Programmable Sandbox for Malware Analysis

(extended abstract of the MSc dissertation)

Diogo Vilela
Instituto Superior Técnico, Universidade de Lisboa

Adpvisor: Prof. Miguel Nuno Dias Alves Pupo Correia

Abstract—Ransomware has grown to be one of the largest
cibersecurity threats in the past few years, so efforts in building
better detection mechanisms have also increased. Ransomware’s
mainstream approach of encrypting large amount of files, leads
to the rationale of using dynamic malware analysis to build
detection models as they produce file access patterns that could
be used as features for the training of said models.

However, it has been reported that papers published in this
research area have seen a lack of scientific rigor due to absence
of proper experiment and result reporting that can be attributed
to the friction of properly log experiments alongside fast research
approach iteration.

In the effort to reduce the mentioned friction, this work
presents the Programmable Sandbox for Malware Analysis
(PSMA), a scalable dynamic malware analysis system that
enables researchers to perform programmable and repeatable
experiments, by using a modular approach and storing the
modules used and parameters configured in each experiment,
which can later be used for the creation of proper reports on
new tested approaches.

I. INTRODUCTION

Over the past few years, the population’s increasing de-
pendency on computer systems has created new opportunities
for malicious actors to take advantage and disrupt a now
vulnerable society. Ransomware, a specific type of malware,
is considered to be one of the biggest cibersecurity threats
currently, which due to usually performing encryption on a
large portion of files in a system, patterns of increased disk
access rates and high volume file modifications can be used
to identify the actions of an infection by ransomware. This
suggests the use of dynamic malware analysis techniques
where one executes a large set of ransomware samples in a
controlled and monitored environment in order to extract these
patterns and build detection models by using machine learning
approaches.

Although the importance and use of dynamic malware anal-
ysis, not exclusively while studying ransomware, has increased
in the last years and many works have been proposed in this re-
search area, many of them fail to properly report their findings.
This leads to lack of scientific rigor by hindering the efforts
of validating such works and building new approaches based
upon them, which overall introduces delays in the evolution
of this research area. Rossow et al. [1] reviewed 36 academic
publications and found frequent shortcomings in terms of
insufficient description of the experimental setup and presented
guidelines regarding transparency, realism, correctness, and

safety that research in the malware analysis area should follow.
The shortcomings presented can be traced back to the urgent
and rapid development of new approaches combined with the
lack of tools that streamlines the reporting process without
causing low friction in the process of experimenting new
approaches.

The main goal of this dissertation is to present the Pro-
grammable Sandbox for Malware Analysis (PSMA), a scalable
dynamic malware analysis system that enables researchers
to perform programmable and repeatable experiments. Addi-
tionally, this system aims to promote collaboration between
members of the research community by having a modular
design at the core of the procedures run in each experiment.

Building upon existing works, the approach taken in the
design of the system was to build a pipeline-like architecture
where the experiment starts by sending the samples to be anal-
ysed to the Data Collection System (DCS) where the samples
are executed in virtual machines (VMs), which are defined by
virtual machine images (VMIs) provided by the researcher, and
their behaviour logged. Then the data collected is sent to the
Data Processing System (DPS), where a processing module,
also provided by the researcher, processes the collected data
inside a container, allowing for dependencies for the module
passed to be met without altering the software/configurations
in the system. Finally, the results and parameters used in
the experiment are properly stored so that proper reports of
the experiments run and approaches used can be published,
promoting better practices in the research community.

Additionally in order to make PSMA useful for both low
and high scale malware analysis, both the DCS and the
DPS were designed to be scalable, since they are the most
resource-intense parts of the system. Finally, and in light of
the goal of contribution in the research community, it was
also developed a versioned module and virtual machine image
storage solutions that allows researchers with access to the
system to create and update Modules that then can be used
by other researchers whilst maintaining the a previous version
of those Modules that have possibly been used in experiments
reported or worth reporting.

II. DYNAMIC MALWARE ANALYSIS

To analyse a malware sample, one could “simply” execute
it and monitor its actions in order to extract its behaviour. To
this type of procedure is called Dynamic Malware Analysis.

A. Data Collection

Common to every type of analysis, data collection is at the
core of it. In the case of Dynamic Malware Analysis, the data
collected is, most of the time, a representation of the actions
performed by the sample being analysed.

a) Function Call Monitoring: The main idea behind
monitoring the system call interface is similar to the verifi-
cation process executed by the operating system (OS), where
before a system call is pushed down to the kernel, the monitor-
ing process logs the system call executed, its parameters and
then its result. To these actions that are executed before/after
the desired system call is given the name of hook function and
to the process of intercepting the system calls themselves is
called hooking.

One problem that arises from this technique is the fact that
malware running in kernel-mode does not require the use of
those system calls and therefore can bypass the efforts put
into this approach. However, writing malware that skips the
use of such APIs is difficult since it requires deep knowledge
of the low layers of the OS. Additionally, due to updates to
the OS, its internals may suffer modifications that can lead to
malware written in kernel-mode to stop working as their are
highly depended of the OSes internals.

b) Filesystem and Network Activity: Other common ap-
proach is to monitor permanent changes and communication
to the outside of the analysis environment occurred during
the sample’s execution. These permanent changes are usually
manifested in the analysis environment’s filesystem, either
with the creation/deletion/modification of files (e.g. as ob-
served in ransomware) or the modification of the registry keys.

Both AMAL [2] and Barecloud [3] record the changes
applied to the filesystem after sample execution and use them
alongside with knowledge of Windows OSes internals to get
the changes applied to the registry. Focusing on filesystem
monitoring when analyzing ransomware samples, Kharraz et
al. [4] propose monitoring the filesystem activity by monitor-
ing the MFT on NTFS as it is expected that many changes are
performed on its entries. To monitor the filesystem UNVEIL
[5] used the Windows Filesystem Minifilter Driver, arguing it
enabled UNVEIL’s monitor component to be positioned at the
closest possible layer to the filesystem, making it harder for
the malware sample to bypass the monitoring.

Regarding the communication to the outside, it can be
an indicator of communication with Command and Control
servers and/or attempts of propagation of the malware sample,
so it is a common approach in literature to perform network
logging, such as in [2], [3], [6], [7].

B. Execution Environments

Executing malware samples typically requires the existence
of a dedicated environment which can be thought of as a
sandbox, a term firstly introduced in the literature in the con-
text of confining the actions of untrusted applications in [8].
The main difference between environments is the virtualization
techniques used (if any), as they can range from being a bare-

metal machine, where no virtualization is in place, to full
machine emulators that simulate CPU and memory operations.

An important concept highly related to the virtualization
in the context of malware analysis is transparency as it
can be defined as the property of making analysis systems
indistinguishable from non-analysis systems [9]. The main
four types of environments regarding transparency are the
following:

a) Bare-Metal Machine: Bare-metal environments are
the most transparent, as they do not execute the sample on top
of virtualized/emulated hardware or OS. The lack of virtualiza-
tion is what makes the environment much more transparent,
as it is more difficult for a malware sample to detect that
it is running on an analysis setup. However, this approach
presents the challenges of restoring the initial system’s state
after performing each sample execution and extracting the
behavior profile of a sample execution as the addition of an in-
guest agent would compromise the transparency requirements.

Addressing the first challenge, Barebox [10] presents a new
technique for system state restoration which is based on the
idea of partitioning the physical memory of the system: one
partition for the analysis environment while the other is used as
a snapshot of the system to be restored. When the restoration
of the system takes place, another OS — external to the memory
partition belonging to the analysis environment — restores the
system without requiring a reboot.

Addressing the second challenge, Barecloud [3] profiles
the sample using network activity captured “on the wire”.
Regarding filesystem changes and registry-keys, as they are
permanent changes they can be compared between the begin-
ning and end of the sample’s execution. This data can then
be obtained without introducing the problematic agent into
the system as the data is located or transmitted through the
peripherals of the system.

b) Type I Hypervisor: Adding a first layer of virtual-
ization as shown in Figure 1, Type I hypervisors have the
hypervisor engine, also known as Virtual Machine Monitor
(VMM), above the hardware lawyer. This engine is responsible
for managing the VM running guest OSes and their access to
the system state, i.e. hardware.

Due to the presence of a VMM in between the VM and the
hardware it is now possible to isolate the VM’s actions and
have multiple VMs concurrently running in a single host. Also,
it is possible for an agent to perform monitoring activities
to the memory and since the it is in a layer below the one
executing the malware, the latter is unable to directly detect
the agent’s presence.

Howeyver, indirect detection can be achieved due to the time
taken by the processes that enable isolation and monitoring,
possibly making the sample aware that it is being run at a
slower rate than expected. Also, there can be bugs in the
virtualization software that malware can exploit to detect they
are being analysed and further stop execution.

Both Ether [11] and DRAKVUF [12] are based on the Xen
hypervisor. Ether, using a modified version of Xen, makes
use of the fact that page-faults can be configured to trigger

VM| v
Hypervisor engine | .

Type 2

Fig. 1: Hypervisor Types [13]

VMEXITs events on chosen code locations and so Ether is
able to trace the system calls occurred in the VM. DRAKVUF
traces the system calls using direct memory access, with the
use of LibVMI library, to inject breakpoint instructions into
the VM’s memory and then, similarly to Ether, it configures
Xen to trigger a VMEXIT event when a breakpoint instruction
is executed.

c) Type II Hypervisor: Similarly, Type II Hypervisors,
also known as Hosted Virtual Machines [14], have a hypervisor
engine layer that stays under the VM layer. However, it is
placed above the Host OS layer, as presented in Figure 1.

The addition of the Host OS layer further increases the prob-
lem of slow sample execution and adds the quirk that high-
privilege instructions are executed from the Host OS, reducing
the transparency of the system. However, this approach brings
the advantage of simpler usage and setup of hypervisor engine
and VM layers.

AMAL [2] uses VMWare type II VM’s to execute its
samples. Upon execution completion, it proceeds to log the
changes to file system and network activity by analyzing the
VMDK and PCAP files respectively.

d) Machine Emulator: While in type I and II hypervisors
low privileged instructions run directly in the host CPU,
machine emulators execute every guest CPU’s instructions
using multiple host CPU’s instructions. This results in high
portability as one CPU architecture can be emulated on
another. Also, this means that emulators have control and
monitor capabilities over every instruction executed by the
guest system. Such capabilities allow new kinds of malware
analysis such as information flow tracking on a binary level
as demonstrated in Panorama [15] using the QEMU.

Pandora’s Bochs [16] has the goal of recovering packed
code so it extends the Bochs emulator to monitor the unpack-
ing stubs that load the desired code into virtual memory and
detect its execution.

However, due to the ratio of single guest instructions being
translated into multiple host ones, the sample’s execution is
expected to be much slower than type I and II hypervisors.
Additionally, emulating low-level CPU details is a difficult
task to do accurately, leading to more bugs possibly existing,
making these systems the less transparent of them all.

C. Challenges

Dynamic malware analysis faces two main challenges,
safety and environment detection.
a) Safety: When executing such samples the extent of
their malicious activities must be contained inside the analysis
environment and only during the sample’s execution.

In order to contain the impact of the sample’s execution
inside the analysis environment, virtualization and emulation
are often used, as isolation is generally one of the main re-
quirements on the design of such solutions. However, and even
though it is commonly accepted that virtualization/emulation
solutions are trustworthy, due to the fact that bugs also exist in
the virtualization software, malware can target those bugs in
order to escape the virtualized/emulated environment [11] en-
abling them to extend their impact to the whole infrastructure
responsible for the analysis and further.

Additionally, it is usual for malware to require an Internet
connection in order to begin its malicious activities. This
presents a threat to the outside systems that needs to be
addressed [1] as this connection could be used to infected
other systems or participate in bigger scale attacks, such as
spam-serving or DDOS attacks.

To deal with this trade-off between connectivity and safety
the most common approach is to filter network traffic. By
building rules based on traffic speed/number of connections, it
is possible to mitigate participation in some less sophisticated
DDOS attacks. It is also desired to build rules based on the port
the samples tries to connect to, so that connections to common
vulnerable services could be blocked, such as SMB that is
commonly used as a propagation vector in self-propagating
malware.

Another strategy is to emulate some common services and
have the network traffic redirected to such them as done, for
example, in [17] that builds a “mini-network™ of such services,
isolating the analysis environment from the real Internet.

b) Environment Detection: One way for malware authors
to defeat dynamic malware analysis is to make samples able to
detect that they are being executed in an analysis environment.
Such detection is done by looking for unique traits in the
execution environment that could indicate the malware is
being executed in a system made for analysis. Upon positive
detection, the malware usually behaves benignly or exits.

These unique traits, also known as fingerprints, can take the
form of multiple environment variables, such as usernames,
system settings, files in the user’s folder, installed software
and product keys, etc. A possible solution to this kind of
fingerprinting is to pseudo-randomly generate such traits.

With the addition of virtualization/emulation, the environ-
ment becomes less transparent. In turn, this causes detection
to be more easily achieved by a malware sample. One method,
already mentioned, that malware can use to identify the virtu-
alized system is slower execution speed in such systems. More
advanced techniques also can identify timing discrepancies
as time is hard to accurately simulate on virtualized hard-
ware. Another method commonly used that was also already
mentioned is to exploit bugs in the virtualization software,
especially in the CPU virtualization part. These bugs, also
known as “red pills” are a set of instructions that have different
results when performed on virtualized CPU’s.

As mentioned in Section II-A binary rewriting to perform
function hooking is a common technique to gain information
on malware’s behavior. This technique, however, can be de-

tected if the malware checks its memory integrity. In order
to mitigate such detection, CWSandbox [6] uses rootkit-like
techniques to evade detection from the malware’s point of
view.

One last common technique to thwart malware analysis used
by malware samples is to halt their activities for a significant
amount of time or until user interaction is detected such as
mouse movement or keyboard input.

III. PROPOSED SYSTEM

A. Requirements

In order to understand the proposed system’s architecture,
the following sections present the requirements had in consid-
eration throughout its design and implementation.

1) Enable reproducibility: Taking into consideration the
goal of enabling reproducibility of experiments, the system
must save as much information about the approaches used
in each experiment as possible, enabling other researchers to
confirm results or build new approaches based on previous
work. To satisfy this requirement, while at the same time also
enabling collaboration, the system was designed to have a
storage component where the Modules and Virtual Machine
Images (VMI) used are saved. Additionally, to allow for
iterative work upon these Modules and VMIs, the storage
component uses a versioning system to store them.

With the storage and versioning of the Modules and VMISs,
an experiment can be now defined by the IDs and versions
of these objects, the parameters required for their execution
and the samples used. Moreover, the experiment is also saved
inside the system with this information.

2) Modular: As stated previously, malware analysis is com-
monly done in two phases: data collection and data processing.
To comply with this norm, these two phases were translated
into the creation of two subsystems independent from one
another, the Data Collection System and the Data Processing
System, which are respectively responsible for the execution
of the samples and analysing the data collected from their
execution.

Considering that one of the main goals of the proposed
system is to be useful in a range of malware research scenarios,
the system must be flexible enough to adapt to the various
research approaches. Although bound to the two-phase process
detailed above, this flexibility can be achieved by having the
actions performed by the system being defined' by the user.
These actions are passed to the system in the form of Modules
that are uploaded to it, which are then referenced by the ex-
periment making the system load them into the context of the
experiment itself. Naturally, two module types were designed
in order to align with the two-phase process mentioned: one
to be executed inside the execution environment responsible
for the collection of data and the other responsible for the its
processing.

ICould be read as programmed, hence the system’s name: Programmable
Sandbox for Malware Analysis

3) Scalable: Dynamic malware analysis systems must be
highly performant as time is a valuable resource and the
process of executing samples to collect their behavioural data
can be very time consuming. However, leveraging the fact
that sample execution is an isolated process, independent of
other samples being executed in the system, the system can be
designed to support horizontal scaling which is the process of
increasing the number of resources in the resource pool of a
system, contrasting with vertical scaling which is the process
of increasing of the capacity of the resources in said resource
pool.

Considering this new requirement and the independence
between the Data Collection and the Data Processing systems,
these were designed to be composed of multiple worker nodes,
independently scalable on their own, allowing the parallel exe-
cution of samples in the Data Collection System, as mentioned
previously, but also the parallel analysis of the collected data
from different experiments in the Data Processing System.

4) Isolated: As seen in Section II-C, safety poses as one
of the main challenges for dynamic malware analysis, as
infection and propagation of malware outside of the execution
environment can affect the experiment’s results, even hinder its
completion, and raise ethical problems since systems outside
the researcher’s control can become infected. It was also
explained that virtualized environments, thoroughly detailed
in Section II-A, are often the chosen execution environment
they introduces an isolation layer between the execution envi-
ronment and the outside systems and additionally allows for
more control and monitoring of the environment’s state itself.

For the reasons presented above, the execution environ-
ment inside the Data Collection System’s worker nodes were
designed to be Virtual Machines controlled by a Type II
Hypervisor running inside each node. Additionally, to prevent
the network propagation of malware, the virtual machines can
be not connected to any network card. However, it’s important
to point that this is not a limitation of the system itself but a
mere configuration of the VMI imported to the system.

B. Architecture

With the requirements for the system presented in the
previous section, this section now presents the proposed ar-
chitecture, that meets those requirements, by starting with
the introduction of an high level view of the system fol-
lowed by the detail of the architecture of the underlying
systems/components.

1) High-Level View: Section III-A mentioned three com-
ponents on the proposed system: the Data Collection, Data
Processing and versioned Storage Systems. To complete the
system, in addiction to those components, two others are
required and were included in the architecture — the Host and
Message Broker — as it can be seen in Figure 2.

Regarding the actor in the figure, it corresponds to the
researcher using the System, which will interact with it using
the Host, as it will be explained in the next Section. The
researcher is responsible for defining the experiments that

Psma)

Message Broker

L—T Tﬁ

Data Collection System Data Processing System

Storage

Fig. 2: PSMA’s High-Level Architecture

will be run on the System, alongside the Modules and VMIs
imported.

2) Host: As mentioned above, the Host is the entrypoint for
the system. Each request made to the system is performed by
calling the appropriate endpoint provided by the Host, which
in turn communicates with the Storage system and/or Message
Broker, depending on the task at hand. It is important to note
that there is no direct communication with the Data Collection
and Data Processing components, as they receive the tasks
to perform from the Message Broker, hence the need for it.
The Host can then be seen as being composed by a Web API
and the necessary connectors for the Storage system and the
Message Broker.

3) Message Broker: As seen in the Section III-A, the
Data Collection and Data Processing components have the
requirement of being scalable and be composed of multiples
workers. To coordinate the tasks run by these workers a
communication system between them and the Host must exist.
This is the role played by the Message Broker, which will
receive the messages sent by the Host with the task definitions
that will then be requested by the workers from the appropriate
system for the task, making the Message Broker have a Task
Queue like functionality.

4) Storage: A key component of the proposed system is
the integration of the versioned storage solution. This storage
is composed by two components as can be seen in Figure
3. The file storage is responsible to hold the actual files
that compose the Modules, VMIs and experiments while the
relational database is responsible to hold the metadata related
to them. This allows for a fast lookup of information/state of
these objects without having to transverse the much slower
file storage.

Fig. 3: PSMA’s Storage

5) Data Collection System: As mentioned before, the col-
lection of data from the execution of the tested samples is
done inside the Data Collection System which is composed
by a variable number of nodes as showed in Figure 4.

To control the tasks executed at each node on the Data
Collection System, each node has a Task Queue Controller
which connects itself to the Message Broker. Each time a
message arrives at the Message Broker with the identification
of a Data Collection task, the Task Queue Controller (if the
node has capacity) creates a Virtual Machine Controller which
interfaces with the Hypervisor running on node. This Virtual
Machine Controller then connects to the Storage System to
download the Virtual Image, the Data Collection System mod-
ule and sample, with which it will launch a virtual machine
and upload the module and sample into it. After, the Virtual
Machine Controller instructs the Virtual Machine to execute
the module, which is responsible to run the sample itself
and collect data about its behaviour. Finally, after the module
collects the data from the execution of the sample, the Virtual
Machine Controller extracts the data from inside the Virtual
Machine and uploads it to the Storage System.

M1 M2 VMn w1t M2 VMn

CH\ Waching

VM1

vmz

=

[ocsmwane |

=

Virtual Wachine
Controlir

‘ ‘ itz

Virtval Machine
Controller

Fig. 4: Data Collection System Architecture

6) Data Processing System: Similar to the Data Collection
System, the Data Processing System is composed of a variable
number of nodes as it is scalable, as can be seen in Figure 5.
Again, much like the DCS nodes, the DPS nodes connect to
the Message Broker using a Task Queue Controller which will
receive the tasks to be performed.

For the environment of execution of the data processing
module, the system was design to it being a containerized
environment, as it provides much flexibility to the user, al-
lowing them to import all of the dependencies needed inside
the container whilst not impacting the installed software in
the node environment. The Task Queue Controller manages
the containers orchestration as it directly interfaces with the
containerization software present in the node.

C. Implementation

With the architecture of the system detailed above, this
section presents the implementation decisions and technolo-
gies adopted for the creation of the first prototype of the

Container 1 Container 2

\

\

Data Processing System's Node,

Fig. 5: Data Processing System Architecture

PSMA which was mainly developed using the Python 32
programming language due to its simplicity for prototyping
and large community support. Regarding the deployment of
the system’s components, most of the components were de-
ployed using Docker Compose?, which is a tool for defining
and running multi-container Docker applications. This way
the infrastructure needed can be run on a single machine
while communicating over a network, hence removing the
need for a multi-machine setup for the system to be tested and
used. Additionally, the use of a containerized approach to the
system’s deployment allows for support of multiple OSes, as
long they support the containerization technologies used, and
isolation from the host which means less changes are required
to be made to the software installed on it.

Similarly to the previous sections, this section is further
composed by subsections detailing the multiple parts of the
system, in this case regarding its implementation.

1) Storage System: As previously mentioned, the Storage
System is composed by a file storage component and a
relational database. As the system is design to be scalable,
network access to the file storage system is mandatory and
therefore a communication protocol must be followed by
all the parties involved in the file transfer (i.e. clients and
server). After analysing several file transfer protocols, the
chosen protocol was the SFTP as it relies on the SSH protocol
providing an encrypted connection for both authentication and
file transfer. Additionally, with its popularity, many libraries
for connecting to SFTP servers using Python were available,
from which Paramiko* was picked to be at the core of a
wrapper developed called SFTPController that manages
the connection to the server on each file/folder operation. As
for the SFTP server itself and following the strategy of using
Docker to containerize the infrastructure of the system, the
atmoz/sftp> Docker image was chosen.

Regarding the file system structure on the SFTP server, three
folders were created as depicted in Figure 3. The first two, the

Zhttps://www.python.org/
3https://docs.docker.com/compose/
“http://www.paramiko.org/
Shttps://hub.docker.com/r/atmoz/sftp/

vmi and module folders, have similar file structure as both
VMIs and Modules are versioned in the same manner. From a
file storage point of view, both objects are composed by two
identifiers: the id, which identifies the group of version of an
object, and the hash which identifies each version of the object
itself. The id is a UUID randomly generated when the system
receives a completely new object and the hash is the result of
computing the the SHA 256-bit version over the file stored.
Given these two values the file is stored in the file system as
follows: / [vmi |module]/<id>/<hash>.

Lastly, the other folder created was the experiment
folder which stores every file regarding the experiments (i.e.
samples, data collected and result). As expected, to identify
each experiment, an UUID is randomly generated which will
be the root folder for the subsequent folders created for the
experiment. For the samples being used in the experiment,
the samples folder was created, where each sample stored
is identified by the SHA-256 of the file. As for the data
collected from the analysis of the sample inside the DCS, it is
stored on the folder: /experiment/<experiment_id>/
collected/<sample_hash>/. The files that result from
the conclusion of the experiment are stored inside the root
folder for the experiment. At the end of the experiment the
samples and collected data folders are deleted as to efficiently
use the available storage.

As for the relational database, the system is using a Post-
greSQLS database to hold the metadata for the objects related
to the VMIs, Modules and Experiments. As can be seen in
Figure 3, the versioned objects — VMIs and Modules — have
a similar data structure where each object is defined by an id
(the same id referenced before), a name and a type. As for the
version of the objects, these have a reference to the id of the
object, the hash of the current version of the object file, the
timestamp of when the version was uploaded to the system
and finally an optional string for comments on the specific
version. The type of the module refers to whether the module
is to be used on either DCS or DCS nodes, while the type
of the VMI refers to what kind of virtualization software is
to be used with the VMI file stored, even with the current
prototype only supporting one virtualization software. As for
the experiment, it is defined by an id, status and by the id
and hashes for the VMI, DCS and DPS modules alongside
the needed parameters/arguments. For each sample in the
experiment is then added an entry to sample table with the
id of the experiment, the hash of the sample file, the sample’s
original file name and its status in regard to the data collection
phase.

For the connection to the database, the system uses the
Flask-SQLAIlchemy’ library as the host, as will be detailed
later, is running a Flask application. The deployment of the
PostgreSQL server is made using the postgres:alpine® version
Docker image as it is sufficient for the use case and by building

Ohttps://www.postgresql.org/
"https://flask-sqlalchemy.palletsprojects.com/en/2.x/
8https://hub.docker.com/_/postgres

itself upon the Alpine Linux project it has a much smaller
storage footprint than the alternatives.

2) Message Broker: The Message Broker plays a vital
part on the system, being the component that allows for
the scalability in terms of nodes in both DCS and DCS
as it will act almost as a task queue accessible by all the
nodes. While this Section is related to the Message Broker
implementation/design choices, it is first required to explain
how the nodes and host connect to it as the chosen technology
impacted the choice of the Message Broker. After analysing
the alternatives for implementing a distributed task queue
in Python, it was decided to use the Celery framework® as
it is one of the most popular frameworks for asynchronous
task distribution in Python. To create the two-phase approach
workflow mentioned previously, the system uses a Celery
feature called Chord. Chords allow to create a group of tasks
that will be executed in parallel followed by a task that will
execute when all of the tasks in the group are finished. To
support this feature, Celery requires a Results Backend to be
configured, which Redis'? is usually used. As Celery can also
use Redis to play the role of a Message Broker, Redis was
the message broker selected to be used in the system. For
the deployment of the Redis server the system is using the
redis:6-alpine!! version Docker image.

3) Data Collection System: As seen in the previous Section,
the DCS nodes will use Celery to connect to the Message
Broker. This is achieved by having each worker node be-
ing deployed as a Celery Worker which listens to the task
queue correspondent to the DCS tasks. For the management
and virtualization of the execution environments, the system
currently only supports Oracle VM VirtualBox!? hypervisor
which is controlled using the developed VBoxController
that corresponds to the Virtual Machine Controller in Figure
4.

To interface with VirtualBox two main options were avail-
able: using the command line interfacing binaries that come
with the standard installation of VirtualBox into a system or
using the API developed by VirtualBox. Although the usage
of binaries had the advantage diminishing the requirements
in terms of libraries used in the code of the worker’s sys-
tem, it had the big disadvantage of requiring OS awareness
due to the different ways command line interfaces can be
used in different OSes. For that reason and to have all the
state of VirtualBox system inside the worker context the
VBoxController was developed around the virtualbox-
python library'? which itself is a wrapper around the API
developed by VirtualBox.

When the worker receives a task, it will start by command-
ing the VBoxController to clone the VMI reference on
the experiment which makes the VBoxController start by
querying VirtualBox to check if there’s a virtual machine in

9https://docs.celeryproject.org/en/stable/
10https://redis.io/

https://hub.docker.com/_/redis
2https://www.virtualbox.org/
Bhttps://github.com/sethmlarson/virtualbox-python

the system created based off the requested VMIL. If VirtualBox
can’t find the virtual machine then the VBoxController
will load the VMI from the Storage System and then create
a virtual machine using it. With the base virtual machine
present in the system, then the VBoxController creates
a clone of it to be used as the execution environment where
the sample is going to be analysed. To increase efficiency in
storage used and in the process itself of cloning, the clone
created uses a new differencing disk image based on the base
virtual machine disk hence reducing the storage and copy of
duplicated information.

With the virtual machine required to analyse the sample
created, the VBoxController is then instructed by the
worker to power it up and upload the files required into it.
These files which correspond to DCS module referenced by
the experiment and the sample to be analysed and are passed
to the virtual machine in a compressed folder which then
will need to be extracted using the command passed to the
experiment by the user. The decision of requiring the user to
give the extraction command was made due to the different
tools available in different OSes. With all the files in the
virtual machine, the VBoxController then executes the
entrypoint of the DCS module, which is then responsible to
analyse and run the sample. The module is then expected to
save its results in a directory that is going to be fetched by the
VBoxController at the end of the allocated analysis time.
With the sample analysed and the results extracted from the
virtual machine, the VBoxController uploads the results
to the Storage Systems as mentioned in previous subsections
and powers down and deletes the virtual machine from the
system.

4) Data Processing System: Similarly to the DCS nodes,
the Data Processing System nodes also are deployed as Celery
workers that connect to the Message Broker to receive the
tasks to perform. As previously stated in Section III-B6, the
module execution is done inside a containerized environment
and, as to no surprise, the chosen environment was Docker
Containers which are managed by the worker using the Docker
SDK for Python'4. This requires the user of the system to
define the DCS modules as a valid Docker image with the
Dockerfile in the root of the module. Upon receiving a task,
the worker starts by loading the collected data from the Storage
System to a directory which will then be mounted as a volume
in the Docker container to make it available from inside the
container. After the collected data is loaded into the directory,
the worker then builds the Docker image defined by the
Dockerfile and creates a Docker container based on the image
just created. The container then runs the command defined
in the Dockerfile ENTRYPOINT section. It is then expected
for the execution of the command in the container produces
a directory inside the mounted volume with the results of
the processing of the collected data. Upon completion of the
execution of the Docker container, the worker uploads the
results directory to the Storage System and deletes the local

14https://docker-py.readthedocs.io/en/stable/

volume and container created as they are no longer needed. At
this point the experiment is concluded and the worker updates
its status and cleans the Storage System from the intermediary
files created.

5) Host: As previously mentioned, the Host is the entry-
point for the system, connecting the user to the Storage System
and Message Broker (and indirectly to the DCS and DCS
nodes). The user interacts with the host using a Web API
developed using the Flask Framework!®> which is composed of
the endpoints presented in Table I that allow for CRUD (create,
read, update, delete) operations over VMIs and Modules and
for the execution of experiments, querying their status and
deleting them from the system.

Method Route Explanation

GET /v1/[vmi|module|experiment]/ Gets all objects

POST /v1l/[vmi|module|experiment]/ Creates a new object

GET /v1/[vmi|module|experiment]/<id> Gets the information of the object
DELETE | /v1/[vmi|module|experiment]/<id> Deletes the object

PUT /v1/[vmi|module] /<id> Creates a new version of the object

GET /v1/[vmi|module]/<id>/download Downloads the latest version of the object
GET /v1/[vmi|module]/<id>/<hash> Gets the information of an object’s version
DELETE | /v1/[vmi|module]/<id>/<hash> Deletes an object’s version

GET /v1/[vmi|module] /<id>/<hash>/download | Downloads an object’s version

GET /vl/experiment/<id>/status Get experiment’s and samples’ statuses
GET /v1l/experiment/<id>/result Downloads the experiment’s result

TABLE I: PSMA’s endpoints

When using the endpoints that create a new object (i.e.
Module, VMI), the related metadata should be included in
a YAML file in the request alongside the object file. The
result of the GET methods also displays the information of
the object in the YAML format as to have consistency in the
input and output of the system. The choice of using the YAML
format against JSON, which is also a very popular format for
information passing in Web APIs, was based on the readability
of YAML files by humans and its massive adoption by the
Docker community.

Regarding the object files, in the case of the VMI endpoint
the passed object file must correspond to the OVA file that
contains the image of the base virtual machine to be used;
for the Module endpoint, the object file must be a ZIP file
containing the required file/structure for the type of module
it represents; and finally the object file of the experiment is a
ZIP file with all the samples to be analysed in the experiment.

Upon called in one of the endpoints, the Host verifies if
the information passed is valid such as validating if object
to delete is present or that no duplicates are introduced in
the system. If required, then the Host executes the changes
in the SFTP server and if all is performed successfully then
it applies the change to the PostgreSQL database. In the
case of the endpoint that initiates an experiment (i.e. POST
/v1/experiment/, the Host first uploads the samples to
the SFTP server and creates the correspondent metadata for
them and for the experiment in the PostgreSQL database. After
committing the addition of the metadata, it then proceeds
to launch the experiment by calling the Chord feature from
Celery which was discussed earlier. This will produce the tasks
in the Message Broker which will then be received by available
nodes in the system.

https://flask.palletsprojects.com/en/2.0.x/

IV. EVALUATION

A. Evaluation Design

To test the performance of the system, a module for each
DCS and DPS was developed. Since the quality of the ex-
periment resulting model is out-of-scope, these modules could
simply simulate the data collection and data processing phases.

Furthermore, since the data collection and processing were
simulated, the samples used did not need to be real malware
and could instead be blobs of randomly generated data.
However, the samples’ size was required to be close to the
average size of samples caught in the wild, to closely model
the performance of a real experiment. Thankfully, VirusTotal
provided a dump of approximate 300 gigabytes of submitted
samples, from which it was deduced an upper bound average
size of two megabytes per sample. For the experiment to
be run, 1024 samples were generated, corresponding to two
gigabytes of samples that were analysed by the system.

As for the size of the generated collected data, after some
experimentation with system calls monitors, and specifically
SpyStudio API Monitor'S, it was considered that 10 megabytes
roughly corresponded to the amount of captured data in a
minute, therefore it was the chosen allotted time to execute
each sample.

The VMI selected to be loaded into the experiment cor-
responds to a Windows 7 Ultimate Service Pack 1 virtual
machine with two gigabytes of memory and one virtual CPU,
which has six gigabytes of size.

The system in which the experiment was executed had
the specifications defined in Table II. Taking into account
the memory and processor in the system and the required
resources for each virtual machine, it was decided to execute
12 DCS Celery workers and one DPS Celery worker.

Resource Value
Processor AMD Ryzen 9 5900X 12-Core Processor 3.70 GHz
Memory DDR4-3600MHz CL16 16GBx2 + 18 GB Swap
Disk 500 GB Gen.4 PCIe NVMe M.2

OS Ubuntu 18.04.5 LTS
Docker version 20.10.7, build £0d4f350
VirtualBox version | 5.2.42_Ubuntu

TABLE II: Evaluation System’s Specifications

Regarding the metrics over which the evaluation was done,
from the logs it was collected the total time of the exper-
iment alongside the individual time for each sample spent
inside a DCS node. Additionally, in order to monitor the
resources consumption by the system, three extra monitoring
services were defined in the docker—-compose.yaml file.
These services — Node Exporter!’, cAdvisor'® and Celery
Exporter'® — were responsible for the monitoring of the
system’s resources, docker container’s resources and celery
related metrics, respectively.

16https://www.nektra.com/products/spystudio-api-monitor/index.html
17https://hub.docker.com/r/prom/node-exporter
8https://hub.docker.com/r/google/cadvisor/
19https://hub.docker.com/r/danihodovic/celery-exporter

These metrics were then scrapped by a Prometheus? service
every 15 seconds and then presented in a Grafana®!' service
in the form of dashboards, which will be presented in the
next Section. Finally, to assess the impact of the monitoring
services mentioned, it will be compared the execution times
of the experiments both with and without them.

B. Evaluation Results

As previously mentioned, DCS task execution time related
metrics were extracted from the logs of the multiples DCS
Celery workers. These metrics were then processed to generate
Table III, Figure 6 and Figure 7.

Monitoring | Min (s) | P50 (s) | P75 (s) | P90 (s) | P99 (s) | Max (s) | Avg(s) | Std Dev
False 69.78 70.25 70.45 70.91 165.54 167.29 72.42 11.48
True 69.71 70.25 70.48 71.16 168.24 | 170.45 72.82 12.14

TABLE III: Experiment Tasks’ Statistics

Table III presents the result of various statistical measures
from which it can be concluded that most of the samples
spend similar time inside a DCS worker and a few outliers
take significantly more time, specially when considering the
samples are executed inside the Virtual Machines always for
60 seconds. Discarding the fixed execution time, what is left is
the time the DCS worker needs to create a new instance of a
VMController, clone the base Virtual Machine, download
the sample and DCS module, boot the Virtual Machine up,
power it off, delete it and upload the collected data to the SFTP
server. From further analysis of the logs, most of this time
is spent in booting up, shutting down and delete the Virtual
Machine, as expected.

Additionally, from the logs it was possible to discover that
part of the outliers, were due to the Virtual Machine being
marked as locked after shutdown, making the deletion of it
wait for exactly 29 seconds until reported as unlocked from
VirtualBox, which could be the manifestation of an internal
scheduled update on the lock status of the virtual machines.

g 1000 2600 000 5000 5000

3000
Time in experiment (s)

Fig. 6: DCS Task Execution Time Time-series

In Figure 6 it is possible to observe the outliers mentioned
previously, alongside the other group of outliers which are the
first samples analysed by the workers. This group of samples
have higher execution times due to the import of the not-
present base VMI which is used in the experiment. This import

2Ohttps://hub.docker.com/r/prom/prometheus
2l https://hub.docker.com/r/grafana/grafana

time, which correspond to time taken to download the VMI
and actually import it into VirtualBox, will affect all workers
running in a node, as while one worker is performing these
actions the others will stay locked before the clone operation,
so that multiples instances of the same VMI would be imported
into the node.

10
10°
10°
10 I
& 70 £ % 150 1i0 120 130 180 150 160 170
Time

‘Spentin DCS Node (5)

Fig. 7: DCS Task Execution Time Histogram

Figure 7, presents the distribution of sample execution times
in the DCS node and, re-affirming the previous conclusions,
it is possible to observe the three groups mentioned, i.e. the
vast majority of samples executing around the 70 seconds
mark, the samples which were locked by VirtualBox which
run for about 100 seconds and the first batch of samples
executed by the workers. For more extended experiments, it
can be predicted that the ratio between the first two groups
would remain similar to the presented here, while the number
of samples locked due to import is only proportional to the
number of workers in a node and would be less statistical
important with the increase in the length of the experiment.

Furthermore, comparing the experiments with and without
monitoring, it can be seen, as expected, a slight increase in task
execution time when the monitoring containers are deployed.
However, from further analysis of the collected data it is
possible to conclude that the statistical increase in DCS task
execution times can be attributed mostly to the increase in the
number of locked Virtual Machines, as the experiment without
monitoring had 34 locked Virtual Machines while the one with
monitoring had 47.

Fig. 8: Monitoring Dashboard

Figure 8 presents the monitoring dashboard designed for the

system during Module and VMI uploads and the execution of
the experiment. From it, it is possible to observe the memory
exhaustion due to the Virtual Machines running in the system
during the experiment and conclude that it is main bottleneck
of this system for this configuration, as the CPU usage stayed
always below 25%.

Additionally, it is possible to notice the impact on the
containers from to the VMI upload and download from the
containers due to its size, corresponding to the first burst in
CPU and memory usage in the psma_host container. The
second burst is related to the samples’ upload, which had also
a considerate size.

Lastly, apart from the initial pressure for the creation of the
VMI, and posterior download from the psma_ sftp container
to the DCS node, the containers remained at low resource
consumption as expected.

V. CONCLUSION
A. Summarized Contribution Analysis

This work presented the Programmable Sandbox for Mal-
ware Analysis, a scalable dynamic malware analysis system
that enables researchers to perform programmable and re-
peatable experiments, focusing also on the proper reporting
and storage of experiment parameters. The approach used
was based on the two-phase norm, data collection and data
processing, commonly performed in the dynamic malware
analysis research area and used VirtualBox Virtual Machines
as the execution environment for the samples to be analysed.

To test the performance of the implemented solution, it
was developed two modules that simulate the data collection
and data processing mechanisms. Additionally, monitoring
containers were deployed which confirmed the expectations
for the system’s performance by running an experiment with
1024 samples of two megabytes.

B. Future Directions

The system presented is a proof of concept on what could
be a full fledged Platform-as-a-Service (PAAS). As such. some
additions and modifications could be made to the system:

a) Change into more performant hypervisors: In order
to serve more researchers and be capable of performing
more experiments at the same time, the change to Type I
Hypervisors seem obvious as it removes the Host OS layer,
which is resource consuming.

b) Addition of authentication mechanisms: For the sys-
tem to be transformed into a PAAS, its access must be
restricted to authorized entities, i.e users. Additionally, if
access control to the objects is implemented, it would be
possible for researchers to test their approaches privately on
the system while they were not ready for publishing.

c) Addition of administrative interface: In the tested
scenarios, the system was at a small scale which allowed
for a rather easy management of the its nodes. However
for large scale deployments, this tasks rapidly could become
cumbersome. One possible solution for this problem, would be
extending the Host to include administrative endpoints, from

10

which would be possible to manage the various components
of the system.

d) Addition of Graphical User Interface: Finally, one of
the biggest improvements for the usability of the system would
have to be the introduction of a Graphical User Interface, be
it in the form of a web app or native application.

REFERENCES

[11 C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. Van Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in 2012 IEEE
Symposium on Security and Privacy. 1EEE, 2012, pp. 65-79.

A. Mohaisen, O. Alrawi, and M. Mohaisen, “Amal: High-fidelity,
behavior-based automated malware analysis and classification,” comput-
ers & security, vol. 52, pp. 251-266, 2015.

D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal analysis-
based evasive malware detection,” in 23rd {USENIX} Security Sympo-
sium ({USENIX} Security 14), 2014, pp. 287-301.

A. Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda, “Cutting
the gordian knot: A look under the hood of ransomware attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2015, pp. 3-24.

A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“{UNVEIL}: A large-scale, automated approach to detecting ran-
somware,” in 25th {USENIX} Security Symposium ({USENIX} Security
16), 2016, pp. 757-772.

C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy, vol. 5,
no. 2, pp. 32-39, 2007.

M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, pp. 338-357.

I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer et al., “A secure en-
vironment for untrusted helper applications: Confining the wily hacker,”
in Proceedings of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography, vol. 6, 1996, pp. 1-1.

A. Bulazel and B. Yener, “A survey on automated dynamic malware
analysis evasion and counter-evasion: Pc, mobile, and web,” in Pro-
ceedings of the 1st Reversing and Offensive-oriented Trends Symposium.
ACM, 2017, p. 2.

D. Kirat, G. Vigna, and C. Kruegel, “Barebox: efficient malware analysis
on bare-metal,” in Proceedings of the 27th Annual Computer Security
Applications Conference. ACM, 2011, pp. 403—412.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008,
pp. 51-62.

T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 386-395.

R. Morabito, J. Kjdllman, and M. Komu, “Hypervisors vs. lightweight
virtualization: a performance comparison,” in 2015 IEEE International
Conference on Cloud Engineering. 1EEE, 2015, pp. 386-393.

G. Pék, B. Bencsith, and L. Buttyan, “nether: In-guest detection of out-
of-the-guest malware analyzers,” in Proceedings of the Fourth European
Workshop on System Security. ACM, 2011, p. 3.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 2007, pp. 116-127.

L. Bohne, “Pandora’s bochs: Automatic unpacking of malware,” Uni-
versity of Mannheim, vol. 6, 2008.

D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and K. Nakao, “Malware
behavior analysis in isolated miniature network for revealing malware’s
network activity,” in 2008 IEEE International Conference on Commu-
nications. 1EEE, 2008, pp. 1715-1721.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

