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Resumo

Nesta tese, apresentamos a adaptação de uma arquitetura de Controlo por Modelo Preditivo (MPC)

baseada em Aprendizagem para corridas autónomas à competição Formula Student Driverless (FSD).

Este controlador aprende sobre iterações passadas através da construção de determinados conjunto

e funcional de custo terminal por base em trajetórias e sequências de ação de controlo recolhidas.

Melhoramos a capacidade de atuação em tempo-real para que satisfaça os requisitos de FSD ao im-

plementar o controlador em C++ e resolver a optimização num programa comercial desenhado para

a solução embebida de MPCs. Uma das principais dificuldades na corrida autónoma é que os mod-

elos que cobrem toda a janela dinâmica são não-lineares e difı́ceis de identificar. Para atenuar este

problem, usamos medidas passadas e atuais e técnicas de aprendizagem automática para prever o

error do modelo nominal. Em particular, usamos duas aproximações esparsas de Gaussian Process

Regression (GPR) para aprendizagem do erro do modelo. Em seguida, testamos este controlador num

simulador de veı́culo dedicado à competição FSD. Mostramos que a arquitectura original é capaz de

melhorar a sua performance, medida em tempos de volta, em cerca de 10%. No entanto, a disparidade

entre o modelo nominal e as medidas torna-se bastante acentuada à medida que o controlador se torna

incrementalmente mais agressivo o que resulta no não cumprimento do constrangimento da largura da

pista. Seguidamente, demonstramos que GPR consegue reduzir o erro do modelo nominal até 75% e

reduzir o tempo de volta até 12%.

Palavras-chave: Controlo por Modelo Preditivo, Aprendizagem de Modelo para Controlo,

Aprendizagem e Sistemas Adaptativos, Trajetória e Seguimento de Caminho, Corrida Autónoma.
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Abstract

In this thesis, we present the adaptation of a Learning-based Model Predictive Control (LMPC) architec-

ture for autonomous racing to the Formula Student Driverless (FSD) context. This reference-free con-

troller is able to learn from previous iterations by building an appropriate terminal set and cost function

from collected trajectories and input sequences. We improve the real-time capability of the framework

to satisfy the FSD requirements by implementing the controller in C++ and solving the optimization in

a commercial solver designed for embedded solutions of MPCs. One major setback in autonomous

racing is that accurate vehicle models that cover the entire performance envelope are highly nonlinear

and difficult to identify. To address this problem, we use both past and current measurements and ma-

chine learning techniques to predict the nominal model error. In particular, we use two sparse Gaussian

Process Regression (GPR) approximations for model learning. We then test this controller in a vehicle

simulator dedicated to the FSD competition. We show that the original architecture is able to improve its

performance by around 10% measured as lap time reduction. However, the nominal model mismatch

becomes severe as the controller pushes for incrementally more aggressive behaviour which results in

not fully abiding by the track width constraint. We then employ the GPR model which is able to reduce

the nominal model error by as much as 75% and safely improve the lap times by up to 12%. We have

tested on two different tracks to show signs of the framework being track agnostic.

Keywords: Model Predictive Control, Model Learning for Control, Learning and Adaptive Sys-

tems, Motion and Path Planning, Autonomous Racing.
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Chapter 1

Introduction

1.1 Motivation

Autonomous driving (AD) has been an increasingly active field of research for academia and the industry,

especially in the last two decades. This has been paralleled by growing amounts of investment from

the automotive industry’s established Original Equipment Manufacturers in autonomous vehicle (AV)

startups and their own research labs [1]. Most stakeholders involved aim at improving road safety [2],

reducing traffic congestion and emissions, and deploying universal mobility [3]. It holds great promises

of societal progress.

Arguably, the pioneering work in autonomous driving was performed by professor Ernst Dickmanns

and his team in the 80s and 90s. The culmination point of his team’s endeavours was the 1995 drive from

Munich to Odense in Denmark. The autonomous S-Class Mercedes-Benz drove 95% of the 1758 km au-

tonomously and reached a peek velocity of 175 kmh−1. Notwithstanding, the catalyst of recent attention

was likely the 2005 DARPA Grand Challenge, where Stanley [4], the Stanford University team’s vehicle

led by Sebastian Thrun, won the competition, followed by Carnegie Mellon University’s car - Sandstorm.

Thrun is a prominent figure in the self-driving and robotics field, having contributed to Simultaneous

Localization and Mapping (SLAM) algorithms [5, 6], which is a key part of a usual autonomous driving

software pipeline.

The typical AD software pipeline can generically be represented by the scheme in Figure 1.1 [7, 8].

From left to right, the first block corresponds to sensing which concerns the collection of data from a

multitude of sensors such as Light Detection And Ranging (LiDAR) and cameras. Perceive or Perception

algorithms - the first three algorithms of the second block - aim to detect road features and agents. The

remaining two techniques in the second block are examples of approaches used to localize the vehicle

with respect to some map of the world. The third block, in particular Behaviour Prediction, targets the

interpretation of Perception and Localization data to make sense of the real-world, e.g. estimate other

agents’ intents and driving style. The fourth block’s algorithms plan a feasible trajectory that respects

traffic rules given some route indications. Finally, control algorithms - last block - compute the necessary

actuation of the to follow the desired trajectory.

1



Perception uses exteroceptive sensors’ data, e.g. from LiDAR, camera and radar, to detect and track

other road agents, such as cyclists and pedestrians, and road signals [9]. State of the art perception

algorithms frequently resort to Deep Learning techniques [10, 11]. Furthermore, this module may be

responsible for creating information-rich instance segmentation images [12].

Figure 1.1: Autonomous Driving Software Pipeline [reprinted from [13]]

The Localization module aims to determine the ego-position with respect to an external reference

frame. Most successful real-world implementations compare online readings with pre-built high-definition

maps [14] to estimate the vehicle’s pose [15]. Proprioceptive sensors, e.g. Inertial Measurement Units

and wheel encoders, provide information for internal vehicle state monitoring and odometry, which is

also used in this module.

Behaviour Prediction is a fundamental part of urban AV platforms. It aims to predict other agents’

future trajectories and driving style [16] and [17]. Planning or Decision takes all this information to

compute a feasible motion based on the existing obstacles and reference path [18]. However, in complex

scenarios such as roundabouts, it is often hard to hand-code rules that can generalize well. [19] proposes

learning models of behaviour from human demonstrations of unlabelled raw video data. Finally, Control

algorithms compute the necessary actuation to follow the trajectory reference [20].

These technologies have numerous applications ranging from personal vehicles to long-haul trucks

and shuttles to mining vehicles. The American Society of Automotive Engineer proposes a taxonomy

for driving automation systems [21]. It provides detailed definitions for six levels of driving automation,

ranging from no driving automation (level 0) to full driving automation (level 5).

Audi, a german automaker, claims to have been the first to deliver a production car with level 31,

i.e. conditional, automation. This level enables drivers to focus on other tasks so as long as the vehicle

remains in a given Operational Design Domain (ODD) - in this case, highways. While level 5 automation

corresponding to fully autonomous driving in any road or weather has not been achieved yet, the same

is not true for level 4 automation - autonomous driving in a limited ODD. A few companies have been

authorized by California’s Department of Motor Vehicles to operate with a safety driver provided some

1https://store.hbr.org/product/audi-a8-the-world-s-first-level-3-autonomous-vehicle/W20134
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weather conditions are met and within a well-defined perimeter of public roads. Waymo, owned by

Google’s parent company Alphabet, is one of such companies, having driven more than 20 million miles

on the road and more than 15 billion miles in simulation - Figure 1.2. Zoox has also been given such

a permit. This startup aims to redefine the transportation landscape by offering Mobility as a Service

(MaaS) with its four-wheel steering, bi-directional, electric car. Nuro, an autonomous delivery startup,

has too vehicles with level 4 automation on the streets. The trucking industry has also been targeted

with automation, with TuSimple and Aurora having achieved significant progress.

Autonomous Racing aims to contribute to Autonomous Driving’s broader problem by introducing

innovations in autonomous technology through sport [22]. This kind of synergy is well established be-

tween Formula One and the automotive industry. For instance, technologies such as disk brakes, active

suspension, energy recovery systems and traction control were developed within this motorsport com-

petition and afterwards saw widespread use in commercial vehicles. This is exactly what Roborace

strives to achieve: combine motorsport entertainment and innovation to accelerate enhancements to

road safety. Currently, in its Season Beta, six teams are competing with Dev Bot 2.0, Figure 1.3, on fully

autonomous time trial challenges that include mixed reality obstacles and time benefits.

F1TENTH is an international community that has designed the F1TENTH Autonomous Vehicle Sys-

tem an open-source platform for autonomous systems research and education [23]. International com-

petitions are organized where teams compete against each other with the 1/10 scale race car.

The Indy Autonomous Challenge is promoting a university competition to program a modified Dallara

IL-15 racecar, Figure 1.4, in the world’s first head-to-head, high-speed autonomous race at the Indi-

anapolis Motor Speedway. The race is set to take place in October 2021. The organizers also highlight

the fundamental connection between innovations on the racetrack and real-world improvements. This

is yet another statement to the aforementioned ever-increasing interest, which is likely to result in more

mature AD technology.

Moreover, in the Stanford Dynamic Design Lab, Professor Chris Gerdes’ team has adapted MARTY

- a 1981 DMC DeLorean, Figure 1.5 - to equip it with autonomous drifting capacities [24]. This lab raises

the issue that preventing drifting is actually narrowing the range of scenarios where an AV can safely

operate. Often, vehicles are restricted to stay within conservative limits wherein it is always stable and

easy to control. Thus, sacrificing agility as drifting is not a skill showed by regular drivers. However, a

vehicle can achieve a wider range of manoeuvres by understanding how to control it beyond the stability

limits.

Formula Student hereafter referred to as FS, is a student engineering design competition where

participating university teams design, build, test and compete with a single seat formula racecar. There

are two classes for the propulsion system: electric (EV) and internal combustion engine (CbV). Teams

are evaluated not only by how fast their car is but also by their design and manufacturing choices.

FS competitions are divided into a series of static and dynamic events. In the Business Plan Pre-

sentation, the goal is to evaluate the team’s ability to develop and deliver a comprehensive business

model which demonstrates their product – a prototype race car – could become a rewarding business

opportunity that creates a monetary profit. The Cost and Manufacturing event’s objective is to evalu-
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Figure 1.2: Waymo Car Figure 1.3: Roborace DevBot 2.0

Figure 1.4: Dallara IL-15 Figure 1.5: MARTY

ate the team’s understanding of the manufacturing processes and costs associated with constructing a

prototype race car. This includes trade-off decisions between content and cost, make or buy decisions

and understanding the differences between prototype and mass production. Lastly, in the Engineering

Design event, the teams must support their engineering process and compose a design report. The

author refers to Table 1.1 for the maximum points awarded per dynamic event. The dynamic events,

see Figure 1.6, aim to test the fabricated prototype in different conditions, as follows:

• Acceleration: straight line with a length of 75m - test longitudinal acceleration capability.

• Skidpad: two pairs of concentric circles in a figure of eight pattern - test lateral acceleration

capability.

• Autocross: single lap in a handling track with components such as hairpins, slaloms and chicanes

with a length of approximately 1 km.

• Trackdrive: 10 laps on a closed-loop circuit with similar characteristics to Autocross.

• Efficiency: evaluate the vehicle’s energy efficiency in the previous event.

In 2017, Formula Student Germany (FSG) decided to create an additional class for autonomous

racecars - Driverless Vehicle (DV). In this class, the vehicles must complete the dynamic events in

fully autonomous mode. These cars could either be powered by electric motors or internal combustion

engines. This decision was influenced by the automotive stakeholders like Audi, Daimler or Continental

that provide officials and design judges to this competition, and that are also sponsors.
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(a) Acceleration Event (b) Skidpad Event

(c) Autocross Event (d) Trackdrive Event

Figure 1.6: Dynamic Events Track Layout

From 2022 onwards, the DV class will cease to exist independently. Instead, CbV and EV categories

will have to perform one of the dynamic events in an autonomous mode. If teams are not capable

of doing so, they will not score on this discipline. In the following year, 2023, an additional dynamic

event will also have to be performed autonomously. Hence, reinforcing the incentive of developing this

technology.

The autonomous driving competition environment is a rather controlled one. For instance, no other

agents, such as other vehicles or pedestrians, are immediately near the track. The track is composed of

blue and yellow cones on the left and right borders, respectively. Exit and entry lanes are marked with

small orange cones when applicable, while big orange cones are used in the start, finish and timekeeping

line. Therefore, a common Formula Student Driverless (FSD) software pipeline is simpler. Behaviour

Prediction and Decision modules are no longer necessary. Additionally, the Perception challenge is

also simpler as there are only four classes of stationary objects to detect and track. In contrast, the

Motion Planning and Control problem can be harder as teams aim to go as fast as possible and drive

at the limits of handling, i.e. exploiting the whole performance envelope. A priori track information is

not allowed for the Autocross event, while for the Trackdrive, some competitions allow teams to collect

data from their Autocross runs. Therefore, the SLAM problem is a fundamental part of the pipeline.

5



CbV \ EV DV
Static Events:
Business Plan Presentation 75 points 75 points
Cost and Manufacturing 100 points 100 points
Engineering Design 150 points 300 points
Dynamic Events:
Skidpad 75 points 75 points
Acceleration 75 points 75 points
Autocross 100 points 100 points
Endurance 325 points -
Efficiency 100 points 75 points
Trackdrive - 200 points
Overall 1000 points 1000 points

Table 1.1: Maximum Points Awarded per Event

Nevertheless, teams should be able to complete any event using current measurements only, though, at

a slower speed.

FST Lisboa is the Instituto Superior Técnico FS team. It has been fabricating these prototypes since

2001. Since September 2019, the team has been working on its first autonomous prototype - FST10d.

The base vehicle to be adapted is the 9th FST Lisboa’s prototype (Figure 1.7), its 6th electric. It was

designed, built and put to competition during the 2018/19 season, where it achieved the 9th place in the

overall classification in FSG 2019.

Figure 1.7: FST09e Car and Team at FSG19 [©FSG - Johannes Klein]

The current FST Lisboa’s software pipeline includes only simple controllers, while the rest of the

pipeline is more mature - more details on this in Section 4.2. The controllers implemented are a Pure

Pursuit Controller [25] for lateral control and Proportional-Integral (PI) controller for longitudinal con-

trol. The latter receives a velocity setpoint computed from a point-mass model. Therefore, this thesis

work aims to contribute to the FST Lisboa’s Path Planning and Control pipeline and, in turn, to the AD

endeavour.
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1.2 Topic Overview

Paden et al. [26] surveyed the state of the art on planning and control algorithms for AVs in the urban

setting. The authors divide the motion planning layer into three main categories. Variational methods

represent the path as a function parameterized by a finite-dimensional vector, and the optimal path is

sought by optimizing over the vector parameter using non-linear continuous optimization techniques [27].

On the other hand, graph-search methods discretize the configuration space of the vehicle as a graph,

where the vertices represent a finite collection of vehicle configurations and the edges represent tran-

sitions between vertices. The desired path is found by performing a search for a minimum-cost path in

such a graph [28, 29]. Finally, incremental search methods sample the configuration space and incre-

mentally build a reachability graph that maintains a discrete set of reachable configurations and feasible

transitions between them. Once the graph is large enough so that at least one node is in the goal

region, the desired path is obtained by tracing the edges that lead to that node from the start configu-

ration [30, 31]. Regarding control techniques, the authors claim that the feedback controller’s role is to

stabilize to the reference path or trajectory in the presence of modelling error and other forms of uncer-

tainty. Several controllers that resort to a kinematic bicycle model have been designed. For instance,

the Pure Pursuit [25] and Stanley [4] controllers. To handle more demanding driving manoeuvres, more

complex controllers must be designed. In particular, predictive control approaches have achieved some

success [32].

Model Predictive Control applied to AD consists of solving the motion planning problem over a short

time horizon - the Prediction Horizon - and applying the corresponding control action to the physical sys-

tem. This problem is solved at each iteration starting at the current state, therefore acting as a feedback

loop - Receding Horizon Control. Advances in computing hardware and mathematical programming al-

gorithms have made predictive control feasible for real-time use in AVs. There are several examples of

MPC applied to AD [33–35].

On the opposite side is end-to-end driving which aims to generate ego-motion directly from sensory

inputs. Direct supervised Deep Learning [36] has been used for this problem, but more recent focus has

been put to Deep Reinforcement Learning [37]. Sutton and Barto [38] define Reinforcement Learning

(RL) as simultaneously a problem and a class of solution methods where the agent learns to map

situations to optimal actions, i.e. the optimal policy, to maximize a future cumulative reward not by

being explicitly told so but, instead, by learning from interaction with the environment. Deep RL has

been applied with remarkable success in controlled simulated environments where state transitions are

known precisely. For instance, it has achieved human-level performance in Atari games [39] and in the

board game Go [40].

Kiran et al. [41] survey the applications of RL to autonomous driving. While there are a reasonable

number of such applications in a simulation environment, e.g. [42], the number of real-world successful

experiments is far more limited. Wayve, a deep RL-based AD startup, claims to have been the first to

show that RL is a viable approach to AD [43]. To this end, the authors have demonstrated the ability

to learn to lane follow in a 250m off-road section, with under thirty minutes of training. Nonetheless,
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there are significant barriers to the deployment of this technology in a real-world scenario. Namely,

in bridging the simulation-reality gap, validating and ensuring these systems’ safety, and being data-

efficient. Further, Dulac-Arnold et al. [44] perform an empirical investigation of the challenges of real-

world RL and highlight nine major challenges, e.g. high-dimensionality of continuous state and action

space. Finally, Recht [45] uses the Linear Quadratic Regulator, a simple and well-studied problem in

optimal control, with unknown dynamics as a baseline for comparison. He concludes that model-based

control combined with model learning seems to be much more data-efficient than the tested RL methods

both in theory and practice. In other words, Machine Learning (ML) techniques seem best suited for

model fitting and accounting for model uncertainty rather than for direct control.

Hence, one arrives at a research area that lies in the intersection between control, learning and

optimization. When compared to RL, it has many more sound experimental results in safety-critical

systems. Control and optimization intersect naturally in MPC. There are two major branches in this

research area: Learning for MPC and MPC for Learning with Constraints. The latter uses MPC as a

safety-filter for any learning-based controller, in particular RL. Specifically, the input signal computed by

the learning-based controller is fed to the MPC which, in turn, verifies its safety. If the MPC deems the

control action safe and feasible, the control is applied to the system. Otherwise, the MPC computes a

safe input. Wabersich and Zeilinger [46] propose using an MPC as a safety certification of a learning-

based input which is modified to a feasible trajectory towards a safe set if necessary. The former branch

focuses on improving the formulation of the MPC, resorting to ML methods. In [47], the authors provide

a summary of this type of controllers.

This thesis’ pivot will be Learning-based Model Predictive Control, henceforth referred to as LMPC,

which in this case does not include the use of MPC as safety filters. Most research has focused on using

ML as a data-based adaptation of the prediction model or uncertainty description - Model Learning. This

is of evident substance as the MPC relies on suitable accurate model representations of the system dy-

namics. Notwithstanding, learning has also targeted an MPC controller’s parameterisation, e.g. the cost

function, horizon length, or terminal components. This thesis’s work builds on the LMPC architecture

proposed by Professor Borrelli’s MPC Lab - more details in Section 2.2.

Several other LMPC architectures have been proposed. Zeilinger’s research group introduced a

cautious LMPC that combines a nominal model with Gaussian Process Regression (GPR) techniques

to model the unknown dynamics [48]. It has been shown to increase safety and performance and has

been applied to trajectory tracking with a robotic arm and autonomous racing, respectively [49] and [50].

Schoellig’s Dynamic Systems Lab proposed using Bayesian Linear Regression (BLR) to model the un-

known dynamics [51]. These researchers argue that this simple model is more accurate in estimating

the mean behaviour and model uncertainty than GPR and generalizes to novel operating conditions with

little or no tuning. Further, this group designed a framework that combines BLR model learning with cost

learning [52]. This method is inspired by ideas from reward shaping - encouraging and discouraging

behaviours that lead to high and low reward, respectively - and models the prediction cost error.

Model Predictive Path Integral Control provides a mathematical methodology for developing optimal

control algorithms based on the stochastic sampling of trajectories [53]. It has been applied to aggressive
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autonomous racing on scale vehicles. In [54], RL updates the parameterization of a robust MPC scheme

and the safety constraint to reduce conservatism while preserving safety.

Regarding what other groups with similar autonomous racing applications have investigated, namely

in Roborace: the team from the University of Pisa published a paper demonstrating the software pipeline,

namely their Planning and Control framework as well as the SLAM methods [55]. The Roborace orga-

nization was responsible for implementing low-level controllers that ensured closed-loop control of the

actuators. The authors adopted three models: a kinematic model for path optimization, a dynamic mass

model for speed profile optimization, and the dynamic single-track model for real-time Nonlinear Model

Predictive Control (NMPC). This paper builds on the work of [56].

The opposing team from the Technical University of Munich also demonstrated their overall software

stack to tackle the Roborace competition [57] and more relevant to this work, the architecture for the Path

Planning module, [58]. Similarly to U Pisa’s team, it includes a global race trajectory computed offline but

uses Optimal Control techniques to minimize the lap time. Following is a local trajectory planning module

to handle obstacles that generates an action set of multiple drivable trajectories through a graph-based

planner [59]. Vehicle control is split into trajectory-tracking and low-level control. The former utilizes

a gain-scheduled PD-controller accompanied by a feedforward term. In comparison, the latter is a P-

controller combined with disturbance estimation and also a feedforward term.

This team from Munich has recently addressed known control algorithms’ limitations using learning-

based controllers. In [60], a model-free learning method performs an online adaptation of the maximum

longitudinal and lateral accelerations used in the trajectory planning so that the vehicle does not violate

the safety constraints. This is done through a safe Bayesian optimization that aims to maximize the

accelerations scale factor and where GPR models the cost and constraint functions. The constraints

are two heuristic measures for vehicle stability from vehicle dynamics science: understeer and wheel

slip; and the lateral tracking error. The authors claim that this architecture is at times conservative, in

part justified by the focus on safety, and is unable to adjust to different conditions in particular parts

of the track. In [61], the authors aim to tackle performance limitations associated with conservative

uncertainty assumptions in robust controllers. They propose a combination of a normalized Least Mean

Square (LMS) filter with a recursive quantile estimator to identify feature-dependent upper and lower

uncertainty bounds. Unlike BLR or GPR, there are no implicit assumptions about the samples’ probability

distribution, and it is computationally more efficient. This could be integrated with a Tube-MPC [62].

Regarding the FSD context, several teams have published papers about their approach to this com-

petition [63–65]. In [63] and [66], an MPC is used for the whole motion control problem. While in [65],

an MPC is used for lateral control only, using a feedforward PI-controller for the longitudinal dynamics.

In [67], AMZ Driverless - the team from ETH Zurich - provides an in-depth description of their 2018

autonomous race car’s algorithms and system architecture. This team exploited a hierarchical controller

with a two-level optimization framework for motion planning in their 2019 competition vehicle [68]. It

includes an offline lap time optimization trajectory and an online NMPC. The authors propose to use

a terminal constraint on the longitudinal velocity computed by the offline module in the NMPC. Thus,

efficiently coupling the two levels while reducing the NMPC prediction horizon and ensuring safety and
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performance are guaranteed. In [69], they extended this architecture by introducing a high-frequency

low-level controller that tracks the states predicted by the NMPC which enables reducing model mis-

match and optimizing the low-level torque vectoring command in the higher level motion planners. The

authors claim this architecture is able to outperform a professional driver.

AMZ used a learning-based controller to tackle the issue relevant to autonomous racing that accurate

vehicle models that cover the entire performance envelope are highly nonlinear and difficult to identify

[70]. Therefore, the proposed formulation considers a simple nominal vehicle model where GPR models

residual model uncertainty. The approach is based on Model Predictive Contouring Control (MPCC) [71]

and cautions MPC [50]. This framework was tested on an FSD prototype, achieving lap-time improve-

ments of 10%.

Relevant works from Instituto Superior Técnico include the development of an MPC controller for the

FSD competition whose model is a Neural Network trained from a detailed vehicle simulator [72]. The au-

thor also trains another Neural Network from the MPC controller control actions. A torque-vectoring [73]

and sideslip estimation [74] algorithms for a Formula Student prototype.

1.3 Objectives and Contributions

The chief objective of this thesis is to improve the motion planning and control pipeline of FST Lisboa.

Hence, this algorithm is responsible for both trajectory planning and following. Further, there is no offline

pre-computed trajectory. We target the prime FSD event, i.e. most points available in a single dynamic

discipline, of Trackdrive. To that end, we believe a sensible manner of tackling such an event ought to use

existing data, both pre-recorded and collected online, to improve a model-based controller’s knowledge.

The LMPC architecture on top of which we build this work is a natural candidate. This architecture

should enable iterative performance improvements. That is, decreasing lap time is expected at each

completed lap.

The contribution of this thesis is fourfold:

• Execute the necessary adaptations of this architecture to the FST Lisboa software pipeline.

• Improve the computational performance of the algorithm (double the controller sampling frequency

and more than double the prediction horizon length).

• Validate the LMPC architecture in an FSD simulation environment context.

• Implement model learning schemes to reduce model mismatch.

1.4 Thesis Outline

This thesis is organized as follows.

Chapter 2 provides a theoretical background on the methods used in the LMPC architecture. In

particular, it starts with a brief introduction to Model Predictive Control. Then, thoroughly describes the
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LMPC algorithm architecture and introduces the underlying theoretical guarantees. Finally, the Gaussian

Process Regression Machine Learning technique used for model learning is introduced.

In Chapter 3, we describe the final algorithm developed. In particular, we introduce the LMPC formu-

lation that enables approaching autonomous racing as a minimum lap time problem. We also detail how

to build the terminal components in the autonomous racing case. Further, we explain the optimization

problem that characterizes the MPC and the vehicle models used therein. Finally, we characterize the

GPR relevant components such as the covariance function and the feature variables.

In Chapter 4, a detailed description is given regarding the simulator’s underlying dynamics and rel-

evant parameters. Subsequently, one provides an overview of the platform’s hardware and software

setup used for testing, the FST Lisboa autonomous racing prototype. Lastly, the details of the controller

implementation are given. Particularly, concerning new features implemented and language-relevant

decisions.

The results and some immediate conclusions are drawn in Chapter 5. Starting with the model learn-

ing analysis of the sparse Gaussian Processes Regression approximations’ structure and the respective

results. After, the overall LMPC architecture results on two different Formula Student tracks are shown.

Ultimately, Chapter 6 provides a summary of the main conclusions and contributions of this research

work. Furthermore, one discusses possible future work directions, both regarding algorithm architecture

and machine learning techniques.
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Chapter 2

Theoretical Background

In this chapter, we will lay the theoretical foundations for which the algorithms in Chapter 3 are based.

First, with an introduction to Model Predictive Control and the concept of Receding Horizon Control

(RHC). Then, extend the general MPC framework to the particular case of Learning-based MPC this

thesis addresses. Finally, we will introduce the algorithms used in the scope of Model Learning.

We use bold lowercase letters for vectors x ∈ Rn and bold capitalized letters for matrices X ∈ Rn×m,

while scalars are non-bold.

2.1 Model Predictive Control

The idea of Receding Horizon Control is that an infinite horizon sub-optimal controller can be designed

by repeatedly solving Finite-Time Constrained Optimal Control (FTCOC) problems in a receding horizon

fashion [32]. At each sampling time, starting at the current state, an open-loop optimal control problem is

solved over a finite horizon (top diagram of Figure 2.1). The computed optimal manipulated input signal

is applied to the process only during the following sampling interval [t, t+ 1]. At the next time-step t+ 1

a new optimal control problem based on new measurements of the state is solved over a shifted horizon

(bottom diagram of Figure 2.1).

Figure 2.1: Receding Horizon Idea. [reprinted from [32]]
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Model Predictive Control is an RHC where the FTCOC problem with a prediction horizon of N is

computed by solving the following optimization problem online:

Jt→t+N (xt|t) = min
ut|t,··· ,ut+N−1|t

[
t+N−1∑
k=t

q(xk|t, uk|t) + p(xt+N |t)

]
(2.1a)

s.t.

xk+1|t = Axk|t +Buk|t ∀k ∈ [t, · · · , t+N − 1] (2.1b)

xk|t ∈ X , uk|t ∈ U ∀k ∈ [t, · · · , t+N − 1] (2.1c)

xt+N |t ∈ Xf (2.1d)

xt|t = x(t) (2.1e)

where x is the state and u the control input. The subscript k|t represents a given quantity in the predic-

tion horizon with respect to time t. xt|t and xt+N |t (whose short notation is xN ) represent the initial and

terminal state of the system starting at time t, respectively. This becomes evident by Equation (2.1e)

which imposes the current system state to be the initial condition of the generic FTCOC problem. Equa-

tion (2.1b) represents the discrete-time linear time-invariant system dynamics. State and input con-

straints are given by Equation (2.1c). The terminal constraint is given by Equation (2.1d) which forces

the terminal state into some set Xf . The stage q(·, ·) and terminal cost p(xN ) are any arbitrary continu-

ous, strictly positive functions.

In RHC, the optimization problem is solved over a finite horizon repeatedly at each time step, in the

hope that the controller resulting from this short-sighted strategy will lead to a closed-loop behavior that

mimics that of the infinite horizon controller. In general, however, stability and feasibility are not ensured

by the RHC law. Feasibility corresponds to the existence of a sequence of control inputs for which

the constraints are obeyed. When the trajectories converge to the origin, one may say the closed-loop

system is asymptotically stable. This definition concerns the problem of regulating to the origin but it can

be shown equivalently to the problem of following some reference.

In principle, one could analyze the RHC law for feasibility, stability and convergence but this is difficult.

One of the most popular approaches to guarantee persistent feasibility, i.e. feasibility at all future times,

and stability of the RHC law makes use of a control invariant terminal set Xf and a terminal cost p(xN ) =

||PxN ||p, where p = 1 or p =∞, which drives the closed-loop optimal trajectories towards the origin [32].

Note that the terminal set Xf is introduced artificially for the sole purpose of leading to a sufficient

condition for persistent feasibility. If the following conditions hold:

1. The stage cost q(x, u) and terminal cost p(x) are continuous and positive definite functions.

2. The sets X , Xf and U contain the origin in their interior and are closed.

3. Xf is a control invariant, i.e. Xf ⊆ X .

4. min
v∈U, Ax+Bv∈Xf

(
− p(x) + q(x, v) + p(Ax+Bv)

)
≤ 0,∀x ∈ Xf .

then, the closed-loop system is asymptotically stable with domain of attraction x(0) ∈ X0 [75].
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2.2 Learning-based Model Predictive Control

Rosolia and Borrelli [76] first proposed the LMPC architecture which this work builds upon. It resembles

the Iterative Learning Control strategy, which has been used with MPC to minimize the tracking error in

an iterative manner [77]. However, this is a reference-free iterative control strategy able to learn from

previous iterations. At each iteration, the initial condition, the constraints, and the objective function do

not change. The authors show how to design a terminal safe set - SS - and a terminal cost function -

Q-function - such that the following theoretical guarantees hold:

• Nonincreasing cost at each iteration.

• Recursive feasibility, i.e. state and input constraints are satisfied at iteration j if they were satis-

fied at iteration j − 1.

• Closed-loop equilibrium is asymptotically stable.

This framework’s main contribution is to learn terminal constraints rather than model learning. The

LMPC solves at each sampling time t of iteration j the FTCOC problem of the form:

Jjt→t+N (xjt ) = min
ut|t,··· ,ut+N−1|t

[
t+N−1∑
k=t

q(xk|t, uk|t) +Qj−1(xt+N |t)

]
(2.2a)

s.t.

xk+1|t = ht(xk|t, uk|t) ∀k ∈ [t, · · · , t+N − 1] (2.2b)

xk|t ∈ X , uk|t ∈ U ∀k ∈ [t, · · · , t+N − 1] (2.2c)

xt+N |t ∈ SSj−1 (2.2d)

xt|t = xjt (2.2e)

Note that the major differences to the generic MPC in Equation (2.1) concern the terminal compo-

nents: the terminal cost is given by the Q-function: p(xt+N |t) = Qj−1(xt+N |t); whereas the terminal con-

straint corresponds to the terminal safe set SS: Xf = SSj−1. The system dynamics in Equation (2.2b)

have been extended to the nonlinear case, i.e. some continuous function h maps the transition from the

current state xt given a control input ut to the subsequent state xt+1. In this chapter, scalar quantities

are used but it is equivalent for vector quantities.

x∗,jt:t+N |t =
[
x∗,jt|t , · · · , x

∗,j
t+N |t

]
(2.3a)

u∗,jt:t+N |t =
[
u∗,jt|t , · · · , u

∗,j
t+N−1|t

]
(2.3b)

The Equations (2.3a) and (2.3b) are the optimal state and control solution at time t of iteration j,

respectively. At this instance, the control input applied to the system is the first element of u∗,jt:t+N |t:

ujt = u∗,jt|t (2.4)
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The FTCOC problem, Equation (2.2), is solved at the following sampling time t + 1, based on the

new measurements of state xjt+1, yielding a receding horizon control strategy. At the jth iteration,

the inputs applied to system and the corresponding state evolution are collected in the vectors given

by Equation (2.5a) and Equation (2.5b), respectively.

uj =
[
uj0, u

j
1, · · · , u

j
t , · · ·

]
(2.5a)

xj =
[
xj0, x

j
1, · · · , x

j
t , · · ·

]
(2.5b)

The safe set SSj , given by Equation (2.6) is the collection of all state trajectories at iteration i for

i ∈ M j . M j in Equation (2.7) is the set of indexes k corresponding to the iterations that successfully

steered the system to the final point xF .

SSj =

{ ⋃
i∈Mj

∞⋃
t=0

xit

}
(2.6)

M j =
{
k ∈ [0, j] : lim

t→∞
xkt = xF

}
(2.7)

Note that the safe set can be interpreted as a sampled subset of the maximal stabilizable set K(xF ),

since for every point in the set, there exists a feasible control sequence that satisfies the state constraints

and steers the system toward xF in K ∈ N steps. This is a special case of the K-step controllable set

where the target is a control invariant set, which is the case with xF since it is assumed that this final

state is a feasible equilibrium for the unforced system, i.e. h(xF , 0) = xF .

The Qj function, defined in Equation (2.8), assigns to every point in the sampled safe set the mini-

mum cost-to-go along the trajectories therein.

∀x ∈ SSj , Qj(x) = J i
∗

t∗→∞(x) =
∞∑
k=t∗

q(xi
∗

k , u
i∗

k ) (2.8)

where i∗ corresponds to the iteration that minimizes such cost starting at that particular state x and t∗ is

the respective time of that state in that iteration.

[76] provides the detailed proof of the theoretical guarantees stated and the conditions for which

these hold.

Let one now reflect on the merit of the safe set SS and Q-function. The safe set works as a safe

region for the shorter horizon N . For example, in autonomous racing, it can account for the shape of

the track beyond the horizon. This way, the controller is informed from past experimental data of how

fast he can push in a particular part of the track without having to compute the global optimal racing line.

Similarly, the Q-function enlightens the controller with respect to which states in the safe region yield

the minimum cost in the long-term, just like in Reinforcement Learning (although, there one would try to

maximize the Q-function). In autonomous racing, that would correspond to faster laps.

Checking if a state is in SS is a simple search. However, the optimization problem becomes chal-

lenging to solve even in the linear case due to its integer nature. Rosolia and Borrelli [78] build upon the
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former for linear systems by proposing convexfying the terminal constraints to significantly reduce the

computational burden without compromising the LMPC scheme’s guarantees. As X and U are convex,

for each combination of the elements in SSj there is a control sequence that steers the system to xF .

Thus, CSj , defined as Equation (2.9), is a control invariant set.

CSj = Conv(SSj) =

{
|SSj |∑
i=1

αizi : αi ≥ 0,
|SSj |∑
i=1

αi = 1, zi ∈ SSj
}

(2.9)

where |SSj | is the cardinality of SSj . For the terminal cost, the barycentric function P j is used to assign

to every point in CSj the minimum cost-to-go along the trajectories in CSj :

∀x ∈ CSj , P j(x) = min
λt≥0,∀t∈[0,∞]

j∑
k=0

∞∑
t=0

λkt J
k
t→∞(xkt )

s.t.

j∑
k=0

∞∑
t=0

λkt = 1

j∑
k=0

∞∑
t=0

λkt x
k
t = x

(2.10)

The FTCOC problem then becomes a convex optimization problem as the terminal constraint en-

forces the terminal state in the convex set CSj and the terminal cost P j is a convex function.

In [79], the authors present the LMPC architecture for unconstrained uncertain linear systems subject

to bounded additive uncertainty. The goal is to solve an infinite time robust optimal control problem. Akin

to the deterministic case, some guarantees hold: i) state and input constraints are robustly satisfied, ii)

the closed-loop system converges asymptotically to a neighbourhood of the origin, iii) the worst-case

iteration cost is non-increasing, and iv) the domain of the policy is not shrinking (exploration). The initial

proposed control strategy is computationally intensive. Therefore, the authors propose a sample-based

approach to approximate the safe set and the value function using historical noisy data.

2.3 Gaussian Processes Regression

Gaussian Processes is a Machine Learning approach that can be interpreted as a Bayesian version of

the Support Vector Machine (SVM) method. It is a non-parametric, probabilistic procedure to learning in

kernel machines. By focusing on Gaussian processes, the problem becomes computationally tractable.

Furthermore, it provides a fully probabilistic predictive distributions, including estimates of the uncertainty

of the predictions. See Figure 2.2 for an illustration of how GPR inference works. The graph on the left

shows four samples drawn from the prior distribution. While the graph on the right shows the situation

after two datapoints have been observed. The mean prediction is shown as the solid line and four

samples from the posterior are shown as dashed lines. In both plots the shaded region denotes twice

the standard deviation at each input value. One can see that the uncertainty is null where datapoints

have been observed and increases as a function of the distance from those observations.
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Figure 2.2: Gaussian Process Inference. [reprinted from [80]]

The combination of the prior and the data leads to the posterior distribution over functions. The spec-

ification of the prior is important because it fixes the properties of the covariance functions considered

for inference. In particular, the type of covariance function used and its hyperparameters. In turn, the co-

variance function expresses some prior notion of smoothness of the underlying function. For a detailed

description of GPR, the author refers the reader to the book Gaussian Processes for Machine Learning

by Rasmussen and Williams [80].

Consider now an unknown latent function g : Rnz → Rng that is identified from a collection of inputs

zk ∈ Rnz and corresponding outputs yk ∈ Rng .

yk = g(zk) + wk (2.11)

where wk ∼ N (0,Σw) is independent and identically distributed Gaussian noise with diagonal variance

Σw = diag
(
[σ2

1 , · · · , σ2
ng

]
)
. The set of n input and output data pairs form a dictionary D:

D =
{

Y = [yT1 ; · · · ; yTn ] ∈ Rn×ng ,Z = [zT1 ; · · · ; zTn ] ∈ Rn×nz

}
(2.12)

Assuming a Gaussian prior on g in each output dimension d ∈ {1, · · · , ng}, such that they can be

treated independently, the posterior distribution in dimension d at an evaluation point z has mean and

variance given by Equations (2.13a) and (2.13b), respectively. Further, in this situation, one refers to Y

as y. That is, there is a collection of nd n-dimensional vectors yd. To get the posterior distribution over

functions, the joint prior distribution must be restricted to contain only those functions which agree with

the observed data points. Graphically one may think of generating functions from the prior, and rejecting

the ones that disagree with the observations, although this strategy would not be computationally effi-

cient. However, in probabilistic terms, this operation is extremely simple, corresponding to conditioning

the joint Gaussian prior distribution on the observations.

µd(z) = kdzZ
(
Kd

ZZ + Iσ2
d

)−1
yd (2.13a)

Σd(z) = kdzz − kdzZ
(
Kd

ZZ + Iσ2
d

)−1
kdZz (2.13b)
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where Kd
ZZ is the Gram matrix, i.e. [Kd

ZZ]ij = kd(zi, zj), [kdZz]j = kd(zj , z), kdZz = (kdZz)T and

kdzz = kd(z, z) corresponds to the kernel function used. Note that the variance does not depend on

the observed targets, but only on the inputs; this is a property of the Gaussian distribution.

The squared exponential (SE) kernel function in Equation (3.23) is often used for its smoothness

properties of the Gaussian distribution. It is sometimes referred to as Radial Basis Function. Further-

more, it provides a good measure of the correlation between different inputs.

kdSE(z, z̄) = σ2
f,d exp

(
− 1

2

(z− z̄)T(z− z̄)

l2d

)
+ σ2

n,dδzz̄ (2.14)

where ld ∈ R is the positive length-scale, σ2
f,d the squared signal variance, σ2

n,d is the squared noise

variance (or noise level parameter) and δzz̄ is the Kronecker delta, i.e. δzz̄ = 1 if and only if z = z̄ . In this

case, φd = {ld, σ2
f,d, σ

2
n,d} is a vector that contains all hyperparameters. Decreasing the length-scale

provides more flexibility, i.e. sharp variations in the value of the underlying function g are allowed to fit

the data points better. However, the variance grows rapidly away from the data points. On the other

hand, increasing the length-scale yields a slowly varying function with significant noise. See Figure 2.3

for a graphical depiction of this behaviour.

Figure 2.3: Length-scale influence on GPs. (a) Data is generated from a GP with hyperparameters (l,
σf , σn) =(1,1,0.1), as shown by the + symbols. Using Gaussian process prediction with these hyperpa-
rameters yields a 95% confidence region for the underlying function f (shown in grey). Panels (b) and
(c) again show the 95% confidence region, but this time for hyperparameter values (0.3, 1.08, 0.00005)
and (3.0, 1.16, 0.89) respectively. [reprinted from [80]]

The resulting multivariate Gaussian Process approximation is given by:

g(z) ∼ N
(
µg(z),Σg(z)

)
(2.15)

where µg(z) = [µ1(z); · · · ;µng (z)] ∈ Rng and Σg(z) = [Σ1(z); · · · ; Σng (z)] ∈ Rng×ng .
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Sparse Approximation Methods for Gaussian Process Regression

The computational complexity of GPR strongly depends on the number of data points n. In particular, a

computational cost of O(n3) is incurred whenever a new training point is added to the dictionary D. This

is due to the need to invert
(
Kd

ZZ + Iσ2
d

)
which is a n × n matrix. Besides, the evaluation of the mean

and variance have complexity cost of O(n) and O(n2), respectively.

A host of sparse approximation techniques have been proposed to allow the application of GPs to

large problems in Machine Learning [81]. An additional set of m < n latent variables ḡ = [ḡ1, · · · , ḡm],

which are called inducing variables or support points, are used to approximate Equation (2.13). These

are values of the Gaussian Process evaluated at the inducing inputs Zind = [z̄T0 ; · · · ; z̄Tm]. The latent

variables are represented as ḡ rather than ȳ as they are not real observations. Thus, it does not make

sense to include a noise variance.

Most approximations consider that g and g(z) are conditionally independent given ḡ. This is to say

that g and g(z) can only communicate through ḡ. The joint prior is thus given as follows:

p(g(z),g) ' q(g(z),g) =

∫
q(g(z)|ḡ) q(g|ḡ) p(ḡ) dḡ (2.16)

The different approximations proposed correspond to different additional assumptions on the two

approximate inducing conditionals q(g(z)|ḡ) and q(g|ḡ), for which the exact solutions are given below:

training conditional: p(g|ḡ) = N (Kg,ḡ K−1
ḡ,ḡ ḡ,Kg,g −Qg,g) (2.17a)

test conditional: p(g(z)|ḡ) = N (Kz,ḡ K−1
ḡ,ḡ ḡ,Kz,z −Qz,z) (2.17b)

where we have introduced the shorthand notation Qa,b = Ka,ḡK−1
ḡ,ḡKḡ,b.

The simplest sparse approximation method (and does not fit inside the general scheme of sparse

methods just introduced) is the Subset of Data (SoD) approximation, i.e. solves Equation (2.13) by

substituting Z by Zind. It is often used as a baseline for sparse approximations. The computational com-

plexity is reduced to O(m3) for training; and O(m) and O(m2) for the mean and variance, respectively.

Nevertheless, it is not expected to be a competitive method as it wasteful of data. Even with redundant

data and a good selection of the active set, it seems unlikely to get a realistic estimation of the uncertain-

ties. In order to improve the chances of good performance, rather than selecting the m points randomly,

researchers have designed methods to select which points are included in the active set. Informative

Vector Machine [82] chooses the next point for inclusion the one that maximizes the differential entropy

score, i.e. the site with the largest variance.

If D is not updated online, that is with new datapoints collected as they are generated, every quantity

except those that depend on the evaluated test case z can be precomputed. Specifically, only kdzZind

needs to be computed at each sampling time since it depends on new regression feature states z.

A reasonable approximation to the training conditional is to preserve a block-diagonal of the true

covariance matrix and set the remaining entries to zero. Partially Independent Training Conditional

(PITC) divides the dataset D in k groups, such that the conditional independence is only active for part
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of the training function values - those with null covariance entries. This method is transductive rather

than inductive, in the sense that it computes a test set dependent model making use of the test set

input locations. The computational complexity is O(km3). Frequently, one takes k = n/m resulting in

computational cost for training O(nm2).

qPITC(g|ḡ) = N
(
Kg,ḡ K−1

ḡ,ḡ ḡ, blockdiag[Kg,g −Qg,g]
)

(2.18a)

qPITC(g(z)| ḡ) = p(g(z)| ḡ) (2.18b)

The PITC approximation does not correspond exactly to a Gaussian process since the covariance

is computed differently for training and test cases. To obtain a GP from the PITC, one would need to

extend the partial conditional independence assumption to the joint conditional p(g,g(z|ḡ), which would

require abandoning the primal assumption that the training and the test function values are conditionally

independent, given the inducing variables. The Fully Independent Training Conditional (FITC) [83] is an

extreme case of PITC, with k = n unitary groups (blocks). The computational complexity is O(nm2)

initially, and O(m) and O(m2) per test case for the predictive mean and variance, respectively.

qFITC(g|ḡ) = N
(
Kg,ḡ K−1

ḡ,ḡ ḡ, diag[Kg,g −Qg,g]
)

(2.19a)

qFITC(g(z)| ḡ) = p(g(z)| ḡ) (2.19b)

FITC can be viewed as a standard GP with a particular non-stationary covariance function parame-

terized by the pseudo-inputs. In their paper, the authors tackle a common setback in sparse approxima-

tions in that they lack a reliable way of learning kernel hyperparameters, because the active set selection

interferes with this learning procedure. They propose to use a covariance function parameterized by the

locations of inducing inputs — an active set not constrained to be a subset of the data, found by a con-

tinuous optimization. Furthermore, rather than simply maximizing the marginal likelihood with respect to

Z̄ind and ḡ, one can integrate out the inducing variables ḡ. They place a Gaussian prior on the pseudo

targets. This is sensible because one expects the inducing data to be distributed in a very similar man-

ner to the real data, if they are to model them well. The marginal likelihood can then be maximized with

respect to the hyperparameters and the pseudo-input locations by gradient ascent.

Quiñonero et al. [84] underline there are two options for FITC joint predictions: i) use the full test

conditional in Equation (2.17b) or ii) extend the additional factorization assumption to the test conditional.

The authors posit as likely that the original authors Snelson and Ghahramani [83] intended the second,

despite the fact that joint predictions are not targeted explicitly in their paper. This is the case since

under the first option the training and test covariances are calculated differently, which amounts to a

degenerate GP. Nonetheless, this is strictly a theoretical hypothesis for the nature of the approximation

because the additional independence assumption for the test cases is not necessary for computational

procedures. Quiñonero et al. [84] have called this approximation Fully Independent Conditional (FIC).
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The mean and variance are given by:

µd(z) = kdzZind

(
KZindZind

+ KZindZΛ−1KZZind

)−1
KZindZΛ−1yd = kdzZind

id (2.20a)

Σd(z) = kdzZind
K−1

ZindZind
KZindz −KzZind

ΘKZindz (2.20b)

where Θ =
(
KZindZind

+ KZindZΛ−1KZZind

)−1

and Λ = diag
(
KZZ −KZZind

K−1
ZindZind

KZindZ

)
. id is

the information vector taken for each d sparse model.

Model Selection and Adaptation of Hyperparameters

Model selection is a problem of practical interest. Herein, model selection comprises both discrete

choices, e.g. the type of covariance function used, and the setting of continuous hyperparameters of the

covariance function. It is often hard to immediately define all aspects of the covariance function. While

some properties may be evident to determine from a priori knowledge of the application, we typically

have only vague information about the values other properties should take. Hence, model selection can

help both to refine the predictions of the model, and give a valuable interpretation to the user about the

properties of the data [80].

Bayesian principles provide a persuasive and consistent framework for inference. However, for most

interesting models in machine learning, the required computations (integrals over parameter space -

stated below) are analytically intractable, and good approximations are not easily derived. Inference

takes place one level at a time by applying the rules of probability theory. At the bottom level, the

posterior over the parameters; subsequently, the posterior over the hyperparameters; and, at the top

level, the posterior over the model. All these posteriors are given by the Bayes’ rule. For the sake of

brevity and relevance on the particular case of GPs, one shows only the bottom-most level posterior

which is given as follows:

p(w|y,Z,φ,Hi) =
p(y|Z,w,Hi)p(w|φ,Hi)

p(y|Z,φ,Hi)
(2.21)

where w are the lowest level parameters, e.g. the weights in a neural network, and Hi are a discrete

set of possible model structures under consideration. p(y|Z,w,Hi) is the likelihood and p(w|φ,Hi) is

the parameter prior. The prior encodes as a probability distribution our knowledge about the parameters

prior to seeing data. The posterior combines the information from the prior and the data through the

likelihood. The normalizing constant in the denominator is the marginal likelihood or evidence - refers to

the marginalization over the function values - and is given by:

p(y|Z,φ,Hi) =

∫
p(y|Z,w,Hi)p(w|φ,Hi) dw (2.22)

GPR models with Gaussian noise are a rare exception in the ML field in that they enable the applica-

tion of Bayesian inference. This is because the integrals over the parameters are analytically tractable

and at the same time the models are very flexible. In this case, the former quantities are derived in the

simplified form where hyperparameters are optimized over and the parameters w are not applicable.
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Thus, the marginal likelihood in Equation (2.22) becomes in its logarithmic form:

log p(y,Z,φ) = −1

2
yTKyy −

1

2
log |Ky| −

n

2
log 2π (2.23)

where Ky =
(
Kd

ZZ + Iσ2
d

)−1 is the covariance matrix for the noisy targets. The three terms are read-

ily interpretable: the only term involving the observed targets is the data-fit yTKyy/2; log |Ky|/2 is

the complexity penalty depending only on the covariance function; and the inputs and n log(2π)/2 is a

normalization constant.

Cross-validation (CV) can be used for estimating the performance of a model selection procedure,

e.g. maximization of the marginal likelihood in Equation (2.23). The fundamental idea is to split the

training set into two disjoint sets, one which is used for training, and the other, the validation set, which

is used to monitor performance. The performance on the validation set is used as a proxy for the

generalization error and model selection is carried out using this measure.

In practice, a downside of the hold-out method is that only a fraction of the full data set can be used

for training, and that if the validation set is small, the performance estimate obtained may have large

variance. To minimize these problems, CV is routinely used in the k-fold cross-validation setting: the

data is split into k disjoint, equally sized subsets; validation is done on a single subset and training is

done using the union of the remaining k − 1 subsets, the entire procedure being repeated k times, each

time with a different subset for validation. Thus, a large fraction of the data can be used for training, and

all cases appear as validation cases. The price is that k models must be trained instead of one. Typical

values for k are in the range of 3 to 10. The logarithmic predictive probability which can be used as a

measure of performance given by:

Lk-Folds(Z,y,φ) =

n∑
i=1

log p(yi|Z,y(\Ik(i)),φ) (2.24)

where \Ik(i) correspond to the indices that are not in the the CV fold of observation i.
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Chapter 3

Methods and Algorithms

In this chapter, we explain the necessary adaptations to the LMPC original architecture that enable

tackling the autonomous racing problem. In particular, we show how to build the terminal components

and the resulting optimization problem. Furthermore, we describe the vehicle models used to describe

the dynamics in the MPC. Finally, we demonstrate how Gaussian Process Regression is used to predict

the nominal model error.

3.1 LMPC for Autonomous Racing

Rosolia and Borrelli first introduced in [85] the adaptation of the core LMPC architecture to the au-

tonomous racing problem. This is formulated as a minimum time problem, where an iteration j corre-

sponds to a lap. Therefore, the stage cost is given as follows:

q(xk, uk) =

1 if xk /∈ L

0 if xk ∈ L
(3.1)

where L, given by Equation (3.3), is the set of points beyond the finish line. A slower trajectory contains

more points until the finish line. Thus, has a greater cost associated.

The vehicle’s dynamics are represented by the states and inputs vector quantities in Equation (3.2a)

and Equation (3.2b), respectively.

x = [s, ey, eψ, vx, vy, r] (3.2a)

u = [a, δ] (3.2b)

where s is the distance travelled along the centerline of the track, ey and eψ are the lateral distance and

heading angle errors between the vehicle and the centerline, respectively. These quantities are given in

the curvilinear abscissa reference frame, see Figure 3.1, also known as the Frenet reference frame [86].

In particular, a given track is defined by the curvature k(s) and maximum admissible lateral error emaxy (s)

along the track’s centerline. vx and vy are the longitudinal and lateral vehicle velocities, respectively,
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see Figure 3.2, while r is the vehicle’s yaw rate. The inputs are the longitudinal acceleration a and the

steering angle δ.

L = {x ∈ R6 : xeT
1 = s > starget} (3.3)

Figure 3.1: Frenet Frame [reprinted from [85]] Figure 3.2: Vehicle Frames [reprinted from [87]]

In order to avoid the integer nature of the original framework mentioned before and to enable com-

putational tractability, the authors introduce a time-varying approximated safe set and Q-function. These

approximated quantities consist of 5-th order polynomial function approximations of the original quanti-

ties using the corresponding data from a given number of data points from the j − 1 trajectory whose

state is closest to the current state at time t of iteration j.

In [88], the authors build upon this formulation by targeting the ILC issue of repetitive tasks, i.e. the

initial state is the same for all trials. In the suggested approach, the terminal condition of one iteration

becomes the initial condition of the next iteration.

Rosolia and Borrelli [89] further extended this architecture by proposing a local LMPC that signifi-

cantly reduced the computational burden by using a subset of the stored data. In particular, the local

convex safe set CSjl , Equation (2.9), is built around the candidate terminal state ct using theNSS
p -nearest

neighbours from each of the previous NSS
l laps. Notice that NSS

l = j − l. These points are collected

in the matrix Dj
l , defined in Equation (3.4), which is updated at each time step. The candidate terminal

state ct is the estimated value for xt+N |t, calculated at time t− 1. The approximation of the cost-to-go is

computed as in Equation (2.10), using the costs associated with the selected states in Dj
l .

Dj
l = [xlt1 , · · · ,x

l
tNSS

p

, · · · ,xjt1 , · · · ,x
j
tNSS

p

] (3.4)

See Figures 3.3 and 3.4 for a visual representation of the learning terminal components. The terminal

state xt+N |t must lie inside the convex hull defined by the blue points in Figure 3.3 which constitute the

local safe set Dj
l in Equation (3.4). The slower the lap, the more datapoints are collected in that iteration

which amounts to a greater cost as seen in Figure 3.4.

The original LMPC architecture represents the vehicle’s pose in the local coordinate frame, Equa-

tion (3.2a). However, we found that the discretization method used that assumes constant track cur-

vature κ within a sampling period fails to properly describe complex tracks. In the FSG track, within a

single meter, the curvature can change as much 0.14m−1 which is almost half of the track’s maximum

curvature. At a control frequency of 10Hz it takes a velocity of just 10m s−1 to travel 1m. Thus, proving

that this modelling strategy is unfit. The trajectory behaviour at a given corner becomes very sharp
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Figure 3.3: Local Safe Set [reprinted from [90]]

Figure 3.4: Q-function: cost-to-go [reprinted from [90]]

rather than smooth. I argue that the authors in [89, 90] might have not faced this issue because they

have showed results for constant curvature corners.

Therefore, I have decided to change the vehicle model’s pose states to global coordinates to fix this

issue. x and y are the vehicle’s longitudinal and lateral position with respect to a global coordinates

frame, and ψ is the heading angle. s and ey are still calculated because they provide immediate in-

formation regarding the track but they are not used to characterize the vehicle’s pose dynamics. The

longitudinal control input is P ∈ [−1, 1] which represents a pedal setpoint. This corresponds to the nor-

malized acceleration and brake pedal travel. This is the way the actual prototype is controlled both in

simulation and reality. Thus, for our application, Equation (3.2) becomes:

x = [x, y, ψ, vx, vy, r] (3.5a)

u = [P, δ] (3.5b)

where x is the vector of states that describe the vehicle’s movement and u is the vector of control inputs.

The resulting optimization problem is given as follows:
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JLMPC,j
t→t+N = min

ut|t,...,tt+N−1|t

[
t+N−1∑
k=t

((
xk+1|t − xk|t

)T
Qderiv

(
xk+1|t − xk|t

))
+

t+N−2∑
k=t

((
uk+1|t − uk|t

)T
Rderiv(uk+1|t − uk|t)

))
+

t+N∑
k=t+1

(
Qlinlane · εlanek|t +Qquadlane · ε

2
lanek|t

)
+

t+N∑
k=t+1

(
Qlinvub

· εvk|t +Qquadvub
· ε2vk|t

)
+

t+N∑
k=t+1

(
Qlinel · εelk|t +Qquadel · ε2elk|t

)
+

t+N∑
k=t+1

(
Qvy · v2

yk|t

)
+

t+N∑
k=t

(
Qlag · e2

lk|t

)
+

NSS
l ×N

SS
p∑

i=1

(
Qterm cost

(
αi ×Qj

i (ct)
))

+

NSS
l ×N

SS
p∑

i=1

(
Qslack

(
xt+N |t − αiDj

i (ct)
)2)]

(3.6a)

s.t.

xk+1|t = ht(xk|t,uk|t) ∀k ∈ [t, · · · , t+N − 1] (3.6b)

Plb ≤ Pk|t ≤ Pub ∀k ∈ [t, · · · , t+N − 1] (3.6c)

− δb ≤ δk|t ≤ δb ∀k ∈ [t, · · · , t+N − 1] (3.6d)

0 ≤ st|t − st−1|t−1 ≤ ∆smax (3.6e)

0 ≤ sk+1|t − sk|t ≤ ∆smax ∀k ∈ [t+ 1, · · · , t+N ] (3.6f)

∆Plb ≤ Pk+1|t − Pk|t ≤ ∆Pub ∀k ∈ [t+ 1, · · · , t+N − 2] (3.6g)

∆δlb ≤ δk+1|t − δk|t ≤ ∆δub ∀k ∈ [t+ 1, · · · , t+N − 2] (3.6h)

0 ≤
(
vxk|t/vxmax

)2
+
(
vyk|t/vymax

)2 ≤ 1 + εelk|t ∀k ∈ [t+ 1, · · · , t+N ] (3.6i)

0 ≤ vxk|t ≤ vxub
+ εvk|t ∀k ∈ [t+ 1, · · · , t+N ] (3.6j)

− εlanek|t − e
max
yk|t

(s) ≤ eyk|t ≤ εlanek|t + emaxyk|t
(s) ∀k ∈ [t+ 1, · · · , t+N ] (3.6k)

εvk|t ≥ 0 ∀k ∈ [t+ 1, · · · , t+N ] (3.6l)

εlanek|t ≥ 0 ∀k ∈ [t+ 1, · · · , t+N ] (3.6m)

εelk|t ≥ 0 ∀k ∈ [t+ 1, · · · , t+N ] (3.6n)

αi ≥ 0 ∀i ∈ [1, · · · , NSS
l ×NSS

p ] (3.6o)

NSS
l ×N

SS
p∑

i=1

αi = 1 ∀i ∈ [1, · · · , NSS
l ×NSS

p ] (3.6p)

xt|t = xjt (3.6q)

ut|t = ujt (3.6r)
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The cost function given by Equation (3.6a) has five main parts. First, the derivative terms whose

gains are denoted by the subscript deriv. These apply a penalty on the squared change of a given

quantity between consecutive steps along the prediction horizon, both for dynamic states, i.e. Qderiv =

diag(0, 0, 0, Qvxderiv, Q
vy
deriv, Q

r
deriv) and inputs - Rderiv = diag(RPderiv, R

δ
deriv). This enables one to control

how aggressively the controller behaves and obtain smooth trajectories. The quadratic cost on vy acts

as a regularization cost which forces the vehicle into its stable domain and helps convergence.

The third part concerns the soft constraints on the states. Bounds on the states should not be

implemented as hard constraints since one cannot exclude that the real system moves outside the

constraint range due to, for instance, model mismatch which would render the problem infeasible [32].

Thus the bound on a given state x ≤ xmax can be approximated by x ≤ xmax + ε where ε ≥ 0 and a

term l(ε) is added to the cost functional. It can be shown that l(ε) = uε + vε2 with a sufficiently high

u and v > 0 ensures that no constraint violation occurs provided there exists a feasible input. This

term is preferable to l(ε) = uε for its smoothness properties. However, note that l(ε) = vε2 does not

ensure such property holds at all times. The bounded states are vx and ey. The vehicle has a maximum

velocity vxmax
rising from the electric motor’s maximum rotational velocity but for safety reasons can be

electronically reduced to vxub
. ey needs to be bounded to stay within the track width. Finally, a velocity

ellipse is implemented to ensure the vehicle remains within its physical limits. These soft constraints

correspond to the inequalities Equations (3.6i)–(3.6k) and Equations (3.6l)–(3.6n) and their respective

cost functional terms.

The information of ey, which in turn requires knowledge of s, based on a given position pair (x, y) is

necessary to enforce the track layout constraint. One uses the MPCC architecture proposed by [71] to

convert the global coordinates to local coordinates within the optimization problem. See Figure 3.5 for a

depiction of the contouring error and lag error whose linear approximations we use in our optimization,

i.e. ey = êc and el = êl. In that Figure, the capitalized quantities are analogous to the lower-case ones

used throughout this thesis.

Figure 3.5: Contouring error ec (left) and lag error el (right) with linear approximations êc and êl [reprinted
from [71]]
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θP = P(x, y) = argmin
s

((
x− xref (s)

)2
+
(
y − yref (s)

)2) (3.7)

The projection operator θP resembles an optimization problem. Therefore, the resulting optimization

problem would be a bi-level Nonlinear Programming (NLP) optimization problem which is hard to solve

in real-time. Therefore, an approximation s = θA of θP is introduced whose approximation quality is

measured by the lag error, which should be as small as possible. Hence, Qlag should be relatively

high [91].

el = |θP − θA| (3.8)

The track centerline is interpolated using third-order spline polynomials over Ns intervals. The linear

approximations are computed as follows:

ec ≈ ey(x, y, θA) = sin
(
Φ(θA)

)(
x− xref (θA)

)
− cos

(
Φ(θA)

)(
y − yref (θA)

)
(3.9a)

el ≈ el(x, y, θA) = − cos
(
Φ(θA)

)(
x− xref (θA)

)
− sin

(
Φ(θA)

)(
y − yref (θA)

)
(3.9b)

where Φ(θA) is the angle of the tangent to the centerline at the reference point with respect to the x-axis

and is given as follows:

Φ(θA) = arctan
∂yref (θA)

∂xref (θA)
(3.10)

Finally, the last two terms constitute the penalty on the terminal components of the MPC. αi, already

introduced in Equation (2.9), are the coefficients of the local safe set’s convex hull, inherently bounded

by Equations (3.6o) and (3.6p). αi are also optimization variables. Qj and Dj are given by Equa-

tions (2.8) and (3.4), respectively. For the former, one is still using the minimum time problem stage cost

given by Equation (3.1). While the slack term ensures the terminal state lies within the convex hull, the

terminal cost favours points in the safe set that resulted in faster laps.

Equations (3.6c) and (3.6d) constitute the bounds on the inputs. These bounds may be more

restrictive than the actual physical limits imposed by the robotic platform. Equations (3.6g) and (3.6h) are

the corresponding rate of change constraint. Again, both can be set to smaller values than the physical

limits. The pedal setpoint has no relevant rate physical limit but imposing this bound ensures wheel

slippage is avoided in case the derivative cost did not achieve this already. The steering setpoint has

a maximum angular velocity constraint which results from the servomotor limits. The bound on change

of s, Equations (3.6e) and (3.6f), aids the local coordinates approximation convergence, especially near

the new lap segment.

Equations (3.6q)–(3.6r) define the initial conditions of the optimization. xjt corresponds to the most

recent observation of the vehicle state. While ujt is the control actuation that is to be applied at the current

sampling time. It corresponds to the previous sampling time solution shifted by one step, Equation (3.11).

This delay applied to the system aims to account for solver processing time - which is significant in real-

time and may be inconsistent across the experiment - and to keep a constant node rate.

ut|t = ujt = u∗,jt|t−1 (3.11)
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3.1.1 Vehicle Model

The system dynamics in Equation (3.6b) are given in its continuous-time form by Equation (3.12) which

is the sum of an a priori physics-based model ft and a term to model the unknown dynamics gt, i.e.

those not represented by ft.

xt+1 = ht(xt,ut) = ft(xt,ut)︸ ︷︷ ︸
a priori model

+ gt(xt,ut)︸ ︷︷ ︸
unknown dynamics

(3.12)

This section concerns the a priori model ft. The pose dynamics can be derived to give the following

equation:

ẋ = vx cos(ψ)− vy sin(ψ) (3.13a)

ẏ = vx sin(ψ) + vy cos(ψ) (3.13b)

ψ̇ = r (3.13c)

The dynamic part of the vehicle model, i.e. related to Newton’s first law, has been modelled with

two different techniques. First, by employing a data-driven system identification scheme. Second, by

deriving a physics-based first-principles model.

System Identification

ft can be thought to be in the state-space form. Thus, given some datapoints, the goal is to identify the

A and B matrices that best describe the state evolution using a system identification technique.

ẋ(t) = A(t)x(t) + B(t)u(t) (3.14)


v̇x

v̇y

ṙ

 =


θx,1 θx,2 θx,3

θy,1 θy,2 θy,3

θψ,1 θψ,2 θψ,3



vx

vy

r

+


θx,4 θx,5

0 θy,4

0 θψ,4


P
δ

 (3.15)

The θ parameters are identified for each dynamic quantity - vx, vy, r - by solving the Least Mean

Square problem of an overdetermined system. Using l = NSI
P points that belong to a given feature set

of pre-collected data:

b =


b1

b2
...

bl

 X =


x1,1 x2,1 · · · xo,1

x1,2 x2,2 · · · xo,2
...

...
...

...

x1,l x2,l · · · xo,l

 θ =


θ1

θ2

...

θo

 (3.16)

where o = 5, corresponding to the feature vector [vx, vy, r, P, δ], for the computation of θx and o = 4

for the remaining, corresponding to the feature vector [vx, vy, r, δ]. For a given feature point, bi corre-
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sponds to the difference observed in one of the feature quantities in consecutive sampling times. The θ

parameters used in Equation (3.15) are the solution of the following problem:

θ∗ = argmin
θ

∥∥∥b−Xθ

∥∥∥
2

(3.17)

Dynamic Bicycle Model

The physics-derived vehicle model used is a dynamic bicycle model - Figure 3.6. This model is frequently

used in automotive control algorithms [87]. The model is similar to the one used to model the vehicle

in the simulator - Section 4.1. Nonetheless, some simplifications have been implemented to ease the

real-time solution of the MPC. Namely, the model is purely dynamic and does not blend with a kinematic

bicycle model at low velocities; the wheels’ assembly rotational inertia is disregarded, i.e. meq = m;

the Pacejka tire model is simpler, both in terms of the tire modelling equation and normal load; and, the

planar model used for the derivation of ṙ is not employed, remaining a purely bicycle approximation, i.e.

the term (FF,y,left − FF,y,right)
tF
2

sin δ is disregarded. Thus, the model is given as follows:


v̇x

v̇y

ṙ

 =


1

m
(Fx − FF,y sin δ +mvyr)

1

m
(FR,y + FF,y cos δ −mvxr)
1

Iz
(FF,ylF cos δ − FR,ylR)

 (3.18)

where m is the vehicle’s mass and Iz is the rotational inertia about the vertical axis z. The front and

rear axles are identified by the subscripts a ∈ {F,R}, respectively. la is distance between the vehicle’s

center of gravity and the corresponding axle. The lateral force Fa,y is given as:

Fa,y = −2Da sin
(
Ca arctan(Baαa))

)
(3.19)

where the tire coefficients Ba, Ca and Da are experimentally identified and αa - the angle between the

tire’s centerline and its velocity vector - is given computed as follows:

αF = arctan

(
vy + lF r

vx

)
− δ (3.20a)

αR = arctan

(
vy − lRr

vx

)
(3.20b)

The longitudinal force Fx is given as follows:

Fx = 2 · Tmax ·GR · P
rwheel

− Croll ·m · g +
1

2
ρ · Cd ·Af · v2

x (3.21)

where Tmax is the maximum available torque at each of the two rear axle in-wheel motors whose max-

imum practical value is 21Nm but a smaller value may be used for safety reasons. GR is the transmis-

sion’s gear ratio and Croll is the roll resistance factor. Concerning the aerodynamic drag force, ρ is the
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air density, Af is the vehicle’s frontal area used as a reference for the force calculation and Cd is the

drag coefficient.

Figure 3.6: Dynamic Bicycle Model: position vectors are in depicted in green, velocities in blue, and
forces in red. [reprinted from [67]]

3.2 Gaussian Processes Regression

GPR is used to predict the error between the vehicle model - Section 3.1.1 - and the available mea-

surements, i.e. estimate gt in Equation (3.12). One assumes that the modelling error only affects the

dynamic part of the first-principle model, i.e. the velocity states. Therefore, the training outputs are given

by the difference between the measurement xk+1 and the nominal model predictions:

yk = B†d
(
xk+1 − f(xk,uk)

)
= g(zk) + wk (3.22)

where B†d is the Moore-Penrose pseudo-inverse of Bd = [03×3; I3×3]. Hence, d ∈ {evx , evy , er} and

ng = 3.

As a first iteration, we chose the GP training inputs, i.e. the feature state to be z = {vx; vy; r;P ; δ}

and nz = 5. This is based on the assumption that model errors are independent of the vehicle’s position.

This disregards potential modelling shortcomings introduced from, for instance, segments of the track

that have different traction conditions, e.g. due to puddles. Later, we have decided to remove vy as we

identified a strong correlation between this quantity and r. This is not very surprising as both quantities

characterize the lateral movement of the vehicle. The selection for removal of vy instead of r is justi-

fied by the fact that it is hard to precisely estimate vy while r is measured directly using a gyroscope.

Notwithstanding, this seems like a reasonable approximation which, furthermore, reduces the learning

problem dimensionality.

The covariance function used is the SE kernel function used as an example kernel function in Sec-

tion 2.3 (and we restate below in Equation (3.23)) with the independent measurement noise component

- σ2
n,dδzz̄.

kdSE(z, z̄) = σ2
f,d exp

(
− 1

2

(z− z̄)T(z− z̄)

l2d

)
+ σ2

n,dδzz̄ (3.23)
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Two sparse approximations have been explored: i) SoD and ii) FITC or FIC (see Section 2.3 for

details on the theoretical formulation). The first approximation method is essentially a full GP that does

not use all data available. This means, the computations for the error prediction in Equation (3.12) are

those of an exact GP given by Equation (2.13a). While for the second approach the computations are

those of Equation (2.20a).

Finally, it should be noted that some quantities can be pre-computed which otherwise could prevent

real-time feasibility. Particularly,
(
Kd

ZZ + Iσ2
d

)−1
yd in Equation (2.13a) only needs to be recomputed

whenever the training data D is changed - this corresponds to training. In the SoD offline fashion

it is only computed once before the controller is launched. Inference corresponds to the rest of the

computation of Equation (2.13a).

In the FITC approximation, the training part corresponds to determination of the information vector

which only requires recomputation when either the training dataset D or the inducing points Zind are

changed. In our application, however, the inducing points are update at each sampling time. They are

equally distributed along the last sampling time’s shift predicted trajectory. This is a sensible placement

of the inducing points since the new test cases are expected to be proximate as the trajectory does not

change significantly at consecutive sampling times. This means the online adaptation of the dictionary

D is immediately possible.

GPR is generally susceptible to outliers, which can hinder the model error learning performance [70].

Moreover, large and sudden changes in the GP predictions can lead to erratic driving behaviour. To

attenuate these effects, one only includes datapoints in the dictionary D (both online and offline) whose

measurements fall within predefined bounds ±ylim, defined from physical considerations and empirical

knowledge. The bounds are given by ubevx , lbevx , bevy , ber , where the upper and lower bound are

not symmetric for evx as it is for evy and er. These bounds are also enforced to the GPR prediction

- Equations (2.13a) and (2.20a).
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3.3 Control Architecture

There are two variations of the LMPC architecture given by Algorithm 1. They differ only in Line 11. In

the pre-computed version the model error predictions are fed directly to the solver based on the previous

sampling time’s shifted trajectory. While in the solver-embedded version the model error predictions are

calculated at each solver’s iteration and only the information vector id is pre-computed. The embedded

version is only available when using the FITC approximation as otherwise it would not be real-time

feasible.

Algorithm 1: LMPC Architecture

1 Initializations;

2 while Event not finished do

3 Update car state from SLAM data;

4 Publish control command [Equation (3.11)];

5 Convert to local coordinates;

6 if Lap finished then

7 Add closed-loop data to safe set [Equation (2.6)];

8 if Using LMS model then

9 Identify model using LMS [Equation (3.17)];

10 if Model learning active then

11 Compute GPR [Section 4.3.2];

12 Find local safe set [Equation (3.4)];

13 Solve nonlinear optimization [Section 4.3.1];

14 Store measurement data [Equation (2.2)];

15 if Online learning active then

16 Update dictionary [Equation (2.12)]
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Chapter 4

Implementation

In this chapter, we describe the relevant aspects of the controller implementation. We start by detailing

the simulation environment’s vehicle model. Subsequently, we characterize the platform’s hardware and

software setup. Lastly, the details of the Learning-based Model Predictive Controller implementation

are given. In particular, the solver used for running the Model Predictive Control optimization and the

Gaussian Processes Regression inference and tuning processes.

4.1 Simulation Platform

FSSIM1 is the vehicle simulator used to the test the controllers developed throughout this thesis work. It

is also the simulator of choice for FST Lisboa where the algorithms are initially tested before moving to

testing over pre-collected data from the prototype and, finally, testing on the actual race car. AMZ Driver-

less developed this vehicle simulator dedicated to the FSD competition and released it open-source

to other teams. This team reported 1% lap-time accuracy compared with their FSG 2018 trackdrive

run [67].

FSSIM comes with the standard Acceleration and Skidpad competition tracks. Additionally, it includes

track layout data mapped from the 2018 official FS events of Italy and Germany. This simulator features

characteristics akin to the real competition such as Remote Emergency Stop activation when the vehicle

leaves the track with all four wheels, time penalization when hitting a track-delimiting cone and lap-time

counter.

Due to real-time requirements, this simulator does not simulate raw sensor data, e.g. camera or

LiDAR data. Instead, cone observations around the vehicle are simulated using a given cone-sensor

model. Both exteroceptive sensors are modelled with the parameters of Table 4.1.

1https://github.com/AMZ-Driverless/fssim
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Parameters Camera LiDAR

∆tlat (s) 0.2 0.2

σlat (s) 0.002 0.002

rmaxobs (m) 10 15

dobs 100 100

lobs 1 1

rmaxcolor(m) 10 10

dcolor 200 200

lcolor 0.99 0.8

σr (m) 0.2 0.05

σθ (rad) 0.007 0.007

Table 4.1: Cone-Sensor Model Parameters

∆tlat replicates the average processing time of the corresponding perception pipeline algorithms and

σlat is the standard deviation of the additive white Gaussian noise added on the latency measurement to

mimic the real-time variation of the computations. The subscripts det ∈ {obs, color} refer to the capability

to detect a cone and to correctly identify the cone color, respectively. Note that LiDAR can detect cones

at distance smaller than 15m but it can only detect their color at less than 10m. rdet is the distance

between the vehicle and a given cone and θ is the angle between the vehicle longitudinal axis and a

cone. rmaxdet represents the distance before which the cones can be detected and their class identified,

respectively. ddet is a scaling-factor used to calculate the probability pdet, for either subscript, that a given

cone is detected or correctly classified as a function of its distance from the car, given as follows:

pdet = ldet ×
(

1− rdet
ddet

)
(4.1)

Gaussian noise is added to the distance and angle measurements in the polar coordinates. σr and

σθ are the corresponding standard deviations of the noise model. We have set the distributions’ mean

to be zero but this ought not to be the case.

FSSIM simulates the vehicle dynamics using a model that blends a dynamic and a kinematic bicy-

cle model [67]. The dynamic bicycle model is ill-defined for slow velocities due to the tire slip angles

considered to compute the tire forces. In a racing application, most of the track is spent at high-speeds

where this model accurately represents the vehicle behaviour. At low speeds, e.g. at race start or in

sharp corners, the kinematic bicycle model constitutes a faithful description of the vehicle dynamics. On

the other hand, this model provides inaccurate estimations at high-speeds since it neglects the highly

nonlinear tire forces that shape the movement. The blended model is discretized with the Euler Forward

discretization.

The vehicle model is derived under the assumptions that: i) the vehicle drives on a flat surface, ii)

load transfer can be neglected, iii) combined slip can be neglected, and iv) the longitudinal drivetrain

forces act on the center of gravity. The state of the model is given by the vector x = [x, y, ψ, vx, vy, r]
T
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and the control inputs are u = [P, δ]T . The longitudinal control input is P ∈ [−1, 1] which represents a

pedal travel setpoint,i.e. from full actuation on the brake pedal to full actuation on the accelerator pedal.

The dynamic bicycle model dynamics are given by:



ẋ

ẏ

ψ̇

v̇x

v̇y

ṙ


=



vx cosψ − vy sinψ

vx sinψ + vy cosψ

r
1

meq
(Fx − FF,y sin δ +meqvyr)

1

m
(FR,y + FF,y cos δ −mvxr)

1

Iz
(FF,ylF cos δ + (FF,y,left − FF,y,right)

tF
2

sin δ − FR,ylR)


(4.2)

where meq is the vehicle’s equivalent inertia which corresponds to the longitudinal linear inertia, given

by Equation (4.3). For the applicable subscripts, F and R correspond to the front and rear axles while

x and y pertain to quantities along the longitudinal and lateral axes, respectively. The left and right

subscripts concern the corresponding side of the car, facing forward. tF is the vehicle’s front track, i.e.

distance between the front wheels.

meq = m+ 4
Irot
r2
wheel

(4.3)

where the second term corresponds to the four wheels’ combined equivalent inertia. Irot is the wheel

assembly rotational inertia and rwheel is the tire radius.

The lateral forces Fa,y, a ∈ {F,R} exerted by the tires are modelled by a simplified Pacejka tire

model [92].

Fa,y = Fa,zµa,y (4.4a)

µa,y = Da sin(Ca arctan
(
(1− Ea)Baαa + Ea arctan(Baαa)

)
(4.4b)

Fa,z = mg +
1

2
WaCLv

2
x (4.4c)

where Fa,z is the normal load acting on a given tire, Wa is the front/rear weight distribution and CL is

the downforce coefficient - identified from experiments. Ba, Ca, Da and Ea are experimentally identified

coefficients and αa are the tires slip angles given by Equation (3.20).

The resulting longitudinal force Fx applied on the CG can be calculated as follows:

Fx = CmP − Cr0 + CDv
2
x (4.5)

where the three components correspond to a motor/drivetrain model, the rolling resistance and the

aerodynamic drag. Their parameters are identified from experiments.

The lateral and angular accelerations of the kinematic model - two bottom rows of Equation (4.6) -

are obtained through the differentiation of vy,kin = lRδ
vx

lF + lR
and rkin = tan(δ)

vx
lF + lR

, using the small
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angle approximation on δ, i.e. cos2(δ) ≈ 1 and tan δ ≈ δ. Thus, yielding the following dynamics:



ẋ

ẏ

ψ̇

v̇x

v̇y

ṙ


=



vx cosψ − vy sinψ

vx sinψ + vy cosψ

r
Fx
meq

(δ̇vx + δv̇x) tan δ
lR

lF + lR

(δ̇vx + δv̇x) tan δ
1

lF + lR


(4.6)

The velocities u = [vx, vy, r]
T are linearly blended in the velocity range vx ∈ [vx,blend min, vx,blend max],

where vx,blend min = 3 m/s and vx,blend max = 5 m/s. Below the lower velocity limit, the kinematic model

is used whereas above the upper limit the dynamic model imposes the dynamics.

λ = min

(
max

(
vx − vx,blendmin

vx,blendmax − vx,blendmin
, 0

)
, 1

)
(4.7)

u = λudyn + (1− λ)ukin (4.8)

The parameters used to simulate FST10d can be seen in Tables 4.2 and 4.3.

Parameter Value SI Units

m 250 kg

Iz 110 kgm2

C 1.9 kgm−1

CD 0.7 kgm−1

C 5000 N

Cr0 180 N

Irot 0.4 kgm2

rwheel 0.231 m

Table 4.2: Simulator Vehicle Parameters

Parameter Front Rear

l (m) 0.765 0.765

t (m) 1.22 1.22

W 0.5 0.5

B 12.56 12.56

C -1.38 -1.38

D 1.6 1.6

E -0.58 -0.58

Table 4.3: Simulator Vehicle Parameters - Axle
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4.2 Experimental Platform

In this section, one will introduce the robotic platform in which the algorithms developed will be tested.

FST10d is the autonomous-empowered version of FST09e - a Formula Student electric prototype

with a Carbon-fiber-reinforced-polymers monocoque chassis, a full aerodynamic package and a self-

developed 600V high-voltage battery with 8 kWh of energy. This battery supplied four 32.5 kW in-wheel

motors which amounts to a peak power of 130 kW or 174 horsepower. The vehicle’s top velocity is

106 kmh−1 and it performed a 0-100 kmh−1 acceleration in under 2.5 s. Due to financial constraints, the

front wheel motors had to be removed in FST10d.

The adaptation started with the addition of new sensors to enable autonomous driving. Figure 4.1

shows the location and Field of View (FoV) of the exteroceptive sensors used for perception. An OS1-16

LiDAR with a vertical resolution of 0.53° was placed on the forepart of the vehicle, approximately at cone

height. A LUCID Triton RGB camera complements the LiDAR sparse points with information-rich data

of the environment. The camera is placed close to where the pilot’s head would be.

Figure 4.1: Location and FoV of Exteroceptive Sensors

A proprioceptive sensor in the form of a Xsens MTi-670 GNSS/INS sensor (short for Global Naviga-

tion Satellite/Inertial Navigation Systems). This sensor offers an estimate of the position, velocity and

orientation by means of its sensor fusion algorithms, at up to 2000Hz. Inputs come from the module’s

on-board gyroscope, accelerometer, magnetometer and an external GNSS receiver.

Figure 4.2 exhibits the software architecture. The software stack is implemented using ROS (stands

for Robot Operating System) that handles the communication and synchronization layer. ROS is an

open-source robotics middleware suite and although it is not an operating system but a collection of

software frameworks for robot software development, it provides services such as hardware abstraction,

message-passing between processes and package management. Every module that requires heavy

computing is implemented in C++ for its enhanced computational performance. Neural networks and

non-critical nodes such as logging and visualization tools were developed in Python, given its swift and
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simple development process. The software stack runs on an In-CarPC CQ77 rugged Processing Unit

(PU) which features an NVIDIA GeForce GTX 1060 GPU with 1280 CUDA cores - where the perception’s

Convolutional Neural Networks (CNN) are run - and a 6 core Intel i7-8700T CPU.

Figure 4.2: FST10d Autonomous Racing Software Stack

The perception module is responsible for detecting the track-delimiting cones and their features, i.e.

position and color. Cones detected by the LiDAR pipeline serve as hypotheses of regions of interest in

the image. While the estimation pipeline estimates the vehicle pose and velocities. Finally, the control

pipeline computes the necessary actuation to follow the centerline.

The point cloud processing uses a combination of self-developed and open-source algorithms from

PCL [93]. Initially, the LiDAR’s FoV is trimmed using a pass-through filter which enables removing points

along any given axis, so that points that undoubtedly lay outside the regions of interest are disregarded.

Subsequently, a ground removal algorithm is applied by removing the biggest plane found using the

iterative method of RANdom SAmple Consensus or RANSAC [94]. The cone proposals are identified

by means of an Euclidean Clustering algorithm [95]. In order to add color information for cones nearby

- less than 5m - that fall outside the camera’s FOV, a classification CNN was implemented based on the

point cloud intensity pattern.

With the LiDAR data processing done, a 3D bounding box is calculated around each cone centroid,

which is then projected onto the image plane. The region of the image where the bounding box falls

is cropped and fed into a CNN. The output of the network is normalized over the five classes of cones

(yellow, blue, orange, big orange, unknown). The network has been trained with a custom dataset of over

110000 images containing Driverless Formula Student cones. Our dataset was originally only composed

by images from FSOCO2 - a collaboration between FS teams that aims to accelerate the development of

camera-based solutions in the context of FSD - but has since been enlarged with more images gathered

from runs with our camera. Once all information has been extracted from both sensors (position and

color from LiDAR, and color from camera), it is fused and conflicts are handled. See Figure 4.3 for a

visual representation of the perception pipeline.

In order to obtain an accurate velocity estimation of the car, a Kalman Filter - State Estimator in Fig-

ure 4.2 - was implemented to fuse the measurements of the available sensors present in the car, namely

inertial data, wheel speeds and steering angle. In the prediction step of the Kalman Filter, a car model
2https://ddavid.github.io/fsoco/
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Figure 4.3: LiDAR Point Cloud Projection to Image Plane

was developed where a different approach from the current state of the art - bicycle model - was taken,

by deducing the car dynamics through a linearized LuGre tire model for the whole car [96]. This node

runs at 100Hz.

The maximum range of the perception sensors limits the length of the path planning horizon. In order

to explore the car’s full potential a SLAM algorithm is implemented for mapping the track during the first

lap at lower speeds and localizing the vehicle within the built map on the subsequent laps. Furthermore,

track centerline information from this map and pose estimation are used in the LMPC.

We run a GraphSLAM algorithm with each new set of cone observations, i.e. detections from the

sensor fusion node whose rate is limited by the LiDAR’s 20Hz acquisition rate. GraphSLAM is a full

SLAM method that explores the SLAM sparse graph structure - Figure 4.4, where nodes represent either

pose estimates or landmark locations with edges, denoting measurements, connecting them. This graph

leads to a sum of non-linear constraints that, when linearized, form a least squares problem that can be

optimized using standard optimization techniques. We have shown to have an average mapping error of

just 30 cm.

(a) SLAM Sparse Graph Structure (b) Resulting Optimized Map with SVM

Figure 4.4: GraphSLAM Mapping Results

In the Trackdrive event, the entire control module in Figure 4.2 (green nodes) is substituted by the

LMPC algorithm. However, in other events where there is no a priori information of the map, or during the

mapping lap, the green nodes are active. The path planner receives cone detections data and computes

the track centerline, which is fed to the speed planner to create a speed reference for such path. Finally,

the controllers follow the reference path.

43



Intuitively, one way to approach the path planning in an FSD track is to consider the left boundary

cones (blue) one class and the right boundary cones (yellow) as another. Given this reasoning, one way

to extract the center line of the track is to find the boundary between these two classes. The algorithm

developed uses a Support Vector Machine, as a base, from which the center line can be extracted, as

well as the track boundaries.

Once the centerline is discovered, the curvature of the path is calculated using three points at a time.

With this curvature, a maximum lateral acceleration can be obtained from a point-mass model which is

then used to look up the maximum longitudinal acceleration from a GG-diagram. Finally, a forward and

backwards correction algorithm is employed to create a smooth velocity profile.

Longitudinal and lateral control are decoupled in this rather simple approach. The lateral controller is

a Pure Pursuit Controller [25] which is essentially a proportional controller based on the lateral deviation

measured from the vehicle’s longitudinal axis and the distance from a point-to-follow. The point-to-follow

is chosen based on the car’s velocity as well as a look-ahead time. The longitudinal controller is a

PI-controller whose setpoint is the velocity reference computed by the speed planner.

4.3 Controller Implementation

The LMPC algorithm this thesis work is based on has been developed by Professor Borrelli’s Model

Predictive Control Lab at the University of California Berkeley. Some of the architecture’s variants have

been tested and its code released open-source on the Berkeley Autonomous Race Car (BARC) [97].

The BARC is a development platform for autonomous driving on a 1/10 scale RC car. The electrical,

mechanical and software architecture design have been released open-source3.

The theoretical guarantees of LMPC presented under no model mismatch may not hold as such

assumption is not satisfied in the racing application, especially due to the highly dynamic range of

manoeuvres. Therefore, the researches at the MPC Lab propose a range of system identification and

machine learning techniques to reduce the model error. We have also tested and extended some of the

original proposals.

We have started the development of this thesis by testing some of the available code versions. In

this step, I performed the necessary adaptations to FSSIM and the FST10d software pipeline; as well

as, the required data collection and controller tuning.

Rosolia and Borrelli [89] suggested building an affine time-varying model to approximate the vehicle

dynamics. The kinematic equations of motion that describe the evolution of the vehicle’s position as a

function of its velocities are linearized. Moreover, instead of identifying the parameters of a nonlinear

dynamical model and then linearize it, the authors propose to directly learn a linear model around a state

x using a local linear regressor - the Epanechnikov kernel function [98]. These quantities are evaluated

along the shifted optimal solution of the LMPC problem at time t−1. Provided with these simplifications,

the problem can be reformulated as a Quadratic Program (QP) which can be solved efficiently.

The control architecture has been implemented by the author in ROS, using Python and OSQP [99].

3http://www.barc-project.com
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The code is available online4. However, the system identification scheme proved to be inadequate for

our application. Both in terms of poor modelling capability and prohibitively high computational effort.

The time allocated to system identification was greater than that of solving the optimization (QP), which

does not seem to be sensible. This way, this Python implementation frequently enough broke the real-

time requirement such that the controller performance was visually deteriorated. Processing times often

surpassed the maximum acceptable processing time when running the node at 10Hz, even though the

average processing time was within that threshold. Therefore, a different implementation was necessary.

Xu [90] tested different modelling strategies for the LMPC applied to the autonomous racing problem

on the 1/10 RC car. Besides testing the LMS scheme with different vehicle models, the author used

GPR to model the system identification modelling error, i.e. model the unknown dynamics - g in Equa-

tion (3.12). Xu also employed some methods to reduce the computational burden of the LMS scheme.

The controller has been implemented in Julia, using JuMP [100] to formulate the optimization problem

and Ipopt [101] as the solver. The code is available online5. One could set Ipopt’s CPU time limit in such

a way that the solver-related processing tasks respected the real-time constraint. And, while the average

solver processing time was just 0.04 s, it did fail frequently to reach optimality within the available time

interval. There are two other aspects related to Julia that hinder the implementation success. First, the

integration with ROS is not widely supported and therefore misses many of the features. Second, Julia’s

garbage collection scheme results in rare but existent prohibitively high processing times. Furthermore,

it did not seem possible to increase the node’s frequency from 10 to 20Hz nor increase the prediction

horizon to more than N = 12 which results in a lookahead time of just 1.2 s. From experience, the

combination of these two factors are clearly insufficient for an autonomous racing application.

In conclusion, Julia and Ipopt while very useful for solving other optimization problems are not fit for

autonomous racing real-time MPC. Hence, I decided to develop a custom C++ implementation of the

LMPC architecture using FORCESPRO - a solver designed for embedded solving of MPCs - to solve

the optimization problem. With these changes, the controller is able to run at 20 Hz with N > 20.

The controller - Algorithm 1 - is implemented in ROS/C++. In the initialization procedure (Line 1),

the track layout data previously mapped by the SLAM pipeline is loaded. This map is used for global to

local coordinate transformation (Line 5). Then, reads the pre-collected data used to build the safe set

(Equation (3.4)) and the corresponding cost-to-go (Equation (2.8)). This pre-collected data in a compe-

tition setting corresponds to the Autocross runs using the pipeline described in Section 4.2. Although,

one could also use data from previous LMPC runs. Lastly, the GPR model is initialized, i.e. specify the

covariance matrix, create the training points Dictionary (Equation (2.12)) and set the hyperparameters

φ.

Finding the local safe set Dj
l in Equation (3.4) consists of a simple search of the NSS

p closest points

to the candidate terminal state ct, for each of the last NSS
l laps. The distance measure is taken about the

respective points’ track progress s. The choice of ct greatly influences the controller’s performance since

the terminal state xt+N |t is to lay inside the convex set given by Equation (2.9) of the local safe set Dj
l,

4https://github.com/MPC-Berkeley/barc/tree/devel-ugo
5https://github.com/MPC-Berkeley/barc/tree/LMPC-Shuqi
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i.e. Conv(Dj
l). A candidate safe set that is too close to the vehicle results in unnecessary conservative

behaviour. While the opposite results in the local safe set not properly conveying the safety aspect. The

candidate terminal safe set ct is calculated by propagating the terminal state st+N |t by one time-step

given the velocity vxt+N|t at that point. A minimum and maximum distance from ct to the vehicle position

xt have been introduced for it aids the solver converge. With a similar goal, the candidate terminal state

cannot correspond to a point that precedes the previous sampling time’s candidate, i.e. ct ≥ ct−1, such

that track progress is encouraged.

The coordinate conversion (Line 5) to the Frenet frame resorts to a library6 that fits the track centerline

with splines developed by Liniger et al. [71]. This library enables finding the track progress s and lateral

deviation ey from the centerline given a location (x, y) and conversely.

The MPC’s dynamic bicycle model parameters can be found in Table 4.4.

Parameter Name Value SI Units

m Mass 250 kg

Iz Moment of Inertia about the z-axis 80 kgm

lF Distance from CG to front axle 0.832 m

lR Distance from CG to rear axle 0.708 m

Cd Aerodynamic drag coefficient 1.2 -

Af Frontal area 1.18 m2

GR Gear ratio 15.74 -

rwheel Wheel radius 0.23 m

Cr Rolling resistance coefficient 0.092 -

Ba Tire stiffness factor 10 -

Ca Tire shape factor 138 -

Da Tire peak lateral force 1500 N

ρ Air density 1.18 kgm−3

g Acceleration of gravity 9.81 ms−2

Table 4.4: MPC Model Vehicle Parameters

A self-developed C++ library has been developed for the system identification procedure - Line 9 -

where the LMS problem is solved using Eigen’s solution of the QR decomposition with column pivoting7.

This process is repeated for each of the three dynamic quantities and for the N − 1 models, i.e. at each

step of the prediction horizon a different model is used. For each of these N −1 models, b and X is built

of pre-collected datapoints from a larger dataset of NSS
T points by finding those that minimize the norm

distance of the difference vector between the feature points in the dataset and the predicted state given

by the previous sampling time’s shifted solution.

6https://github.com/alexliniger/MPCC/
7https://eigen.tuxfamily.org/dox/group__LeastSquares.html
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4.3.1 Optimization Solver

The optimization problem in Equation (3.6) is solved in FORCESPRO. FORCESPRO is a numerical

commercial software designed by Embotech AG specifically for the purpose of fast, embedded opti-

mization [102, 103]. FORCESPRO enables users to generate tailor-made solvers from a high-level

mathematical description of an optimization problem. Simultaneously, the solvers generated have a

very small code size that can be embedded on many hardware platforms.

The code generation engine in FORCESPRO extracts the structure in the optimization problem and

automatically synthesizes a custom C code optimization solver. Hence, it is an appropriate application

for solving MPCs in real-time.

The workflow for solving MPCs involves three types of licenses. First, an Engineering License is

used for specifying the structure of the optimization problem and generating the solver. Then, a Software

Testing License is installed on a desktop PC with Ubuntu. This way, one may iterate the solver structure

while testing with the rest of the pipeline described in Section 4.2, using the FSSIM simulator described

in Section 4.1. Finally, an Hardware Testing License is installed on the vehicle’s PU. This license enables

controlling the physical platform.

Using the Matlab High-Level Interface8, the optimization problem in Equation (3.6), a Nonlinear Pro-

gramming optimization problem, is solved using the FORCESPRO NLP for non-convex finite-time non-

linear optimal control problems with horizon N of the form:

min

[
N−1∑
k=1

fk(zk, pk)

]
(separable objective) (4.9a)

s.t.

z1(I) = zinit (initial equality) (4.9b)

EKzk+1 = ck(zk, pk) (inter-stage equality) (4.9c)

zN (N ) = zfinal (final equality) (4.9d)

¯
zk ≤ z ≤ z̄k (upper-lower bounds) (4.9e)

¯
hk ≤ hk(zk, pk) ≤ h̄k (nonlinear constraints) (4.9f)

for k = 1, . . . , N , where zk ∈ Rnk are the optimization variables, for example a collection of inputs, states

or outputs in an MPC problem; pk ∈ Rlk are the real-time parameters; the functions fk : Rnk × Rlk → R

are stage costs; the functions ck : Rnk × Rlk → R represent (potentially nonlinear) equality constraints,

such as state transition function; the matrices Ek are used to couple the variables from the (k + 1)-th

stage to those of stage k through function ck; and the functions hk : Rnk × Rlk → Rmk are used to

express potentially nonlinear, non-convex inequality constraints. The index sets I and F are used to

determine which variables are fixed to initial and final values, respectively. The initial and final values

zinit and zfinal can also be changed in real-time.

8https://forces.embotech.com/Documentation/high_level_interface/index.html
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Four different solvers with a very similar formulation have been developed. One for each LMPC

architecture (Line 11 of Algorithm 1) and with each of those depending on the model used (Line 9

- Section 3.1.1). Tables 4.5 and 4.6 specify the number of components on each line of Equation (4.9).

nvark corresponds to the number of optimization variables at each stage k, i.e. the size of zoptk . neqk and

nhk are the number of equalities, or inter-stage transitions, and inequalities, Equations (4.9c) and (4.9f),

respectively. Finally, in Table 4.6, P and E correspond to the pre-computed and embedded model error

prediction architectures. npark is the number of real-time parameters, i.e. the size of pk.

Parameter Value
nvar1 12

nvar2:N−1 18
nvarN 14 + NSS

P ×NSS
L

neq1:N−2 12
neqN−1 10
nh1 1

nh2:N−1 7
nhN 6

Table 4.5: Solver Dimensions

zopt1 = [P1, δ1, s1, x1, y1, ψ1, vx1
, vy1 , r1, st−1, 0, 0] (4.10a)

zk=2:N−1 = [Pk, δk, εlanek , εvk , εelk , sk, xk, yk, ψk, vxk
, vyk , rk,

Pk−1, δk−1, vxk−1
, vyk−1

, rk−1, sk−1]
(4.10b)

zN = [εlaneN , εvN , εelN , sN , αi, xN , yN , ψN , vxN
, vyN , rN ,

vxN−1
, vyN−1

, rN−1, sN−1]
(4.10c)

The initial index set is I = [1 : 2, 4 : 12] such that the optimization starts with the new state measure-

ments and the applied control input computed at the previous sampling time, Equations (3.6q) and (3.6r).

Therefore, s1 is the only free optimization variable. The last two elements are artificial variables that exist

only because nvar1 cannot be smaller than neq1. They have been set to 0. st−1 is the vehicle’s track

progress measure at the previous sampling time which is used to enforce Equation (3.6e). Equivalently

for sk−1, but instead the constraint in Equation (3.6f) is applied between consecutive stages. One must

use inter-stage equalities to have access to variables from a previous stage. Thus, similarly to sk−1, the

control inputs and dynamic state variables are transmitted to the subsequent stage to apply the deriva-

tive costs. Hence, the number of inter-stage equalities neqk is 6 (state transition in Equation (3.6b))

plus the number of variables from the previous stage. Embotech recommends organizing zk such that

the variables with inter-stage equalities are placed at end of the vector and the remaining variables are

considered inputs.

The only inequality at the initial stage is Equation (3.6e). At the intermediate stages, the inequali-

ties correspond to Equations (3.6f)–(3.6j) and right and left-hand side of Equation (3.6k). For the final

stage, the inequalities correspond to Equations (3.6f) and (3.6i)–(3.6k) and the sum of the convex hull
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coefficients in Equation (3.6p) which formulated as a soft equality:

1− ε ≤
NSS

l ×N
SS
p∑

i=1

αi ≤ 1 + ε (4.11)

where ε is an arbitrarily small number. There are no fixed variables on the final stage, i.e. F is an empty

set. Equations (4.12) and (4.13) contain the real-time parameters vector which are fed to the solver when

using the bicycle model or the LMS model, respectively. The parameters for the final stage are the same

for any formulation and are given given by Equation (4.14).

p1 =
[
Qlag, Tmax, g

vx
t , g

vy
t , g

ψ̇
t

]
(4.12a)

pPk =
[
Qlag, Qvy , Qderiv, Rderiv, Qlane, Qvub

, Qel, e
max
y (s), vxub

, Tmax, g
vx
t , g

vy
t , g

ψ̇
t

]
(4.12b)

pEk =
[
Qlag, Qvy , Qderiv, Rderiv, Qlane, Qvub

, Qel, e
max
y (s), vxub

, Zind, ievx , ievy , ier ,

σvxn , σ
vx
f , l

vx , σvyn , σ
vy
f , l

vy , σrn, σ
r
f , l

r, ubevx , lbevx , bevy , ber , Tmax
] (4.12c)

p1 =
[
Qlag, θx, θy, θψ, g

vx
t , g

vy
t , g

ψ̇
t

]
(4.13a)

pPk =
[
Qlag, Qvy , Qderiv, Rderiv, Qlane, Qvub

, Qel, e
max
y (s), vxub

, θx, θy, θψ, g
vx
t , g

vy
t , g

ψ̇
t

]
(4.13b)

pEk =
[
Qlag, Qvy , Qderiv, Rderiv, Qlane, Qvub

, Qel, e
max
y (s), vxub

, Zind, ievx , ievy , ier ,

σvxn , σ
vx
f , l

vx , σvyn , σ
vy
f , l

vy , σrn, σ
r
f , l

r, ubevx , lbevx , bevy , ber , θx, θy, θψ
] (4.13c)

pN =
[
Qlag, Qderiv, Qlane, Qvub

, Qel, Qterm cost, Qslack, e
max
y (s), vxub

, Qj(ct), Dj(ct)
]

(4.14)

Parameter LMS-P LMS-E Bic-P Bic-E
npar1 17 17 5 5

npar2:N−1 31 41 + 7×m 19 29 + 7×m
nparN 19 + 7×NSS

P ×NSS
L

Table 4.6: Solver Real-Time Parameters Dimensions

The bounds on the optimization variables, Equations (3.6c), (3.6d) and (3.6l)–(3.6o), are provided

in real-time when calling the solver. Before, one just needs to define the corresponding index set B for

each stage. Hence, the other variables are unbounded.

The computations of the track local coordinates approximation in Equation (3.9) evaluate the third-

order spline polynomials which are divided in Ns intervals. The centerline path given by a set of coordi-

nates (x, y, s) that compose a mesh created by the Matlab function spline. In addition to the path partial

derivatives, a Matlab symbolic function is generated using the Symbolic Math Toolbox. This function is

evaluated within the solver to compute el and ey. This scheme has been implemented by a fellow master

thesis student - Gabriel - who worked in the same research group.

FORCESPRO resorts to an automatic differentiation tool to generate C code from Matlab code.
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We have used CasADi v3.5.1. CasADi [104] is an open-source tool for nonlinear optimization and

algorithmic differentiation. It facilitates rapid — yet efficient — implementation of different methods for

numerical optimal control, namely NMPC.

In order to abide by the application’s real-time requirement, one exploits the solver’s timeout option.

The timeout works by checking the execution time of each iteration of the solver and making an estimate

for next iterations as the product of the currently slowest iteration and a coefficient used to make the

estimate more conservative or forgiving. Both this coefficient and the total solver processing time budget

are real-time parameters. Frequently, the solver cannot reach the optimal solution within the available

time. Nevertheless, unless the solution is infeasible - which would yield a different solver output flag, we

have empirically concluded that the predicted trajectory shows no noticeable differences to the optimal

solution. If the solution is in fact infeasible or another issue with the optimization solution is raised, the

previous sampling time shifted solution is used.

The compiler optimization level is set to its maximum value of 3 so that the code generated is as

efficient - thus fast - as possible. I have also enabled the option for computation on multiple CPU cores

in which the workload is split along the horizon to multiple cores.

4.3.2 Gaussian Processes Regression

Gaussian Processes Regression Inference

The computations associated with GPR model error prediction described in Section 3.2 resort to the C++

open-source albatross9 library developed by Swift Navigation. We have decided against developing a

custom C++ implementation for GPR because only modelling with this technique falls within the scope

of this thesis. Therefore, provided there exists a free of charge library that seamlessly integrates with

the C++ ROS node one would choose such option. Furthermore, an efficient computational procedure

requires several algebraic optimizations which would require extensive workload.

albatross is a framework for statistical modelling in C++, with a focus on Gaussian Processes. It

enables modelling with a GP using composable covariance functions and custom data types in a way

that accommodates the research phase of development (rapid model iteration, evaluation, comparison,

and tuning) but also runs fast in a production environment. As an header only library, it eases the

integration process with the existing software stack.

Recall from Section 3.3 that there are two variants with respect to the computation of model error

prediction. In the pre-computed way, the two equations aforementioned are computed in full by the

albatross library. On the other hand, in the embedded prediction form, only the information vector id

is computed by this library. In this case, the covariance function between the inducing points and the

test case and the model error prediction are calculated in the model evaluation segment at each solver’s

iteration - Section 4.3.1. Here, iteration refers to the numerical optimization algorithm and ought not to

be confused with iteration j of the LMPC algorithm.

9https://swiftnav-albatross.readthedocs.io/en/latest/index.html
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Hyperparameter Tuning

The hyperparameters are tuned offline based on pre-collected data. There are two main reasons for

which this is not done online. First, this optimization is not real-time feasible. Second, it is assumed the

general trend of the model error remains constant throughout the vehicle operation.

The hyperparameter estimation procedure resorts to the Matlab function fitrgp10. For a particular

kernel function and sparse approximation, given the original dataset of size n, this function outputs

the hyperparameters and the active set of size m that maximize the marginal logarithmic likelihood

in Equation (2.23). The active set choice is of particular relevance so as to maximize the information

provided by the subset of the original dataset, i.e. how well the subset conveys the general character of

the full dataset. fitrgp contains four active set selection methods: i) random selection; ii) sparse greedy

matrix approximation; iii) differential-entropy based selection; and iv) Subset of Regressors (SoR) log

likelihood-based selection. The differential-entropy based selection yielded better results on a 10-Folds

CV scheme. Accordingly, it has been used for the remaining tuning.

This function may use either an exact GP or one of the following three sparse approximations for

estimating the model parameters: i) SoD; ii) SoR; or iii) FIC. Quiñonero-Candela et al. [81] argue that

for a given sparse approximation it makes most sense to both optimize the hyperparameters and make

predictions under the same approximation. The hyperparameters that are optimal for the full GP model,

if one were able to obtain them, may also well be very different from those optimal for a specific sparse

approximation. We have decided to follow such advice. We use the active set of the SoD approximation

as the training set for the FITC approximation, i.e. nFITC = mSoD.

fitrgp also allows for broader model optimization, e.g. of the kernel function or whether or not to

standardize the training data. It turns to Bayesian optimization11 to minimize log(1 + CV Loss).

10https://www.mathworks.com/help/stats/fitrgp.html
11https://www.mathworks.com/help/stats/bayesian-optimization-algorithm.html
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4.3.3 Controller Parameters

Parameter FSG Default FSG Aggressive FSI

Qvxderiv 12 3 12

Q
vy
deriv 0.3 0.3 0.3

Qrderiv 0.7 0.7 0.7

RPderiv 180 100 180

Rδderiv 180 100 180

Qlinlane 100 100 200

Qquadlane 10 10 10

Qlinvub
100 100 100

Qquadvub
10 10 10

Qlinel 100 100 100

Qquadel 5 5 5

Qvy 10 2 10

Qlag 300 300 300

Qterm cost 65 150 65

Qxslack 10 10 10

Qyslack 10 10 10

Qψslack 0 0 00

Qvxslack 15 15 15

Q
vy
slack 1 1 1

Qrslack 1 1 1

NSS
l 4 4 4

NSS
p 10 10 10

Plb -1 -1 -1

Pub 1 1 1

δb 0.47 0.47 0.47

∆smax
4 4 4

∆Pub = −∆Pub 0.25 0.25 0.25

∆δub = −∆δlb 0.25 0.25 0.25

vxmax 31 31 31

vymax
31 31 31

vxub
30 30 30

Tmax 21 21 21

FORCESPRO CPU Cores 3 3 3

Table 4.7: Controller Parameters
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Chapter 5

Results

In this chapter, we will show evidence of the iterative improvement of the LMPC architecture in the FSD

simulation environment in two different tracks. Further, we will demonstrate that while learning of the

terminal components does improve performance it cannot alone reach the full performance envelope

of an autonomous racing prototype unless the severe model mismatch inherent to simplified vehicle

dynamics modelling is reduced. To that end, this chapter starts with an analysis of the machine learning

technique tuning process and its model error prediction results.

In Section 5.1, we show results for both sparse approximations by varying the size of their latent

variables m. There, we aim to study the influence of these parameters in the ability to predict the

nominal model error. We test both sparse models in an offline and online learning fashion. In the former,

the training dataset is not updated online with current measurements while in the latter it is. We also

analyse how the computational cost of GPR prediction evolves for these strategies. The resulting data

has been collected in closed-loop in the FSG track. Thus, the model error fitting ability influences the

controller behaviour. The results shown there correspond to the average over 10 laps. The parameters

used correspond to the second column of Table 4.7.

We use the compound average error to evaluate the overall model learning performance: ||enom||

is the average 2-norm error of the nominal model, i.e. ||enom|| = ||B†d
(
xk+1 − f(xk,uk)

)
||; and, ||eGP ||

is the corresponding average error of the corrected dynamics, i.e. ||eGP || = ||B†d
(
xk+1 − f(xk,uk) +

g(zk)
)
||. We also analyse the average error of each individual GP model. For the SoD computational

cost analysis, we measure T inf and T trn - the inference and training time, respectively. TGP is the time

spent on GP computations which for the FITC method corresponds to inference and training.

In Section 5.2, we use the best performing models found in Section 5.1 to evaluate the complete

LMPC architecture. We evaluate its performance with the lap times over the 10-lap trackdrive event. We

show results for two tracks - FSG and FSI - and change the controller parameters to achieve a more

aggressive controller. Finally, we also compare the FITC pre-computed and embedded versions of the

architecture - Algorithm 1. The results showed throughout this chapter make use of the simulator’s pose

ground truth rather than the SLAM’s pose estimation.
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5.1 Model Learning

For the Subset of Data approximation, we use the tuning scheme described in Section 4.3.2 to find the

active set of different sizes mSoD for each model from a dictionary of nSoD = 43329 collected over 10

different runs. Over those runs, we have changed the controller parameters in order to collect data from

the whole performance envelope by yielding more conservative or aggressive controllers.

In Table 5.1, we show the model error prediction fitness for the SoD approximation. The dashed line

separates results of offline (above) and online (below) schemes. Recall, in the offline method where the

training points are not updated online the computation of
(
Kd

ZZ + Iσ2
d

)−1
yd is performed before-hand

and therefore incurs no extra computational cost.

mSoD ||enom|| ||eGP || T inf [ms] T trn [ms]

200 0.25 0.09 0.5 -

300 0.26 0.08 0.8 -

400 0.26 0.08 1.0 -

500 0.27 0.09 1.3 -

600 0.25 0.07 1.5 -

200 0.27 0.09 0.5 4.9

300 0.27 0.07 0.7 13.6

Table 5.1: SoD Active Set Size Analysis

Table 5.1 shows that the model learning procedure reduces model mismatch, i.e. difference between

||enom|| and ||eGP ||, by at least 60 %. There is a positive correlation between mSoD and model error

fitting ability. For instance, in the offline fashion, the 2-norm average error reduction is 63.9% and 70.7%

with mSoD = 200 and mSoD = 600, respectively. The computation cost evolves linearly with m but within

this range takes acceptable values given the current node rate of 20Hz. Arguably, one could further

increase mSoD but likely with negligible model learning improvements.

Instead, one should aim to adapt the training data online as that would enable adapting to changing

conditions or even just collecting data from dynamic maneuvers not included in the original dictionary.

The last two lines of Table 5.1 corroborate this hypothesis. With a dictionary of under 300 datapoints, the

model error reduction is 65.4% and 75.7% for mSoD = 200 and mSoD = 300, respectively. In particular, it

enables more aggressive maneuvers towards the end of the event while keeping the corrected dynamics

error relatively low. See Figures 5.1–5.3 which depict the model error fitting for the three models

currently in discussion, in the first and last lap. The model error fitting ability is very similar in the first few

laps. But, as the LMPC architecture pushes the vehicle to the limits of friction, the offline method remains

more conservative. This is evidenced by the last lap data where in the offline version with mSoD = 600

the nominal model average norm error increases to 0.28, while the online versions increase to around

0.32, from around 0.21 in the first few laps. The model learning is then able to reduce the corrected

dynamics model error to 0.09 (offline - mSoD = 600), 0.13 (online - mSoD = 200) and 0.08 (online -

mSoD = 300) which amounts to a reduction of 69, 59 and 76%, respectively.
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It has been demonstrated the importance of online learning. The model with mSoD = 300 performs

significantly better than the model with mSoD = 200. While the average node processing time is well

within the limits, it too often breaks the real-time requirement. Thus, the latter model is used for bench-

mark later. I argue that the performance deterioration from this reduction comes mainly from the naı̈ve

dictionary update process. When online learning is active every new measurement and its correspond-

ing model error is added to the dictionary by removing the oldest point. For the FSG track, with lap times

around 17 s and a node rate of 20Hz it would be required a dictionary size of 340 points to cover the

whole track. Note that I am not claiming there is necessarily a spatial correlation to model error that

would require data from the whole track. Nevertheless, there might exist parts of the track that result in

model error different than the GPs trend or specific dynamic maneuvers not repeated.

Table 5.2 shows the prediction behaviour of the individual GP models. Note that the corrected dy-

namics for the yaw rate are consistently within acceptable bounds and the model error reduction is high

- frequently above 70%. Models struggle mostly with learning the lateral velocity dynamics which is

verified with a reduction of around 50% and only 33% for the offline model with mSoD = 200.

vx [ms−1] vy [ms−1] r [rad s−1]

mSoD ēnom ēGP ēnom ēGP ēnom ēGP

200 0.17 0.06 0.11 0.07 0.19 0.05

300 0.17 0.05 0.11 0.07 0.21 0.05

400 0.17 0.07 0.12 0.06 0.21 0.06

500 0.18 0.05 0.12 0.06 0.22 0.07

600 0.17 0.05 0.11 0.06 0.20 0.05

200 0.18 0.06 0.13 0.06 0.21 0.10

300 0.18 0.04 0.12 0.06 0.21 0.05

Table 5.2: SoD Active Set Size per Model Analysis -

As explained in Section 2.3, the FITC sparse approximation is a natural candidate to enable online

learning. In Table 5.3, we show average error similarly to Table 5.1. There are three groups separated

by the horizontal dashed lines. In order, we first show the results for offline and online learning with

nFITC = 300. Subsequently, we extend those with data from nFITC = 400. For each of these, we

test three different inducing points strategy along the prediction horizon which is equivalent to changing

mFITC .

We show that there is no further computational cost incurred by choosing the online framework which

is inherent to the proposed architecture where the latent variables are changed at each sampling time.

Although in a comparable order of magnitude, the offline version exhibits better model error fitting ability.

I once again argue that this is due to the dictionary update procedure. Therefore, we have increased

the training dataset to nFITC = 400. The best performing model with mFITC = 10 yields model learning

performance comparable to that of the SoD approximation. The corrected dynamics average error is

0.12 slightly above of the SoD benchmark value of 0.09.
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Figure 5.1: Model Error Fitting Ability - Offline SoD with mSoD = 600 (Laps 1 and 10)

mFITC ||enom|| ||eGP || TGP [ms]

5 0.27 0.14 2.6

10 0.26 0.15 3.0

20 0.26 0.15 4.1

5 0.28 0.15 2.6

10 0.26 0.17 3.0

20 0.26 0.15 4.1

5 0.28 0.15 3.3

10 0.27 0.12 3.8

20 0.27 0.13 5.2

Table 5.3: FITC Inducing Points Strategy Analysis

In Table 5.4, we show the performance of each model for the FITC approximation method. Again,

one can conclude that the yaw rate error dynamics are well modelled. The error reduction is generally

above 70 %, reaching 75 % reduction in the best performing model. For this model, the remaining

error reductions are around 40 % which is at least 10 % less than the best SoD models. However, the

nominal model error average are comparable with the SoD’s. Thus, proving the controller also pushes

for aggressive behaviour. This could imply unsafe driving due to model mismatch. Finally, see Figure 5.4

for a visual comparison with the best performing SoD models.
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Figure 5.2: Model Error Fitting Ability - Online SoD with mSoD = 200 (Laps 1 and 10)

vx [ms−1] vy [ms−1] r [rad s−1]

mFITC ēnom ēGP ēnom ēGP ēnom ēGP

5 0.18 0.12 0.12 0.09 0.22 0.08

10 0.18 0.15 0.12 0.08 0.21 0.05

20 0.18 0.15 0.12 0.06 0.21 0.06

5 0.18 0.11 0.13 0.12 0.22 0.07

10 0.18 0.17 0.12 0.08 0.20 0.05

20 0.17 0.16 0.12 0.06 0.21 0.06

5 0.18 0.14 0.13 0.07 0.22 0.08

10 0.18 0.10 0.12 0.07 0.21 0.05

20 0.18 0.13 0.12 0.04 0.21 0.07

Table 5.4: FITC Inducing Points Strategy per Model Analysis

5.2 Learning-based Model Predictive Control

In Table 5.5, we show the lap times along the 10-lap trackdrive event and average model error for the

FSG track. The initial safe set was collected using the simple controllers described in Section 4.2.

It is composed of four laps with lap times of around 28.8 s. The controllers herein have a prediction

horizon of N = 20 which corresponds to a look-ahead time of 1 s, until stated otherwise. The LMPC

results without model learning prove the iterative improvement character of the architecture. The first
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Figure 5.3: Model Error Fitting Ability - Online SoD with mSoD = 300 (Laps 1 and 10)

lap is immediately 33% faster compared to the path-following controller. Equivalently, the last lap is 39%

faster. Furthermore, the last lap corresponds to a 10% improvement compared to the first LMPC lap.

Figure 5.5 shows the FSG trackdrive trajectories. The finish line is at the origin and the vehicle runs

clockwise. It can be seen that the LMPC exploits the track layout to improve performance measured by

lap time. Nevertheless, the third column of Table 5.5 exhibits severe model mismatch which causes the

vehicle to break the track constraint. See, for instance, the exit of the hairpin or the first corner where the

trajectory is on top of the track boundary which entails a cone was hit since the trajectory corresponds

to the center of mass. The car starts at the origin. The hairpin is the sharp corner on the rectangle

region given by the top left corner of (10,−65) and the bottom right corner of (30,−75). Furthermore, the

approach to the slalom segment is not optimal per empirical vehicle dynamics standards. The vehicle

is braking too late which leads to a slower slalom with greater steering actuation required. The slalom

segment is given by the corners (−10,−15) and (0,−45). In this case, I reckon it is due to a combination

of a relatively short prediction horizon and model mismatch.

Let one now analyse the performance of the LMPC when the GP model learning scheme is deployed.

Table 5.5 shows that the last lap is 42 and 12% faster when compared to the path-following lap and the

first lap, respectively. These results correspond to the online SoD model with mSoD = 200. Figure 5.5

shows the corresponding FSG trackdrive trajectories. It is clear the reduced model mismatch prevents

the vehicle from disrespecting the track constraint. However, the slalom trajectory does not yet look

optimal.

Figure 5.7 shows that after activating the model learning scheme the LMPC is able to safely increase

the velocity across most track segments.

Table 5.6 exhibits the equivalent data for the FITC approximation for the best performing model:
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Figure 5.4: Model Error Fitting Ability - Online FITC with nFITC = 400 and mFITC = 10 (Laps 1 and 10)

LMPC LMPC + SoD
Lap Time [s] ||enom|| Time [s] ||enom|| ||eGP ||

1 19.36 0.22 18.92 0.21 0.06
2 19.33 0.21 18.75 0.21 0.07
3 19.34 0.21 18.73 0.21 0.07
4 19.33 0.22 18.71 0.21 0.07
5 17.78 0.29 17.17 0.29 0.08
6 17.45 0.30 16.85 0.31 0.11
7 17.44 0.31 16.77 0.32 0.13
8 17.51 0.29 16.84 0.32 0.11
9 17.43 0.30 16.80 0.31 0.12

10 17.43 0.30 16.96 0.32 0.13

Table 5.5: LMPC Lap Times and Model Error

online with nFITC = 400 and mFITC = 10. The fact that in the embedded scheme the model error pre-

diction is computed for every control input considered prompts comparatively more aggressive behaviour

on the initial laps. This is evidenced by the lap times and nominal model error. However, this scheme

fails to significantly improve performance and quickly converges to a lap time of around 17.3 s. First to

last lap time reduction of 13 and 9% on the pre-computed and embedded architectures, respectively.

Both schemes are able to sustain an approximately constant corrected dynamics average error of 0.13,

which is low enough for fast and feasible racing.

Table 5.7 exhibits the processing timings for both architectures using the FITC approximation. The

current results do not sustain as beneficial using the embedded scheme. Furthermore, despite being

average values there seems to exist some leeway to increase the prediction horizon and the controller

frequency.
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Figure 5.5: FSG Trackdrive Trajectory of LMPC without Model Learning

LMPC + FITC-P LMPC + FITC-E
Lap Time [s] ||enom|| ||eGP || Time [s] ||enom|| ||eGP ||
1 19.13 0.22 0.11 18.87 0.25 0.12
2 19.03 0.21 0.10 18.63 0.25 0.11
3 18.99 0.21 0.10 18.64 0.28 0.12
4 19.16 0.22 0.10 18.61 0.24 0.11
5 17.32 0.28 0.13 17.72 0.27 0.13
6 16.87 0.30 0.13 17.43 0.29 0.14
7 16.75 0.31 0.14 17.27 0.28 0.13
8 16.71 0.31 0.13 17.12 0.32 0.13
9 16.67 0.31 0.14 17.27 0.30 0.13
10 16.68 0.31 0.13 17.27 0.30 0.13

Table 5.6: LMPC Lap Times and Model Error - FITC Approximation

Architecture TGP [ms] T solver [ms] TLMPC [ms]

FITC Bic-P 3.8 14.4 18.5

FITC Bic-E 3.5 17.1 21.1

Table 5.7: FITC Processing Time

We have subsequently tested with increasing prediction horizons. In Table 5.8, we display the lap

times and modelling errors for two sets of controller gains withN = 30. The results on the left correspond

to the parameters used thus far in this chapter. On the other hand, for the controller on the right we

reduce some derivative costs and the regularization cost on vy, and increase the Q-function associated

cost to promote greater track progress at each sampling time - the corresponding costs can be found in

the third column of Table 4.7.

With a longer horizon both controllers can safely navigate around the track such that the safe set
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Figure 5.6: FSG Trackdrive Trajectory of LMPC with Model Learning [N = 20]

loses its relative importance. That is, the controller is able to predict consistently until the slowest

point on a given corner. This way, the information conveyed by the safe set regarding what sort of

maneuvers come after is not as valuable. The safety character referred only applies when model learning

is deployed. Otherwise, the severe model mismatch hinders performance. This is substantiated by the

fact that both achieve small lap times in the first few laps and quickly converge to their steady-state lap

times of around 16.7 s for the default controller and 16.2 s for the aggressive controller.

Default Parameters Aggressive Parameters

Lap Time [s] ||enom|| ||eGP || Time [s] ||enom|| ||eGP ||

1 17.16 0.27 0.07 16.37 0.39 0.14

2 16.92 0.26 0.07 16.18 0.37 0.15

3 16.91 0.26 0.07 16.17 0.37 0.15

4 16.88 0.26 0.07 16.13 0.37 0.15

5 16.69 0.28 0.08 16.17 0.36 0.15

6 16.66 0.28 0.09 16.21 0.37 0.15

7 16.67 0.28 0.08 16.19 0.36 0.15

8 16.68 0.28 0.08 16.14 0.37 0.16

9 16.68 0.27 0.08 16.15 0.37 0.16

10 16.69 0.27 0.08 16.11 0.36 0.15

Table 5.8: LMPC Lap Times and Model Error [N = 30]

Both models used the offline version of the SoD approximation with mSoD = 600. Table 5.8 further

corroborates these claims. For instance, the nominal model average error on the first lap of the default
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Figure 5.7: FSG Trackdrive Velocity Profile of LMPC with and without Model Learning [N = 20]

controller with N = 30 of 0.27 is substantially higher than those with N = 20 which is on average 0.21.

The increased driving behaviour aggressiveness is verified by the larger nominal model errors of around

0.37. The model learning scheme is able to significantly reduce the model mismatch in order to enable

safe aggressive racing. For the first case, the corrected dynamics model average error is around 0.08

which corresponds to a reduction of about 70%. While for the aggressive controller, the final model

mismatch is on average 0.15, a reduction of 60%. The model learning scheme is able to keep an

acceptable value of corrected dynamics model mismatch even in the case of offline model learning on

the aggressive controller. It should be noted that such high nominal model errors data were not present

in the original training dataset.

Figure 5.8 displays the trajectories of both controllers with N = 30. The trajectories look similar but

by analysing the velocity profiles in Figure 5.9, we conclude that the aggressive controller consistently

achieves greater velocities in all track segments because more aggressive acceleration and braking

maneuvers are allowed.

Finally, we include results for a different track - FSI. Again, the finish line is at the origin and the vehicle

runs clockwise. In Table 5.9, we show the lap times along the 10-lap trackdrive event and average model

error for the FSI track. The initial safe set is composed of four laps with lap times of around 66.6 s. This

track is quite challenging due to its many sharp corners. This explains the very low-speeds at which the

path-following controller was driving. Both LMPC architectures have a prediction horizon of N = 20. The

LMPC without model learning shows a 36% first to last lap time reduction. Nevertheless, if one inspects

its trackdrive trajectories in Figure 5.10 it is clear it disrespects the track limits. While it remains safe in

the sense that it the trajectories are smooth and feasible, the team would be time-penalized for hitting

the track-delimiting cones. Hence, one could still argue that the safe set failed to properly convey the
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Figure 5.8: FSG Trackdrive Trajectory of LMPC with Model Learning using Default Parameters (Left) and
Aggressive Parameters (Right) [N = 30]

safety information. However, this is not true because in fact it was a combination of the safety criterion,

i.e. a lap or LMPC iteration is considered safe if it completes that lap - Equation (2.7), and too aggressive

parameters that pushed the vehicle to the limits of the performance where the model failed to suitably

explain the vehicle dynamics. This is confirmed by the average nominal model error - third column

of Table 5.9.

LMPC LMPC + SoD

Lap Time [s] ||enom|| Time [s] ||enom|| ||eGP ||

1 21.37 0.10 25.76 0.08 0.09

2 16.34 0.20 18.32 0.15 0.06

3 14.16 0.31 14.52 0.27 0.07

4 13.64 0.35 13.37 0.33 0.10

5 13.62 0.35 13.25 0.34 0.11

6 13.61 0.35 13.25 0.34 0.11

7 13.60 0.35 13.23 0.34 0.11

8 13.63 0.35 13.26 0.34 0.11

9 13.62 0.35 13.25 0.34 0.11

10 13.60 0.36 13.38 0.34 0.11

Table 5.9: LMPC Lap Times and Model Error in FSI

When the model learning configuration (offline SoD with nSoD = 600) is activated, the controller re-

sumes to be wholly safe, i.e. track constraints are once again respected as can be concluded from Fig-
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Figure 5.9: FSG Trackdrive Velocity Profile of LMPC with Model Learning [N = 30]

ure 5.11. This is further demonstrated by the fact that the lap times for the first two laps are considerably

slower than the corresponding without model learning. That is, when the model mismatch is reduced,

the safe set can safely drive the controller to iterative improvements of as much as 49%. The model

learning scheme keeps the corrected dynamics average 2-norm error at about 0.11 which is a reduction

of about 70%. Note that in the first lap the corrected dynamics have a greater mismatch than the nomi-

nal model. This is explained by the absence of training data at this slower race pace. It is also expected

that the bicycle model accurately represents the dynamics in these conditions. Again, one would expect

that a proper online learning apparatus would not face this setback. It should be noted however that the

net model error was still smaller than when driving at high speeds.
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Figure 5.10: FSI Trackdrive Trajectory of LMPC without Model Learning [N = 20]

Figure 5.11: FSI Trackdrive Trajectory of LMPC with Model Learning [N = 20]
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Chapter 6

Conclusions

6.1 Achievements

In this thesis, we have adapted the LMPC architecture, proposed by Professor Borrelli’s Model Predictive

Control Lab at University of California Berkeley, to the FSD context. We have implemented the frame-

work in C++ and used a state-of-the-art optimization solver developed especially for solving MPCs in

embedded platforms. Hence, we have been able to improve the real-time capability of this controller

which is paramount at high-speed racing. In particular, we have been able to double the controller

sampling frequency and more than double the prediction horizon length.

We have demonstrated that the LMPC using a dynamic bicycle model with an appropriately built

safe set and Q-function leads to safe iterative improvements. In this racing application, the improve-

ments were measured on a lap time basis. However, as the controller pushes the vehicle to the limits

of the performance envelope the nonlinearities drastically increase model mismatch which hinders per-

formance. This performance deterioration has been shown qualitatively by the suboptimal trajectories

taken and by slightly breaking the track width constraint.

The problem of model mismatch in model-based control was by no means unknown beforehand.

Indeed, it has been proven to be a significant hurdle. In order to overcome this issue, we use Gaussian

Processes Regression to predict the nominal model error. The GPs are able to successfully model this

error such that the corrected dynamics exhibit reasonably low model errors - model error reduction of at

least 65% and by as much as 75%. This error remains about constant as the LMPC strives for faster

laps in which the nominal model error increases to prohibitively high errors.

The tale of model mismatch does not end here. We have been unable to reach satisfactory results

with the data-driven system identification technique employed that aims to learn a model representation

by solving the least mean square problem from pre-collected data, even after deploying GPs.

We have shown how the model error fitting ability changes with varying parameters for the sparse GP

approximations. For the Subset of Data approximation, we change the active set size which is selected

from a vast dataset by maximizing the differential-entropy criterion. We show that increasing the size

does improve prediction accuracy at a small computational cost. Nevertheless, we have concluded that

67



it is more important to enable online learning, i.e. adaptation of the training dataset with data collected

on a given run. In the SoD approximation, this comes with a considerable computational cost burden due

to training which only allows relatively small active sets whilst still abiding by the real-time requirement.

With the naı̈ve dictionary update technique implemented, which stores the most recent datapoints, the

small active set size does not yield significant prediction improvements. I argue that a better selection

procedure should improve results although the active set size would still be rather short.

The Fully Independent Training Conditional approximation is a natural candidate for online learning

as the training procedure is less costly. Furthermore, since the inducing points are changed at each

sampling time, which implies training the model, changing the training set does not hold further com-

putational cost. The model error results are satisfactory but not as good as SoD’s. We have also a

implemented a variation where the model error predictions, i.e. GP’s mean, is computed for each control

input pair considered at each solver’s iteration. This is in contrast with the previous variant where the

model error predictions were pre-computed for each prediction stage based on previous sampling time’s

trajectory. However, the embedded architecture did not improve the performance significantly.

Subsequently, we have demonstrated that the full architecture, i.e. LMPC with model learning, out-

performs the one without model learning in the metrics considered. We have shown data resulting from

simulations in two different tracks.

Finally, I argue that with longer horizons the safe set loses some of its merits. This is because the

prediction horizon covers the track farther enough such that it can react in due course to the forthcoming

track segments. With a shorter horizon the safe set has been proven to be crucial.

Until the moment this thesis was concluded, the FST10d was not yet ready to test the LMPC con-

troller. That is because the localization algorithm that estimates the car’s pose was not yet showing

reliable results. The results in this thesis should be replicated on the actual prototype to further substan-

tiate the results achieved in the simulation environment.

6.2 Future Work

The greatest focus of the academia that studies learning model-based controllers has been on reducing

model mismatch. Thus, one should also attempt to improve the modelling ability. For instance, by im-

proving the nominal model accuracy which likely comes at cost of increased complexity and thus slower

solver solution. However, the dynamic bicycle model is the state-of-the-art model used for autonomous

racing control.

The alternative is to further explore Machine Learning techniques to fit the nominal model error.

Gaussian Processes have been used with success by other research groups in similar applications and

also proved encouraging in this thesis’ results. First, one should start by testing the Automatic Relevance

Determination (ARD) kernel which has individual length-scales for each feature dimension. It gets its

name from having individual length-scales which enables identifying irrelevant inputs - those with a very

large length-scale where the covariance function becomes effectively independent of that input. One

could also test the squared exponential covariance function by removing the feature inputs that ARD
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deems irrelevant. Furthermore, there are many other covariance function types which may improve

prediction performance. Actually, by running the Bayesian optimization scheme referred in Section 4.3.2

none of the covariance functions recommended were the squared exponential, ARD or not. This study

should be done for each GP rather than just evaluating the overall corrected dynamics performance.

Recall we have shown worse and varying model fitting ability for the vy error while the r error proved to

be consistently accurate.

Other feature quantities should also be considered. For instance, the vehicle’s pose as there might

exist some parts of the track that have different adherence characteristics. Another recommended im-

plementation is to test standardizing input data. Other ML techniques should also be considered such

as the use of Bayesian Linear Regression or Neural Networks. Finally, one has already claimed that a

dictionary data selection criterion that considers the information each data point conveys should improve

prediction accuracy considerably.

With respect to MPC and LMPC, one should be thorough in prioritizing different soft constraint as

some strongly relate with vehicle safety. In this LMPC architecture, the Q-function could be improved.

The minimum-time stage cost should be augmented such that points that yield long-term benefits are

more favoured. The state uncertainty measurement which is in inherent with the use of GPs should

be considered in a Robust MPC framework. Finally, learning of other MPC parameters should also be

targeted. For instance, one could explore methods to automatically adjust the MPCs parameters using

some kind of reward function exploited by a Reinforcement Learning algorithm.
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