sizes. Finally, it is interesting
to see that the percentage of VLIW for all the approaches
implemented was under 10%. Although many resources are
being used with these results, we are far from allocating all
the available PHV size (512 Bytes) or the maximum amount
of VLIW, SRAM, and Logical Table IDs. This result means a
switch running these programs can execute other functions
and perform other tasks necessary by implementing the use
case.

The sixth question comes from the fact that most of the
use cases we presented in Section 2 will require the switch to
perform more than one Finite Field operation for each packet.
And, in the majority of cases, that operation is multiplication.

As such, we conducted some tests in order to see how
many multiplications we could execute within a single packet
using both the memory and computationally intensive ap-
proaches. For a fair comparison, we set the Field to GF(2°).
As a first step, we had to change the header used. We started
with the header from Figure 2, removed the op header, and
added more operands and more space for the results, as pre-
sented in Figure 3.

For the memory-intensive approach, recall that each table
(logarithm and anti-logarithm) can only match with one
operand to extract the necessary value. As such, for each
multiplication, we needed three tables (one table for the
logarithm of each operand and another for the anti-logarithm
of the sum) with all the possible values of the Field. Using this
approach, we reached a maximum of fifteen multiplications
inside a single packet before the compiler failed to allocate
all the necessary fields to the PHV.

4 bits

op 1 op 2 op 3 op 4 e op n-1 opn opixop2 |op3xopd | "™ ™ |opn-ixopn
Figure 3. Header for multiple Finite Field multiplications
Logical Area added % of Area added
Stages | VLIW | SRAM T abgl e ID CUs | MUs per pipeline (mm?) (vs. [38])
Tabl RPA 0 16 0.464 0.37
able
6 | 11.20% | 10.73% | 39.58% EBd | 40 | 56 3.384 271
approach Inverse | 45 | 56 3.604 2.88
RPA 12 14.58% | 1.87% 70.83% Table 3. Resources consumed in Taurus for GF(28)

Table 2. Tofino resources used for multiple multiplications
in a single packet

As for the computational intensive approach, the RPA
algorithm, we know we have to unroll the loop of the al-
gorithm as we did for the version with only one operation.
Our solution, leveraging the parallelism of the Tofino switch,
executes the instructions of each iteration on all the multi-
plications simultaneously. For example, when we need to
SHIFT the first operand by one bit and XOR it with the irre-
ducible polynomial P depending on its value, we do these
instructions for all of the multiplications we are performing.
Our solution reached a maximum of eight multiplications
inside a single packet before the compiler failed to allocate
more resources, especially Logical Table IDs.

Finally, we loaded our programs in P4i and extracted the
resources in Table 2 in order to see what was being used. It is
interesting to see that, for the table-based approach, fifteen
parallel multiplications still only consume a fraction of the
SRAM memory of the Tofino switch and a relatively small
number of stages. The limitation was in allocating all the
data and metadata necessary to the PHV. As expected, the
number of Logical Table IDs increases a lot, but it is still
under 40%. Although, as expected, the SRAM usage is much
lower in RPA, at less than 2%, the amount of stages doubles
as does the number of Logical Table IDs (70%) to execute
almost half the number of multiplications. This fact further
supports the computational limitations of the Tofino switch
and how the table-based approach is more suitable, although
limited by its intrinsic scalability issues.

5.2 Evaluation with the Taurus Switch

Again, we first assess whether the algorithms we imple-
mented were correct. To that end, we also tried every possi-
ble combination of values from the Finite Field and compared
them with the online resources presented previously. Since
we are just analyzing the MapReduce block of Taurus, which
is simulated on top of an FPGA, we were not required to
simulate packets and therefore create a new packet header.

We can just load as input the values we wanted to work on
and print the result — our results showed that 100% of the
computations were correct for all three algorithms.

In order to answer the second question, we used the Plas-
ticine simulator provided by [38], which allows us to simulate
a chip with a 1GHz clock (1ns cycle time), send the values
we want to operate on, calculate how long the MapReduce
block takes to compute and process them. For each of the
algorithms, we sent 1024 packets with random values from
GF(2%) and experienced 205ns, 763ns and 691ns for multipli-
cation, division and inversion, respectively. Since data center
level switches have around 1us of latency [39], the added
latency is acceptable, and so we can answer affirmatively to
this question.

Since Taurus is just a prototype and there is no physical
switch available to work on, in order to answer the third,
fourth, and fifth questions, we have to use the simulator
to extract the resources used for our algorithms that op-
erate on the GF(2%) Field and then extrapolate the results
for larger Finite Fields. Table 3 showcases the number of
Compute Units (CUs) and Memory Units (MUs) that each
algorithm requires, as well as the chip area that it would
consume per reconfigurable pipeline. We will compare the
area occupied against a programmable reference switch with
four reconfigurable pipelines, which takes 500mm? [38].

For the RPA algorithm, no CUs are being used to compute
the results. This fact might seem counter-intuitive, but MUs
can perform some simple computations, which is exactly
what happens. The number of MUs, sixteen, seems to indicate
that we are only using two MUs per iteration of the algorithm,
which, at first sight, seems like a good result. However, if we
extrapolate this to GF(2'%%), we would perform 128 iterations
and need 256 MUs, which already exceeds the maximum
number of units of Taurus. Although we cannot operate with
GF(2'%), if we wanted to use all the available resources of
Taurus, we could work with the Field GF(2°°) or values with
seven bytes.

Multiplication | Division | Inversion
Tofino GF(2%) GF(2%) GF(2%)
Taurus GF(2°%) GF(2%) GF(2%)

Table 4. Maximum Field size achievable by the architecture,
using the computationally-intensive approach

Looking at the EBd algorithm, we observe that we have
a significant increase in the number of used resources, con-
suming 96 units, close to the 120 we set as the maximum.
This usage is mainly due to three reasons:

1. There are more iterations to be performed versus RPA
for the same Finite Field.

2. More iterations and more variables mean more FIFO
queues to be allocated and more memory necessary.

3. The instructions inside a single iteration are more com-
plex.

The resources suggest that around 2.67 CUs and 3.73 MUs
are needed per iteration. Of course, with the current architec-
ture of Taurus, we cannot compute divisions in Finite Fields
greater than GF(2%).

The Inverse algorithm presents similar results to EBd,
almost exhausting all the available CUs and MUs of Taurus.
This is also due to the number of iterations necessary for the
algorithm to correctly compute the results, two times the size
of the Finite Field. But it is also due to the instructions that
must be executed and the number of FIFO queues necessary,
five per iteration.

We summarize the findings regarding the maximum work-
able Finite Field size for each architecture, using the compu-
tationally intensive approach in Table 4.

Moving on to the fifth question, there are two very differ-
ent results. For multiplication, using RPA, we are only using
sixteen units. As such, the remaining ones could easily be
used to perform any other tasks required by the use case
being implemented. For larger Fields, for example GF(23?),
which Tofino cannot operate on with either of the approaches,
we would use 64 MUs, still leaving 56 units to other tasks.

Once we take a look into division and inversion, the results
are different. With the Field GF(2%), we are using 80% and
84.2% of the available units, respectively. Although it is not
100% of usage, it only leaves twenty-four accessible units
with division and nineteen with inversion.

Finally, for the final question, we can look at it from two
different approaches. The first one is similar to what we did
for the Tofino switch using the RPA algorithm. We know
each Pipe block is responsible for executing one iteration of
the algorithm, so we can perform the instructions of that
iteration to all of the multiplications at the same time. We
call this version Parallel. The second approach is to follow
what we did for the Tofino Switch with the memory-based
algorithm. We can copy sets of eight blocks as many times as

Multiplications | CUs | MUs
Parallel 9 53 63
Sequential 6 56 56

Table 5. Taurus Resources for multiple multiplications

multiplications we want to perform. We call this approach
Sequential.

We ran both approaches and extracted the resources used
in Table 5. As can be seen, and as is expected, the Parallel
version is superior and is capable of doing nine parallel mul-
tiplications, consuming a total of 116 units, four less than
the total Taurus has available.

6 Conclusion

In this thesis, we designed, implemented, and evaluated Fi-
nite Field operations in programmable switches, both using
state-of-the-art commercially available architectures, and
new prototype architectures recently proposed. Importantly,
all our solutions guarantee that packets are processed at line
rate, thus guaranteeing Tbps packet processing throughputs
and sub-microsecond latencies.

We divided the approaches to performing Finite Field oper-
ations into two philosophies. Memory-intensive approaches,
which rely on the memory capabilities of the devices, and
computationally intensive methods, which leverage their
computational power. We presented algorithms to perform
Finite Field multiplication, division, and inversion for both
of the approaches, all of which already established literature
in the area. The key challenge was to adapt these algorithms
in order to fit into the strict constraints of the programmable
switches that enable line rate processing.

We designed and implemented switch-compatible adap-
tations for all algorithms for a Tofino switch, the reference
architecture of modern switch ASIC and evaluated our solu-
tions for correctness, resource usage, and parallelization of
multiplication operations.

From this, we conclude that current hardware can perform
Finite Field operations over Fields with at most eight bits,
which can actually cater to the needs of some specific use
cases, or just as Proofs-of-Concept (like [5, 15]). However, it
is not able to

1. perform Finite Field operations for larger Field sizes,
and
2. perform enough of those operations in parallel.

These issues are even more prevalent in the operations of
division and inversion. Indeed, they are not so common, and
many use cases rely more on multiplication. But taking NC
as an example, although the majority of the performed oper-
ations are multiplication and addition, division still needs to
occur in order to decode the information. The maximum size

of the Field we were able to achieve in the Tofino switch, us-
ing the computationally intensive approaches, is very small,
and the number of resources needed was significant. For the
memory-intensive approach, although the size was better,
the problem of scalability is always present.

Of course, there are easy solutions like adding more stages
to the switch or even allowing recirculation, but, this has im-
portant drawbacks: it either increases the switch cost (more
chip area), packet latency, and/or severely reduces through-
put. None of which is acceptable.

Faced with this, we also implemented and evaluated sev-
eral approaches adapted to the new Taurus switch. The re-
sults we achieved showcase how Taurus can be a step in the
right direction. The architecture was able to complete the
division and inversion algorithms for the GF(2?) Field and
the multiplication algorithm for GF(2°) one.

For the GF(2®) Field, a small amount of area was occu-
pied for the multiplication operation and the latency values
were in the order of the hundreds of nanoseconds, as we
showcased in Section 5. However, the inversion and division
algorithms still consumed almost all of the resources Taurus
possesses for that same size of Finite Field, and the latency
values were close to 1ps.

These results seem to point out that Taurus is a step for-
ward, but it either needs to be refined for these specific use
cases, or a new architecture is needed. In terms of refine-
ments to Taurus, there are several avenues we could explore
and make part of the Future Work of this thesis. Since num-
ber decomposition algorithms are not memory-intensive,
one idea is to reduce the size of the MUs and their overall
number. Keeping the same overall area, we could reduce the
number of lanes, potentially decreasing the number of par-
allel operations we can perform. Still, we could have more
stages per CU or perhaps even more CUs, which means we
could operate on larger Finite Fields (recall that the size of
the Field defines how many iterations the algorithms have
to perform). We could also go the other way and increment
the number of lanes in order to work with smaller Finite
Fields, potentially being able to perform more operations in
parallel.

We hope this thesis is a spark to start the discussion into
the design of more powerful switch architectures, which are
able to operate on larger Finite Fields while maintaining the
capability to operate at line rate.

6.1 Limitations and Future Work

We researched the most commonly used algorithms for per-
forming Finite Field operations that were not created for a
specific use case. For example, there are algorithms that per-
form some computations on one of the operands and store
those results in the cache. However, that only works when
the device knows one of the operands beforehand. Regard-
less, there are other algorithms that can be explored and

implemented in both architectures, which might give better
results than what we achieved.

Our implementations of the algorithms tried to follow the
original, adapting them to the feed-forward pipeline of a
modern network switch, and we did not explore any opti-
mizations. An interesting area of future work is trying to
explore optimizations that are fine-tuned to the target archi-
tecture, e.g. by exploiting parallelization opportunities. As an
example, we could explore the usage of meta-programming
mechanisms to decrement the experienced latency in Taurus.

Taurus is a recently proposed, hybrid architecture that
includes two computational models, one that fits the needs of
conventional match-based packet processing, and a MapRe-
duce model that is tailored to a different sector of appli-
cations, such as those that require Finite Field operations.
However, this solution is still not enough for important use
cases that require large Finite Field sizes. For this purpose
the investigation of new data plane architectures is an area
we see as with tremendous opportunities.

References

[1] arkworks. 2020. algebra/ff at master - arkworks-rs/algebra - GitHub.
https://github.com/arkworks-rs/algebra/tree/master/ff
[2] Philippe Biondi. 2021. Scapy. https://scapy.net/
[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming protocol-
independent packet processors. Computer Communication Review
44 (2014). Issue 3. https://doi.org/10.1145/2656877.2656890
Pat Bosshart, Glen Gibb, Hun Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. Computer Communication Review 43. Issue 4.
https://doi.org/10.1145/2534169.2486011
Xiaoqi Chen. 2020. Implementing AES Encryption on Programmable
Switches via Scrambled Lookup Tables. Proceedings of the 2020 ACM
SIGCOMM Workshop on Secure Programmable Network Infrastructure,
SPIN 2020. https://doi.org/10.1145/3405669.3405819
Yajing Chen, Shengshuo Lu, Cheng Fu, David Blaauw, Ronald Dreslin-
ski, Trevor Mudge, and Hun-Seok Kim. 2017. A Programmable Galois
Field Processor for the Internet of Things. ACM SIGARCH Computer
Architecture News 45 (2017). Issue 2. https://doi.org/10.1145/3140659.
3080227
Yan-Haw Chen and Chien-Hsing Huang. 2020. EFFICIENT OPER-
ATIONS IN LARGE FINITE FIELDS FOR ELLIPTIC CURVE CRYP-
TOGRAPHIC. International Journal of Engineering Technologies and
Management Research 7 (2020). Issue 6. https://doi.org/10.29121/ijetmr.
v7.i6.2020.712

[8] M Dworkin. 2005. The Use of Galois/Counter Mode (GCM) in IPsec
Encapsulating Security Payload (ESP).

[9] Morris Dworkin. 2007. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. (2007). https:
//doi.org/10.6028/NIST.SP.800-38d

[10] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The road to
SDN: An intellectual history of programmable networks. Computer
Communication Review 44 (2014). Issue 2. https://doi.org/10.1145/
2602204.2602219

[11] Shane T. Fleming and David B. Thomas. 2013. Hardware accelera-
tion of matrix multiplication over small prime finite fields. Lecture

[4

flaav)

(5

—

G

—

[7

—

https://github.com/arkworks-rs/algebra/tree/master/ff
https://scapy.net/
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/3405669.3405819
https://doi.org/10.1145/3140659.3080227
https://doi.org/10.1145/3140659.3080227
https://doi.org/10.29121/ijetmr.v7.i6.2020.712
https://doi.org/10.29121/ijetmr.v7.i6.2020.712
https://doi.org/10.6028/NIST.SP.800-38d
https://doi.org/10.6028/NIST.SP.800-38d
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219

[12

—

(13]

[14

=

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

[23

—

[24]

[25]

[26]

[27]

Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 7806 LNCS.
https://doi.org/10.1007/978-3-642-36812-7_10

Christina Fragouli, Jean Yves Le Boudec, and Jorg Widmer. 2006. Net-
work coding: An instant primer. Computer Communication Review 36.
Issue 1. https://doi.org/10.1145/1111322.1111337

Mario Alberto Garcia-Martinez, Rubén Posada-Gomez, Guillermo
Morales-Luna, and Francisco Rodriguez-Henriquez. 2005. FPGA imple-
mentation of an efficient multiplier over finite fields GF(2 m). Proceed-
ings - ReConFig 2005: 2005 International Conference on Reconfigurable
Computing and FPGAs 2005. https://doi.org/10.1109/RECONFIG.2005.
18

Christos Gkantsidis, John Miller, and Pablo Rodriguez. 2006. Com-
prehensive view of a live network coding P2P system. Proceed-
ings of the ACM SIGCOMM Internet Measurement Conference, IMC.
https://doi.org/10.1145/1177080.1177104

Diogo Goncalves, Salvatore Signorello, Fernando M.V. Ramos, and
Muriel Medard. 2019. Random linear network coding on programmable
switches. 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, ANCS 2019. https://doi.org/10.1109/
ANCS.2019.8901883

Johann Groschadl and Erkay Savas. 2004. Instruction set exten-
sions for fast arithmetic in finite fields GF(p) and GF(2m). Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 3156 (2004).
https://doi.org/10.1007/978-3-540-28632-5_10

Shay Gueron and Michael E Kounavis. 2014. White Paper Intel ®
Carry-Less Multiplication Instruction and its Usage for Computing
the GCM Mode. (2014).

J.H. Guo and C. L. Wang. 1998. Hardware-efficient systolic architecture
for inversion and division in GF(2m). IEE Proceedings: Computers and
Digital Techniques 145 (1998). Issue 4. https://doi.org/10.1049/ip-cdt:
19982092

Matt Hostetter. 2020. GitHub - mhostetter/galois: A performant NumPy
extension for Galois fields and their applications. https://github.com/
mhostetter/galois

Jose L. Imana. 2021. Low-Delay FPGA-Based Implementation of Finite
Field Multipliers. IEEE Transactions on Circuits and Systems II: Express
Briefs 68 (2021). Issue 8. https://doi.org/10.1109/TCSI1.2021.3071188
Mohammad Karzand, Douglas J. Leith, Jason Cloud, and Muriel Medard.
2017. Design of FEC for Low Delay in 5G. IEEE Journal on Selected
Areas in Communications 35 (2017). Issue 8. https://doi.org/10.1109/
JSAC.2017.2710958

Maurice R. Kibler. 2017. Galois fields and galois rings made easy. ,
40-40 pages. https://doi.org/10.1016/C2016-0-01243-3

Katsuki Kobayashi, Naofumi Takagi, and Kazuyoshi Takagi. 2007. An
algorithm for inversion in GF(2m) suitable for implementation using a
polynomial multiply instruction on GF(2). Proceedings - Symposium
on Computer Arithmetic. https://doi.org/10.1109/ARITH.2007.9
David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A language
and compiler for application accelerators. ACM SIGPLAN Notices 53
(2018). Issue 4. https://doi.org/10.1145/3192366.3192379

Diego Kreutz, Fernando M.V. Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2015.
Software-defined networking: A comprehensive survey. Proc. IEEE
103 (2015). Issue 1. https://doi.org/10.1109/JPROC.2014.2371999
Serge Lang. 2005. Undergraduate Algebra (3rd ed.). Springer. https:
//doi.org/10.1007/0-387-27475-8

Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and
Adrian Perrig. 2020. EPIC: Every packet is checked in the data plane
of a path-aware internet. Proceedings of the 29th USENIX Security
Symposium.

10

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Alfred J Menezes, Paul C van Oorschot, and Scott A Vanstone. 2001.
Handbook of Applied Cryptography. CRC Press. http://www.cacr.math.
uwaterloo.ca/hac/

Abdelhamid Nafaa, Tarik Taleb, and Liam Murphy. 2008. Forward error
correction strategies for media streaming over wireless networks. Issue
1. https://doi.org/10.1109/MCOM.2008.4427233

Parham Hosseinzadeh Namin, Roberto Muscedere, and Majid Ahmadi.
2017. Digit-Level Serial-In Parallel-Out Multiplier Using Redundant
Representation for a Class of Finite Fields. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 25 (2017). Issue 5. https://doi.
org/10.1109/TVLSI.2016.2646479

Department of Electrical and Computer Engineering University of
New Brunswick. 2013. GF(2™) Calculator. https://www.ece.unb.ca/
cgi-bin/tervo/calc2.pl

P4 Organization. 2021. P4Runtime Specification. https://p4.org/p4-
spec/p4runtime/main/P4Runtime-Spec.html

Morten V. Pedersen, Janus Heide, and Frank H.P. Fitzek. 2011. Kodo:
An open and research oriented network coding library. Lecture
Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics) 6827 LNCS.
https://doi.org/10.1007/978-3-642-23041-7_15

Adrian Perrig, Pawel Szalachowski, Raphael M Reischuk, and Laurent
Chuat. 2017. SCION: A Secure Internet Architecture. Scion (2017).
Larry Peterson, Carmelo Cascone, Brian O’Connor, Thomas Vachuska,
and Bruce Davie. 2021. Software-Defined Networks: A Systems Ap-
proach. https://sdn.systemsapproach.org/index.html

Rohit Puri and Kannan Ramchandran. 1999. Multiple description
source coding using forward error correction codes. Conference Record
of the 33rd Asilomar Conference on Signals, Systems, and Computers 1.
https://doi.org/10.1109/ACSSC.1999.832349

Luigi Rizzo. 1997. Effective erasure codes for reliable computer com-
munication protocols. Computer Communication Review 27 (1997).
Issue 2. https://doi.org/10.1145/263876.263881

Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. 2022. Taurus: A Data Plane Architecture for
per-Packet ML. Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, 1099-1114. https://doi.org/10.1145/3503222.3507726

Dell Technologies. 2020. Data Center Networking - Quick Reference
Guide. https://i.dell.com/sites/doccontent/shared-content/data-
sheets/en/Documents/Dell-Networking-Data-Center-Quick-
Reference-Guide.pdf

Shih Hao Tseng, Saksham Agarwal, Rachit Agarwal, Hitesh Ballani,
and Ao Tang. 2021. CodedBulk: Inter-datacenter bulk transfers us-
ing network coding. Proceedings of the 18th USENLX Symposium on
Networked Systems Design and Implementation, NSDI 2021.
Veniam. 2012. Veniam - The Internet of Moving Things.
//veniam.com/

Neal R Wagner. 2003. The Laws of Cryptography with Java Code.
University of Texas San Antonio.

Thomas A. Whitelaw. 2020. Introduction To Abstract Algebra. https:
//doi.org/10.1201/9780203750230

Chien Hsing Wu, Chien Ming Wu, Ming Der Shieh, and Yin Tsung
Hwang. 2001. Systolic VLSI realization of a novel iterative division
algorithm over GF(2): A high-speed, low-complexity design. ISCAS
2001 - 2001 IEEE International Symposium on Circuits and Systems,
Conference Proceedings 4. https://doi.org/10.1109/ISCAS.2001.922162

https:

https://doi.org/10.1007/978-3-642-36812-7_10
https://doi.org/10.1145/1111322.1111337
https://doi.org/10.1109/RECONFIG.2005.18
https://doi.org/10.1109/RECONFIG.2005.18
https://doi.org/10.1145/1177080.1177104
https://doi.org/10.1109/ANCS.2019.8901883
https://doi.org/10.1109/ANCS.2019.8901883
https://doi.org/10.1007/978-3-540-28632-5_10
https://doi.org/10.1049/ip-cdt:19982092
https://doi.org/10.1049/ip-cdt:19982092
https://github.com/mhostetter/galois
https://github.com/mhostetter/galois
https://doi.org/10.1109/TCSII.2021.3071188
https://doi.org/10.1109/JSAC.2017.2710958
https://doi.org/10.1109/JSAC.2017.2710958
https://doi.org/10.1016/C2016-0-01243-3
https://doi.org/10.1109/ARITH.2007.9
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1007/0-387-27475-8
https://doi.org/10.1007/0-387-27475-8
http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/
https://doi.org/10.1109/MCOM.2008.4427233
https://doi.org/10.1109/TVLSI.2016.2646479
https://doi.org/10.1109/TVLSI.2016.2646479
https://www.ece.unb.ca/cgi-bin/tervo/calc2.pl
https://www.ece.unb.ca/cgi-bin/tervo/calc2.pl
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://doi.org/10.1007/978-3-642-23041-7_15
https://sdn.systemsapproach.org/index.html
https://doi.org/10.1109/ACSSC.1999.832349
https://doi.org/10.1145/263876.263881
https://doi.org/10.1145/3503222.3507726
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Networking-Data-Center-Quick-Reference-Guide.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Networking-Data-Center-Quick-Reference-Guide.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-Networking-Data-Center-Quick-Reference-Guide.pdf
https://veniam.com/
https://veniam.com/
https://doi.org/10.1201/9780203750230
https://doi.org/10.1201/9780203750230
https://doi.org/10.1109/ISCAS.2001.922162

	Abstract
	1 Introduction
	2 Related Work
	3 Finite Field Operations
	3.1 Finite Field Addition and Subtraction
	3.2 Finite Field Multiplication
	3.3 Finite Field Division
	3.4 Analysis

	4 Implementation
	4.1 Finite Field Operations in a Programmable Switch
	4.2 Finite Field Operations in Taurus

	5 Evaluation
	5.1 Evaluation with the Tofino Switch
	5.2 Evaluation with the Taurus Switch

	6 Conclusion
	6.1 Limitations and Future Work

	References

