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Abstract

Brain–computer interfaces (BCIs) can provide a non-muscular channel for communication and control to
patients for assistive or restorative use. Motor-imagery-based BCIs can be augmented with virtual real-
ity (VR) and haptics to provide stroke patients with insufficient motor ability an alternative to conventional
therapy. Two questions are addressed in this thesis: (1) What BCI–VR feedback configurations lead to
the strongest, most lateralized brain activation in stroke rehabilitation? (2) What conditions and machine-
learning algorithms lead to the most robust features and most accurate models? To achieve this, 19
healthy subjects performed motor-imagery training through five conditions with different combinations of
abstract vs. realistic feedback through NeuRow, head-mounted display vs. monitor, and with or without
haptic feedback. The power of alpha and beta rhythms following the motor tasks (event-related desyn-
chronizations [ERDs]) and their hemispheric lateralization (lateralization indices [LIs]) were extracted for
analysis. The subjects also answered questionnaires on motor-imagery ability and sense of embodiment.
Seven machine-learning algorithms and several hyperparameters were tested for each condition. The
results were benchmarked against motor execution. The data suggested that the use of haptic feed-
back and a virtual environment such as NeuRow lead to stronger brain activation, which could become
important components in stroke rehabilitation. The support-vector classifier and multilayer perceptrons
performed better but are not necessarily more adequate for stroke rehabilitation. The common spatial
patterns used to train the models did not correlate significantly with the LIs for the most part, suggesting
different features to be used in stroke rehabilitation.

Keywords: Brain–computer interfaces; Upper-limb stroke rehabilitation; Head-mounted virtual reality;
Haptic feedback; Machine learning

1. Introduction

Stroke is a leading cause of mortality and disabil-
ity worldwide [1], and its incidence is predicted to
increase throughout the world as the population
ages. Victims commonly lose their motor capa-
bility, which disrupts their ability to carry out their
daily routines. To date, rehabilitation for stroke sur-
vivors with severe motor impairments is burden-
some, since most current rehabilitation options re-
quire some volitional movement to retrain the af-
fected limbs. However, prior research has shown
that patients receive increased benefits by combin-
ing traditional therapy with emerging technologies
like brain–computer interfaces (BCIs) [2] and vir-
tual reality (VR) [3]. In particular, upper-limb reha-
bilitation of severely affected stroke patients comes
with challenges that can be overcome through a
technology-based approach.

A BCI can be described as a pattern-recognition
system that utilizes the physiological activity from

the brain to control external devices (e.g., a pros-
thesis) [4]. Although various signal-acquisition
modalities can monitor brain activity, electroen-
cephalography (EEG) is the most commonly em-
ployed, due to its relatively low cost, portability,
high temporal resolution, and noninvasiveness [5].
Modulation of EEG in a closed loop can promote
plastic changes in the brain, making BCIs an ap-
pealing tool for neurorehabilitation [6]. Specifically,
motor-imagery-based BCIs (i.e., the subject imag-
ines the movement of their limbs) help promote
recovery from brain lesions—particularly in stroke
patients [7]—by converting motor imagery into real
events, such as exoskeleton [8] or avatar move-
ment [6, 9].

It is, thus, a suitable candidate for the rehabilita-
tion of stroke patients with a motor ability too atro-
phied to make use of conventional therapy. Never-
theless, the interfaces by themselves may not pro-
vide sufficiently engaging feedback to the patient,
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which can be augmented with, for example, VR.
Thanks to VR technology, patients are able to in-

teract with engaging virtual environments through
a plethora of devices, be it visual, auditory, or hap-
tic. These include screens, head-mounted displays
(HMDs), video-capture systems, data gloves, hand
controllers, etc. With a vast array of apparatuses
that increase the patient’s immersion and sense of
embodiment, the ability to design engaging motor-
related tasks, and superior recovery when com-
bined with conventional therapy [3], virtual reha-
bilitation seems to be the natural successor to the
current rehabilitation paradigm. However, the more
severe cases of stroke still prohibit patients from
moving and engaging with VR-based rehabilitation.
Nevertheless, combining it with BCIs can provide
the best of both worlds and fill the bill.

Combining motor-imagery-based BCIs and VR
can improve treatment results by directly training
the central nervous system [2], providing embod-
ied feedback through avatars, and offering engag-
ing tasks that increase adherence to the treatment.
Some, but not that many, studies have tested this
synergistic duo with promising results. Neverthe-
less, given the recency of this field of research, fun-
damental questions still linger. A couple of these
are identified and targeted by this thesis, which
hopes to shed some light on them. One such ques-
tion asks what configurations (i.e., sets of equip-
ment that provide multimodal feedback) lead to the
strongest, most lateralized brain activation during
motor imagery. A trade-off emerges between the
added immersion and equipment cost, which adds
to the complexity of the question; however, this the-
sis strictly compares the brain activation between
different configurations.

The use of haptics is scarce and not as prevalent
as VR, yet there have been studies assessing its
potential in stroke rehabilitation [10]. Together with
BCIs and VR, the trio is capable of providing both
visual and haptic feedback through a non-muscular
channel connecting the patient’s motor intention to
the avatar’s limbs. As such, haptics are taken into
consideration in the search for the best configura-
tions.

Another issue is the use of machine-learning al-
gorithms in BCIs, which make the translation be-
tween motor imagery and avatar movement possi-
ble. Notwithstanding the typical usage of the linear
discriminant analysis (LDA) and the support-vector
classifier (SVC), there is no standardized combi-
nation of algorithms and BCI–VR configurations
that lead to the most accurate and robust machine-
learning models. Therefore, the second fundamen-
tal question appears: what algorithms and config-
urations lead to the most accurate models?

Given the two questions described in the text

above, the object of this thesis is, thus, twofold.

1.1. What BCI–VR configurations lead to the
strongest, most lateralized brain activation?

To tackle this question, several subjects performed
motor imagery in different combinations of HMD
vs. non-HMD and haptic vs. non-haptic configura-
tions, called conditions, through either Graz-based
abstract feedback [11] or NeuRow ’s realistic feed-
back [9]. A sixth condition had the subjects perform
motor execution to benchmark the motor-imagery
conditions against it. Their EEG signals were an-
alyzed by interpreting a common phenomenon in
motor imagery and execution, the event-related
desynchronization (ERD) [12]. The spatial distri-
butions of these desynchronizations were also an-
alyzed through the lateralization indices (LIs).

1.2. What BCI–VR configurations and machine-
learning algorithms lead to the most accurate
models?

Different algorithms and hyperparameters were
tested with the EEG signals recorded during the
aforementioned experiment. The traditionally used
LDA and SVC were included, as well as linear and
nonlinear alternatives such as the multilayer per-
ceptrons (MLPs), Gaussian naive Bayes, and the
random-forest classifier. The different conditions
were likewise compared across the algorithms.

2. Methods
2.1. Participant demographics
The data analysis included 19 subjects in total. The
subjects had a mean age of 24.79 years (SD = 3.54
years), with the youngest being 21 years old and
the oldest 36. The cohort was 68% male and 32%
female. In terms of education, 16% had attended
only high school, while 32% had a bachelor’s de-
gree, 42% a master’s degree, and 11% a doctor-
ate. Subjects S06 up to S18 were also asked to
rate their prior experience with BCIs and VR from 1
(nonexistent) to 5 (plenty): the mean scores were
1.36 (SD = 0.67) and 1.73 (SD = 0.65), respec-
tively. Given the nature of the motor-imagery task,
some subjects (starting with S06) were asked if
they had any rowing experience. At least five sub-
jects had some, while at least four did not.

2.2. Experimental procedure
2.2.1. Conditions

The experiment consisted in having the subjects
perform motor imagery of a bimanual rowing task
with two individual paddles, one in each hand, un-
der five experimental conditions. Four of these
conditions used NeuRow [9]—a VR environment
made in Unity1 that renders a set of virtual arms
from a first-person perspective—while the other
condition used abstract feedback based on the

1unity.com
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BCI-Graz paradigm [11]. A sixth condition had the
subjects perform motor execution, also with the ab-
stract feedback. These last two acted as control
conditions. All six conditions and their acronyms
are described below:

1. grazMI: The standard motor-imagery training,
with a fixation cross and directional arrows
on a black background guiding the subjects
through the experiment.

2. neurowMIMO: A motor-imagery training
paradigm using NeuRow, with a fixation cross
and directional arrows overlaid on the VR
environment, which was displayed through a
monitor.

3. neurowMIMOHP: A motor-imagery training
paradigm using NeuRow, with a fixation cross
and directional arrows overlaid on the VR envi-
ronment, which was displayed through a mon-
itor. Hand controllers also provided haptic
feedback through vibrotactile stimulation.

4. neurowMIMOVR: A motor-imagery training
paradigm using NeuRow, with a fixation cross
and directional arrows overlaid on the VR en-
vironment, which was displayed through a VR
headset.

5. neurowMIMOVRHP: A motor-imagery train-
ing paradigm using NeuRow, with a fixation
cross and directional arrows overlaid on the
VR environment, which was displayed through
a VR headset. Hand controllers also provided
haptic feedback through vibrotactile stimula-
tion.

6. grazME: A fixation cross and directional ar-
rows were displayed on a black background
through a monitor and guided the subjects
through the experiment by having them tap
their fingers on the table accordingly.

The condition order was randomized for each sub-
ject to minimize any latent effects originating from
preceding conditions that could skew the results.
An initial version of the sixth condition, grazME,
had the subjects perform a circular arm motion
similar to the avatar’s movement in NeuRow. A
later version had the subjects then tap their fin-
gers on the desk, as it would be sufficient to in-
duce a similar ERD while avoiding movement ar-
tifacts. The results from grazME were compared
against those obtained with motor imagery in the
subsequent data analysis. However, the condition
was only implemented after S07’s session, so only
subjects S08 to S18 performed it.

2.2.2. Setup

A 32-channel EEG cap (actiCAP; Brain Products
GmbH, Gilching, Germany) was used to extract the
brain’s electrical signals with a wireless EEG am-
plifier (LiveAmp; Brain Products GmbH, Gilching,
Germany) with a sampling rate of 500 Hz, which
included active electrodes for improving the signal-
to-noise ratio. The spatial distribution of the elec-
trodes used the 10–20 system.

Visual feedback was provided through a moni-
tor in all conditions except in neurowMIMOVR and
neurowMIMOVRHP, in which an Oculus Rift CV1
headset (Reality Labs, formerly Facebook, Inc.,
CA, USA) was used instead. Haptic feedback was
provided through vibrotactile stimulation from Ocu-
lus Rift hand controllers.

2.2.3. Protocol

Initial questionnaires and hardware setup: The
subject would begin by filling in the consent form
to participate in the study. Given the informed con-
sent, their blood pressure and resting heart rate
were measured with a blood-pressure monitor. Af-
terward, the subject would answer the 12-item ver-
sion of the Edinburgh Handedness Inventory ques-
tionnaire [13] and the Vividness of Movement Im-
agery Questionnaire-2 (VMIQ-2) [14]. These ques-
tionnaires are a self-assessment of, respectively,
one’s handedness in different tasks and the abil-
ity to perform motor imagery of different tasks in
three different ways: by observing the movements
through one’s eyes (internal visual imagery [IVI]),
by observing one’s body performing the move-
ments through an external point of view (external
visual imagery [EVI]), or by feeling the movements
being performed (kinesthetic imagery [KI]).

Interacting with the brain–computer interfaces:
The order of the motor-imagery conditions was
randomized for each subject to prevent any la-
tent effects of previous conditions from skewing
the data. Every condition except grazME was ap-
proximately eight minutes long, while grazME was
around five. All of them showed a cross at the be-
ginning of a new trial so the subject could focus
on it and minimize eye movement. A left or right
arrow would appear five seconds later for one sec-
ond, in three consecutive trials, telling the subject
to begin performing motor imagery for the targeted
arm. There were 42 trials in total: 21 left- and 21
right-hand movements. The subject would stop the
motor-imagery task when the cross disappeared,
ending the trial (see Figure 1). After running all five
motor-imagery conditions, the subjects performed
a motor-execution task, grazME, for five minutes.
In its initial version, the subjects would perform a
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Figure 1: Experimental diagram showing the (a) Graz-based abstract feedback (grazMI and grazME) and (b) realistic feedback
via NeuRow (neurowMIMO, neurowMIMOHP, neurowMIMOVR, and neurowMIMOVRHP)

circular arm motion similar to the avatar’s move-
ment in NeuRow, but the later version had the sub-
jects tap their fingers on the desk instead, to pre-
vent artifacts caused by the arm movements. The
condition had 18 trials in total, also evenly split.
The brain activity recorded during motor imagery
could then be benchmarked against the activity
recorded during motor execution.

Final questionnaires and hardware removal: Af-
ter running through all six conditions, the equip-
ment for the signal acquisition was removed from
the subject, starting with the auxiliary signals.
Lastly, the subjects answered two more question-
naires: one on condition preference and another
on the sense of embodiment experienced with
NeuRow [15].

2.3. Data analysis
2.3.1. Electroencephalography

Data preprocessing: The data was analyzed in
MATLAB (R2021b and R2022a; The MathWorks,
Inc., Natick, MA, USA) with the EEGLAB toolbox2

(v2022.0; Swartz Center for Computational Neuro-
science, San Diego, CA, USA).

The electrodes were re-referenced using a com-
mon average reference (CAR), which subtracts the
average electrical signal of all electrodes at all time
points. The sampling frequency was downsam-
pled from 500 Hz to 125 Hz to reduce the data
size. A band-pass filter from 1 Hz to 40 Hz was
applied to the data to include the alpha waves (8–
12 Hz) and the beta waves (13–30 Hz). The tri-
als were epoched between five seconds before the
arrow cue and five seconds after. Independent
component analysis (ICA) was used to decompose
the signals into several components and remove
those labeled as eye and muscle movements by
ICLabel3 (Swartz Center for Computational Neuro-

2github.com/sccn/eeglab
3github.com/sccn/ICLabel

science, San Diego, CA, USA) with a confidence
percentage between 90% and 100%. Trials with
artifacts still present after the initial preprocessing
were manually removed from the analysis through
EEGLAB’s interface.

ERD measures: The ERD values were computed
as percentages of the baseline through the event-
related spectral perturbation (ERSP) values, in
decibels, through the formula

ERD (%) =
(

10ERSP/10 − 1
)
× 100, (1)

which were negative if there was indeed an ERD,
null at the baseline, or positive if it was, in fact, an
event-related synchronization (ERS). For the sake
of simplicity, the percentages are addressed as
ERDs unless they are explicitly positive, in which
case they are addressed as ERSs instead.

The mean event-related desynchronizations
(mERDs) and LIs were computed from the time–
frequency ERD maps of each electrode. The al-
pha waves’ mERDs were computed between 8 Hz
and 12 Hz, and the beta waves’ mERDs were com-
puted between 13 Hz and 30 Hz, from one second
after the arrow cue until the end of the trial, as there
was usually a delay between the cue and the ERD.
The alpha and beta LIs were computed for each
condition using the formula

LI = (mERDleft, C3 − mERDleft, C4)+

(mERDright, C4 − mERDright, C3) / 2, (2)

which is positive if the brain activation is mostly
contralateral to the arm movement during motor
imagery, or negative if it is ipsilateral.

The percentages of the motor-imagery mERD
medians relative to grazME ’s were also analyzed
using the formula

Relative median mERD (%) =
mERDMdn, MI

mERDMdn, ME
×100, (3)

which is the fraction of grazME ’s mERD median
for a given motor-imagery condition.
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2.3.2. Machine learning

A Python script was written in Google Colab
(adapted from David S. Batista4) which measures
the algorithms’ accuracies, as well as fitting times
and precisions and recalls for left- and right-arm
motor imagery. The algorithms picked for the script
were the LDA, SVC, MLP, k -nearest neighbors
(k -NN), Gaussian naive Bayes, random forest, and
Adaptive Boosting (AdaBoost).

Algorithms and hyperparameters: Several hyper-
parameters were tested to determine the config-
urations with the highest accuracies by using the
GridSearchCV function from Scikit-learn5 so as
to have some variety in the configurations while
also keeping the script runtime within a couple
of hours. The algorithms feature a mix of lin-
ear and nonlinear algorithms. For this study,
the Google Colab script was adapted in Python
(Python 3.9; Python Software Foundation, Wilm-
ington, Delaware, United States) to read the EEG
data obtained from the experiments and analyze
the model accuracies for each algorithm under dif-
ferent conditions, as well as between algorithms by
considering the median accuracies of a given algo-
rithm for all conditions.

Feature extraction: The data preprocessing was
different than the one done for the EEG analy-
sis in MATLAB. A band-pass filter between 8 Hz
and 30 Hz was used to include just the alpha and
beta waves. Afterward, a common spatial pattern
(CSP) filter with four components was used, which
is the most commonly used feature-extraction tool
in BCIs [16]. The data was split into epochs of left-
and right-hand trials. For the accuracies, which
were offline, 20% of the data was divided into 10
groups of shuffled epochs to b used in all the algo-
rithms.

2.4. Statistical tests
Because the sample size was small—ranging from
10 to 19 subjects, depending on the condition—
the Kruskal–Wallis test, which is the nonparamet-
ric equivalent of the one-way analysis of variance
(ANOVA), was used to determine statistically sig-
nificant differences between the conditions in the
mERD and LI sample groups, and conditions or al-
gorithms in the machine-learning accuracy sample
groups, for a significance level of 0.05 (p < 0.05).
The LI sample groups were also compared to a null
lateralization index (LI = 0) to determine if the brain
activation was significantly lateralized in any condi-
tions.

4davidsbatista.net/blog/2018/02/23/model optimization
5scikit-learn.org

Whenever the null hypothesis was rejected—that
the samples from some conditions or algorithms
did not come from the same distribution—a post
hoc analysis was performed. The analysis con-
sisted of pairwise comparisons using Dunn’s test,
as it typically follows the Kruskal–Wallis test due to
computing the same ranks.

2.4.1. Questionnaire correlations

The VMIQ-2 was used to see whether there were
statistically significant (p < 0.05) correlations be-
tween the answers to its items and the mERDs
and LIs obtained for left- and right-hand trials, al-
pha and beta waves, electrodes C3 and C4, and
each condition. The significant correlations were
put on a table, where the rows and columns were
labeled with numbers to make the table easier to
read.

Additionally, the EEG metrics and the embodi-
ment scores were also plotted in scatter plots to
better observe any statistically significant correla-
tions between the different conditions.

3. Results
The results were analyzed in an attempt to (1) an-
swer which condition, or BCI–VR configuration, in-
duces the strongest, most lateralized ERD (i.e.,
brain activation) for stroke rehabilitation and (2)
which conditions and machine-learning algorithms
lead to the most accurate models in BCIs, also for
stroke rehabilitation.

The first results pertain to the EEG metrics,
which are the alpha and beta mERDs and LIs.
Then, the accuracies of the machine-learning mod-
els are shown, and correlations between them
and the LIs are mentioned. Finally, questionnaire
scores are presented, and correlations between
them and EEG metrics are also mentioned.

3.1. Event-related desynchronizations
3.1.1. Power differences

The box plots of the mERDs in electrodes C3 and
C4 are shown in Figure 2, which reveal the cortical
activation for the different conditions. The mERD
medians were all negative except grazMI’s ipsilat-
eral alpha mERD (Mdn = 3.57%). The condition
grazME had the strongest mERD medians of all
conditions. The contralateral sample groups had
overall lower distributions than the ipsilateral ones.

From the ipsilateral alpha mERD medians,
grazME had the highest value (Mdn = −37.45%),
followed by neurowMIMOHP (Mdn = −12.12%),
neurowMIMOVRHP (Mdn = −8.69%), neu-
rowMIMO (Mdn = −1.79%), neurowMIMOVR
(Mdn = −1.48%), and grazMI (Mdn = 3.57%).
Between the contralateral medians, grazME
had the highest median (Mdn = −37.27%), fol-
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(a) Alpha mERDs (b) Beta mERDs

Figure 2: mERDs for the different conditions, where each sample group contains both left- and right-hand trials for both (a)
alpha and (b) beta bands. The asterisks indicate significant differences between the distributions of the contralateral electrodes.
(p < 0.05)

lowed by neurowMIMOHP (Mdn = −33.30%),
neurowMIMOVRHP (Mdn = −22.86%), neurowMI-
MOVR (Mdn = −20.16%), neurowMIMO (Mdn
= −12.92%), and grazMI (Mdn = −5.08%) (see
Figure 2(a)).

From the ipsilateral beta mERD medians,
grazME had the highest value (Mdn = −17.30%),
followed by neurowMIMOHP (Mdn = −11.08%),
neurowMIMOVR (Mdn = −8.70%), neurowMI-
MOVRHP (Mdn = −8.05%), neurowMIMO (Mdn =
−7.50%), and grazMI (Mdn = −5.47%). Between
the contralateral medians, grazME had the highest
median (Mdn = −24.34%), followed by neurowMI-
MOVR (Mdn = −17.07%), neurowMIMO (Mdn =
−15.39%), neurowMIMOHP (Mdn = −14.29%),
neurowMIMOVRHP (Mdn = −13.76%), and grazMI
(Mdn = −8.69%) (see Figure 2(b)).

According to the Kruskal–Wallis test, the alpha
mERD was significantly different across all groups
(ipsilateral: χ2 = 33.92, p < 0.001; contralateral:
χ2 = 27.54, p < 0.001) but there were no sig-
nificant differences between the beta mERDs (ip-
silateral: χ2 = 10.75, p = 0.057; contralateral:
χ2 = 10.30, p = 0.067). Specifically, according
to Dunn’s test for the post-hoc pairwise compar-
isons (p < 0.05), grazMI was significantly different
from all the other conditions for contralateral elec-
trodes (neurowMIMO: p = 0.043; neurowMIMOHP:
p < 0.001; neurowMIMOVR: p = 0.012; neurowMI-
MOVRHP: p < 0.001; grazME : p < 0.001), while
grazME was significantly different from grazMI
(p < 0.001) and the NeuRow conditions with-
out haptic feedback, neurowMIMO (p = 0.009)
and neurowMIMOVR (p = 0.033). On the other
hand, the NeuRow conditions with haptic feed-
back were not significantly different from grazME
for the contralateral electrodes (neurowMIMOHP:
p = 0.480; neurowMIMOVRHP: p = 0.153). The
condition grazME also had significantly different ip-
silateral mERD distributions from all the other con-
ditions (neurowMIMOHP: p = 0.021; the others:

p < 0.001).

3.1.2. Lateralization indices

The box plots of the LI sample groups are shown
in Figure 3, which indicate the lateralization of the
ERDs in each condition. The alpha LIs had mostly
broader distributions and higher values than the
beta LIs. The median alpha LI of neurowMIMOVR
was the highest (Mdn = 15.2), followed by neu-
rowMIMOHP (Mdn = 14.1), neurowMIMOVRHP
(Mdn = 13.7), and neurowMIMO (Mdn = 10.8). The
conditions grazMI and grazME had the lowest me-
dians (Mdn = 5.3 and Mdn = 7.3, respectively).

The condition grazME had the highest median
beta LI (Mdn = 8.6) but also the broadest distribu-
tion. The motor-imagery conditions had similar dis-
tributions between themselves, with the conditions
neurowMIMOHP and neurowMIMOVRHP having
the highest medians (Mdn = 5.1 and Mdn = 5.4, re-
spectively). However, all conditions included nega-
tive indices in their sample groups, which are found
up to the lower quartile of the distributions.

According to the Kruskal–Wallis test (p < 0.05),
none of the sample groups were significantly differ-
ent (alpha: χ2 = 6.06, p = 0.300); beta: χ2 = 3.77,
p = 0.582). However, there was a significant dif-
ference between the sample groups and a null
LI, LI = 0 (alpha: χ2 = 28.17, p < 0.001; beta:
χ2 = 20.03, p = 0.003). Dunn’s test for pair-
wise comparisons found grazMI and the Neu-
Row conditions to have significantly different al-
pha LI sample groups from the null LI (grazMI:
p = 0.010; NeuRow conditions: p < 0.001;
grazME : p = 0.057), while all the beta LI sam-
ple groups were significantly different (grazMI:
p = 0.006; neurowMIMO and neurowMIMOHP:
p = 0.005; neurowMIMOVR: p = 0.003; neurowMI-
MOVRHP and grazME : p < 0.001).
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Figure 3: Box plots of the LIs for alpha and beta waves, where the asterisks show the distributions that are significantly different
from the null LI, LI = 0 (p < 0.05)

Figure 4: Box plots of the machine-learning models’ median
accuracies for all conditions, where the asterisk and horizontal
lines indicate statistically significant pairwise sample group dif-
ferences, for p < 0.05

3.2. Machine learning

The median accuracies of each model are shown
in Figure 4. The algorithms SVC and MLP had
the highest median-accuracy medians (Mdn =
68.46%), followed by AdaBoost (Mdn = 56.88%),
LDA (Mdn = 55.77%), k -NN (Mdn = 53.46%), and
Gaussian naive Bayes (Mdn = 47.63%). The al-
gorithms SVC and MLP had the most compact
distributions with a mean accuracy of 67.88%
(SD = 1.29%) and 68.01% (SD = 1.38%), respec-
tively. The median accuracies were identical for
both algorithms except in neurowMIMO, which was
68.46% for SVC and 69.23% for MLP. The Gaus-
sian naive Bayes was the only algorithm with all of
its median accuracies below 50%.

The Kruskal–Wallis test showed a significant dif-
ference (p < 0.05) between the accuracy distri-
butions (χ2 = 32.08, p < 0.001). The pairwise
comparisons using Dunn’s test further showed
that LDA was significantly different from SVC
(p = 0.014) and MLP (p = 0.010); SVC was

significantly different from k -NN (p = 0.006),
Gaussian naive Bayes (p < 0.001), and random
forests (p = 0.002); MLP was significantly dif-
ferent from k -NN (p = 0.004), Gaussian naive
Bayes (p < 0.001), random forests (p = 0.001),
and AdaBoost (p = 0.040); and Gaussian naive
Bayes was significantly different from AdaBoost
(p = 0.015).

4. Discussion
4.1. What BCI–VR configurations lead to the

strongest, most lateralized brain activation?
4.1.1. Strongest event-related desynchronizations

From all the motor-imagery conditions, the ones
that use the VR environment (neurowMIMO, neu-
rowMIMOHP, neurowMIMOVR, and neurowMI-
MOVRHP) led to significantly stronger alpha
ERDs. That is, the left side of the sensorimo-
tor cortex in right-hand trials and the right side in
left-hand trials had stronger alpha desynchroniza-
tions after the subject began to perform motor im-
agery. However, the NeuRow conditions that use
vibrotactile stimulation as haptic feedback (neu-
rowMIMOHP and neurowMIMOVRHP) produced
the strongest alpha ERDs, which are compara-
ble with motor execution’s equivalent (grazME).
The abstract-feedback-only condition (grazMI) per-
formed significantly worse than the NeuRow con-
ditions, thus suggesting that NeuRow and haptic
feedback, together or separately, lead to stronger
alpha ERDs. Furthermore, there were no sig-
nificant differences between neurowMIMOHP and
neurowMIMOVRHP, which implies that, while hav-
ing haptic feedback, the use of a VR headset does
not lead to a significantly stronger desynchroniza-
tion.

The alpha waves were much more reactive to
the different configurations than the beta waves, as
there were many more significant differences be-
tween the alpha ERDs than the beta counterparts.
Nevertheless, motor execution led to a slightly,

7



though not significantly, stronger beta ERD than
motor imagery. The ERD in beta waves has been
observed shortly after performing both motor im-
agery or motor execution [17].

4.1.2. Most lateralized event-related desynchroniza-
tions

The LIs were not significantly different between
each condition. However, they were significantly
different from the null LI (LI = 0), except grazME ’s
alpha LIs. This is ideal in stroke rehabilitation, as
the patient’s brain activation should be similar to
healthy subjects, who have a mostly contralateral
alpha activation [18]. Although the motor-imagery
conditions led to significantly contralateral brain ac-
tivation, no significant differences were found be-
tween them. Thus, all the conditions may be ca-
pable of inducing similar lateralization. Neverthe-
less, there was a slight increase in the median
LIs for the conditions that include a VR headset
and haptic feedback, separately or together, which
may become significantly different from the other
two motor-imagery conditions, grazMI and neu-
rowMIMO, if a larger sample is gathered.

The grazME ’s alpha LIs were not significantly
different from the null LI, which is in accor-
dance with upper-alpha and lower-beta ERDs be-
ing observed to become bilaterally symmetrical
shortly before motor execution [17]. Nevertheless,
grazME ’s beta LIs were significantly contralateral,
which were computed for both lower and upper
beta bands.

4.2. What BCI–VR configurations and machine-
learning algorithms lead to the most accurate
models?

4.2.1. BCI–VR configurations

In all algorithms, grazME performed significantly
worse than the motor-imagery conditions, which
can be attributed to the fact that CSPs are not
usually used for motor execution but prominently
implemented in motor-imagery tasks [16]. There
were some significant differences between the
motor-imagery conditions for some of the algo-
rithms, but these differences varied between them
without a clear trend.

As such, the data does not suggest any condi-
tions to perform consistently better for any of the
algorithms. Nevertheless, abstract feedback cou-
pled with vibrotactile stimulation has recently been
reported to improve classification accuracy com-
pared to abstract feedback only [19]. Moreover,
functional electrical stimulation (FES), another type
of haptic feedback, has also been used together
with a VR headset with an improved classifica-
tion percentage compared to using just the head-
set [20].

4.2.2. Machine-learning algorithms

Despite the LDA being commonly used in motor-
imagery-based BCIs [21], it performed worse than
the SVC and MLPs. The peculiar accuracy distri-
bution of these two algorithms could require further
analysis; for example, by looking at their hyperpa-
rameters. The use of nonlinear algorithms in BCIs
is not commonly seen, as the LDA or SVC with
a linear kernel are serviceable for online perfor-
mance, despite attempts at implementing, for ex-
ample, convoluted neural networks (CNNs) [22].

Although the accuracies were offline, most of
them were close to chance level (i.e., in a bi-
nary classifier that detects left- or right-hand move-
ments). The analysis of the models’ performances
should also consider the fitting times, which is an
important factor in online performance, but it was
not analyzed in this study. Thus, the machine-
learning aspect requires a more thorough investi-
gation that involves online accuracies, fitting times,
and possibly other metrics, as well as the analysis
of the hyperparameters.

4.3. Limitations
The most pronounced limitation of this study is that
the BCIs were not closed loops; that is, the sub-
jects do not control the avatar in NeuRow. Rather,
the virtual environment assisted the subjects in
performing motor imagery, by providing visual aid
and vibrotactile stimulation. In stroke rehabilitation,
the object of this study, using the more interactive
closed-loop BCIs could prove to be more beneficial
than displaying the avatar to the patient without any
possible input from the patient. While NeuRow is
capable of closing the loop, the experiment would
have taken significantly longer to conduct with all
of the conditions, due to the time needed to train
the machine-learning models of the BCIs, as well
as time constraints. Therefore, the study did not
use closed-loop BCIs.

Another limitation of the study was the use of
healthy subjects, given that the questions posed in
this thesis pertain to stroke patients. Nevertheless,
it would have been difficult to gather a meaning-
ful number of stroke patients willing and capable
of participating in the study, given the time con-
straints. Not only that, but the BCIs under study
are mainly for stroke patients who have an inad-
equate motor ability for rehabilitation that requires
arm movement, thus making the inclusion criteria
even more selective. Therefore, the subjects were
all healthy individuals, most of them in their 20s,
who had not suffered a stroke before.

The small sample was also a limitation, which
also fluctuated between the different conditions.
While neurowMIMO and neurowMIMOHP had 19
runs, or subjects, grazMI, neurowMIMOVR, and
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neurowMIMOVRHP had 18 runs, and grazME only
10. As an immediate consequence, the con-
clusions obtained from the statistical tests were
weaker; however, they could signal trends in the
data that could be recognized and drawn conclu-
sions from. Another consequence was the lack
of demographic comparisons, which would have
been too skewed to carry out.

The machine-learning analysis was not close to
being exhaustive, due to time constraints, and only
a select number of hyperparameters were tested.
The analysis of the machine-learning algorithms
and conditions that lead to the more robust and
accurate models was, therefore, carried out in a
broad, but not as deep, search. Not only that, but
the accuracies analyzed were offline, as the BCIs
did not let the subjects control the avatar in Neu-
Row.

4.4. Future research
Future studies should have a sample criterion that
includes stroke patients with poor motor ability in-
stead of healthy participants. They should also test
different training features besides standard CSPs,
so as to find alternatives that lead to not only ac-
curate classifications in BCIs but also strong con-
tralateral ERDs in the sensorimotor cortex.

Being a new field, the search for the best BCI–
VR still requires studies of similar nature (i.e., that
test different configurations), albeit with larger sam-
ples, the inclusion of stroke patients, and closed-
loop BCIs. Haptic feedback, in particular, has seen
limited use in research [10], despite the promising
results obtained in this study.

5. Conclusions
Based on the acquisition of EEG signals and an
analysis of the alpha and beta ERDs and LIs, the
use of a virtual environment, NeuRow, and haptic
feedback—implemented as vibrotactile stimulation
in this study—led to significantly stronger contralat-
eral ERDs, which were comparable to motor exe-
cution. Furthermore, the VR headset did not lead
to such results by itself, being comparable to just
using a monitor without haptic feedback. All motor-
imagery conditions invoked similarly contralateral
desynchronizations.

The SVC and MLPs had the most accurate mod-
els by a significant margin but were not influenced
by the conditions like the other algorithms such as
the LDA and AdaBoost. Moreover, none of the con-
ditions stood out in having more accurate models.
Interestingly, however, were the weak correlations
of the LIs and the median accuracies across condi-
tions, which, by proxy, relate to the features used to
train the models, the CSPs. Given the purpose of
the BCI–VR systems, the features should be inti-
mately connected with the brain activation, since

the neurofeedback offered to the stroke patients
should not only lead to accurate models but also
strong contralateral ERDs.

Additionally, the questionnaires, despite ar-
guably not showing interesting results besides the
condition preference, were important to bridge the
gap between the subjectivity of the subjects’ per-
ceived immersion and motor-imagery ability, as
well as their preference for certain configurations,
and the objectivity of the EEG analysis concerning
their brain activation.

There was an attempt in figuring out the config-
urations and algorithms that led to the strongest
brain activation and most accurate models, respec-
tively, but there were several limitations. The ab-
sence of stroke patients; the open-loop BCI, as op-
posed to a closed-loop one; a small sample size;
and, by any means, a non-exhaustive machine-
learning analysis were some of them. Never-
theless, the promising results pertaining to hap-
tic feedback contributed toward understanding this
new field of research better, that of the BCI–VR
systems for stroke rehabilitation, which hope to of-
fer a good therapy option to patients who cannot
take part in conventional or virtual rehabilitation.
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