
Cryptocurrency price direction prediction through ensembles of machine
learning algorithms allied with percentage resampling
PEDRO FERNANDES, Instituto Superior Técnico, Portugal
This work presents a system with the aim of generating a profitable bitcoin
trading strategy, based on machine learning models trained on historical
data. Before defining our algorithms’ target variable, a resampling was
performed to group sequential data points that lead to absolute percentage
price movements of around 4%. Multiple technical and time-based features
were generated and the problem was then approached as a binary task.
Four different machine learning models were trained - Logistic Regression,
Support Vector Machine, Random Forest, and XGBoost. Different trading
strategies were then generated, either directly from the individual models’
predictions or from different ways of combining them, and evaluated in a
9-month trading simulation period. The results proved that every single
model beat the Buy and Hold strategy used as a baseline. Furthermore, the
best single-model strategy (XGBoost) had a Return on Investment of 94.78%,
and the best ensemble strategy achieved 119,76% for the same metric, over a
period of 9 months. These results were obtained during a turbulent period,
where bitcoin’s price decreased by over 30%.

Additional Key Words and Phrases: Machine Learning, Logistic Regression,
Support Vector Machine, Random Forest, XGBoost, Ensemble Voting, Bitcoin,
Technical Analysis

1 INTRODUCTION
Launched in 2009 [1], Bitcoin’s popularity and price have skyrock-
eted in recent years. Due to its frequent significant price movements,
bitcoin’s high-risk/high-reward profile quickly attracted the atten-
tion of individual investors [2] and, more recently, institutional
investors [3].

Like bitcoin, there are hundreds of other cryptocurrencies being
traded every day through cryptocurrency exchanges like Binance
[4]. Recently, the total cryptocurrency market capitalization (cal-
culated by multiplying the price of the cryptocurrency with the
number of coins in circulation) has spiked from 150 billion in March
of 2020 to around 2.5 trillion in November of 2021 [5]. This surge in
price has seen a proportional surge in interest, both from individual
and institutional investors. Supported by its potential for extreme
and fast profit, the cryptocurrency market has quickly become one
of the largest unregulated markets in the world [6].

The cryptocurrency market is included in what is called a finan-
cial market - a system that provides buyers and sellers the means to
trade financial instruments, including bonds, equities, the various
international currencies, and derivatives. Due to this, many believe
that it is possible to exploit the strategies utilized in other finan-
cial markets (e.g. stock or foreign exchange markets) like technical
analysis and algorithmic trading. On the other hand, some experts
believe that the market cannot be timed and, therefore, the best
strategy would be to Buy and Hold. In this work, multiple algorith-
mic trading strategies were designed by machine learning models
based on technical analysis, and compared to the Buy and Hold
strategy.

Author’s address: Pedro Fernandes, Instituto Superior Técnico, Lisbon, Portugal,
pedrogsvfernandes@gmail.com.

1.1 Motivation
Due to its recency, the cryptocurrency market is still highly spec-
ulative which leads to an extremely volatile market. This means
that price changes in the range of 5 to 10% in a single day are not
out of the ordinary [8]. For that reason, the cryptocurrency market
appears to be an interesting opportunity to apply machine learning
methods using what is already known from the traditional stock
market but also exploring problem-specific features.

1.2 Objectives
The main objective of this work is to build a machine learning model
capable of accurately predicting the price movement of bitcoin and
making a profit even when the general trading fees are accounted
for.
We intend to improve on the state-of-the-art by applying, com-

bining and improving on the findings of previous works that will
be further analyzed in Section 2. We will study and compare the
performance of various machine learning models that proved effec-
tive in previous works and also explore data preparation, feature
engineering and hyper-parameter tuning techniques.
In our work, the task of predicting the cryptocurrency’s price

movement was approached as a binary classification problem with
tabular data. To capitalize on the cryptomarket’s high volatility
and regular significant price changes, a resampling was performed
by grouping 1-min candles that lead to a specific price percentage
change (around 4%), and these new candles will be our target labels.
To feed our model, two categories of features were used:

(1) Traditional technical analysis
(2) Time-based information
Regarding the first category, our models will operate with previ-

ously tested and well-known technical indicators such as the RSI
and MACD indicators. As our data will be resampled based on per-
centage change, a need arises to maintain our models’ notion of time,
thus leading us to the second category - Time-based information.

1.3 Thesis Contribution
The main contributions from this work are:

(1) The creation of a new percentage-based resampling tech-
nique, that better aligns the target variable with the objective
of a system of this nature (to be profitable);

(2) The introduction of an equation that allows for the labelling
of positive and negative asymmetric candles that lead to
break-even positions when they happen sequentially;

(3) Training multiple models that overwhelmingly beat the Buy
and Hold strategy, during the entire 284-day test period.

2 • Fernandes et al.

1.4 Document Structure
This document is structured as follows:
In Section 2, some background concepts are discussed and related
literature is reviewed. In Section 3, the proposed solution is described
and each of its components is thoroughly detailed. Section 4 goes
over the results and a case study, designed to find the optimal way
of combining the single-model predictions. Section 5 concludes.

2 STATE OF THE ART
Although the use of technical analysis in an effort to predict price
movements has been thoroughly studied in the literature, the study
of machine learning techniques applied to predicting the cryptocur-
rency market only started in more recent years. As such, the liter-
ature regarding some domain-specific topics such as blockchain-
based features is still scarce. Nevertheless, various works made
important contributions that will be reviewed more thoroughly in
the following subsections.

2.1 Cryptocurrency market efficiency
Fama [14] and the follow-up paper by Fama [15] introduced the
Efficient Market Hypothesis (EMH), where the author states that
financial markets are efficient, meaning that prices reflect all avail-
able information rendering it impossible to beat the market. This
conclusion has been questioned and disputed frequently in the liter-
ature. In regards to this work’s object of study, a few authors have
discussed the cryptocurrency market’s efficiency and its correla-
tion to traditional asset classes such as stocks, bonds, oil, gold, and
other commodities. Regarding efficiency, recent works by Andrew
Urquhart [16], Bariviera et al. [17] and Vu LeTran et al. [18] share
the conclusion that the cryptocurrency market is significantly inef-
ficient, however, it has been moving towards efficiency. Correlation
between the cryptocurrency market and traditional assets has been
found to be weak by multiple authors over the years. Baur et al.
[19], Bouri et al. [20], and Pyo et al. [21] all found weak connections
between cryptocurrencies and traditional assets.

2.2 Data Resampling
In their work, Borges et al. [9] tested multiple machine learning
models and two resampling strategies: amount resampling and per-
centage resampling. Various technical indicators were computed
on the resampled data-sets and used as features. One of the conse-
quences of using the resampled data was that the algorithm was
significantly more active during high volume periods, something
that proved to be more profitable. The conclusion was that regard-
less of the utilized learning algorithm, the outcome of utilizing
resampled data consistently generated significantly higher returns
than the traditionally used time-sampled data.

The resampling that obtained the best results was the percentage-
based resampling. With this strategy, the authors grouped consec-
utive candles whose cumulative sum of absolute price variation
would be equal or greater than a specific threshold.

This work will introduce a variation of this resampling technique,
by taking the real price percentage variation between candles. This
new technique will be further explained in Section 3.2.1.

2.3 Blockchain-based features
As this problem differs from traditional stock market trading, we
initially intended to take advantage of domain-specific information
through blockchain-based features. Although the literature on this
topic is still scarce, a few authors have attempted to use blockchain-
based features having achieved different levels of success.

Jaquart et al. [22] combinedminutely data of fourmajor categories
- technical, asset-based, sentiment-based, and blockchain-based. The
last category included the number of bitcoin transactions and the
growth of the mempool (a cryptocurrency node’s mechanism for
storing information on unconfirmed transactions). The results in-
dicated that the technical features were the most important for all
prediction horizons (1, 5, 15, and 60 minutes). However, the relative
importance of this category decreased from 80% in the 1-min hori-
zon to less than 50% in the 60-min horizon where blockchain-based
and sentiment-based features gained relevance. It is also pertinent to
note that the best accuracy results were obtained for the larger pre-
diction horizons, with a maximum accuracy of 56% for the 60-min
horizon and 52% for the 1-min horizon.

Ji et al. [23] fed various deep learning models with 18 blockchain-
based features and also the bitcoin price time series. The results were
not promising with the models yielding a maximum accuracy of 53%
and barely making a profit despite the fact that the authors did not
consider trading fees. Given the high transaction fees charged in
cryptocurrency markets, it is fair to question whether Ji et al.’s sys-
tem could result in negative returns. Despite these results, this work
brought to light an interesting finding regarding the contrast in per-
formance between classification and regression-based algorithms,
which will be later discussed.

Sebastiao et al. used ensemble learning methods and achieved an
annualized return, after proportional trading costs of 0.5%, 9.62%,
and 5.73%, when trading ethereum and litecoin respectively, dur-
ing a bear market with daily mean returns lower than -0.20%. The
ensembles included linear models, RF, SVM, and their binary coun-
terparts. Regarding the features used, each model was optimized in
the validation set by testing different sets of features. Around 1/3
of the models used network based features. On the other hand, all
models used the lag returns of the tested cryptocurrencies, the day-
of-the-week dummies (as the name implies, this feature provides
information about the day-of-the-week) and the lagged volatility
proxies proving the importance of these three features. Given the
mixed results observed, blockchain-based features were not further
explored.

2.4 Machine Learning Models
Various different machine learning approaches have been applied to
financial markets’ forecasting, some with better results than others.
As explained previously, some machine learning problems are

better suited for classification tasks while others are better modeled
as regression-based tasks. Therefore, it is important to start by
understanding whether our problem should be approached as a
classification or a regression task.

The previously mentioned authors, Ji et al. [23] tested the perfor-
mance of multiple state-of-the-art deep learning approaches and

Cryptocurrency price direction prediction through ensembles of machine learning algorithms allied with percentage resampling • 3

Ref. Year Used methodologies Performance Main contribution
[9] 2020 LR, RF, GTB, SVM, EV ≈55% acc., ≈1000% ROI, Volume and percentage resampling
[22] 2021 NN, FFNM LSTM and GRU, RF,

GTB, Ensemble
≈56% acc. Blockchain-based data had more influence on large pre-

diction horizons
[23] 2019 DNN, RNN, LSTM, CNN, DRN,

Ensemble
≈53% acc. Classification beats regression for algorithmic trading

[24] 2019 LSTM, GB ≈68% F1-score LSTM outperformed GB
[25] 2018 LSTM and GTB Signifcant profit even with

transaction fees up to 0.2%
GTB outperformed LSTM for shorter 5-10 dayswindows
while LSTM performed better for 50-days windows

[26] 2019 SVM, ANN ≈62% hit-rate SVM had good results regardless of the chosen time-
frame, while the ANN had poor results for some periods
but abnormal returns during bull-runs.

[27] 2021 SVM, RF, Linear models Annualized returns or 9.62%
with 0.5% trading fees

Ensemble outperformed its individual parts

[28] 2019 ANN, SVM, Ensemble 62.9% acc. Model assembling yielded positive outcomes
Table 1. Summary of the most relevant works mentioned in the state-of-the-art.

compared the results for classification and regression-based algo-
rithms. The outcome was strongly in favor of classification as every
classification-based deep learning model beat its regression-based
counterpart. The authors concluded that classification models were
more effective than regressionmodels for algorithmic trading. There-
fore, in our work, we will be using classification-based models.
When it comes to state-of-the-art in the machine learning field,

deep learning takes the spotlight. But despite the great results ob-
tained by deep learning techniques in fields of research like Natural
Language Processing and Computer Vision, research regarding their
application to Financial Markets has seen mixed results.
For instance, in the same study mentioned above, Ji et al. [23]

concluded that, given the poor results obtained by all the tested
models, it is still premature to solely use deep learning models for
algorithmic Bitcoin trading. In another paper, Kwon et al. [24] used
an LSTM and five features: open price, close price, high price, low
price, and volume at each time epoch (i.e., every 10 minutes) as
input to predict future price movements. The author found that,
regardless of the tested cryptocurrency, LSTM always outperformed
the Gradient Boosting model used as comparison. For reference,
the LSTM’s f1-score was approximately between 63 and 68% for
the seven cryptocurrencies tested, while GB obtained an f1-score
between 59 and 63% approximately. Alessandretti et al. [25] com-
pared the performance of Gradient Boosting Decision Trees and an
LSTM model tasked with predicting daily price variations of differ-
ent cryptocurrencies. The authors found that the simpler models
based on gradient boosting decision trees achieved the best results
for short 5 to 10 days input windows. When dealing with larger 50
days windows, the LSTM model outperformed the simpler models.
Souza et al. [26], with a similar task and input that included open,
high, low, and close prices of Bitcoin, Gold, and Silver, compared
the performance of an Artificial Neural Network and a Support
Vector Machine. The results showed that, when predicting bitcoin
price movement, the SVM model produced similar positive results
regardless of the sample period tested with a hit-rate (percentage

of profitable trades) between 57.32 and 59.75% for all three time
samples. On the other hand, the ANN model proved to be more
inconsistent having poor results for some periods but generating
better returns in others. The ANN’s hit-rate was between 51.38
and 61.73% for all 3 time samples, when predicting bitcoin’s price
movement. The authors conclude that the SVM strategy should be
used by investors willing to achieve more conservative returns on a
risk-adjusted basis but the ANN proved that it can generate greater
profits during short bull runs. Nevasalmi et al. also compared an
ANN model to several other simpler models in a 3-class classifica-
tion task. The clear winner was the tree-based GBM with the ANN
model coming at a distant second place and having only slightly
better results than the other tested models.

On the other hand, ensemble models seem to come out on top con-
sistently in works that provide a comparative analysis between mod-
els. Borges et al. [9] tested the performance of two linear methods
- Logistic Regression and Support Vector Machine, two non-linear
methods - Random Forest and Decision Tree Gradient Boosting,
and an ensemble of these 4 algorithms. The results showed that the
ensemble outperformed every other algorithm in both return on
investment and accuracy. Sebastião et al. [27] tested Linear models,
Random Forest, Support Vector Machine, and their binary versions,
in a total of 6 individual models. Three ensembles were then built,
based on three different voting thresholds (each model required at
least 4, 5, or 6 votes to enter a long position). The conclusion was
that the ensemble beat the individual models and also the Buy and
Hold strategy that was used as a benchmark. Mallqui et al. [28]
also found that model assembling yielded positive outcomes when
predicting price movements in the cryptocurrency market.

4 • Fernandes et al.

3 SYSTEM ARCHITECTURE
In this chapter, we explain in detail the proposed solution to our
bitcoin trading system. First, a brief overview of the system’s main
architecture is given. Then, the following subsections detail the
most important modules more thoroughly.

3.1 System Overview
Our system’s architecture consists of four layers, composed by five
modules in total. Figure 1 is a representation of the flow of informa-
tion in our proposed solution.
In the data extraction module, we simply collect the 1-minute

candles from 2018-01-01 to 2022-01-27 (49 months) directly from
Binance’s API. This data includes, for each candle the Opening time,
Opening price, Closing price, Highest price, Lowest price, Volume
and Number of trades.

In the next layer, we start by calculating some technical indicators,
like the RSI and MACD on the 1-minute candles. The new table is
then resampled by percentage-change - the candles are grouped into
larger candles that represent absolute pricemovements of around 4%.
Afterward, the final technical and time-based features are computed.
These features are computed from arithmetic transformations on
the base features listed in Table 2. As this is a time-series problem,
lagged features are also computed.
Next, the computed features are normalized to the [0,1] range

and the training and test sets are established following a holdout set
strategy. Our test-set was a period of 284 days, between 2021-04-18
and 2022-01-27, while our train set contained data from 2018-01-01
to 2021-04-18 (39,5 months). Finally, the training set is re-balanced
using a random under-sampling technique.
The Hyper-parameters tuning module, receives the training set

from the previous module, and, for each algorithm, it determines
the best hyper-parameters for the type and amount of data we have.
This is done through Bayesian optimization, using stratified K-Fold
cross-validation.

Fig. 1. System architecture overview

The recently computed features and hyper-parameters are then
passed on to the prediction layer. Here, four machine learning algo-
rithms were tested - Logistic Regression, Support Vector Machine,
Random Forest, Gradient Tree Boosting - as well as multiple Ensem-
ble Voting strategies.
The predictions are then passed through to the trading layer

where a trading simulation is performed. We use the binary pre-
dictions to decide when to enter and leave the market. With every
transaction, the whole value of our portfolio is used. This means, at
any given time, our portfolio is composed of either 100% bitcoin or
100% money.
A more detailed description of the most important modules follows.

3.2 Feature engineering and resampling
In this step, the original data is resampled following a variation
from the original approach from Borges et al [9], as explained in
detail in the next Section.

Time-based and technical features are also computed in this step.
The RSI and MACD features are computed before the resampling,
while the others are computed after the resampling.

The target variable is also computed: each new data point gets
labeled according to the price movement observed in the next candle.
If the price movement, in percentage, is negative, then it will belong
to class 0. Otherwise, if it is positive, it will belong to class 1.

3.2.1 Resampling. The 1-minute time-sampled raw data is passed
on to this module. Here, groups of consecutive candles that repre-
sent either positive or negative price movements above a certain
threshold are aggregated to form single candles. As previously men-
tioned, this step is loosely based on Borges et al.’s percentage-based
technique. There are three two differences:

(1) The price variation is calculated as the price difference (in
percentage) between the first and last candle pertaining to
the same resampled candle (as opposed to the cumulative
sum of every candle’s absolute volatility);

(2) The technical features are computed on the original time-
sampled data and then aggregated through averages (as
opposed to being computed on the resampled data).

So while the previous technique’s resampled candles contained simi-
lar absolute cumulative volatility, they could represent a wide range
of price variations. On the other hand, the resampling technique
used in this work, provides resampled candles that can represent
different levels of absolute cumulative volatility but they always
represent the same absolute price variation.
Initially, the price variation threshold was set at 4% for both

positive and negative movements. But this proved not to be the
optimal solution, as percentage variations are not symmetrical - e.g.
a 10% price variation, followed by a -10% drop will leave us at a loss -
which means a system at around 50% prediction accuracy will most
likely not be profitable, even if we disregard the transaction fees.
This led us to find the formula that establishes the relation between
positive and negative price changes. In other words, given a positive
price change, we can compute the corresponding negative price
change that will lead to a break-even position, when disregarding

Cryptocurrency price direction prediction through ensembles of machine learning algorithms allied with percentage resampling • 5

transaction fees. The formula follows:

𝑛𝑒𝑔𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 1 − 1
1 + 𝑝𝑜𝑠𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

(1)

Substituting posVariation by 0.04 (4%) in the above formula leads
to y ≈ 0.0384 (3.84%), which was the threshold used for the negative
price variations. This small change consistently improved our results
regardless of the positive variation chosen.

Figure 2 shows an example, for illustrative purposes, of a resam-
pling procedure, both using the approach from Borges et al. [9]
and also this work’s approach. In this table, each separate coloured
group will form a new candle, corresponding to its group number.
As explained earlier, it is easily observed that the candles pro-

vided by Borges et al.’s [9] resampling may lead to candles with no
significant price change (candle 5), but always with similar total
absolute cumulative volatility. On the other hand, the candles pro-
vided in this work always contain a significant price movement and,
when applied to real 1-minute candles that have lower volatility,
most candles will represent a similar absolute price change.

We believe our approach is more beneficial as it aligns the metrics
that the models are optimized for (accuracy) with the system’s
objective (being profitable): with Borges et al’s resampling, when
training a model, an incorrect prediction on a 0.1% price variation
candle will have the same weight as an incorrect prediction on a 5%
price variation candle, although the latter is clearly more important
than the former, when trying to create a profitable trading strategy.
With the resampling proposed in this work, each data point will
hold similar absolute price variations, thus, optimizing accuracy
will presumably optimize returns.

As a final note, we believe the resampling introduced in this work
also lines up better with the message that the technical indicators
convey: an RSI value above 70 does not indicate that the price will
drop in the next time-period (as implied when using traditional time-
sampled data and predicting the next candle), but a high RSI over a
few candles does suggest that the next significant price movement
should be a negative one.

Fig. 2. Resampling example.
* Group closes when 5% threshold is exceeded.
*2 From current candle to last candle in previous group, group closes when
3% threshold is exceeded.

3.2.2 Feature engineering. The final base features to be considered,
described in Table 2, are then computed on the resampled data.

Two types of features were considered - technical and time-based.
The former were computed before the resampling, and for each new
candle, the mean values of the original candles were computed. On
the other hand, the time-based features were computed after the
resampling, with the intent of maintaining the notion of time within
our data-set.

From the base features computed in the last step, which are listed
in Table 2, multiple other features were computed through data
manipulation or arithmetic operations. The full list of operations
performed on the base features follows.

• Column shifts to create lagged variables;
• Subtraction (from last candle to current one);
• Percent variation (from last candle to current one);
• Rolling average;
• Exponentially weighted average;
• Division by Delta;
• Division by Close price;
• Negative and positive candle amplitude.

These operations were also performed sequentially in specific cases
(e.g. the percent variation between the Closing price rolling average
from the last candle to the current one).

Too many features were computed to analyse each of them indi-
vidually, but the 15 most important ones listed in Figure 4 will be
analysed in Section 4.2.

Feature Description
Close Closing price.
Open Opening price.
High Highest price.
Low Lowest price.

Num_Trades Total number of trades.
RSI_14 Average fourteen-period RSI.
RSI_60 Average sixty-period RSI.
MACD Average MACD.

MACD_Signal Average MACD signal.
MACD_Sub Average difference between MACD and MACD

signal.
Var_Percent Percentage variation between the previous Clos-

ing price and the current one.
Max_price Max. price achieved up to the given point.
Max_volume Max. volume achieved up to the given point.

Delta Time elapsed during the current candle.
Table 2. Base features.

3.3 Hyper-parameter tuning
The most common strategies for this hyper-parameter tuning are
Grid Search and Random search. As the names imply, Grid Search
works by trying every possible combination of hyper-parameters
given in the search space, while Random search tries random com-
binations of values. Both of these have very clear drawbacks: Grid

6 • Fernandes et al.

search is very computationally expensive, while Random search can
miss important combinations of values.
For the reasons above, Bayesian optimization through Hyper-

opt was used in this work. Bayesian optimization is a probabilistic
model-based technique used to find the minimum of any function.
It takes into account past evaluations when choosing the next com-
bination of hyper-parameters to try. Therefore, it chooses its hyper-
parameter combinations in an informed way and can rapidly learn
to focus on a smaller section of the search space, where the results
are best.

The minimized function by Bayesian optimization was the K-fold
validation accuracy score (with k=10), multiplied by negative one.

3.4 Prediction layer
The prediction layer receives the optimized hyper-parameters, the
training set and the test set. The first two are utilized to train each
model and, after the training phase is complete, the test set is re-
ceived by the trained model which outputs a price movement predic-
tion between two classes. Following, a description of the algorithms
tested in this work is given:

3.4.1 Logistic Regression. A Logistic regression uses a logistic func-
tion to map input parameters to class probabilities. The output of
this function will always be between 0 and 1 and corresponds to the
probability of the record’s true class being the positive one. In this
work, the threshold considered to predict a class as positive was
0.5, not only for this algorithm but also for all others that output a
probability.
Logistic regression generates a linear decision boundary, which

might prove too basic for the problem we are trying to solve. Re-
gardless, it is a good baseline for most machine learning problems
and will serve as comparison for the more complex algorithms.

3.4.2 Support Vector Machine. A Support Vector Machine is a bi-
nary classification algorithm that works by finding the hyperplane
in an N-dimensional plane that best separates the data points, where
N is the number of features.

To find the ideal hyper-plane, the algorithmmaximizes themargin
between the hyper-plane itself and the support vectors (the closest
points of each class).
Kernel operations determine how similar two points are, after

a given linear or non-linear transformation. The original SVM al-
gorithm is a linear classifier, but by transforming the feature space
through a non-linear kernel operation, a non-linear hyper-plane
can be found, thus improving results in non-linear problems.

3.4.3 Random Forest. A Random Forest is an ensemble of deci-
sion tree models. This kind of approach leverages the fact that a
combination of relatively uncorrelated models will outperform its
constituents [32].
To optimize an ensemble’s performance, the constituents must

be relatively uncorrelated so that there is a higher probability that
wrong individual predictions are corrected by the majority vote. To
ensure that the decision trees are uncorrelated, bagging (also called
bootstrap aggregating) and feature randomness were used. Both
these methods work by extracting a random sample of the available
data. A brief description of each of these techniques follows:

• Bagging - A random sample of data points is selected to
train each tree;

• Feature randomness - A random subset of features is con-
sidered when splitting nodes.

3.4.4 Gradient Tree Boosting. GTB is similar to RF, in the sense
that it combines the efforts of multiple weak learners in order to
improve the accuracy of a strong learner which is the final model.
Also, as with the Random Forest algorithm, bagging and a variation
of feature randomness (here, a subset of features is considered for
each tree, as opposed to each split) were also applied here to keep
the tree’s correlation as low as possible.

However, the main difference lies in how the trees are combined.
In a random forest, the trees are combined after being created, while
in GTB the trees are created and added to the model sequentially,
with the end goal of optimizing an objective function.

As the XGBoost package was used to implement this algorithm,
the terms XGBoost and Gradient Tree Boosting were used inter-
changeably throughout this work.

3.4.5 Ensemble. The basic majority-vote ensemble included three
of the previous algorithms - SVM, RF and XGBoost as these had
the best individual results. Each of them will predict the next price
movement, which will count as a vote. A simple majority vote
decides the ensemble’s prediction for the next candle.
Different ensemble strategies were also tested in Section 4.3 by

defining two different vote thresholds: one for entering the market
and one for exiting the market. Lower thresholds will account for a
more active trading strategy, while higher thresholds will lead to a
more passive strategy with longer periods between trades.

3.5 Trading layer
This layer receives the predictions and simulates trades accordingly.
For each data-point, a prediction that the next candle will be positive
is represented by a label "1", while the opposite is represented by "0".
These labels are converted to trading signals by the control function
f, defined as follows:

𝑓 =

”𝐵𝑈𝑌 ” if not 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦_𝑖𝑛() and 𝑙𝑎𝑏𝑒𝑙 = 1
”𝑆𝐸𝐿𝐿” if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦_𝑖𝑛() and 𝑙𝑎𝑏𝑒𝑙 = 0
"Do nothing" 𝑒𝑙𝑠𝑒

where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦_𝑖𝑛() is a function that returns True if the system
is currently holding bitcoin, and False otherwise.

As we were dealing with historical data, this simulation was done
through backtest trading. Thus, two assumptions are made in this
module, the same ones mentioned by Borges et al [9] in their work:

(1) Market liquidity: The markets have sufficient liquidity to
complete any trade placed by the system immediately and
at the current price of its placement.

(2) Capital impact: The capital invested by the algorithm has
no influence on the market as it is relatively insignificant.

The trading system starts every experiment with an initial sum of
1000$. First, each model was tested individually and, afterwards, a
few strategies to combine the predictions of the individual models
were tested.

Cryptocurrency price direction prediction through ensembles of machine learning algorithms allied with percentage resampling • 7

4 RESULTS
In this Section, a brief explanation of the evaluation methods is
given, followed by the obtained results for the base models and
resulting trading strategies as well as their interpretation. Lastly, a
case study is presented.

4.1 Work evaluation methodology
A few data-set characteristics are summarized in Table 3.

Dataset Start End Total Time # Candles
Train set 01/01/2018 18/04/2021 ∼39,5 months 1255
Test set 18/04/2021 27/01/2022 ∼9 months 314

Table 3. Data-set characteristics.

The evaluation of our model will be split into two parts - model
and financial evaluation.
The performance metrics that were used to evaluate our model

are described below:
• Accuracy - The percentage of correct predictions;
• Precision - The quality of a positive prediction;
• Recall - The percentage of positive records found;
• Specificity - The quality of a negative prediction;
• F1-Score - How correct and balanced the model is.

In this work, we considered the positive class to be the one that
represents positive price movements.

It is necessary to consider a few other metrics that evaluate how
profitable our trading strategies are. The financial metrics consid-
ered in this work follow:

• ROI - The ratio between net income and initial investment.
• Hit-rate - The ratio of winning or profitable trades.
• Sharpe Ratio - It measures howmuch excess return is gained

in comparison to a risk-free asset, while adjusting for the
additional risk.

• Total trades - Total trades completed.
• Average time in market - Average trade duration.

.

4.2 Results Analysis
The following results are based on a trading simulation performed on
a 9-month period, fromApril 2021 to January 2022. In this simulation,
each strategy started with 1000 US dollars.
With each transaction, a fee of 0.1% was considered. This is the

fee charged by Binance on a regular trading account. Table 4 sum-
marizes the results of each strategy, with and without fees.
Figure 3 shows the portfolio value of each strategy throughout

the simulation, considering the 0.1% fee. XGBoost had by far the best
performance, while the Buy and Hold strategy used as a baseline
was the worst performer. A more in-depth analysis will be given
throughout the following Sections.

4.2.1 Model evaluation. Table 5 summarizes the results obtained
by the various models, as evaluated by machine learning metrics.
XGBoost had the best accuracy out of all models with 58.28%,

beating the next highest by more than 3%. The other tree-based

Strategy Final money (0.1% fee) Final money (no fees)
Buy and Hold 646.53 647.83

Logistic Regression 1014.70 1102.56
SVM 981.84 1041.54

Random Forests 1314.12 1516.25
XGBoost 1947.84 2297.46

Ensemble Voting 1212.19 1394.35
Table 4. Trading strategies’ final portfolio value comparison.

Fig. 3. Portfolio values comparison throughout the simulation period.

model - Random Forest, and the Ensemble voting model followed at
54.7% accuracy. The Logistic Regression and Support VectorMachine
had significantly worse results in terms of accuracy with 52.8% and
52.2% respectively.

All models except Random forests had extremely high Recall. This
tells us that the models were mostly predicting positive moves. This
is especially true when looking at the two worse performing models
- LR and SVM.

Figure 4 shows the feature importance plot from the best per-
forming model (XGBoost), as measured by "weight" - the number
of times a feature appears in a tree. From this graph we can see that
the most used feature is simply the percentage variation from the
last candle.

Fig. 4. Feature importance plot

8 • Fernandes et al.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)
LR 52.8 51.4 86.4 64.4
SVM 52.2 51.0 78.7 61.9
RF 54.7 57.4 32.2 41.3

XGBoost 58.28 56.9 63.8 60.2
EV 54.7 53.2 70.3 60.6

Table 5. Model predictions evaluation.

4.2.2 Financial evaluation. Table 6 shows that every model beat the
Buy and Hold strategy that lost close to 35% of the initial investment
during the 284 day period included in the test set. The best performer,
by far, was the XGBoost model with an ROI of 94.78%. The XGBoost
strategy was also the most active on the market with 83 total trades
and an average TiM per trade of 2 days and 6 hours. The unbalanced

Strategy ROI Hit-Rate Sharpe
Ratio

Trades Avg. TiM

B&H -35,35% 0 -0,150 1 284 days
LR +1.47% 0.55 0,025 42 5.62 days
SVM -1.82% 0.67 0,08 30 5.83 days
RF +31.41% 0.60 0,140 72 3 days

XGBoost +94.78% 0.57 0,337 83 2,25 days
EV +21.82 0.57 0,116 68 3 days

Table 6. Financial evaluation of each trading strategy.

predictions made by the LR and the SVM led to a long Average
Time in Market. This means these strategies had higher exposure
to market volatility, but still managed to beat the Buy and Hold
strategy by a significant margin.

Regarding the Sharpe Ratio, a score over 1 is usually considered
good, while a score under 1 is considered bad. The best score was
XGBoost with a Sharpe Ratio of 0,337. As mentioned previously,
the Sharpe ratio also penalizes high positive volatility (e.g. returns
larger than usual), which is a factor that worsened the tree-based
trading strategies’ results.

Figure 5 shows a comparison between bitcoin’s price and portfolio
value using XGBoost’s trading strategy, throughout the 9-month test
period. As intended, the percentage-based resampling led to a system
that is much more active during high volatility periods. On the other
hand, the average time in market per trade was much smaller during
the unstable times at the beginning of the simulation, which reduces
the risk of trading during these highly volatile periods.
The percentage-based resampling also created an inherent stop-

loss option for our model, as after every negative 3.84% candle, a
new decision point is created. This is another reason why this model
responds well to high volatility periods.

4.3 Case Study - Optimal ensemble voting thresholds
This case study intends to find the optimal way to combine the single-
model predictions, in order to obtain themost profitable system. Two
of these strategies obtained results that beat the XGBoost trading
strategy.

Various different buying and selling thresholds were tested, and
also different sized ensembles. For the smaller sized ensembles, the
models were picked based on their individual results.
Having different buying and selling thresholds means that, at

each decision point (every time a candle closes), the trading system’s
control function f adopted the following behaviour:

𝑓 =

”𝐵𝑈𝑌 ” if not 𝑐𝑢𝑟𝑟_𝑖𝑛() and 𝑢𝑝_𝑣𝑜𝑡𝑒_𝑠𝑢𝑚 ≥ 𝑡𝑟_𝑖𝑛
”𝑆𝐸𝐿𝐿” if 𝑐𝑢𝑟𝑟_𝑖𝑛() and 𝑑𝑜𝑤𝑛_𝑣𝑜𝑡𝑒_𝑠𝑢𝑚 ≥ 𝑡𝑟_𝑜𝑢𝑡
"Do nothing" 𝑒𝑙𝑠𝑒

where curr_in is a function that returns True, if the system cur-
rently holds bitcoin, or False if not, up_vote_sum (down_vote_sum)
is equal to the sum of models that predicted the market would go up
(down) in the next candle, and tr_in and tr_out are the predefined
buying and selling thresholds respectively.
Tables 7 and 8 summarize the obtained results for ensembles

containing three and twomodels respectively. Analysing the results,

(Sell / Buy) # Trades Avg. TiM ROI Hit-Rate
(1 / 2) 103 1 days 13:39:49 63,01% 0,6
(1 / 3) 75 1 days 10:41:52 119,76% 0,64
(2 / 2) 68 2 days 23:53:05 21,82% 0,57
(2 / 3) 53 2 days 15:47:54 87,9% 0,58
(3 / 2) 24 10 days 19:22:32 13,96% 0,58
(3 / 3) 19 11 days 01:11:09 11,91% 0,63

Table 7. Three-model ensemble simulation results, given different Buy and
Sell thresholds.

(Sell / Buy) # Trades Average TiM ROI Hit-Rate
(1 / 1) 108 1 days 18:31:13 69,64% 0,59
(1 / 2) 85 1 days 18:05:48 107,04% 0,61
(2 / 1) 58 4 days 09:24:41 26,64% 0,53
(2 / 2) 52 4 days 07:52:32 56,16% 0,5

Table 8. Two-model ensemble simulation results, given different Buy and
Sell thresholds.

one can observe that independently of the number of models utilized
in the ensemble, the best result always pertained to the experiences
that had simultaneously the highest possible "Buy" threshold and
the lowest possible "Sell" threshold.

Generally speaking, the final portfolio value increasedwith higher
"Buy" thresholds and with lower "Sell" thresholds. Both of these
fluctuations lead to a smaller average time in market, which may
have led to a more risk-averse trading system. Also, in machine
learning terms, having more models agreeing before entering the
market would also increase our "Buy moment" precision, while
allowing for less models to sell our position increased our "Sell
moment" recall.

Comparing these ensemble models to the previously mentioned
majority vote ensemble (the (2 / 2) three-model ensemble in this
experience), we can conclude that a few other ensemble strategies
greatly outperformed it.

Despite XGBoost having abnormal returns when compared to the
other members of the ensemble, it was still outperformed by two of

Cryptocurrency price direction prediction through ensembles of machine learning algorithms allied with percentage resampling • 9

Fig. 5. XGBoost trading strategy entry graph.

the ensemble strategies. This goes in accordance with the findings
of multiple papers ([9], [27], [28]) where ensembles outperformed
their constituents.
The best overall result was obtained with the three-model en-

semble, with a buying threshold of 3 and a selling threshold of 1. It
achieved an ROI of 119,76%, and made 75 trades with 0,6 hit-rate
(45 winning trades), during the simulation period of 284 days. It had
the lowest average time in market per trade, with a value inferior
to 1 day and 11 hours.

4.4 Overall Analysis
The best overall result was obtained by an Ensemble Voting strategy,
composed of three models and with a Buy threshold of 3 and a Sell
threshold of 1 with an ROI of 119.76% over 284 days. The best
single model strategy was the one based on XGBoost’s predictions,
achieving an ROI of 94.78% over the same period. These are really
promising results when compared to the baseline Buy and Hold
strategy that yielded a negative ROI of -35.35% over the same period.
As for the presented case study, we found the optimal way of

combining our single model predictions. Furthermore, it proved that
ensembles with larger Buy thresholds and smaller Sell thresholds
were more successful than other ensemble strategies.

5 CONCLUSION

5.1 Summary and Achievements
In this work, a solution that massively outperformed the market
was proposed. Its design combined the findings of multiple state-
of-the-art systems and introduced a new resampling approach that
better lines up the target variable with the goal of being profitable.
Four machine learning models were trained and a fifth model -

Ensemble Voting - was derived from their predictions. The XGBoost
model was the clear winner with 58.28% accuracy.
Multiple trading strategies were derived from the model pre-

dictions and tested in the 9-month simulation period, from April
2021 to January 2022. In this period, while the market dropped by
more than 35%, our single model strategies’ ROI ranged from -1.82%

to +94.78%. Again, the tree-based models generated the winning
trading strategies, being both more active and more profitable.

In our case study, the best way to combine the single-model pre-
dictions was investigated, and two strategies actually outperformed
the best single-model trading strategy with ROIs of 107.04% and
119.76%. We concluded that strategies with high "Buy" thresholds
and low "Sell" thresholds were consistently more profitable.
These results are very promising, especially given the very tur-

bulent times in which the system was tested that included both a
bull and a bear market. Despite this, a few opportunities for im-
provement still exist, and these will be detailed in the following
subsection.

5.2 Future Work
In this subsection, some of our system’s limitations and their possi-
ble solutions are addressed, along with suggestions that may lead
to performance improvements in future work.

• In this work, when our system received either a "Buy" or
"Sell" signal, all of its portfolio value was changed from one
asset to the other. Instead, one could invest only a percentage
of its portfolio at a time. This percentage could be fixed
or defined by a given indicator or even by the prediction
probability, outputted by the model.

• With the purpose of achieving better "Buy" signal precision,
one could set the positive prediction probability threshold
to a number larger than the default value of 0.5. Different
thresholds could be set for entering or leaving the market,
similar to what was done in this work with the different
ensemble voting thresholds.

• Regarding the features used, a plethora of different features
could be used. One could use different technical indicators,
blockchain-based features or even social networks sentiment
analysis.

• Only long positions were considered in this work. One could
potentially improve the results by also considering short
positions.

10 • Fernandes et al.

REFERENCES
[1] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash

system." Decentralized Business Review (2008): 21260.
[2] Hileman, Garrick, and Michel Rauchs. "Global cryptocurrency

benchmarking study." Cambridge Centre for Alternative Finance
33 (2017): 33-113.

[3] Forbes article, https://www.forbes.com/sites/
lawrencewintermeyer/2021/08/12/institutional-money-
is-pouring-into-the-crypto-market-and-its-only-going-to-
grow/?sh=6fb127ad1459. Last accessed 6 Jan 2022

[4] Binance homepage, www.binance.com. Last accessed 23 Nov
2021

[5] Coinmarketcap - Market capitalization evolution, https://
coinmarketcap.com/charts/. Last accessed 23 Nov 2021

[6] Foley, Sean, Jonathan R. Karlsen, and Tālis J. Putnin, š. "Sex, drugs,
and bitcoin: How much illegal activity is financed through cryp-
tocurrencies?." The Review of Financial Studies 32.5 (2019): 1798-
1853.

[7] Coinmarketcap - Listed cryptocurrencies, https:
//coinmarketcap.com/. Last accessed Jan 6 2022

[8] Adhikari, Ratnadip, and Ramesh K. Agrawal. "An introductory
study on time series modeling and forecasting." arXiv preprint
arXiv:1302.6613 (2013).

[9] Borges, Tome Almeida, and Rui Ferreira Neves. "Ensemble of
machine learning algorithms for cryptocurrency investment
with different data resampling methods." Applied Soft Comput-
ing 90 (2020): 106187.

[10] SVM example, https://en.wikipedia.org/wiki/Support-vector_
machine Last accessed Jan 5 2022

[11] KNN example, https://scikit-learn.org/0.22/auto_examples/
neighbors/plot_classification.html. Last accessed Jan 5 2022

[12] Kirkpatrick II, Charles D., and Julie A. Dahlquist. Technical
analysis: the complete resource for financial market technicians.
FT press, 2010.

[13] Iansiti M and Lakhani K R 2017 The Truth About Blockchain
Harvard Business Review, Harvard University, hbr.org/2017/01/
the-truth-about-blockchain. Last accessed Nov 22 2021.

[14] Fama, Eugene F. "Efficient capital markets a review of theory
and empirical work." The Fama Portfolio (2021): 76-121.

[15] Eugene F. Fama. “Efficient Capital Markets: II.” The Journal of
Finance, vol. 46, no. 5, [American Finance Association, Wiley],
1991, pp. 1575–617, https://doi.org/10.2307/2328565.

[16] Urquhart, Andrew. "The inefficiency of Bitcoin." Economics
Letters 148 (2016): 80-82.

[17] Bariviera, Aurelio F. "The inefficiency of Bitcoin revisited: A
dynamic approach." Economics Letters 161 (2017): 1-4.

[18] Le Tran, Vu, and Thomas Leirvik. "Efficiency in the markets of
crypto-currencies." Finance Research Letters 35 (2020): 101382.

[19] Baur, Dirk G., Kihoon Hong, and Adrian D. Lee. "Bitcoin:
Medium of exchange or speculative assets?." Journal of Inter-
national Financial Markets, Institutions and Money 54 (2018):
177-189.

[20] Bouri, Elie, et al. "On the hedge and safe haven properties of
Bitcoin: Is it really more than a diversifier?." Finance Research
Letters 20 (2017): 192-198.

[21] Pyo, Sujin, et al. "Predictability of machine learning techniques
to forecast the trends of market index prices: Hypothesis testing
for the Korean stock markets." PloS one 12.11 (2017): e0188107.

[22] Jaquart, Patrick, David Dann, and Christof Weinhardt. "Short-
term bitcoin market prediction via machine learning." The Jour-
nal of Finance and Data Science 7 (2021): 45-66.

[23] Ji, Suhwan, Jongmin Kim, and Hyeonseung Im. "A compar-
ative study of bitcoin price prediction using deep learning."
Mathematics 7.10 (2019): 898.

[24] Kwon, Do-Hyung, et al. "Time series classification of cryptocur-
rency price trend based on a recurrent LSTM neural network."
Journal of Information Processing Systems 15.3 (2019): 694-706.

[25] Alessandretti, Laura, et al. "Anticipating cryptocurrency prices
using machine learning." Complexity 2018 (2018).

[26] de Souza, Matheus José Silva, et al. "Can artificial intelligence
enhance the Bitcoin bonanza." The Journal of Finance and Data
Science 5.2 (2019): 83-98.

[27] Sebastião, Helder, and Pedro Godinho. "Forecasting and trading
cryptocurrencies withmachine learning under changingmarket
conditions." Financial Innovation 7.1 (2021): 1-30.

[28] Mallqui, Dennys CA, and Ricardo AS Fernandes. "Predicting
the direction, maximum, minimum and closing prices of daily
Bitcoin exchange rate using machine learning techniques." Ap-
plied Soft Computing 75 (2019): 596-606.

[29] Nevasalmi, Lauri. "Forecastingmultinomial stock returns using
machine learning methods." The Journal of Finance and Data
Science 6 (2020): 86-106.

[30] Martin, James H. “Logistic Regression.” Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition, Pearson
Prentice Hall, Upper Saddle River, NJ, 2009.

[31] Bishop, Christopher M. Pattern Recognition and Machine
Learning. New York :Springer, 2006.

[32] Random forest explanation, https://towardsdatascience.com/
understanding-random-forest-58381e0602d2. Last accessed Jan
13 2022

[33] XGBoost documentation, https://xgboost.readthedocs.io/en/
stable/tutorials/model.html. Last accessed Jan 5 2022

https://www.forbes.com/sites/lawrencewintermeyer/2021/08/12/institutional-money-is-pouring-into-the-crypto-market-and-its-only-going-to-grow/?sh=6fb127ad1459
https://www.forbes.com/sites/lawrencewintermeyer/2021/08/12/institutional-money-is-pouring-into-the-crypto-market-and-its-only-going-to-grow/?sh=6fb127ad1459
https://www.forbes.com/sites/lawrencewintermeyer/2021/08/12/institutional-money-is-pouring-into-the-crypto-market-and-its-only-going-to-grow/?sh=6fb127ad1459
https://www.forbes.com/sites/lawrencewintermeyer/2021/08/12/institutional-money-is-pouring-into-the-crypto-market-and-its-only-going-to-grow/?sh=6fb127ad1459
www.binance.com
https://coinmarketcap.com/charts/
https://coinmarketcap.com/charts/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://scikit-learn.org/0.22/auto_examples/neighbors/plot_classification.html
https://scikit-learn.org/0.22/auto_examples/neighbors/plot_classification.html
hbr.org/2017/01/the-truth-about-blockchain
hbr.org/2017/01/the-truth-about-blockchain
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://xgboost.readthedocs.io/en/stable/tutorials/model.html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis Contribution
	1.4 Document Structure

	2 State of the art
	2.1 Cryptocurrency market efficiency
	2.2 Data Resampling
	2.3 Blockchain-based features
	2.4 Machine Learning Models

	3 System Architecture
	3.1 System Overview
	3.2 Feature engineering and resampling
	3.3 Hyper-parameter tuning
	3.4 Prediction layer
	3.5 Trading layer

	4 Results
	4.1 Work evaluation methodology
	4.2 Results Analysis
	4.3 Case Study - Optimal ensemble voting thresholds
	4.4 Overall Analysis

	5 Conclusion
	5.1 Summary and Achievements
	5.2 Future Work

