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Abstract—Wearable devices used for personal monitoring ap-
plications have been improved over the last decades. However,
these devices are limited in terms of size, processing capability
and power consumption. This thesis proposes an efficient hard-
ware/software embedded system for monitoring bio-signals in
real-time, including a heart rate calculator using Photoplethys-
mography (PPG) and an emotion classifier from Electroen-
cephalography (EEG). The system is suitable for outpatient clinic
applications requiring data transfers to external medical staff.
The proposed solution contributes with an effective alternative
to the traditional approach of processing bio-signals offline, by
proposing a SoOC-FPGA based system that is able to fully process
the signals locally, at the node. Two sub-systems were developed
targeting a Zynq 7010 device and integrating custom hardware
IP cores that accelerate the processing of the most complex
tasks. The PPG sub-system implements an autocorrelation peak
detection algorithm to calculate heart rate values. The EEG
sub-system consists of a KNN emotion classifier of preprocessed
EEG features. The hardware/software solutions were compared
to the software-only implementations executing in the Zynq’s
ARM processor, having obtained a speedup up to 40 times. The
system consumes only 36% of the Zynq’s resources and thus new
functionalities may be added. The proposed system constitutes
the foundation of more complex biometric systems, that may
benefit from the combination of different reusable IP cores. This
work overcomes the limitations of microcontrollers and general-
purpose units, presenting a scalable and autonomous wearable
solution with high processing capability and real-time response.

Index Terms—Electroencephalography, Hardware/software co-
design, Photoplethysmography, SoC FPGA, Wearable monitoring
devices

I. INTRODUCTION

Over the last decades, wearable monitoring systems have
been researched, developed and progressively enhanced to
support healthcare needs, and fit for real-time bio-signals pro-
cessing, including heart rate measurement and emotional state
recognition. As a result, wearable devices are becoming more
portable, user-friendly, accurate and reliable, which minimizes
the disturbance to user’s daily routine. Moreover, combined
with access to wireless Internet, these devices are being used
in remote subject monitoring. This thesis proposes a wearable
solution that can assist different groups of people, as it can
provide remote healthcare tracking, overcoming the state-of-
the-art systems.

The novelty of this work is the usage of a System-on-
Chip (SoC) Field-Programmable Gate Array (FPGA) to take
advantage of high processing speed and reconfigurable logic.
This kind of device is useful to create flexible and customized
hardware solutions with high performance and low power
consumption. It is intended to perform signal processing
tasks locally and online, instead of transmitting the collected
raw sensor data to be processed by an external server, as

conventional systems do. By doing the computations locally,
at the node, the required bandwidth and power consumption
are minimized. Furthermore, this architecture offers parallel
computation, which is suitable to handle multiple biometric
signals at a time. Such functionalities overcome the limitations
of conventional wearable solutions that use general-purpose
CPU. The proposed system intends to measure a person’s
heart rate using photoplethysmography (PPG) and to assess
emotional state via EEG.

The main goal is to take advantage of SoC FPGA to
conceive a real-time monitoring system for bio-signals. One
contribution of this work is to develop dedicated hardware
to process the bio-signals collected by the sensors. This will
be achieved by designing reconfigurable logic accelerators,
which contain preconfigured functions, as Intellectual Prop-
erty (IP) cores. These blocks are intended to accelerate the
processing of specific bio-signals. The processing tasks are
distributed between software-only instructions and the custom
IP cores, constituting a hybrid hardware/software architecture.
The most complex tasks are handled by the IP cores, and
the remaining ones are implemented in embedded software
run by the processor. An objective of the thesis is to run
the processing tasks in shorter times, when compared to the
software-only implementations. The concept of the proposed
system architecture is sketched in Figure [I] This includes
an abstract representation of the Zyng-7010 SoC. Two main
components can be distinguished: the Processing System (PS)
— corresponding to the dual-core processor — and the Pro-
grammable Logic (PL) — related to the FPGA fabric. The IP
cores, included in the PL, are connected to the PS by Advanced
eXtensible Interface (AXI) buses. Moreover, this work aims to
find the optimal design of the system, such that the hardware
components necessary for its implementation fit the resources
available in the targeted platform.
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Fig. 1. Proposed system architecture.



II. BACKGROUND ON BIOMETRIC SIGNALS PROCESSING

The underlying framework of the proposed thesis includes
biometric techniques, EEG and PPG, which are introduced
next.

A. Electroencephalography

Electroencephalography (EEG) is a non-invasive technique
for probing electric activity of the human brain neurons, by
attaching electrodes on the scalp that detect voltage fluctua-
tions upon ion flow [1f]. Five major frequency bands can be
identified in brain waves, depending on the neural activity —
delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30
Hz) and gamma (31-50 Hz) [I] —, whose frequency pattern
changes may denote a response to an external stimulus, or
some brain disorder. Activities such as sleeping, exercising or
meditation can also be detected in brain waves.

The positioning of electrodes is crucial for accurate signal
acquisition, given the scope of the application. The standard-
ization is set by the International 10/20 System [2]], represented
in Figure [2]

Fig. 2. Electrode-positioning standard by International 10/20 System [2].
’Pg’ stands for pharyngeal area, 'Fp’ for fronto polar, 'F’ for frontal, "T’
for temporal, C’ for central, 'P’ for parietal, O’ for occipital and 'Cb’ for
cerebellar.

A common application of EEG is emotion classification,
which maps and recognizes patterns on features of EEG
signals from different known emotions. Russell [3] defined
arousal as the metric for awareness or unawareness during an
activity, and valence as the metric for pleasure or displeasure.
Both quantities are described a 2D plane, where arousal is
in the horizontal axis and valence in the vertical axis. The
resulting emotion in each quartile is a combination of the two.

Processing the EEG signal comprises several steps, namely
noise reduction, signal enhancement, feature extraction and
classification. During the acquisition via the electrode, the
recorded signal is attenuated by skin tissues and bones, but
also subject to noise caused by muscular activities, eye move-
ments, eye blinks and cardiac signals [4]. In fact, normal
EEG signal amplitude ranges microvolts, although a single
neuron promotes voltage changes of millivolts. Therefore, in

order to remove this noise, the EEG signal is pre-processed
and its quality improved [5]. After signal pre-processing,
features are extracted, that is, patterns are identified in order to
reduce dimensional space without losing essential information.
Classification is performed by, for example, Support Vector
Machine (SVM), Linear Discriminant Analysis (LDA), Neural
Network (NN) or k-Nearest Neighbour (KNN) [15].

B. Photoplethysmography

Photoplethysmography (PPG) is an optical technique that
detects blood volume changes in a microvascular tissue [6].
PPG uses a light source for emitting light to the tissue and a
photodetector for measuring the consequent received light, by
transmission or reflection, from which the blood volume vari-
ation is estimated. The principle of PPG is as follows. During
the cardiac cycle, arteries suffer blood volume reduction when
transiting from the systolic phase to the diastolic phase. The
PPG sensor detects this change optically and its photodetector
converts the received light energy into an electrical current. A
waveform can be acquired and some physiological parameters
extracted; for instance, the variability of the time between
heartbeats [7]].

A PPG signal comprises two components: a pulsatile (AC),
given by cardiac variations in blood volume caused by heart-
bearts, and a superimposed (DC), variable with some anatomic
factors, such as respiration, thermoregulation, vasomotor and
sympathetic nervous system activities [6].

The monitoring and analysis of PPG signal unveils a wide
set of clinical applications, namely measurement of heart rate,
blood pressure, respiratory rate, blood oxygen saturation and
several vascular assessments [0]].

PPG is regarded as a non-invasive and low-cost method, and
can be integrated in a portable, ready-to-use and convenient
device from the user point of view. PPG sensors can be placed
on different anatomical positions, but PPG signal has higher
quality at earlobes or fingertips [8]].

C. Related work

FPGA-based works aiming at emotion identification from
EEG signals are emerging in the literature. Fang et al. 9]
implemented a Convolutional Neural Network (CNN) in a
Virtex-7 FPGA for emotion detection from EEG signals from
6 channels. The classifier was integrated in a complete system
containing an acquisition headset and a MATLAB program
for feature extraction. Two experiments were conducted, one
in real-time and a second one offline using the DEAP dataset.
During the real-time experiment, the system took 450 ms
to detect an emotion, from the acquisition node. The offline
processing of DEAP dataset resulted in a valence-arousal
classification accuracy of 76.67%.

The system proposed in [9] contributes with a complete
execution of the classification process. However, the system
is oriented to operate in a laboratory environment, rather than
targeting a wearable device for daily use. Actually, this is a
gap in the literature of emotion recognition, and represents an
opportunity to develop a novel FPGA-based system with this
scope.



III. PROPOSED BIOMETRIC SYSTEM

The proposed biometric system conceptualized in Figure [I]
comprises two IP cores implementing a heart rate calculator
and an emotion detector.

A. Heart rate calculator using PPG

The heart rate calculator algorithm operates over two chan-
nels of PPG signal, the red (RED) and the infra-red (IR),
probed by distinct LEDs. It comprises two main stages: prepro-
cessing and periodicity search. The computational operations
included in the first one are the following:

1) DC mean calculation: a loop over a buffer containing
N signal samples computes the sum of their values, and
then the average by dividing the accumulated sum by
N3

2) DC mean subtraction: the computed average is sub-
tracted from each channel sample, by an iterative loop;

3) linear regression calculation: a dot product between the
sample set and corresponding shifted sample indexes is
computed, then divided by a constant;

4) linear regression subtraction: the computed value is
multiplied by each shifted sample indexes and subtracted
from each channel sample;

5) mean square calculation: the sum square of all sample
values is calculated and divided by V;

6) Pearson correlation calculation: a dot product between
both channels’ samples is determined and then divided
by N.

The Pearson correlation is a quality metric and denotes the
linear association between two variables — in this case, RED
and IR channels. Graphically, measures the feasibility of
drawing a line to best fit both data. Values range [—1,1],
where —1 and 1 mean, respectively, the strongest negative
and positive associations, that is, a perfect linear fit with
negative and positive slopes. The absence of linear correlation
corresponds to 0. A correlation besides these key values means
a linear association that does not fit all data. In short, the closer
is the absolute value of Pearson correlation to 1, the more
linear is the association between two variables. The Pearson
correlation coefficient  is calculated using Equation [I]
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where:

o N is the number of samples;
e x, denotes a preprocessed IR sample;
e I is the mean value of preprocessed IR samples, which
is 0, because of DC removal;
e Yy, denotes a preprocessed RED sample;
o ¢ is the mean value of preprocessed RED samples, which
is also 0.
A good quality signal must have a Pearson correlation equal
or greater than 0.8. Otherwise, the sample set is discarded and
a new collection is recorded.

From this stage, the algorithm initiates an iterative process
of finding the signal periodicity, via peak detection. In this
step underlies the concept of autocorrelation, a function that
allows to identify patterns in a signal. More specifically, it
consists of the correlation — or similarity — between a signal
and its delayed copy. As such, taking into account that PPG is
a periodic signal, this property is advantageous to determine
heart rate, specially in noisy environments, like probing data
using bio-sensors. Mathematically, the autocorrelation R at a
given delay m is the sum of the products between each sample
and its delayed one, over all N samples of set X, shown in
Equation 2]

N
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Figure [3] shows the result of computing the values of
autocorrelation for all possible sample delays, from 0 to N —1,
where N = 100, and after normalizing the values relatively to
the autocorrelation at delay N = 0.

Relative autocorrelation (to delay=0)

min_autocorrelation_ratio

0 20 40 60 80 99
Sample delay

Fig. 3. Autocorrelation of PPG signal for different delays.

The shift k corresponding to the index of the closest
local maximum matches the number of samples containing a
complete heart beat. This peak, marked in Figure |3| by green,
is sufficient to determine PPG signal periodicity. Therefore,
pulse period Tygr is calculated multiplying the number of
samples k by the time gap between two samples, that is,
sample period 7. This way, heart rate is the inverse of pulse
period, represented in Equation
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where f; denotes the sampling rate, inverse of 7. This result
corresponds to beats per second (bps), so beats per minute
(bpm) are given by Equation

s X 60
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B. Emotion detector from EEG

K-nearest neighbours (KNN) algorithm is a supervised
learning classifier, meaning that a training set containing mul-
tiple input-output data observations determines the inference
of the output of an unseen input object, the test set. In
practice, KNN maps objects into images given a collection of
previously memorized training object-image pairs (instances).
The principle of KNN is to find the K closest memorized
instances to the recently observed set of features. In other
words, to find the known instances that are the most similar
to the feature set to be classified. Once the most suitable
instances are assessed, the emotion classes each instance is
associated with are registered. The modal class is declared as
the predicted emotion of the queried test set.

The process of measuring the similarity of training and
test sets is the distance between their points, considering that
feature sets can be viewed as arrays. This KNN version uses
the method of Canberra distance, mathematically defined in
Equation [3] as d¢, where u and v denote two points in n-
dimensional space.
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The input objects of the classifier are EEG features that have
been normalized to [0, 1]. This way, the distances between test
and training instances are not biased by a dominant feature.
Normalization methods vary, but a common approach is the
rescaling from minimum and maximum values, as stated in
Equation [ There, x represents the whole feature set to be
normalized; x;; is the j-th element of the i-th array of EEG
features; f;; denotes a normalized EEG feature. The equation
applies a linear transformation to the vector space containing
the set of EEG features.

x;; — min(z)

fij =
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In short, to classify an unobserved test instance, the al-
gorithm determines its K most similar instances from the
observed training set. This step implies two tasks: the com-
putation of Canberra distance, d¢, between the test and every
training instances, and then sorting those distances to obtain
the K shortest distances. The K training instances that present
more similarity with the test instance correspond to the K
shortest Canberra distances. Wider the training set, more
Canberra distances are calculated and compared, and thus
higher is the computational cost. Once the K shortest Canberra
distances are found, the corresponding K training instances
are selected to proceed with the algorithm. The next step is
to register the emotion classes associated with the selected K
instances, finding the most common class. In other words, the
K training instances vote for a class. The most voted class
determines the emotion prediction output. Figure [ shows the
mapping of emotions into the Russell’s cartesian model, where
emotions are obtained combining three levels of intensities of
valence and arousal.

Valence
content joyful
—>
Arousal
depressing angry

Fig. 4. Graphical representation of the five-emotion mapping. Blue area
represents four different emotion domains. Gray area corresponds to the
neutral emotion.

IV. PPG IP CORE

The process of designing the PPG IP core was iterative, and
involved the development of multiple versions that gradually
incorporated more algorithm functionalities inside the core.
The idea was to study the performance improvement as more
operations were added or the IP accesses were more efficiently
managed. The first version corresponds to a software-only im-
plementation. The most upgraded version implements the op-
erations of the preprocessing stage, described in Section [[1I-A}
and computes autocorrelation values, using programmable
logic components. Throughout the process, seven versions
were designed. Figure [5] depicts one of the metrics considered
to compare the developed versions, showing the elapsed time
of processing a buffer containing 100 PPG samples. The
reference is the software-only implementation. The stages of
preprocessing and periodicity search can be distinguishable.
This figure shows that gradual inclusion of functionalities
inside the core decreases the execution time.

Execution times of processing a 100-sample buffer
by V1-V7 cores, compared to SW baseline
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Fig. 5. Execution times of seven IP core versions, compared to the software
baseline, after processing a 100-sample buffer.



The version V7 is used in a further design process of
defining a finite data resolution, such that the resulting error
— the difference between exact and optimized values — is
acceptable for a given context. Every variable dimension must
be specified, as the ultimate goal is to design an optimized
hardware solution. Allocating specific wordlengths to variables
leads to a discrete range of their assigned values. An advantage
of this process is to find the optimal balance between both
system precision and required hardware resources. Most vari-
ables declared in the software implementation, of type float,
are now represented by fixed-point. This notation allows to
represent a real number with a specific amount of fractional
bits and integer bits. It is implicit a binary point dividing both
parts, similar to the decimal point used in decimal numbers.
A variable can be represented by fixed-point notation as
<W, I>, where W identifies the total number of bits and I
specifies the number of bits of the integer part. The number
of fractional bits corresponds to the difference W-I. In brief,
the methodology consists of designing, at first, the pessimistic
version that leads to null wordlength conversion errors. This
version is taken as reference from which the number of bits is
reduced. This means that every variable is initially assigned a
wide number of bits, determined by holding the precision of
the arithmetic operations between variables. Multiple versions
were created, where most variables were provided, at least, 12,
8, 4, 2 and O fractional bits. The evaluation of the impact of
progressively neglecting the arithmetic precision, by reducing
the wordlength, can be discussed in terms of errors, resource
utilization and execution time.

To assess the accuracy of heart rate detection by the de-
signed versions, the 2015 IEEE SP Cup competition database
[10] was used, containing wrist-type signals. This dataset in-
cludes records of eight subjects performing physical activities,
namely walking and running. Data was sampled at a frequency
of 125 Hz, and split into 1024-sample sets, resulting in
1324 sets. The dataset was processed by the software version
and optimized cores. The results showed that the compared
versions present similar absolute errors of the computed heart
rates. Therefore, precision loss over the fixed-point versions
does not interfere much with the final result. More specifically,
the least conservative version (0 fractional bits) obtained only
seven results differing from the SW baseline, out of 1324
comparisons. This means that the discarding of the fractional
bits by this version led to an accuracy loss of 0.5%, when
compared to the conservative version. A simpler core design,
rejecting fractional bits, is seen as the solution that minimizes
the hardware resource usage.

V. EEG IP CORE

The objective of creating the EEG IP core is to perform
classification of EEG signals in hardware, without intervention
from the CPU. The KNN classifier comprises three main
tasks. The first one is the Canberra distances computation,
the second one is sorting the computed distances and the
third one is the translation of the shortest distances into
a predicted emotion. The candidate tasks to be integrated

into a hardware specification are the calculation of distances
between test and training instances and the retrieval of the
K shortest values. The assessment of the emotion class does
not execute significant processing tasks, and thus it may be
assured by software-only instructions. This section addresses
the implementation of the module that receives instances of
feature sets to output the K nearest ones.

The approach to tackle the problem is to design two inde-
pendent IP cores implementing each task. This design concept
implies that an output channel of the first core is connected to
an input channel of the second core. The block diagram of the
core, EEG_CALCDIST, is depicted in Figure @ The module
that computes distances is simplified by a green box named
Canberra. The diagram allows to visualize the data flowing
from incoming stream channel down to the output port. In the
hardware perspective, 8 Canberra blocks are instantiated, so
that partial distances can be computed in parallel and added to
an accumulator. Canberra boxes implement the computation
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Fig. 6. Block diagram of calculate distances core.

of a partial distance between two features. In other words,
given two arrays, x and y, a partial result is the distance
between x; and y;, regarding a specific arrays’ dimension <.
To obtain a Canberra distance, this box must iterate over two
complete test and training arrays. Then, the final result is the
sum of all terms.

The second module of the EEG IP core is the
EEG_SORTDIST, designed to sort the outcome of



EEG_CALCDIST. A possible method to sort distances
is to pass the input values through all memory elements,
comparing the distances to the stored values. The idea is
to, at each memory address (cell), update or hold the stored
value, depending on its comparison to the received value.
If the received distance is less than the distance stored at a
given cell, the cell is updated. Before being overwritten, the
stored value is passed to the next cell. Otherwise, the stored
value is held and the input value is propagated to the next
cell, where the logic repeats. This iterative procedure can
be seen as a chain, or an array, transferring values between
adjacent cells, or elements. This logic guarantees that, for
each received distance, a precise number of instructions
is executed to complete an iteration of the insertion sort.
The design diagram of sort distances core is depicted in
Figure [/| This provides a graphical view of the datapath that
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Fig. 7. Block diagram of sort distances core, inspired from [11].

implements the insertion sort of distances and indexes.
In parallel, the control logic represented by ctrl is

also taken to manage indexes memory, represented by a
purple chain, on the bottom half of Figure Whenever
a distance_1i is updated, index_OUT carries the value
stored in index_1i, and index_1i is pushed the value passed
by index_IN. Otherwise, index_1i holds the same value
and index_OUT pushes index_IN. Once the insertion
sort algorithm is completed, the values stored inside each
index_1i register are transferred via an AXI4-Lite intercon-
nection.

VI. HW/SW IMPLEMENTATION

The proposed system is demonstrated using the ZYBO
development board and the custom hardware, which includes
designed IP cores. ZYBO is a low-cost board containing the
Zyng-7010 All Programmable SoC, and features a 650 MHz
dual-core ARM Cortex-A9 processor. Inside the SoC device
there are custom reconfigurable hardware blocks which are
connected via reconfigurable interconnects. The main blocks
are: Configurable Logic Blocks (CLB), which contain the
following primitive blocks:

« flip-flops (FF), that works as a simple storage unit, and
alternates between two stable states;

¢ block RAMs (BRAM), a dual-port random-access mem-
ory (RAM) module that may store large sets of data;

¢ look-up tables (LUT), a small RAM that stores the truth
table of a logical function;

« digital signal processor (DSP) block, an arithmetic logic
unit (ALU) containing a chain of three different blocks
(adders and multiplier), used to implement arithmetic
functions.

look-up tables (LUT) and FF, Block RAM and DSP blocks
[12].

A. Embedded software

Embedded software targeting the created hardware design
is required to coordinate the IP cores with the software
instructions and to control specific accesses to the device. The
embedded software application is developed using the Vitis
IDE tool and run by the processing system. The application
coordinates software instructions with IP core calls, being
responsible for several tasks, such as:

o specifying the memory addresses and IP core interfaces

where data is loaded or retrieved;

o cnabling data transfers through Direct Memory Access

(DMA);

o triggering the execution of the cores;

o executing software-only instructions;

o measuring the execution time of IP cores and pieces of

code.

B. Block diagram

A block diagram containing the final arrangement of the in-
volved components inside the biometric system is represented
in Figure [§] The Zynq’s PS, located at the bottom right of
the diagram, is the diagram’s main block. This component
is the software interface responsible for managing the data
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Fig. 8. Block diagram representing the integration of the biometric system,
obtained in Vivado IDE.

flow between the cores. The PS contains essential modules
and interfaces, such as:

¢ a dual-core ARM processor to run the embedded soft-
ware;

« a DDR memory controller to transfer data from external
memory;

o two I’C interfaces to connect peripherals such as bio-
sensors (not represented in the diagram);

« four High Performance (HP) AXI slave ports of 32 or 64
bits, to connect to AXI Interconnects with AXI4-Stream
transfers;

o two General Purpose (GP) AXI master ports of 32 bits, to
connect to AXI Interconnects with AXI4-Lite transfers.

The AXI buses are represented by two AXI Interconnect
blocks connected to the HP ports of the PS. These blocks
establish a bridge between PS and PL ports. In the diagram of
Figure [§] AXI Interconnects link PS’s HP ports to the AXI4-

Stream port of AXI Direct Memory Access (DMA) blocks
located in the PL. Also, AXI connects PS’s GP ports to AXI
DMA’s AXI4-Lite ports.

AXI DMA provides a direct high-bandwidth access to the
external memory to a AXI4-Stream port. This feature allows
to transfer volumes of data without the control of the PS,
speeding up data transfers. The block diagram contains two
AXI DMA block with different configurations. The bottom
one provides a one-way channel to transfer EEG features from
the memory to EEG_CALCDIST IP core via AXI4-Stream.
The top AXI DMA block is a two-way channel, that allows
the transfer of PPG samples from the memory to the PPG IP
core, but also to return PPG IP core’s products to the PS.

C. Hardware resources utilization

The hardware resources consumed by the integrated system
are listed in Table [l The utilization rates are reported to the
available resources of the Zynq-7010’s PL. Some observations
can be highlighted:

o LUTs are the most used resource, with 51% occupation
rate, when compared to FF (30%), DSP (20%) and
BRAM (14%);

e EEG_CALCDIST IP core takes 32% of the used LUTSs
and 31% of the used FFs;

o DSPs are only occupied by the PPG IP core;

o the three custom IP cores represent 60% of the consumed
LUTs, 53% of the FFs, 47% of the BRAMs and 100%
of the DSPs; this shows that DMA and AXI peripherals
demand significant hardware resources;

o overall, the Zynq is not fully occupied, which means
that further functionalities may be added to the biometric
system.

TABLE 1
HARDWARE RESOURCES USED BY THE COMPLETE MONITORING SYSTEM

Group Block name LUT FF BRAM | DSP
ppg_streaml1_0 1319 995 2 16
PPG ps7_0_axi_periph_1
sub-system axi_dma_1 2409 3318 3 0
axi_mem_intercon_1
eeg_calc_dist_0 2913 3307 1 0
EEG eeg_sort_0 1225 1325 1 0
sub-system ps7_0_axi_periph_0
axi_dma_0 1101 1549 1.5 0
axi_mem_intercon_0
Processing | processing_system7_0 0 0 0 0
system rst_ps7_0_100M 16 33 0
Total used | 8983 10527 8.5 16
(Zyng-7010) Total available | 17600 | 35200 60 80

D. Acceleration results

The processing of raw PPG signals by the PPG sub-system
comprises two main stages: preprocessing and periodicity
search. The first stage is executed by the designed IP core,
present at the PL. The second stage is executed by the PS
and recurring calls of the IP core. Table [lI| shows the total
elapsed time of a complete execution of the PPG algorithm,



discriminating the split times of both stages. The times are
referred to input PPG signals comprising two buffers of 1024
16-bit samples. These buffers are shared with the channels of
an optoelectronic sensor that collects PPG data. The values of
the table include the application of 00 and O3 optimizations.
Regarding the non-optimized versions, the embedded system
(HW/SW 00) outperforms the results of the software-only
version (SW 00). The overall execution time was reduced by
64%, while the preprocessing and periodicity search stages
were respectively reduced by 86% and 58%. These values
correspond to a speedup ranging between 2.4 and 7.4. The
03 optimization applied to the HW/SW design (HW/SW 03)
increased the overall execution time of the equivalent software-
only (SW 03) by 58%. This is due to the 90% increase of the
execution time of the periodicity search stage. However, the
preprocessing stage is outperformed and its execution time
reduced by 50% (speedup of 2 times).

TABLE 11
EXECUTION TIMES OBTAINED BY SOFTWARE-ONLY AND HW/SW
IMPLEMENTATIONS OF THE PPG SUB-SYSTEM

Processing SW HW/SW (speedup)
stage 00 o3 00 03
Preprocessing 451 99 61 (7.4) 48 (2.1)
Periodicity search | 1709 | 340 | 722 (2.4) | 645 (0.53)
Total 2160 | 439 | 783 (2.8) | 693 (0.63)

The EEG embedded system is a KNN classifier composed
by a pair of IP cores, dedicated to the calculation and sorting
of Canberra distances between sets of EEG features. Because
of the direct connection between first core’s output and second
core’s input, the PS does not interact with the results obtained
by the first core. Therefore, the measurement of the execution
time of calculation and sorting stages is done jointly. The
PS is responsible for assessing the classification given the
results produced by the IP cores pair. Table [l1ll summarizes the
execution times of the processing steps, applied to optimized
and non-optimized implementations. The high number of oper-
ations to be executed over a memory (training set) containing
1024 sets of 160 EEG features created an opportunity to
acceleration via HW. The results show that the HW/SW co-
design outperforms the SW-only 00 baseline by 100 times and
the O3 version by 40. The problem of calculating distances
was approached by launching eight instances of Canberra
blocks to execute in parallel the correspondent arithmetic
instructions. Moreover, the sorting task was unlocked by
the concept of a chain of sorting cells through which data
(distances) propagated continuously.

E. Prototype concept

To build an operational prototype, besides the PPG and EEG
IP cores, it is necessary to develop an additional block that
processes raw EEG signals and obtains EEG features. This
block, called "EEG preprocessing”, works as a Digital Signal
Processor (DSP) integrated in the PS, for instance. Taking into
account that EEG signals are collected by analog sensors, an

TABLE 111
EXECUTION TIMES OBTAINED BY SOFTWARE-ONLY AND
HARDWARE/SOFTWARE IMPLEMENTATIONS OF THE EEG SUB-SYSTEM

Processing SW HW/SW (speedup)
stage 00 o3 00 o3
Distances calculation | 24130 8593 2354 217.9
Distances sort 896.6 309.6 (100) 41)
Classification 1.67 0.51 14.67 (0.11) 4.23 (0.12)
Total 25028 | 8903.3 | 250.03 (100) | 222.22 (40)

analog-to-digital converter is also required. Moreover, a con-
nection to the sensors and a connection to a Bluetooth module
to support wireless communication must be established. This
technology presents low power consumption, being advanta-
geous to transfer reduced data buffers in proximity of a host
computer or mobile phone. Assuming that an user’s heart rate
is computed each second and their emotional state is assessed
every five seconds, it means that, per second, are sent:

« 1 byte representing a 8-bit heart rate value;
. % bytes corresponding to emotion classes of 3 bits.

In this example, the prototype throughput is 1.6 bytes per
second.

The biometric sensors recommended to be used are the
Maxim Integrated’s MAX3O]OXP_-] and Olimex’s passive EEG
electrodesﬂ MAX3010x is a low-cost pulse oximeter operated
by light reflection, thus enabling PPG digital signal acquisi-
tion.

VII. CONCLUSIONS

The main goal of the thesis was to study the implementation
of two sub-systems on an HW/SW embedded system, targeting
a SoC FPGA, to accelerate the execution of a heart rate
calculator and an emotion classifier. The classification of
a single emotion by the proposed EEG sub-system outper-
formed the software benchmark by 40 times. However, the
results shown that the proposed PPG sub-system executed
the preprocessing stage 2 times faster than software-only and
performed the periodicity search 2 times longer. Regarding
the hardware utilization, the proposed biometric system is
feasible to be implemented with the resources available in
the targeted platform. The occupation rate of the Zyng-7010’s
primitive blocks is 36%. There is room for upgrading the
developed IP cores and for implementing additional processing
modules. The IP cores were designed to be reused in further
monitoring systems. The PPG IP core may be integrated
in different algorithms besides heart rate calculation. For
instance, the specification of the preprocessing task can be
exploited in multiple PPG-based applications. Moreover, the
EEG IP core is prepared to process data from up to 32 EEG
electrodes, supporting the implementation of multi-channel
systems in portable devices. This work is a starting point of

'MAX3010x  webpage: |https://www.maximintegrated.com/en/design/
technical-documents/userguides-and-manuals/6/6409.html; accessed on 1%
June 2020.

2EEG-PE  webpage: |https://www.olimex.com/Products/EEG/Electrodes/
EEG-PE/; accessed on 1% June 2020.


https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/
https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/

the development of more complex biometric systems that may
offer autonomy, portability and high processing capability to
wearable monitoring devices.

A. Future work

An improvement regarding the EEG sub-system is the devel-
opment of a processing module of EEG signals. This module
would handle the preprocessing stage, which includes noise
removal, signal enhancement and decomposing the signal into
the major frequency bands to extract the relevant patterns. The
preprocessing module returns the EEG features that are loaded
into the KNN classifier.

The results obtained by the developed PPG IP core suggest
a future improvement of the PPG sub-system. The algorithm’s
routine of detecting the peak of PPG signals alternates between
control instructions and computation of autocorrelation values.
This behaviour explains the deceleration obtained by the PPG
IP core. An alternate approach would be to start by tackling
the computational tasks necessary to obtain autocorrelation
values, followed by the execution of the control instructions.
This would allow the execution of the autocorrelation function
concurrently and leaving the peak detection for a later stage.
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