
Wearable IoT System for Monitoring People

Maria Inês Costa Frutuoso

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Rui António Policarpo Duarte
Prof. Horácio Cláudio De Campos Neto

Examination Committee

Chairperson: Prof. Teresa Maria Sá Ferreira Vazão Vasques
Supervisor: Prof. Rui António Policarpo Duarte

Member of the Committee: Prof. António Manuel Raminhos Cordeiro Grilo

September 2021

ii

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the requirements

of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

I would like to thank my supervisors Prof. Horácio Neto and Prof. Rui Duarte for their enthusiastic guid-

ance over the last months. I am grateful for having the opportunity to learn with their expertise and

insightful contributions.

I want to thank all who I have met throughout my academic adventure and with whom I have grown

both personally and professionally.

I am thankful for the unconditional support of my loved ones, family and friends, along my journey.

v

vi

Abstract

Wearable devices used for personal monitoring applications have been improved over the last decades.

However, these devices are limited in terms of size, processing capability and power consumption. This

thesis proposes an efficient hardware/software embedded system for monitoring bio-signals in real-

time, including a heart rate calculator using Photoplethysmography (PPG) and an emotion classifier

from Electroencephalography (EEG). The system is suitable for outpatient clinic applications requiring

data transfers to external medical staff. The proposed solution contributes with an effective alternative

to the traditional approach of processing bio-signals offline, by proposing a SoC-FPGA based system

that is able to fully process the signals locally, at the node. Two sub-systems were developed targeting a

Zynq 7010 device and integrating custom hardware IP cores that accelerate the processing of the most

complex tasks. The PPG sub-system implements an autocorrelation peak detection algorithm to calcu-

late heart rate values. The EEG sub-system consists of a KNN emotion classifier of preprocessed EEG

features. The hardware/software solutions were compared to the software-only implementations exe-

cuting in the Zynq’s ARM processor, having obtained a speedup up to 40 times. The system consumes

only 36% of the Zynq’s resources and thus new functionalities may be added. The proposed system

constitutes the foundation of more complex biometric systems, that may benefit from the combination

of different reusable IP cores. This work overcomes the limitations of microcontrollers and general-

purpose units, presenting a scalable and autonomous wearable solution with high processing capability

and real-time response.

Keywords: Electroencephalography, Hardware/software co-design, Photoplethysmography, SoC

FPGA, Wearable monitoring devices

vii

viii

Resumo

Os dispositivos wearable utilizados para monitorização da pessoa têm sido melhorados nas últimas

décadas. Contudo, estes dispositivos estão limitados pelas dimensões, a capacidade de processa-

mento e o consumo energético. Esta tese propõe um sistema hardware/software para a monitorização

de bio-sinais em tempo-real, compreendendo uma calculadora de ritmo cardı́aco utilizando a Foto-

pletismografia (PPG) e um classificador de emoções a partir da Electroencefalografia (EEG). O sistema

é adequado para práticas em ambulatório que necessitem de transferir dados para equipas médicas

remotas. A solução proposta é uma alternativa eficaz à abordagem tradicional de processamento de

bio-sinais fora do dispositivo de aquisição, apresentando um sistema centrado numa plataforma SoC

FPGA, que processa os bio-sinais localmente. Dois subsistemas foram desenvolvidos, projectados para

o dispositivo Zynq 7010, integrando núcleos IP customizados em hardware para acelerar o processa-

mento das tarefas computacionalmente mais complexas. O subsistema PPG implementa o algoritmo

de detecção de picos de autocorrelação para calcular ritmos cardı́acos. O subsistema EEG consiste

num classificador KNN a partir de sinais EEG pré-processados. As soluções hardware/software foram

comparadas com as implementações de software, executadas no processador ARM da Zynq, obtendo

uma aceleração de até 40 vezes. O sistema ocupa 36% dos recursos disponı́veis na Zynq, eviden-

ciando que novas funcionalidades podem ser adicionadas. O sistema proposto constitui uma base

para sistemas biométricos mais complexos, que beneficiem da combinação de diferentes núcleos IP

reutilizáveis. Este trabalho supera as limitações de microcontroladores e unidades de processamento

genéricas, apresentando uma solução wearable escalável, autónoma, com grande capacidade de pro-

cessamento e resposta em tempo-real.

Palavras-chave: Co-projecto hardware/software, Dispositivos wearable de monitorização,

Electroencefalografia, Fotopletismografia, SoC FPGA

ix

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and contributions . 2

1.3 Outline . 3

2 Background on biometric signals processing and HW/SW co-design 5

2.1 Electroencephalography . 5

2.1.1 Signal processing . 6

2.1.2 Related work . 7

2.2 Photoplethysmography . 10

2.2.1 Applications and characteristics . 12

2.2.2 Related work . 13

2.3 FPGA-based medical devices . 18

3 Proposed biometric system 21

3.1 Heart rate calculator using PPG . 21

3.1.1 Selection of the algorithm and reference datasets 21

3.1.2 Algorithm description . 22

3.1.3 Software application profiling . 26

3.2 Emotion detector from EEG . 28

3.2.1 Selection of the classifier and classification datasets 28

3.2.2 KNN classifier description . 29

3.2.3 Software implementation . 31

3.2.4 Software application profiling . 32

3.3 High-level HW/SW architecture . 34

4 PPG and EEG IP cores 37

4.1 Development process and design techniques . 37

4.2 PPG IP core . 38

4.2.1 Design and optimization . 38

4.2.2 Design evaluation . 44

xi

4.2.3 Design validation . 47

4.3 EEG IP core . 49

4.3.1 Design concept . 49

4.3.2 Implementation of distances calculator core . 50

4.3.3 Implementation of sort distances core . 55

4.3.4 Design validation . 61

5 HW/SW implementation 65

5.1 Development board . 65

5.2 System integration . 66

5.2.1 System description . 67

5.2.2 Embedded software . 68

5.2.3 System performance . 69

5.2.4 Hardware resources utilization . 69

5.3 Acceleration results . 70

5.3.1 PPG sub-system . 70

5.3.2 EEG sub-system . 71

5.4 Prototype concept . 72

6 Conclusions 75

6.1 System improvements and future work . 76

Bibliography 79

A Dimensioning of PPG IP core internal variables 87

B Block diagram of the biometric system 89

xii

List of Tables

2.1 Comparison of existing EEG research works. 11

2.2 Overview of reviewed PPG researches. 16

3.1 Variation of number of indexes with sampling frequency. 27

4.1 Number of PPG IP Version 1 function calls. 39

4.2 Data flow of variables passed to PPG IP Version 1. 40

4.3 Number of PPG IP Version 2 function calls. 40

4.4 Number of PPG IP Version 3 function calls. 41

4.5 Data flow of variables passed to PPG IP Version 4. 41

4.6 Number of PPG IP Version 4 function calls. 42

4.7 Dimensioning of the PPG IP core internal variables. 44

4.8 Summary of the number of PPG IP accesses, from Version 1 to Version 7. 45

4.9 Comparison between the results obtained by SW-only and optimized cores. 48

4.10 Estimated hardware resources to be used by the PPG IP core. 49

4.11 Summary of classification accuracy, errors, resource utilization and latency of four wordlength

versions of the EEG IP core. 63

4.12 Estimated hardware resources to be used by the EEG IP cores. 63

5.1 Summary of timing constraints of the complete monitoring system, reported by Vivado. . . 69

5.2 Hardware resources used by the complete monitoring system. 70

5.3 Execution times obtained by software-only and hardware/software implementations of the

PPG sub-system. 71

5.4 Execution times obtained by software-only and hardware/software implementations of the

EEG sub-system. 72

A.1 Extended table containing the dimensioning of the PPG IP core internal variables. 88

xiii

xiv

List of Figures

1.1 Proposed system architecture. 3

2.1 Electrode-positioning standard by International 10/20 System [5]. 6

2.2 Russell’s [7] Valence-Arousal model [8]. 6

2.3 Typical PPG waveform [24]. 7

2.4 Operation of PPG finger sensors by transmission and reflection [45]. 12

2.5 Typical PPG waveform [49]. 12

3.1 Raw and AC PPG signals. 23

3.2 PPG linear trend removal. 24

3.3 Autocorrelation of PPG signal for different delays. 25

3.4 Heart rate detection misses varying with sampling frequency. 27

3.5 Example of an abstract representation of KNN’s training set and test instance, and com-

putation of Canberra distances. 31

3.6 Classification of the test instance using different values of K. 31

3.7 Graphical representation of the five-emotion mapping. 34

3.8 Proposed system implementation. 36

4.1 Execution times of versions V1-V7, compared to the SW baseline. 46

4.2 Maximum relative error obtained by versions V8-V13, compared to SW baseline. 46

4.3 Absolute errors obtained by fixed-point cores when processing real PPG database. 48

4.4 Block diagram of calculate distances EEG core. 52

4.5 Data flow of calculate distances EEG core. 53

4.6 Block diagram of sort distances EEG core. 60

5.1 ZYBO development board. 66

5.2 Proposed system implementation. 66

5.3 Block diagram representing the integration of the biometric system, obtained in Vivado IDE. 67

5.4 Materialization of the implemented system into a prototype. 72

5.5 Biometric sensors. 73

B.1 Block diagram of the complete biometric project. 90

xv

xvi

Listings

4.1 Declaration and interfaces of PPG IP Version 1 core. 39

4.2 Declaration of PPG IP Version 2 core. 40

4.3 Declaration and interfaces of PPG IP Version 14 core. 44

4.4 Declaration and interfaces of EEG calculate distances core. 51

4.5 Pseudo-code of Canberra block. 53

4.6 Declaration of local memory for storing test set features. 55

4.7 Declaration and interfaces of EEG sort distances core. 56

4.8 Pseudo-code of insertion sort algorithm, based on a sorted array. 57

xvii

xviii

Acronyms

ABP Arterial Blood Pressure

ADC Analog-to-Digital Converter

ALU Arithmetic Logic Unit

avAE Average Absolute Error

AXI Advanced eXtensible Interface

BCI Brain-computer Interfaces

BLE Bluetooth Low Energy

BRAM Block RAM

CLB Configurable Logic Blocks

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processor

ECG Electrocardiogram

EEG Electroencephalography

FF Flip-flop

FPGA Field-Programmable Gate Array

GCC GNU Compiler Collections

GP General Purpose

HLS High-Level Synthesis

HP High Performance

HR Heart Rate

HW/SW Hardware/Software

xix

IC Integrated Circuit

IP Intellectual Property

IR Infra-red

I²C Inter-Integrated Circuit

KNN K-Nearest Neighbours

LDA Linear Discriminant Analysis

LUT Look-up table

MAE Mean Absolute Error

PCA Principal Component Analysis

PL Programmable Logic

PPG Photoplethysmography

PPV Positive Predictive Values

PS Processing System

PTT Pulse Transit Time

QDA Quadratic Discriminant Analysis

RAM Random-access Memory

RMSE Root Mean Squared Error

RR Respiratory Rate

RTL Register Transfer Level

SCL Serial Clock Line

SDA Serial Data Line

SoC System-on-Chip

STA Static Timing Analysis

SVM Support Vector Machine

UART Universal Asynchronous Receiver/Transmitter

XADC Xilinx Analog-To-Digital Converter

XSA Xilinx Support Archive

ZYBO ZYnq BOard

xx

Chapter 1

Introduction

Over the last decades, wearable monitoring systems have been researched, developed and progres-

sively enhanced to support healthcare needs, and fit for real-time bio-signals processing, including heart

rate measurement and emotional state recognition. As a result, wearable devices are becoming more

portable, user-friendly, accurate and reliable, which minimizes the disturbance to user’s daily routine.

Moreover, combined with access to wireless Internet, these devices are being used in remote subject

monitoring. This thesis proposes a wearable solution that can assist different groups of people, as it can

provide remote healthcare tracking, overcoming the state-of-the-art systems.

1.1 Motivation

Medical systems monitor valuable information from biometric signals, such as cardiac activity, physical

movements and brain activity. More specifically, brain-computer interfaces (BCI) are developed to allow

disabled people to control an external device using electrical signals from the brain, overcoming physical

or neuromuscular limitations. As such, electroencephalography (EEG), a technique for monitoring brain

activity, is widely used in these applications.

Wearable EEG devices have been given prominence in the last couple decades, although most of

those systems are built for operation in a laboratory environment. That is, under controlled conditions

with static elements, such as simulated ambience, luminosity or background noise [1]. Therefore, these

applications do not prioritize portability or hardware simplicity, but rather high efficiency on signal acqui-

sition and processing. ”Beyond wearable” EEG, as suggested in [1], are closer to real life applications,

reducing wires and becoming more comfortable and usable. However, such devices face the problem

of battery autonomy. The commercialized EEG products available in the market last up to 9 hours. The

inclusion of multiple sensors, such as optoelectronic sensors, thermometers and accelerometers, urges

power efficiency during signal processing. Larger batteries provide longer autonomy despite of being

impractical, while smaller ones grant more mobility but impose frequent charging to the user. Moreover,

the high complexity of a monitoring system is often linked to larger devices that do not fit the wearable

needs. The thesis proposes a solution that offers the capacity of handling complex bio-signals, while

1

guaranteeing portability.

1.2 Objectives and contributions

The novelty of this work is the usage of a System-on-Chip (SoC) Field-Programmable Gate Array (FPGA)

to take advantage of high processing speed and reconfigurable logic. This kind of device is useful to

create flexible and customized hardware solutions with high performance and low power consumption.

It is intended to perform signal processing tasks locally and online, instead of transmitting the collected

raw sensor data to be processed by an external server, as conventional systems do. By doing the

computations locally, at the node, the required bandwidth and power consumption are minimized. Fur-

thermore, this architecture offers parallel computation, which is suitable to handle multiple biometric

signals at a time. Such functionalities overcome the limitations of conventional wearable solutions that

use general-purpose CPU.

The proposed system intends to measure a person’s heart rate using photoplethysmography (PPG)

and to assess emotional state via EEG. PPG is a technique widely used in smartwatches, that uses a

light source pointed to the skin to detect blood volume changes in a vascular tissue, which is captured

by a sensor and translated to an electric signal. Blood variations are synchronous to heart beat, so

heart rate can be computed after processing this signal. With EEG, the electric activity of the brain is

recorded using electrodes placed on the head, resulting in a set of signals with multiple frequencies.

Emotion recognition is achieved after processing EEG signal, extracting relevant features (or patterns)

from it and building a classifier that identifies emotions accurately. The biometric system demonstrates

the use of two independent sub-systems, each one dedicated to the respective bio-signal. The PPG sub-

system will handle PPG samples since their acquisition by an optoelectronic sensor, with the purpose of

determining instant heart rate values. The EEG sub-system will consist of a machine learning classifier

that takes as input preprocessed EEG signals and returns the predicted emotion.

The main goal is to take advantage of SoC FPGA to conceive a real-time monitoring system for

bio-signals. One contribution of this work is to develop dedicated hardware to process the bio-signals

collected by the sensors. This will be achieved by designing reconfigurable logic accelerators, which

contain preconfigured functions, as Intellectual Property (IP) cores. These blocks are intended to accel-

erate the processing of specific bio-signals. The processing tasks are distributed between software-only

instructions and the custom IP cores, constituting a hybrid Hardware/Software (HW/SW) architecture.

The most complex tasks are handled by the IP cores, and the remaining ones are implemented in em-

bedded software run by the processor. An objective of the thesis is to run the processing tasks in shorter

times, when compared to the software-only implementations. The concept of the proposed system ar-

chitecture is sketched in Figure 1.1. This includes an abstract representation of the Zynq-7010 SoC. Two

main components can be distinguished: the Processing System (PS) – corresponding to the dual-core

processor – and the Programmable Logic (PL) – related to the FPGA fabric. The IP cores, included in

the PL, are connected to the PS by Advanced eXtensible Interface (AXI) buses. Moreover, this work

aims to find the optimal design of the system, such that the hardware components necessary for its

2

implementation fit the resources available in the targeted platform.

PPG
IP core

EEG
IP core

Programmable Logic

Processing System

AXI AXI

Figure 1.1: Proposed system architecture.

The system based on a SoC FPGA will be demonstrated using the ZYnq BOard (ZYBO) [2]. This

board includes a Zynq-7010 All Programmable SoC1, which is composed of a dual-core ARM Cortex-A9

processor2. This dedicated hardware offers programmable logic solutions, reducing design complexity

and optimizing performance-per-watt ratio, being advantageous to this application.

1.3 Outline

The thesis is organized as follows. Chapter 2 provides an overview of the PPG and EEG techniques and

presents the state-of-the-art algorithms for processing the bio-signals. Moreover, the chapter reviews

FPGA-based medical devices similar to the proposed by this thesis. Chapter 3 introduces the biometric

sub-systems. It is described the process behind the selection of the algorithm for handling PPG signals

and the classifier to identify emotions from EEG. The processing steps involved in both sub-systems are

detailed and analysed. The chapter closes with the high-level architecture of the biometric system. The

development of the hardware modules that accelerate the processing tasks is addressed in Chapter 4.

The integration of those modules with embedded software is described in Chapter 5. The acceleration

results obtained by the sub-systems are provided. Chapter 6 summarizes the conclusions of this work

and suggests some directions for future work.

1Zynq-7000 SoC family webpage: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html; accessed
on 22nd May 2020.

2Cortex-A9 webpage: https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9; accessed on 22nd

May 2020.

3

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9

Chapter 2

Background on biometric signals

processing and HW/SW co-design

This chapter exposes and clarifies theoretical concepts used throughout this report, including an overview

of relevant related work. The underlying framework of the thesis includes the biometric techniques

EEG and PPG, but also the application of FPGA in biomedical prototypes. When analysing related

researches, emphasis is placed on those supported by source code written in C, a low-level language

suitable for embedded design.

2.1 Electroencephalography

Electroencephalography is a non-invasive technique for probing electric activity of the human brain neu-

rons, by attaching electrodes on the scalp that detect voltage fluctuations upon ion flow [3]. Five major

frequency bands can be identified in brain waves, depending on the neural activity – delta (1-3 Hz),

theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz) and gamma (31-50 Hz) [3] –, whose frequency pattern

changes may denote a response to an external stimulus, or some brain disorder [4]. Activities such as

sleeping, exercising or meditation can also be detected in brain waves.

The positioning of electrodes is crucial for accurate signal acquisition, given the scope of the ap-

plication. The standardization is set by the International 10/20 System [5], represented in Figure 2.1,

although extended versions have been proposed [6]. There are two EEG montage types: referential and

bipolar. Referential considers a common reference electrode, from which the potential difference of all

electrodes is computed. In bipolar montage, each electrode is associated with a reference.

A common application of EEG is emotion classification, which maps and recognizes patterns on

features of EEG signals from different known emotions. Russell [7] defined arousal as the metric for

awareness or unawareness during an activity, and valence as the metric for pleasure or displeasure.

Both quantities are described a 2D plane, where arousal is in the horizontal axis and valence in the

vertical axis. The resulting emotion in each quartile is a combination of the two. The model is repre-

sented in Figure 2.2. According to Davidson et al. [9], positive valence activates the left side of the

5

Figure 2.1: Electrode-positioning standard by International 10/20 System [5]. ’Pg’ stands for pharyngeal area, ’Fp’
for fronto polar, ’F’ for frontal, ’T’ for temporal, ’C’ for central, ’P’ for parietal, ’O’ for occipital and ’Cb’ for cerebellar.

Figure 2.2: Russell’s [7] Valence-Arousal model [8].

anterior temporal region, while negative valence stimulates the right side of frontal and anterior temporal

regions. Regarding the relation between emotion dimensions and the power of major frequency bands,

as per Kandel et al. [10], alpha is visible on parietal and occipital regions and associated to low arousal

and high valence state; beta is prominent in frontal area during high arousal activities; delta and theta

are related to low arousal.

2.1.1 Signal processing

Processing the EEG signal comprises several steps, namely noise reduction, signal enhancement, fea-

ture extraction and classification. During the acquisition via the electrode, the recorded signal is at-

6

tenuated by skin tissues and bones [10], but also subject to noise caused by muscular activities, eye

movements, eye blinks and cardiac signals [11] [12], as represented in Figure 2.3. In fact, normal EEG

signal amplitude ranges microvolts, although a single neuron promotes voltage changes of millivolts [10].

Therefore, in order to remove this noise, the EEG signal is preprocessed and its quality improved [11]

[13]. Most of the possible methods that perform this use spatial or temporal filters, or both [11]. Spa-

tial filters combine the recorded signals into a single one with higher Signal-to-Noise Ratio (SNR) [14].

Some examples, supported by references containing additional details, include Independent Component

Analysis (ICA) [15], Common Average Referencing (CAR) [16], Surface Laplacian (SL) [17], Principal

Component Analysis (PCA) [18] and Common Spatial Patterns (CSP) [19]. On the other hand, temporal

filters attenuate specific frequencies of the signal and select those bands carrying relevant information.

This can be achieved by applying discrete or fast Fourier transforms, finite impulse response (FIR) filters

or infinite impulse response (IIR) filters [20]. After signal preprocessing, features are extracted, that is,

patterns are identified in order to reduce dimensional space without losing essential information [21].

There are several extraction methods, such as Wavelet Transformations (WT) [21], Wavelet Packet De-

composition (WPD) [22] and Autoregressive (AR) [23], but also ICA and PCA can be applied in this step.

Finally, classification is performed by, for example, Support Vector Machine (SVM), Linear Discriminant

Analysis (LDA), Neural Network (NN) or k-Nearest Neighbour (KNN) [13]. Also, some of these classifiers

have been extended to adaptive versions [14].

Figure 2.3: Different noise sources affecting a typical EEG waveform [24].

2.1.2 Related work

EEG has been used in several academic works with different purposes, namely emotion recognition

[12], seizure and traumatic brain injury detection [25], but also identification of alcoholism, depression,

dementia, epilepsy, Alzheimer and Parkinson [4]. In this section, the scope of the analysis confines to

emotion recognition.

Lin et al. [26] studied the emotional responses from brain activity to stimuli of different music. Brain

signals from 26 subjects were recorded by 24 electrodes, namely FP1, FP2, F7, F8, F3, F4, FT7, FT8,

FC3, FC4, T7, T8, P7, P8, C3, C4, TP7, TP8, CP3, CP4, P3, P4, O1 and O2. The classification

was performed by a support vector machine (SVM) into four emotional states, according to 2D emotion

7

model: ’joy’, ’pleasure’, ’angry’ and ’sadness’. The classification accuracy obtained was 82.37%.

Vijayan et al. [27] proposed a subject independent algorithm involving wavelet transform, Shannon

entropy, cross correlation and auto-regressive modelling. Four emotions, namely ’exciting’, ’happy’,

’sad’ and ’hate’, were identified by a multi class SVM. Tested in a non-real time mode, this algorithm

was applied in a dataset containing brain signals of 32 subjects, stimulated by music videos. Multiple

combinations of three, six and seven electrodes were evaluated. The highest accuracy obtained was

94.097%, with seven electrodes located at P7, P3, PZ, PO3, O1, CP2 and C4. Using six electrodes

on FP1, AF3, F7, P7, P3 and PZ, an accuracy of 69.767% was achieved. Dividing this combination

into halves, FP1, AF3 and F7 and P7, P3 and PZ, the accuracies reached 28.447% and 78.465%,

respectively.

Commercial brain sensing devices are also used. Dhindsa et al. [28] collected brain signals using a

Muse headband1, containing four electrodes located at T9, FP1, FP2 and T10, from 40 subjects. The

goal was to identify the emotional reaction to videos, from a set of 11 emotions – ’interest’, ’amusement’,

’happiness’, ’sadness’, ’fear’, ’disgust’, ’anger’, ’hope’, ’relief’, ’surprise’ and ’sympathy’. Two classifiers

were used: SVM and logistic regression (LR). When performing leave-one-subject-out cross-validation,

SVM obtained higher accuracies than LR, with 75% mean.

Another commonly used device for EEG signal extraction is Emotiv Epoc headset2, equipped with

14 electrodes (AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1 and O2). Liu et al. [29] carried

an experiment with 30 subjects in order to identify movie-induced emotions. The accuracy was evalu-

ated differently. The distinction between positive and negative emotions obtained 86.62% accuracy. The

identification of a specific positive emotion, within the set of ’joy’, ’amusement’ and ’tenderness’, reached

86.43%; for negative emotions, ’anger’, ’disgust’, ’fear’ and ’sadness’, this value stood at 65.09%. No ac-

curacy data is presented regarding the emotion recognition within the set containing all aforementioned

emotions. This device was also used by Anh et al. [30], but only three electrodes, AF3, FC6 and F4,

were used for emotion recognition. 100 subjects were stimulated by a photo database and LIBSVM [31]

used as classification method. Five emotions were considered: ’happy’, ’relaxed’, ’neutral’, ’sad’ and

’angry’. An overall accuracy of 9% was obtained.

Schaaff et al. [32] developed a three-emotion recognition system with a SVM with radial basis func-

tion (SVM-RBF) classifier and leave-one-out cross validation. The classes were ’pleasant’, ’unpleasant’

and ’neutral’. The visualization of images aroused emotions of five subjects, recorded by four electrodes

– FP1, FP2, F7 and F8. Focusing on the alpha frequency, the classification accuracy was 48.89%.

Four electrodes were also used by Ali et. al. [33] to detect one of the four emotions of the 2D

emotion model – FP1, FP2, F3 and F4 –, because of ”pre-frontal cortex in emotion regulation and

conscious experience”. Feature extraction involved wavelet energy, modified energy, wavelet entropy

and statistical moments. Three classification methods were evaluated: quadratic discriminant analysis

(QDA), k-nearest neighbours (KNN) and SVM-RBF. Using EEG signals from DEAP, a preprocessed

dataset concerning 32 subjects [34], these experiments obtained 60.78%, 75.53% and 83.87% accuracy,

1Muse website: https://www.choosemuse.com/; accessed on 19th March 2020.
2Emotiv website: https://www.emotiv.com/; accessed on 19th March 2020.

8

https://www.choosemuse.com/
https://www.emotiv.com/

respectively.

Wei et al. [35] developed their own wearable emotion detection headband containing four electrodes.

The proposed algorithm combined features such as power spectral density, signal power and common

spatial pattern. The classification using linear discriminant analysis (LDA) aimed the distinction of pos-

itive and negative emotions. They also tested two electrode locations: FP1, FP2, T3 and T4; A1, FP2,

F7 and F8. Subject-independent accuracies of 64.73% and 66.74% were respectively achieved. The

experiment was undertaken by 12 subjects stimulated by picture visualization.

Chatchinarat et al. [36] studied the effects of both number and location of electrodes and frequency

bands for emotion classification, using DEAP dataset and the SVM classifier. This review addresses

three out of ten tested combinations of electrodes: FP1 and FP2; T3 and T4; O1 and O2. When using

five bands as feature per electrode channel, the classification of four emotions following the 2D emotion

model reached accuracies of 30.73%, 30.73% and 28.65%, respectively. The authors also computed the

classification accuracy using only the frequency bands alpha and beta as features, comparing it to the

five-band case. These results were presented considering two-emotion classification, where arousal and

valence axis are separated. Considering only the arousal, the accuracy using two bands was 57.81%

for all three electrode combinations; using five bands the accuracy was respectively 57.29%, 56.77%

and 55.21%. Equivalently, considering only the valence axis, the accuracy using two bands reached

53.65%, 57.29% and 47.40%, respectively; using five bands the accuracy achieved 47.40%, 56.25%

and 56.25%. This demonstrates that using two bands is almost similar to using five bands.

A similar study was conducted by Li et al. [37], where the classification of valence and arousal

dimensions was tested varying the amount of EEG channels. The preprocessed signals of the DEAP

dataset were decomposed by wavelet transform, to obtain entropy and energy as EEG features of a KNN

classifier. In the experiment, it was confirmed that classification accuracy increases with the number of

channels. Using 32 channels, the valence and arousal classifications were 95.7% accurate. Using 10

channels, the accuracies dropped to 89.54% and 89.81%, respectively. The article mentions a MATLAB

program, however no implementation is provided.

The KNN and SVM classifiers were compared in terms of accuracy of assessing the levels of valence

and arousal by Mohammadi et al. [38]. Features were obtained by discrete wavelet transform (DWT) to

decompose the EEG signal into the main frequency bands. The input data corresponded to DEAP

dataset, however a subset of 10 EEG channels was considered. The results showed that KNN outper-

formed SVM, and the maximum classification accuracies obtained by KNN for valence and arousal were,

respectively, 86.75% and 84.05%. Moreover, this work studied the effects of the temporal window and

the combinations of EEG electrodes on classification accuracy, besides the classifier. Wider temporal

windows led to more accurate results. The electrode pair FP1-FP2 was regarded as the most reliable

for identifying emotions.

Hatamikia et al. [39] analysed the performance of different feature selection methods which were

tested using three emotion classifiers – LDA, QDA and KNN. The preprocessed version of the DEAP

dataset was consumed. The target application was to distinguish three intensity levels (classes) of

valence and arousal. Using each feature selection method, the KNN classifier obtained the highest

9

classification accuracy results. The best accuracy results regarding the valence class were 51.20% for

LDA, 57.42% for QDA and 61.10% for KNN. The best results for the arousal class were, respectively,

52.36%, 57.18% and 65.16%. The KNN obtained the highest accuracy.

Table 2.1 summarizes the characteristics of the aforementioned EEG researches. It includes the

classification method, the number of the electrodes, the rounded values for the classification accuracies

followed by the classification scope. The source code and the dataset used are also referred, if reported

by the authors. The researches did not provide complete open-source implementations of the emo-

tion detection systems, although some refer the tools used during the development. For instance, [27],

[28] and [32] referred a MATLAB implementation, without providing its source code publicly. [33] devel-

oped an accurate and portable emotion classification system, but no implementation references were

provided. [35] pointed a public available tool, which is supported in C language, however no software

specification of the algorithm could be extracted.

Most of the available open-source repositories implemented an emotion detector using high-level

languages, such as Python and MATLAB. This kind of languages is relevant to bioinformatics, being

practical to translate the developed algorithms into preliminary software instructions. Such implemen-

tations are not convertible into an embedded system design, since lower level languages are required.

Therefore, it is necessary to select the best classifier that may be specified in a low-level language,

namely C. According to [12], the SVM and KNN classifiers are the most used in emotion recognition

applications. Their classification accuracy results varied among the reviewed researches listed on Table

2.1. Both classifiers are suitable candidates to integrate the biometric system. Analysing the working

principle of these methods, and privileging the feasibility of mapping a classifier into a low-level language

implementation, the KNN will be considered in the final solution, to distinguish emotions of Russell’s 2D

model. In fact, at the time this work was carried out, no software implementations of the SVM using

high-level languages were publicly available. On the other hand, KNN implementations were found,

facilitating the process of translating its algorithm into low-level instructions.

2.2 Photoplethysmography

Photoplethysmography (PPG) is an optical technique that detects blood volume changes in a microvas-

cular tissue [43]. PPG uses a light source for emitting light to the tissue and a photodetector for mea-

suring the consequent received light, by transmission or reflection as seen in Figure 2.4, from which the

blood volume variation is estimated. The principle of PPG is as follows. During the cardiac cycle, arter-

ies suffer blood volume reduction when transiting from the systolic phase to the diastolic phase [44]. The

PPG sensor detects this change optically and its photodetector converts the received light energy into

an electrical current [43]. A waveform can be acquired and some physiological parameters extracted;

for instance, the variability of the time between heartbeats [45].

Typically, red LEDs are used for light emission, since red and near infrared light pass more easily

through water, the main constituent of tissues [43]. Green LEDs are also commonly chosen in several

experiments [46]. Some studies suggested that, comparing to red light, green is more suitable for pulse

10

Ta
bl

e
2.

1:
C

om
pa

ris
on

of
ex

is
tin

g
E

E
G

re
se

ar
ch

w
or

ks
.

R
es

ea
rc

h
C

la
ss

ifi
er

E
le

ct
ro

de
s

A
cc

ur
ac

y
C

la
ss

es
S

ou
rc

e
co

de
D

at
as

et

[2
6]

S
V

M
24

82
.4

%
2D

m
od

el
3

B
S

V
M

[4
0]

ow
n

[2
7]

S
V

M

3
(F

P
1

A
F3

F7
)

28
.4

%

2D
m

od
el

7
M

AT
LA

B
D

E
A

P
3

(P
7

P
3

P
Z)

78
.5

%
6

69
.8

%
7

94
.1

%

[2
8]

S
V

M
4

(T
9

FP
1

FP
2

T1
0)

75
.0

%
11

em
ot

io
ns

7
M

AT
LA

B
ow

n
3

FB
A

R
[4

1]

[2
9]

S
V

M
14

86
.6

%
b

1D
7

E
E

G
LA

B
[4

2]
ow

n
3

LI
B

S
V

M

[3
0]

S
V

M
3

(A
F3

FC
6

F4
)

9.
0%

2D
m

od
el

+
’N

’a
3

LI
B

S
V

M
ow

n

[3
2]

S
V

M
4

(F
P

1
FP

2
F7

F8
)

48
.9

%
b

1D
+

’N
’a

7
M

AT
LA

B
ow

n
3

LI
B

S
V

M

Q
D

A
60

.8
%

[3
3]

K
N

N
4

(F
P

1
FP

2
F3

F4
)

75
.5

%
2D

m
od

el
7

D
E

A
P

S
V

M
83

.9
%

[3
5]

LD
A

4
(A

1
FP

2
F7

F8
)

66
.7

%
b

1D
7

O
pe

nV
iB

E
ow

n

[3
7]

K
N

N
32

95
.7

%
b

c
2D

m
od

el
7

M
AT

LA
B

D
E

A
P

[3
8]

K
N

N
10

86
.7

%
b

2D
m

od
el

7
D

E
A

P
84

.0
%

c

LD
A

51
.2

%
b
,5

2.
4%

c

[3
9]

Q
D

A
32

57
.4

%
b
,5

7.
2%

c
2D

m
od

el
7

D
E

A
P

K
N

N
61

.1
%

b
,6

5.
2%

c

[3
6]

S
V

M
2

(F
P

1
FP

2)
30

.7
%

2D
m

od
el

3
LI

B
S

V
M

D
E

A
P

a
’N

’s
ta

nd
s

fo
r’

ne
ut

ra
l’

em
ot

io
n.

b
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

re
fe

rr
ed

to
cl

as
s

’v
al

en
ce

’.
c

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
re

fe
rr

ed
to

cl
as

s
’a

ro
us

al
’.

11

Figure 2.4: Operation of PPG finger sensors by transmission (left) and reflection (right) [45].

rate monitoring [47] and under motion artifact conditions [48].

A PPG signal comprises two components: a pulsatile (AC), given by cardiac variations in blood

volume caused by heartbearts, and a superimposed (DC), variable with some anatomic factors, such

as respiration, thermoregulation, vasomotor and sympathetic nervous system activities [46] [43]. These

components can be seen in Figure 2.5, where a typical PPG waveform is represented.

Figure 2.5: Typical PPG waveform [49].

2.2.1 Applications and characteristics

The monitoring and analysis of PPG signal unveils a wide set of clinical applications, namely mea-

surement of heart rate, blood pressure, respiratory rate, blood oxygen saturation and several vascular

assessments. It can also be incorporated into detection tools of some cardiovascular diseases, such as

vascular ageing [43].

An alternative method is electrocardiogram (ECG), a representation of the electrical activity of the

heart, measured by multiple leads attached on body surfaces [50]. Several practical works in the lit-

erature that include PPG technologies use ECG for reference values. PPG does not have a complex

hardware implementation nor the need of a reference signal, unlike ECG [45]. PPG is also regarded as

a non-invasive and low-cost method [43]. Therefore, it is a portable, ready-to-use and convenient device

from the user point of view. PPG sensors can be placed on different anatomical positions – forehead,

earlobe, torso, wrist, fingertip and ankle –, but PPG signal has higher quality at earlobes or fingertips

[46].

12

PPG also faces some disadvantages, such as sensibility to subject motion, probe-tissue movement

and ambient light interference [43]. Also, PPG recordings vary with subject anatomy and the magnitude

is controlled by the pressure applied by the wearable device on the skin [46].

2.2.2 Related work

There are several techniques of processing PPG signal that vary with the different kinds of applications.

For this application, it is intended to use an algorithm with an implementation associated and preferably

supported by both source code and dataset for test and validation purposes. This review addresses

research works and publicly available repositories.

Research works

A simple and low complexity algorithm for detecting pulse peak has been presented by Jang et al.

[51]. The method used a slope sum function (SSF) with an adaptive thresholding scheme, but also

cascaded recursive digital filters, for the initial noise removal. Testing was performed using the health

improvement and management system (HIMS) database, containing pulse peaks manually annotated.

Two rules were applied for true detection: the index-based and the interval-based. The first one declares

’true’ if ”the difference between manual and algorithm generated annotations is less than three samples

(approximately 5 ms) intervals”. The latter considers a similar variance regarding the QRS interval.

These evaluation metrics obtained positive predictive values (PPV) of 60.57% and 80.29%, respectively.

The authors have concluded that the proposed algorithm was suitable for real-time applications, such as

pulse rate monitoring, identification of other characteristic points of the PPG signal referred to the pulse

peak, but also investigation of both pulse transit time and pulse rate variability. However, no source code

on the developed algorithm is provided.

Zong et al. [52] also developed an algorithm using SSF and adaptive thresholding, for detecting

arterial blood pressure (ABP) pulses. The MIT-BIH Polysomnographic Database3 – containing 368,364

beats annotated in ECG signals – was used for evaluating the accuracy, obtaining 99.31% of correla-

tion. A second evaluation approach compared the ABP pulse detections to a newly created reference

database comprising 39,848 ABP annotations, where the accuracy stood at 96.41%. The source code

in C language is freely available on PhysioNet [53] website, included in PhysioToolkit.

A heart rate detection system using an Arduino board was developed by Das et al. [54]. The sim-

ple algorithm based on short term autocorrelation technique over the time shifted PPG signal, acquired

from ten healthy volunteers in real-time. The distance between peaks originated by the autocorrelation

function is used to compute heart rate. The system validation consisted on the comparison to BIOPAC

MP150 system, while testing was performed using PhysioNet’s MIMIC database [55]. Results have

shown no difference between the HR measurements given by both systems, whether the signal pre-

sented clean or noisy waveforms. Despite the algorithm’s simplicity and implementation in Arduino, no

code was referred.

3PhysioNet website: https://www.physionet.org/content/slpdb/1.0.0/; accessed on 17th April 2020.

13

https://www.physionet.org/content/slpdb/1.0.0/

Similarly, another system for heart rate analysis containing an Arduino was conceived by van Gent

et al. [56]. The authors developed HeartPy, a Python toolkit, but also its implementation in embedded

C, in order to be deployed in Arduino. The algorithm comprised three steps: preprocessing involved

peak enhancement, FIR filtering, and outlier detection; peak detection consisted of the adaptive peak

detection threshold method; error detection is corrected by thresholding the sequence of RR-intervals,

that is, elapsed time between peaks. This package was validated on a PPG dataset collected in previous

work – Physionet’s BIDMC PPG and Respiration Dataset [57]. The heart rate estimation presented a

root mean squared error (RMSE) of 4.18 bpm. Also, comparing to two ”popular available open source

algorithms”, Pan-Tompkins QRS and HRVAS ECGViewer, the developed toolkit obtained the lowest error

rates. However, these algorithms were designed and intended to be computationally efficient on ECG

data, rather than PPG. GitHub repositories are available online4 5.

More complex algorithms have also been investigated. In order to estimate HR during physical

activities, Temko [58] studied the WFPV algorithm. The method comprised ”a Wiener filter to attenuate

the motion artifacts, a phase vocoder to refine the HR estimate and user-adaptive post-processing to

track the subject physiology”. The public database from IEEE SP Cup 2015 [59] allowed to test the

model, containing data of three activity types with different intensities. Performance results showed an

average absolute error (avAE) of 1.97 bpm. Also, regarding the lightest activity and comparing its avAE

results to other real-time algorithms – TROIKA [59], JOSS [60], SpaMa [61], EEMD [62], IMAT [63]

and MC-SMD [64] –, tge WFPV algorithm outperformed those alternatives, excepting SpaMa. When

considering all activity types, WFPV obtained the lowest error. The author shared a GitHub repository

containing the MATLAB implementation6.

Sharma [65] proposed the variational mode decomposition (VMD), a new technique for heart rate

estimation from PPG. The concept consists of decomposing the PPG signal into a number of modes, or

sub-signals, of different center frequency, energy, and bandwidth. The ones where the heart rate infor-

mation influences more dominantly are then selected by Fast Fourier Transform (FFT) and processed

using principal component analysis (PCA), and the heart rate is extracted applying short-time Fourier

transform (STFT). The algorithm is validated over three databases: Capnobase, MIMIC, and University

of Queens Vital Sign (UQVS). The root mean square error is assessed, obtaining 0.23 bpm, 0.41 bpm

and 1.1 bpm, respectively. Also, this approach outperformed existing algorithms such as PSD [66], EMD

[67] and EEMD-PCA [68]. There are no references to any implementation source codes.

Besides heart rate detection, respiratory rate (RR) estimation methods were investigated by Charlton

et al. [69]. Generically, the first step of a RR algorithm consisted of extracting respiratory signal(s) using

a feature-based technique. Three features were measured: baseline wander (BW), amplitude modula-

tion (AM) and frequency modulation (FM). Then, RR is estimated whether by computing power spectral

density of the signals using Fourier Analysis or detecting individual breathing cycles using ”count-orig”

methodology [70]. A final RR estimate can be computed as the average of the three aforementioned

4Python Heart Rate Analysis Toolkit repository: https://www.github.com/paulvangentcom/heartrate_analysis_python;
accessed on 18th April 2020.

5Arduino Heart Rate Analysis Toolkit repository: https://www.github.com/paulvangentcom/heartrate_analysis_Arduino;
accessed on 18th April 2020.

6PPG repository: https://www.github.com/andtem2000/PPG; accessed on 18th April 2020.

14

https://www.github.com/paulvangentcom/heartrate_analysis_python
https://www.github.com/paulvangentcom/heartrate_analysis_Arduino
https://www.github.com/andtem2000/PPG

features if all are within 4 bpm of each other. Performance of multiple methodologies was evaluated

using PhysioNet’s MIMIC II database (Version 3) [71]. The results showed that, applying the first esti-

mation approach, using individually BW, AM and FM respiratory signals, the mean absolute error (MAE)

stood at 8.18 bpm, 11.14 bpm and 12.11 bpm, respectively. However, considering the second estima-

tion approach, the MAE values dropped to 4.28 bpm, 5.58 bpm and 7.95 bpm, respectively. Additionally,

applying quality assessment and fusion step over the three respiratory signals, MAE reached 10.52

bpm and 3.36 bpm, when estimating by Fourier analysis and breath detection, respectively. A GitHub

repository7 containing the developed MATLAB code was provided.

Kong et al. [72] developed an heart rate tracking algorithm, TVSMART, standing for ”time-varying

spectral motion artifact removal technique”. Besides handling PPG data acquired from wristbands or

forehead devices, the method also uses accelerometer signals and comprises: a preprocessing phase

using normalization and bandpass filter; time-frequency spectrum (TFS) estimation and motion artifact

removal using variable-frequency complex demodulation (VFCDM); cubic spline regression for HR es-

timation. The algorithm was further compared to WFPV [58], because of, according to the authors, its

public availability and better performance compared to most of the published algorithms. Two databases

were used for validation: one from IEEE SP Cup [59] and one own dataset, Chon Lab. For slow walking

data, and considering both databases, WFPV obtained an average absolute error (avAE) 4.46 bpm,

while TVSMART obtained 3.53 bpm. Regarding only the IEEE SP Cup dataset, avAE values stood

at 4.00 bpm and 3.68 bpm, respectively. There are no evidences on how the authors implemented in

practice this algorithm.

Table 2.2 summarizes the main characteristics of the reviewed articles: the application scope, main

results and supporting source code and datasets. It can be seen that every reviewed work referred a

public available dataset. The most accurate results were registered by [54], obtaining a 100% correlation

with a complex monitoring system. However, only [56] provided a C code for heart rate measurement,

being a suitable option to the implementation.

Publicly available repositories

Open-source implementations have also been investigated. In the next paragraphs, GitHub repositories

associated to the ”PPG” keyword, and filtered by C/C++ language, are discussed. Several sensors are

used, although few are provided a proper documentation.

ProtoCentral8 supplies an oxygen saturation and heart rate monitoring system9, implemented in a

custom device containing the Texas Instruments’s AFE4490 integrated circuit10 (IC). The supporting

documentation addresses the Arduino connections, rather than the PPG extraction and processing al-

gorithms. A similar IC, the AFE440411, has been integrated with a STM32L443xx12 microcontroller. The

7Critical Data Book repository: https://www.github.com/MIT-LCP/critical-data-book; accessed on 18th April 2020.
8ProtoCentral homepage: https://www.protocentral.com/; accessed on 30th April 2020.
9AFE4490 repository: https://www.github.com/Protocentral/AFE4490_Oximeter; accessed on 30th April 2020.

10AFE4490 datasheet: https://www.ti.com/lit/ds/symlink/afe4490.pdf; accessed on 30th April 2020.
11AFE4404 datasheet: https://www.ti.com/lit/ds/symlink/afe4404.pdf; accessed on 30th April 2020.
12STM32L443xx datasheet: https://www.st.com/resource/en/datasheet/stm32l443vc.pdf; accessed on 30th April 2020.

15

https://www.github.com/MIT-LCP/critical-data-book
https://www.protocentral.com/
https://www.github.com/Protocentral/AFE4490_Oximeter
https://www.ti.com/lit/ds/symlink/afe4490.pdf
https://www.ti.com/lit/ds/symlink/afe4404.pdf
https://www.st.com/resource/en/datasheet/stm32l443vc.pdf

Table
2.2:

O
verview

ofreview
ed

P
P

G
researches.

R
esearch

P
urpose

Technique
R

esults
S

ource
code

D
ataset

[51]
P

ulse
peak

S
S

F
P

P
V

=
80.29%

7
H

IM
S

[52]
A

B
P

pulses
S

S
F

99.31%
E

C
G

correlation
3

C
M

IT-B
IH

[54]
H

R
A

utocorrelation
100%

B
IO

PA
C

correlation
7

C
/C

++
M

IM
IC

[56]
H

R
A

daptive
peak

detection
R

M
S

E
=

4.18
bpm

3
P

ython
B

ID
M

C
P

P
G

3
C

[58]
H

R
W

FP
V

avA
E

=
1.97

bpm
3

M
ATLA

B
IE

E
E

S
P

C
up

2015

R
M

S
E

=
0.23

bpm
C

apnobase
[65]

H
R

V
M

D
R

M
S

E
=

0.41
bpm

7
M

IM
IC

R
M

S
E

=
1.1

bpm
U

Q
V

S

[69]
R

R
Fourieranalysis

M
A

E
=

10.52
bpm

3
M

ATLA
B

M
IM

IC
-II

”count-orig”
M

A
E

=
3.36

bpm

[72]
H

R
V

FC
D

M
avA

E
=

3.68
bpm

7
IE

E
E

S
P

C
up

2015

16

repository13 is not paired to any documentation.

The intended sensor to be used in the implementation is the Maxim Integrated’s MAX3010x, a pulse

oximeter and heart-rate sensor integrated circuit series. The pulse oximeter allows the measurement of

oxygen saturation in the blood. Regarded as portable, stable and reliable [73] [74], multiple documented

implementations were found.

A MAX3010014 version driver15, for Arduino deployment, is well documented by a tutorial available

online16. The algorithm consists of a DC signal removal filter to only keep the AC component, a mean

median filter to improve peak detection and a Butterworth filter to remove the higher level harmonies.

Heart rate is then determined by the delay between two beats. The author performed a single measure-

ment test and compared it with the value obtained by a blood pressure measuring device. The error

obtained was 0.81 bpm. This driver has been implemented by two further open-source projects.

The first one17 cites the previous tutorial, despite its implementation being targeted to the STM32F4

board18. It monitors both oxygen saturation and heart rate in real-time. Secondly, a wearable health

monitor19 has been developed including several sensors, namely the MAX30100 in order to perform

similar measurements. This module has been programmed by the aforementioned driver. The docu-

mentation consists of a paper report.

An Arduino project featuring identical monitoring, using the MAX3010220 module, is also available

online21, along with a step-by-step guide22. The algorithm’s source code is also extensively commented.

The previous sensor is also supported by two relevant drivers for Arduino with similar purposes.

One23 offers documentation on hardware and troubleshooting, but also commented examples. The

latter24, dedicated to MAXREFDES117#25, a board embedding the sensor, has been developed by the

same manufacturer. Support documentation regarding hardware is available on board’s website.

SparkFun has also developed an Arduino library26 for the MAX3010x sensor family, including exam-

ple sketches. Besides monitoring presence sensing, temperature and oxygen levels, heart rate mea-

surement is implemented by Penpheral Beat Amplitude (PBA) algorithm. The developed code is widely

commented.

A wide range of C libraries dedicated to MAX3010x sensor is available. This grants multiple solutions

13AFE4404 repository: https://www.github.com/opetany93/PPG-Dev2; accessed on 30th April 2020.
14MAX30100 datasheet: https://www.datasheets.maximintegrated.com/en/ds/MAX30100.pdf; accessed on 7th May 2020.
15MAX30100 repository: https://www.github.com/xcoder123/MAX30100; accessed on 2nd May 2020.
16Implementing pulse oximeter using MAX30100: https://www.morf.lv/implementing-pulse-oximeter-using-max30100;

accessed on 7th May 2020.
17Pulse-Oximeter-with-MAX3010X repository: https://www.github.com/GCY/Pulse-Oximeter-with-MAX3010X; accessed on

2nd May 2020.
18STM32F4 series webpage: https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html; ac-

cessed on 7th May 2020.
19MAX30100 repository (2): https://www.github.com/Joe-Story/GM2-Wearable-Healthcare; accessed on 2nd May 2020.
20MAX30102 datasheet: https://www.datasheets.maximintegrated.com/en/ds/MAX30102.pdf; accessed on 2nd May 2020.
21MAX30102 repository: https://www.github.com/aromring/MAX30102_by_RF; accessed on 2nd May 2020.
22Pulse Oximeter With Much Improved Precision: https://www.instructables.com/id/

Pulse-Oximeter-With-Much-Improved-Precision/; accessed on 2nd May 2020.
23MAX30102 repository (2): https://www.github.com/catnull/Max30102Driver-For-Arduino; accessed on 12th May 2020.
24MAXREFDES117# repository: https://www.github.com/MaximIntegratedRefDesTeam/RD117_ARDUINO; accessed on 2nd

May 2020.
25MAXREFDES117# website: https://www.maximintegrated.com/en/design/reference-design-center/system-board/

6300.html/; accessed on 12th May 2020.
26MAX3010x repository: https://www.github.com/sparkfun/SparkFun_MAX3010x_Sensor_Library; accessed on 2nd May

2020.

17

https://www.github.com/opetany93/PPG-Dev2
https://www.datasheets.maximintegrated.com/en/ds/MAX30100.pdf
https://www.github.com/xcoder123/MAX30100
https://www.morf.lv/implementing-pulse-oximeter-using-max30100
https://www.github.com/GCY/Pulse-Oximeter-with-MAX3010X
https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html
https://www.github.com/Joe-Story/GM2-Wearable-Healthcare
https://www.datasheets.maximintegrated.com/en/ds/MAX30102.pdf
https://www.github.com/aromring/MAX30102_by_RF
https://www.instructables.com/id/Pulse-Oximeter-With-Much-Improved-Precision/
https://www.instructables.com/id/Pulse-Oximeter-With-Much-Improved-Precision/
https://www.github.com/catnull/Max30102Driver-For-Arduino
https://www.github.com/MaximIntegratedRefDesTeam/RD117_ARDUINO
https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/
https://www.maximintegrated.com/en/design/reference-design-center/system-board/6300.html/
https://www.github.com/sparkfun/SparkFun_MAX3010x_Sensor_Library

to program the FPGA and to be run by accelerators. However, the reviewed repositories did not evaluate

exhaustively the measurement accuracy achieved by the implemented algorithm. The repository referred

in footnote 21 provides a clearer support documentation. The applied algorithm is consistent with the

one presented in [54], not supported by an open-source implementation, as both base on autocorrelation

peak detection. Therefore, this implementation is the most appropriate to be executed.

2.3 FPGA-based medical devices

Considering the targeted platform of this work, the following paragraphs review existing medical proto-

types also based on FPGA logic.

Joaquinito [75] developed a wireless biosignal measurement system, using a SoC FPGA, for moni-

toring heart rate from ECG signal analysis, and temperature in real-time. The system included a Blue-

tooth Low Energy (BLE) device to transfer processed data with low-power consumption and low data

rate connection, paired to a smartphone. The approach consisted of connecting both analog and dig-

ital sensors to the SoC, accelerating the processing of ECG signals recorded by three electrodes and

sending short but relevant data via BLE to the user interface (the smartphone). ECG processing based

on Pan–Tompkins algorithm, where the preprocessing phase composed by amplification and filtering

shares some similarities with EEG. Using this method, ECG signal peaks were detected and a hardware

module performed further operations to obtain heart rate. The testing results showed 100% sensitivity

– that is, the system detected all ECG signal peaks – and an average of 99.7% positive predictability –

meaning that 0.3% of the predictions were incorrectly classified as ECG peaks, corresponding to noise

signals. The methodology of using custom hardware and accelerating signal processing improved the

system performance. The goals of this work are very similar to the proposed ones in this report. Both

systems aim to monitor vital signs in real-time and to process them using SoC FPGA, differing in the

biometric techniques.

Knežević et al. [76] presented a methodology to detect ECG peaks and the points of maximum

slope of PPG. The delay between them is also computed, and is known as pulse transit time (PPT).

The system was demonstrated in a FPGA. Both signals passed through a DWT module. Then, resulting

ECG signal was processed by modulus maxima, and PPG signal by derivative filtering. The hardware

design comprised an Analog-Digital Converter (ADC), two processing cores for ECG and PPG, a PPT

calculation circuit followed by an Universal Asynchronous Receiver/Transmitter (UART) controller. All

digital modules were specified in VHSIC Hardware Description Language (VHDL) code. The processing

cores were tested using two public databases, containing recorded pulses. ECG peaks were detected

with an average accuracy of 97.5%. Regarding the PPG, the detection of points of maximum slope had

an average accuracy of 97.1%. The contribution of this work is the development of dedicated hardware

to process biometric signals. This was achieved by two parallel processing cores with reconfigurable

logic. There were no mentions of software modules, so this work is a reference to bio-signal processing

by custom logic accelerators.

FPGA-based works aiming at emotion identification from EEG signals are emerging in the literature.

18

Fang et al. [77] implemented a Convolutional Neural Network (CNN) in a Virtex-7 FPGA for emotion de-

tection from EEG signals from 6 channels. The classifier was integrated in a complete system containing

an acquisition headset and a MATLAB program for feature extraction. Two experiments were conducted,

one in real-time and a second one offline using the DEAP dataset. During the real-time experiment, the

system took 450 ms to detect an emotion, from the acquisition node. The offline processing of DEAP

dataset resulted in a valence-arousal classification accuracy of 76.67%.

The system proposed in [77] contributes with a complete execution of the classification process.

However, the system is oriented to operate in a laboratory environment, rather than targeting a wearable

device for daily use. Actually, this is a gap in the literature of emotion recognition, and represents an

opportunity to develop a novel FPGA-based system with this scope.

19

20

Chapter 3

Proposed biometric system

This chapter provides a complete description of the algorithms for processing PPG and EEG data, to

be implemented on the proposed system. The analysis includes a profiling of those algorithms, to be

used when dimensioning the final system. The selection of reference datasets containing samples of

bio-signals is also addressed. Sections 3.1 and 3.2 introduce, respectively, the heart rate calculator and

the emotion classifier. A high-level architecture of the proposed system is presented in Section 3.3.

3.1 Heart rate calculator using PPG

The sub-system for computing instant heart rates using the PPG technique is proposed in this section.

It is intended to acquire the raw PPG signals and to process them in the node. The selection of the

algorithm for handling PPG signals is described in Section 3.1.1. The working principle of the selected

algorithm to calculate heart rate is detailed in Section 3.1.2, step by step. Section 3.1.3 analyses the

effects of sampling frequency and sampling time on the computational cost of the algorithm.

3.1.1 Selection of the algorithm and reference datasets

The main purpose of the algorithm for processing PPG data is to compute instant heart rate values

in real-time. A common approach is peak detection, from which the signal periodicity, and thus the

pulse, can be retrieved. From literature analysis of Table 2.2 in Section 2.2.2 was selected the proposal

by [56]. This proposal provided an open-source software implementation. From the analysis of the

publicly available repositories, the footnote 21 was pointed as a good candidate to be implemented

in this system. In fact, this repository provided a C implementation of the algorithm, a file containing

samples of raw PPG signals and a complete supporting documentation. The proposal [56], by the time

of analysis, required code modifications to return instant heart rate as desired, although being written

in C language. The footnote 21 alternative turned to be a more practical implementation to be divided

into blocks and adapted into a hybrid HW/SW design. Moreover, the code was exhaustively commented.

Thus, this ready-to-use solution was the most preferable. Next section describes the operating principle

of the selected algorithm.

21

The provision of datasets was an exclusion factor on algorithm selection. In fact, few solutions pro-

vided data to test their implementations. The repository of Footnote 21 included a single file containing

100 samples of red and infra-red channels data, sampled at 25 Hz. Given this scenario, it is reasonable

to select external datasets to validate the final design solution of heart rate module. The search for

data obtained by MAX30100 sensor did not return meaningful results. Then, some PPG datasets were

found, regardless the sensor used. However, none of them consisted of raw data, but preprocessed.

For instance, the 2015 IEEE SP Cup dataset provided recorded PPG data of eight subjects performing

different activities, such as walking and running. This database can be used to validate the design of the

core responsible for handling PPG signals, described in Chapter 4. Due to the lack of raw PPG data,

custom signals were recorded using a MAX30100 sensor connected to an Arduino. Additional datasets

were synthesized from the real ones applying multiple transformations on a specific segment, such as

multiplication by a scalar and upsampling or downsampling. Analysing signals with different amplitudes

and frequencies is necessary to define the variable’s size in software and the signal’s wordlength in

hardware.

3.1.2 Algorithm description

The heart rate calculator algorithm operates over two channels of PPG signal, the red (RED) and the

infra-red (IR), probed by distinct LEDs. The algorithm comprises two main stages: preprocessing and

periodicity search. The computational operations included in the first one are the following:

1. DC mean calculation: a loop over a buffer containing N signal samples computes the sum of their

values, and then the average by dividing the accumulated sum by N ;

2. DC mean subtraction: the computed average is subtracted from each channel sample, by an

iterative loop;

3. linear regression calculation: a dot product between the sample set and corresponding shifted

sample indexes is computed, then divided by a constant;

4. linear regression subtraction: the computed value is multiplied by each shifted sample indexes and

subtracted from each channel sample;

5. mean square calculation: the sum square of all sample values is calculated and divided by N ;

6. Pearson correlation calculation: a dot product between both channels’ samples is determined and

then divided by N .

Once these tasks are concluded, the periodicity search over the preprocessed signal begins. This stage

is mainly performed by a function called autocorrelation.

For a clearer explanation and better understanding, the steps involved in the heart rate calculation

algorithm are next detailed and supported by an example. The example is a 100-sample buffer, provided

by the author of the implementation, that corresponds to a good quality signal. Two-channel data, RED

and IR, was sampled with 25 Hz using MAX30102 sensor, and is illustrated in Figure 3.1a. Next, the

processing tasks that modify the raw input data are explained, focusing on the IR channel, from which

the heart rate is computed.

22

The first step is to remove the DC component from the signal, keeping only the AC, because this

method concentrates on the signal fluctuations, rather than its amplitude. As shown in Section 2.2,

heart rate can be identified analysing AC component. The result depicts on Figure 3.1b.

1 20 40 60 80 100
32500

33000

33500

34000

34500

Raw PPG signal

IR

Sample

20 40 60 80 100
20000

20100

20200

20300

20400

20500

20600

20700

R
E

D

(a) Raw PPG signal.

1 20 40 60 80 100
-1000

-500

0

500

1000

IR AC signal

Sample

(b) AC component.

Figure 3.1: Step 1 – AC component of the PPG signal.

The second step consists of subtracting the first-order component, that is, the linear trend of the

signal. The value of the slope β is obtained using Equation 3.1,

β =

∑tmean

t=−tmean
t · yt∑tmean

t=−tmean
t2

(3.1)

where t is the sample index and yt the sample value. It is worth to notice that indexes start at t = −tmean,

rather than at origin t = 0. This left shift by tmean, defined by Equation 3.2, allows to center and equidis-

tantly display all N samples, so that, in this example, their indexes range {−49.5,−48.5, ..., 49.5}, instead

of {0, 1, ..., 99}.

tmean =
N − 1

2
(3.2)

Figure 3.2a clarifies this centring procedure, plotting the linear trend with the computed slope of the

sample set, over the AC signal. Figure 3.2b includes the levelled signal – after removing first-order

component – and the original one for comparison. This levelling process is useful in further steps to

detect peaks correctly.

At this stage, the preprocessing tasks over the collected bio-signals are completed. Then, a first

quality metric is evaluated, known as the Pearson correlation. This coefficient denotes the linear asso-

ciation between two variables – in this case, RED and IR channels. Graphically, measures the feasibility

of drawing a line to best fit both data. Values range [−1, 1], where −1 and 1 mean, respectively, the

strongest negative and positive associations, that is, a perfect linear fit with negative and positive slopes.

The absence of linear correlation corresponds to a value of 0. A correlation besides these key values

means a linear association that does not fit all data. In short, the closer is the absolute value of Pear-

son correlation to 1, the more linear is the association between two variables. The Pearson correlation

23

1 20 40 60 80 100
-1000

-500

0

500

1000

Sample

IR AC signal and linear trend

IR AC

IR AC linear trend

(a) Linear trend of PPG signal.

1 20 40 60 80 100
-1000

-500

0

500

1000

Sample

IR AC signal levelling

IR AC

Levelled IR AC

(b) PPG signal levelling.

Figure 3.2: Step 2 – PPG linear trend removal.

coefficient r is calculated using Equation 3.3,

r =

∑N
n=1 (xn − x̄) (yn − ȳ)√∑N

n=1 (xn − x̄)
2∑N

n=1 (yn − ȳ)
2

(3.3)

where:

• N is the number of samples;

• xn denotes a preprocessed IR sample;

• x̄ is the mean value of preprocessed IR samples, which is 0, because of DC removal;

• yn denotes a preprocessed RED sample;

• ȳ is the mean value of preprocessed RED samples, which is also 0.

According to the implementation, a good quality signal must have a Pearson correlation equal or greater

than 0.8. Otherwise, the sample set is discarded and a new collection is recorded.

From this stage, the algorithm initiates an iterative process of finding the signal periodicity, via peak

detection. In this step underlies the concept of autocorrelation, a function that allows to identify patterns

in a signal. More specifically, it consists of the correlation – or similarity – between a signal and its

delayed copy. As such, taking into account that PPG is a periodic signal, this property is advantageous

to determine heart rate, specially in noisy environments, like probing data using bio-sensors. Mathemat-

ically, the autocorrelation R at a given delay m is the sum of the products between each sample and its

delayed one, over all N samples of set X, shown in Equation 3.4.

R(m) =

N∑
n=1

X(n)X(n+m) (3.4)

Figure 3.3a shows the result of computing the values of autocorrelation for all possible sample delays,

from 0 to N − 1, where N = 100 in the example of Figure 3.1a. Then, all values of this graphic are

normalized to the autocorrelation at delay N = 0, as depicted in Figure 3.3b and referred as relative

24

autocorrelation. Analysing the curve, one can identify local maximums alternating with local minimums,

0 20 40 60 80 99
-100000

-50000

0

50000

100000

150000

Sample delay

Autocorrelation

(a) Autocorrelation values.

0 20 40 60 80 99
-1

-0.5

0

0.5

1

1.5

2

Sample delay

Relative autocorrelation (to delay=0)

min_autocorrelation_ratio

k

(b) Relative autocorrelation values.

Figure 3.3: Step 3 – Autocorrelation of PPG signal for different delays.

which correspond to constructive and destructive interferences, respectively. In other words, shifting the

signal gradually to the right, autocorrelation decreases to a local minimum, because the signal and its

shifted copy are in phase opposition. As the copy moves to the right, autocorrelation increases again

because of signal periodicity, until both waveforms are again in phase. The shift k corresponding to

the index of the closest local maximum matches the number of samples containing a complete heart

beat. This peak, marked in Figure 3.3b by green, is sufficient to determine PPG signal periodicity.

Therefore, pulse period THR is calculated multiplying the number of samples k by the time gap between

two samples, that is, sample period Ts. This way, heart rate is the inverse of pulse period, represented

in Equation 3.5,

HRbps =
1

THR
=

1

k × Ts
=

1

k × 1
fs

=
fs
k

(3.5)

where fs denotes the sampling rate, inverse of Ts. This result corresponds to beats per second (bps),

so beats per minute (bpm) are given by Equation 3.6.

HRbpm =
fs × 60

k
(3.6)

Finding the index k that maximizes the first peak of autocorrelation function assumes premises de-

scribed next. First, the definition of minimum and maximum valid heart rates to mark out a finite range

of acceptable pulse values. This aspect prevents the algorithm from returning unreliable ones. Further-

more, given that the highest heart rate corresponds to the lowest period, the index of autocorrelation

peak is equal or greater than the lowest period. In other words, the local maximum – and thus the signal

periodicity – may be searched starting from the sample index that matches the lowest period possible

assumed. For this reason, in the beginning of a real-time execution of the algorithm, the periodicity

search of the first sample set is initialized following this criteria. Subsequently, the algorithm is adaptive

to the last computed heart rate, where search is focused on finding the shifted autocorrelation peak in the

25

neighbourhood (adaptation phase). Thus, the initialization occurs once during a continuous execution.

Besides Pearson correlation, there is a second quality metric known as minimum autocorrelation ra-

tio. This metric validates the signal buffer sampled by the PPG sensor. Once the autocorrelation peak is

determined, the algorithm evaluates whether its value is equal or greater than 50% of the reference (de-

lay 0). Otherwise, that buffer is considered as being too much corrupted with noise and thus discarded.

This criteria prevents the detection of false peaks caused by noise. The minimum threshold is marked

by red in the example of Figure 3.3b.

3.1.3 Software application profiling

As mentioned in the previous section, the PPG algorithm features two main tasks – preprocessing and

periodicity search. The computational operations regarding preprocessing phase are applied to both IR

and RED channels. Every loop operates over both channels concurrently.

The periodicity search is an iterative process where computational cost is uncertain. Depending

on the signal characteristics, the autocorrelation function is called a different number of times. The

signal variation and the fulfilment of quality criteria influence as well. For instance, according to the

algorithm, this function is more often called during the processing of lower pulse rate signals. When

periodicity is initialized, this happens because of the starting point of the search, which matches the

distance equivalent to the lowest valid period. Apart from this stage, the starting point retrieves the index

of previous iteration’s peak, acting as an adaptive algorithm. Assuming a sliding-window processing

system, it is expected that the frequency of PPG signal does not vary much after each buffer analysis.

Thus, the previous peak is used as reference to the next iteration.

However, autocorrelation function calls are countable during initialization of periodic search. This

number depends on two factors: range of accepted values for heart rate and sampling frequency. Taking

into account that heart rate is computed from a sample index (Equation 3.6), which is a natural number,

the results are discrete. Therefore, the sampling rate determines the resolution of the final result. On

the other hand, the heart rate values range influences the set of samples from which pulse can be

calculated. For this reason, the maximum number of autocorrelation function calls varies with this range.

Trivially, the wider the variety, the more often may occur the function calls. From heart rate definition

(Equation 3.6), the number of indexes contained inside the interval of acceptable pulse values, and thus

the maximum number of autocorrelation calls, is given by Equation 3.8:

n = int

[
fs × 60

hrmin

]
− int

[
fs × 60

hrmax

]
+ 1 (3.7)

Considering heart rates ranging from hrmin = 40 to hrmax = 180 bpm, n varies with sampling rate fs

according to Table 3.1. There, ihrmin and ihrmax denote the index corresponding to hrmin and hrmax,

respectively, such that:

n = ihrmin
− ihrmax

+ 1 (3.8)

The worst case scenario regarding the periodicity search is the computation of all n values. This

26

Table 3.1: Variation of number of indexes, n, with sampling frequency, fs, assuming heart rates ranging from
hrmin = 40 to hrmax = 180 bpm.

fs (Hz) 25 50 100 200 500 1000

ihrmin 37 75 150 300 750 1500
ihrmax

8 16 33 66 166 333
n 30 60 118 235 585 1168

means that the search assumes, at first, an autocorrelation peak corresponding to the highest pulse

rate, ihrmax . Then, given that the peak is in fact located at ihrmax , the algorithm calculates autocorrelation

n times, according to Equation 3.8. This worst case may occur during the initialization, if the user

presents a high heart rate and the algorithm assumes the lowest rate. Also, it may occur, with less

probability, between the processing of two distinct buffers during the adaptation phase.

In this implementation, 141 different integer heart rate values are assumed, ranging from 40 and 180

bpm. Observing Table 3.1, it is interesting to notice that, at least, sampling frequencies up to 100 Hz do

not cover all possible values of the considered range, because, in those cases, the number of indexes

is less than the number of distinct heart rates (n < 141). However, this does not imply that remaining

frequencies necessarily cover all 141 possibilities. Figure 3.4 indicates which pulse rates are actually

missed when sampling with different rates. It shows that lower frequencies miss most heart rate values.

40 60 80 100 120 140 160 180
25 Hz

50 Hz

100 Hz

200 Hz

500 Hz

1000 Hz

Heart rate

S
a
m

p
lin

g
fr

e
q
u
e
n
cy

Heart rate values detection misses

Figure 3.4: Heart rate detection misses varying with sampling frequency.

In other words, using higher frequencies leads to more precise final results. The error of the final

result is significantly higher when using low sample rates, as detection misses occur more often. On

the other hand, higher frequencies allow to determine the index of autocorrelation peak more precisely.

Intuitively and according to Table 3.1, a PPG signal sampled with high frequency rate has more samples

which, by turn, are closer to each other. Therefore, n increases, the periodicity search takes longer but

the calculation of Equation 3.6 is more accurate. The domain of k is wider in these cases, such that the

final results are more diversified. For instance, at fs = 500 Hz, the first and only detection miss occurs

near 180 bpm.

Previous paragraphs exposed the impact of sampling rate. Another parameter that should be con-

sidered during system parametrization is sampling time. As seen during the algorithm analysis, the first

autocorrelation peak is the main concern. Therefore, manipulating buffers holding multiple PPG waves

does not improve much performance. Two waveforms could be enough to compute autocorrelation at

a delay corresponding to a complete heart beat, and thus determine its periodicity. To assure that at

least two pulses are actually encapsulated, three waveforms are considered. As such, depending on the

27

instant heart frequency, a pre-dimensioned buffer includes an unknown number of pulses. Assuming a

minimum acceptable heart rate hrmin, it is possible to estimate how much total sample time is needed

to guarantee three beats inside the buffer. Thus, the duration of three complete heart beats 3THRmin is

deducted from Equation 3.9.

hrbps =
hrmin

60
=⇒ THRmin

=
1

hrbps
=⇒ 3THRmin

=
3× 60

hrmin
(3.9)

Admitting a minimum hrmin = 40 bpm, it is required to sample PPG during 4.5 seconds.

3.2 Emotion detector from EEG

The biometric sub-system to detect human emotions is proposed in this section. The goal is to find a

classifier that maps EEG signal attributes into emotions. The process of selecting the suitable classi-

fier and reference datasets is described in Section 3.2.1. Due to the scope of this work, the emotion

detector targets the classification of EEG attributes that have been obtained after preprocessing raw

EEG signals. Such preprocessing tasks include removing artifacts, caused by eye blinking and muscle

movement, through blind source separation. This technique separates signal components from a signal

mixture. EEG signals are also downsampled, filtered and averaged to a common reference. As a re-

sult, these steps reduce the signals to the data containing the essential information and average out the

model error associated with EEG channels. Signal attributes, also known as features, are extracted by

computing the standard deviation of the five frequency bands of each EEG channel. The standard devia-

tion represents the power spectrum variations of EEG waves over time. Finally, features are normalized

to a common scale, since they may assume a wide range of values. The purpose of this procedure

is explained next in more detail. The normalized feature set is the input data of the classifier, whose

working principle is described in Section 3.2.2. A preliminary software implementation of the selected

classifier is presented in Section 3.2.3. Section 3.2.4 addresses the dimensioning of the input data and

estimates the computational cost of the emotion detection process.

3.2.1 Selection of the classifier and classification datasets

The EEG algorithm targets the implementation of a classifier to detect human emotions. This algorithm

corresponds to the last stage of the cycle of EEG signal processing. This cycle covers complex tasks,

such as raw signal acquisition, signal enhancement, feature extraction and classification. The EEG clas-

sifier is provided the relevant information for emotion inference. It is desirable to have an open-source

software solution describing the targeted goal. Such implementation helps to understand the flow of

EEG data and the complexity of the processing tasks. Python and MATLAB applications addressing

specific steps of EEG processing algorithms were identified in the literature and public repositories.

These included platform-specific signal acquisition drivers – such as commercial headsets –, prepro-

cessing functions and classifiers. Another faced issue was the lack of documentation supporting the

28

few available open-source repositories. Regarding EEG classification, a KNN classifier1 was selected,

aiming the prediction of emotional state given preprocessed EEG data. The analysis of the classifier’s

working principle allowed to translate this implementation into a low-level language version, using C. A

comprehensive description of its operation is provided in the next section.

The EEG data supported by this classifier comprises up to 32 electrode channels. In fact, the pre-

processed version of DEAP dataset [34] is used as data input reference. Commonly cited by EEG-

related researches, this set provides both raw and processed signals acquired by 32 electrodes, from

32 subjects watching different music videos. Those signals are appended each subject’s ratings on their

perceived emotions during the experiments. The ratings include, among others, the two dimensions of

Russell’s emotion map – valence and arousal –, described in Chapter 2. The number of electrode chan-

nels is impractical for a wearable device. However, dimensioning the classifier this way is advantageous

to provide a more customizable classifier for further applications.

3.2.2 KNN classifier description

The goal of using a classifier is to predict an emotion (class) given a set of EEG signal attributes (fea-

tures), taking as a reference already known relations between those attributes and emotions. The pre-

dicted class represents the emotion that best fits the EEG features analysed.

K-nearest neighbours (KNN) algorithm is a supervised learning classifier, meaning that a training set

containing multiple input-output data observations determines the inference of the output of an unseen

input object, the test set. In practice, KNN maps objects into images given a collection of previously

memorized training object-image pairs (instances). The principle of KNN is to find the K closest memo-

rized instances to the recently observed set of features. In other words, to find the known instances that

are the most similar to the feature set to be classified. Once the most suitable instances are assessed,

the emotion classes each instance is associated with are registered. The modal class is declared as the

predicted emotion of the queried test set.

The process of measuring the similarity of training and test sets is the distance between their points,

considering that feature sets can be viewed as arrays. This KNN version uses the method of Can-

berra distance, mathematically defined in Equation 3.10 as dC , where u and v denote two points in

n-dimensional space.

dC(u, v) =

n∑
i=1

|ui − vi|
|ui|+ |vi|

(3.10)

The input objects of the classifier are EEG features that have been normalized to [0, 1]. This way,

the distances between test and training instances are not biased by a dominant feature. Normalization

methods vary, but a common approach is the rescaling from minimum and maximum values, as stated

in Equation 3.11. There, x represents the whole feature set to be normalized; xij is the j-th element

of the i-th array of EEG features; fij denotes a normalized EEG feature. The equation applies a linear

1Emotion Detection from EEG repository: https://www.github.com/shubhe25p/Emotion-detection-from-EEG; accessed
on 15th January 2021.

29

https://www.github.com/shubhe25p/Emotion-detection-from-EEG

transformation to the vector space containing the set of EEG features.

fij =
xij −min(x)

max(x)−min(x)
(3.11)

In short, to classify an unobserved test instance, the algorithm determines its K most similar in-

stances from the observed training set. This step implies two tasks: the computation of Canberra

distance, dC , between the test and every training instances, and then sorting those distances to obtain

the K shortest distances. The K training instances that present more similarity with the test instance

correspond to the K shortest Canberra distances. Wider the training set, more Canberra distances are

calculated and compared, and thus higher is the computational cost. Once the K shortest Canberra

distances are found, the corresponding K training instances are selected to proceed with the algorithm.

The next step is to register the emotion classes associated with the selected K instances, finding the

most common class. In other words, the K training instances vote for a class. The most voted class –

modal class – determines the emotion prediction output.

The calculation of Canberra distances is independent from the images (classes) of the training in-

stances. Distances are obtained from the differences between instances’ features. The distances sorting

assumes that training instances are equally weighted, meaning that each instance contributes to the vot-

ing system with an unitary vote. The modal class is taken as the predicted class because classes are

discrete, rather than continuous values. Emotion values take action during the last step of counting the

class votes associated with each instance.

Illustrative example

This section provides an example to visualize the process of emotion classification. The KNN must

possess a set of instances from which classification decisions are made. This set (training set) is rep-

resented in Figure 3.5a. For simplicity, this example only considers two feature dimensions (X and Y)

and two classes (A and B). The classifier receives test instances to classify, that is, to assign a class

given the information provided by the training set. Figure 3.5b shows an abstract representation of the

Canberra distances computed for each training instance, in respect to a received test instance. This fig-

ure includes the numbering of training instances, to keep track of their indexes when sorting distances.

Once distances are computed, the next step is to consider the decision boundary for classification. The

value of K determines the amount of instances participating in the prediction process. Moreover, K de-

fines the number of shortest distances to be retrieved. Figure 3.6a shows a naive example of using a

single neighbour for classification (K = 1). The closest training instance matches the predicted class

(Class A). Figure 3.6b assumes K = 3, thus the decision region is wider as three training instances are

considered to assess the class. This classification decision can be seen as a voting process of three

voters, where Class A receives one vote and Class B receives two. The most voted class is Class B.

30

Training instance
with Class A

Training instance
with Class B
Test instance

to be classified

Legend

Feature X

Feature Y

?

(a) Representation of training set and the test instance to classify.

4

6

3

1
2

10

8

7

9

Training instance
with Class A

Training instance
with Class B
Test instance

to be classified

Legend

Feature X

Feature Y

5 ?

Canberra distance

(b) Calculation of Canberra distances.

Figure 3.5: Example of an abstract representation of KNN’s training set and test instance. Computation of Canberra
distances between training and test instances.

4

6

3

1
2

10

8

7

9

Training instance
with Class A

Training instance
with Class B
Test instance

to be classified

Legend

Feature X

Feature Y

5 ?

K=1

(a) Classification decision assuming K = 1.

4

6

3

1
2

10

8

7

9

Training instance
with Class A

Training instance
with Class B
Test instance

to be classified

Legend

Feature X

Feature Y

5 ?

K=3

(b) Classification decision assuming K = 3.

Figure 3.6: Classification of the test instance using different values ofK. WhenK = 1, the nearest training instance
determines the predicted class (Class A). When K = 3, the three nearest neighbours vote for their registered class.
In this example, Class A has 1 vote and Class B receives 2 votes, so the predicted class is Class B.

3.2.3 Software implementation

The scarce open-source C/C++ solutions describing an EEG classifier led to the need of implementing

a custom version, taking as a reference repositories based on programming languages other than C.

The chosen implementation uses Python and is available on a public repository. This section explains

the main issues regarding the implementation of the KNN classifier.

Meaning of K parameter

To implement the KNN classifier, it is necessary to find the optimal value for its hyperparameter K.

This parameter determines the number of training instances that are voting for the final predicted class.

Typically, K takes odd values to avoid tied votes. Finding the optimal K implies to balance the effect

31

of bias and variance of training instances on classification decisions. Bias corresponds to the error

associated with the inclusion of multiple training instances to predict a class. Errors due to bias mean

that the decision took misleading assumptions from the training set. Variance is the error related to the

fluctuations of class values observed at training. Higher values of K lead to a scenario where votes

average the class values observed in the training set. The classification decision is thus significantly

biased by the K elements, where variance is low due to the high amount of voters. A low K value, with

few voters taken into account, leads to a high variance voting, highly sensitive to their class values, with

low bias from the training set.

Finding K is an essential task to be considered by the field of Bioinformatics, when developing al-

gorithms for manipulating biological data. The original implementation of the selected KNN classifier

considers K = 3. However, its supporting documentation does not include the reasons behind such

decision. To implement a generic classifier, capable of determining a broad range of closest instances,

it was settled that the classifier would be designed with a greater value of K. The reference database

(DEAP dataset) was used to identify suitable K values for accurate classification. The dataset composed

by 1280 instances was split into two slices: a training set containing 1024 entries (80%) and a test set

comprising the remaining 256 instances (20%). Multiple odd values assigned to K were tested and a

maximum accuracy of 41% for classifying emotions was obtained using K = 21. Therefore, the classifier

algorithm is set to assess up to 21 nearest neighbours of any test instance. Moreover, the main goal

of tuning the K parameter is to design an architecture prepared to execute the KNN algorithm under a

specific range of K values, without neglecting the classification accuracy. This methodology assumes

that the effectiveness of the algorithm is previously maximized during algorithm specification.

Implementation in C language

The software description implementing the KNN classifier uses Python and includes the instructions for

extracting EEG features from preprocessed signals, besides the KNN classifier. The repository takes

as reference input data the preprocessed version of the DEAP database. The classifier was isolated

from the complete implementation to be mapped into an equivalent C language version. A software-only

version of the KNN classifier was written in C from scratch featuring the tuned value of K = 21. During

the writing process it was made an effort to define instruction sequences potentially synthesizable into

Hardware Description Language (HDL). This caution facilitates the further step of designing dedicated

IP cores implementing the targeted algorithm.

3.2.4 Software application profiling

This section examines the algorithm in terms of complexity, performance and data handling, foreseeing

the upcoming implementation of an IP core.

The EEG classifier is expecting as input feature sets containing information about power spectrum

variations of each brain wave channel, for the major frequency bands. Considering 32 electrode chan-

nels and 5 frequency bands, each EEG trial comprises 32×5 = 160 features. Each feature value ranges

32

[0, 1]. Both test and training instances follow this protocol. Additionally, training trials are appended a

value representing the expected emotion class. On the other hand, the emotion class of test trials is

exclusively predicted by the classifier. Regarding data volume handled by the classifier, it is assumed a

training set similar to the presented by DEAP database. This means that 1024 instances are memorized

and an undefined number of test trials can be passed to predict emotions.

The classifier involves three steps – Canberra distances calculation, their corresponding sort and the

assessment of the modal class. Next paragraphs discuss their computation complexity.

Evaluating the shortest distances

During the process of predicting a single emotion, the computation of Canberra distances is performed

as many times as the training set size. Therefore, 1024 Canberra distances are determined. A single

test instance, containing 160 features, is paired to each one of the 1024 training instances, to compute

a Canberra distance.

The following step of finding the shortest values from the computed 1024 distances involves the

insertion sort algorithm. Such algorithm is advantageous to a solution where elements may be sorted

as soon as their values are successfully computed. The principle of insertion sort is to maintain an

array of elements sorted after each algorithm iteration. This means that an insertion is preceded by

the assessment of the precise position in the array where it will occur. In the best-case scenario, the

complexity of the algorithm is O(n), which means it has a linear running time. This case corresponds to

the state where the array is initially sorted. During the execution, the algorithm scans the array without

performing any insertions. One the other hand, the worst-case scenario corresponds to sorting an array

that is initially sorted in the opposite (ascending) order, with a quadratic running time (O(n2)). Each

insertion takes as many element comparisons as the amount of sorted elements.

Finally, it should be noted that, during the assessment of the shortest distances, the algorithm keeps

track of the arrival order of the computed distances to the sorting stage. This means that each distance

is assigned an index, ranging [0, 1023], corresponding to its position in the training set. This procedure

is fundamental to translate the nearest neighbours into votes representing emotion classes.

Emotion prediction: the discretization of the emotion classes

The emotion classification problem handles discrete classes, reducing the emotion domain to five emo-

tions. Recalling Russell’s cartesian model introduced in the previous chapter, an emotion is a combi-

nation of valence and arousal. Following the methodology proposed by the author of the Python KNN

classifier, valence and arousal dimensions are labelled according to their intensity level – low, medium

and high. These levels are equally spaced. The combination of the different dimension intensities leads

to nine potential emotions. Assuming that an emotion containing a dimension with medium intensity is

labelled as a neutral emotion, five distinct emotions can be mapped, according to the graphical repre-

sentation of Figure 3.7.

The mapping proposed in Figure 3.7 is debatable. On one hand, the neutral emotion prevails over the

33

Arousal

Valence

12

3 4
5

joyful

angry

content

depressing

neutral

Figure 3.7: Graphical representation of the five-emotion mapping. Blue area represents four different emotion
domains. Gray area corresponds to the neutral emotion.

remaining emotions. On the other hand, the map distinguishes few emotions considering the complexity

of human behaviour. Nevertheless, the classifier proposes to perform emotion detection within a range

of five labels. In the literature there are two main types of EEG systems. One uses typically up to

six EEG channels to detect four main emotions, corresponding to the four quadrants of Russell’s model.

More complete systems use over thirty channels, being able to detect more specific emotions. Detecting

emotions with higher discretization level, that is, distinguishing very detailed emotions, decreases the

prediction accuracy of the classifier. In the architectural point of view, once the discretization level is set,

the definition of valence and arousal boundaries is not critical. One purpose of this work is to implement

the EEG classifier in a generic way, such that it can be applied in different biomedical contexts.

Emotion prediction by the KNN classifier consists of a decision based on evidences of the training

set. An input test instance is assigned an emotion class after its comparison to the training instances

known beforehand. This comparison is materialized by the distances between instance neighbours.

Instances are identifiable by their order (index) in the training set. Once the most similar instances are

evaluated, an auxiliary array registers their respective indexes. Then, the emotion classes associated to

the selected instances are assessed. These classes act as votes for a specific emotion label. The final

stage of the algorithm finds the most voted class. The modal class is declared as the predicted emotion

of the input test instance.

3.3 High-level HW/SW architecture

The main goal of the thesis is to develop two IP cores dedicated to processing bio-signals. The tar-

get platform selected to implement such cores is the Zynq-7010 SoC, a SoC FPGA. This technology

combines both software and hardware programmability, provided by a dual-core ARM processor and

34

FPGA, respectively. The processor is located inside the processing system. The FPGA comprises

programmable logic blocks, namely:

• flip-flops (FF), that work as a simple storage unit, and alternate between two stable states;

• block RAMs (BRAM), dual-port random-access memory (RAM) modules that may store large sets

of data;

• look-up tables (LUT), which are small RAMs that store the truth table of a logical function;

• digital signal processor (DSP) blocks, that correspond to arithmetic logic units (ALU) containing a

chain of three different blocks (adders and multiplier), used to implement arithmetic functions.

These primitives can be configured and combined into more complex circuits, resulting in the IP cores.

The HW/SW design offers multiple advantages over microcontroller solutions. For instance, it adds

hardware acceleration to process large sets of data and optimizes the performance-per-watt ratio.

The methodology to be followed to design the IP cores starts by running software implementations

reviewed and selected in Chapter 2 to obtain reference results for each bio-sensor. More specifically,

preprocessed EEG features are classified by KNN, and PPG signals are processed by the peak detection

algorithm, as explained in the previous sections of this chapter. Software implementations of the selected

algorithms will be tested using signals available at public databases. This procedure allows to draw the

software profiling, which includes an analysis of algorithm complexity, sequence of function calls and

data structures dimensioning. Then, part of those algorithms is going to be implemented into hardware,

according to the previous profiling. The implementation is optimized in terms of latency, throughput

and hardware resources. The designed cores will be applied to accelerate the computations of signal

processing, taking advantage of SoC FPGA to improve the system performance. The development of

IP cores is done using Xilinx’s Vitis Unified Software Platform2, a package that includes three software

tools:

• Vivado High-Level Synthesis (HLS)3, where algorithm functionalities are implemented in high-level

descriptions written in C/C++, optimized and interpreted as hardware; the implementation is con-

verted into a Register Transfer Level (RTL) circuit and exported by the HLS tool into an IP core; the

RTL instance can be assembled into a design containing multiple blocks; in short, this tool simpli-

fies the process of designing a hardware circuit by providing an abstraction layer to the designer;

• Vivado Design Suite, that allows to integrate and connect multiple IP cores and other functional

blocks to the processing system; the complete hardware design can be exported into a Xilinx Sup-

port Archive (XSA) file, customized to a specific target platform, carrying the necessary information

to create embedded software;

• Vitis IDE, used to develop embedded software targeting the created hardware design, and to

deploy such application to a development board.

The high-level architecture of the proposed system is depicted in Figure 3.8. It includes an abstrac-

tion of the target platform, Zynq-7010 SoC, from which PS and PL regions are distinguishable. The

2Vitis Unified Software Platform webpage: https://www.xilinx.com/products/design-tools/vitis.html; accessed on 1st

June 2020.
3Vivado High-Level Synthesis webpage: https://www.xilinx.com/products/design-tools/vivado/integration/

esl-design.html; accessed on 1st June 2020.

35

https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

developed IP cores are incorporated inside PL and connected to the PS through AXI buses. A BLE con-

nection is included, to enable the transmission of processed data to an external device, where real-time

measurements may be communicated. A Double Data Rate (DDR) block represents an external mem-

ory where auxiliary information may be stored. Once the IP cores are designed, the next step will be to

consider the development board and the potential bio-sensors that will collect real data. An EEG sensor

collects analog signals, so AXI buses are required to connect the EEG device to the XADC module, the

Zynq’s ADC. A digital PPG sensor can be directly linked to the PS by Inter-Integrated Circuit (I²C). This

protocol uses a bidirectional bus with two signals: Serial Data Line (SDA) and Serial Clock Line (SCL).

PPG
IP core

EEG
IP core

Programmable Logic

Processing System

AXI AXI

XADC

AXI

PPG
digital sensor

I2CBLE
connection

EEG
analog sensor

SoC
board

DDR
Memory

Controller
DDR

Figure 3.8: Proposed system implementation.

The algorithm analysis described in the previous sections supports the parametrization of the pro-

posed system. Regarding the PPG IP core, the sampling frequency selected is 200 Hz. The algorithm

profiling demonstrated that, at this frequency, the system could detect distinct heart rates continuously

ranging between 40 and 120 bpm, approximately. Greater pulse rates up to 180 bpm are detectable,

without any exception, using higher sampling frequency of 500 Hz. Given that normal heart rates range

between 60 and 100 bpm, 200 Hz is sufficient in the context of the application. Section 3.1.3 showed

that 4.5 seconds of PPG signal are required to encapsulate at least three complete heart beats inside

a buffer. Using the selected sampling frequency, this duration corresponds to acquiring 200× 4.5 = 900

samples. Regarding the EEG core, it is aimed to implement the EEG classifier. An external memory

is required to store the training set containing 1024 instances known beforehand. These are compared

to unseen EEG features to identify emotions, executing the detection algorithm implemented by the

core. The classifier is prepared to receive instances comprising 160 features ranging [0, 1]. This amount

corresponds to information related to 32 electrodes.

36

Chapter 4

PPG and EEG IP cores

The proposed system has as foundation two IP cores for processing the signals acquired by bio-sensors

in real-time. These cores, denoted by ”PPG IP core” and ”EEG IP core”, take action in the assessment

of the user’s heart rate and emotional state, respectively. This chapter describes the process behind the

development of these cores, using Xilinx’s Vitis tools.

4.1 Development process and design techniques

The IP cores were developed using the Vitis tools and the design methodology involved is divided in

three steps, associated to a specific tool:

1. selection of functionalities to be incorporated inside the core. The software implementation is

adapted into a HW specification, taking into account, for instance, register initialization and man-

agement. The specification is written in the C/C++ language. If the behaviour is as expected, the

file can be exported as an RTL implementation, to be further incorporated as a Programmable

Logic (PL). This step requires Vivado HLS;

2. integration of Processing System (PS) with PL – synthesised IP core – and configuration of its

interconnections. Bitstream is generated and included in hardware platform export. This is accom-

plished using Vivado;

3. development of software projects, integrating the developed HW platform, in C language, using

Vitis IDE. A main software application passes data and instructions to the HW, retrieving data from

resulting computations. In this step the HW/SW co-project can be tested in a development board.

One of the benefits of this methodology is to take advantage of particular specifications provided by

the tools that facilitate the design process. HLS interprets C/C++ programming language to produce

hardware, and often the generic syntax is not sufficient to cover all hardware specificities. Therefore, it

is necessary to pass extra information to the HLS compiler. This is done via the #pragma statements,

which will be used in the implementation of the IP cores described in the next sections. For instance,

to define how RTL ports are created during synthesis (#pragma HLS INTERFACE), and to manage the

resources of the designed circuit (#pragma HLS ALLOCATION). The IP cores make use of two types of

37

AXI interfaces to connect to the Zynq’s processing system. The AXI4-Lite interface operates in simple

memory-mapped communications with low-throughput requirements [78]. The IP cores apply this inter-

face with a configuration (ap ctrl hs) that provides control signals for triggering the execution of the IP

cores and for checking their execution state. The AXI4-Stream interface allows high-speed transmis-

sions of data and provides validation flags to control the data flow [78]. The IP cores using this interface

are thus configured to deactivate the control signals (ap ctrl none). Finally, the implementation of the

IP cores considers the application of the pipeline technique (#pragma HLS PIPELINE), to execute oper-

ations concurrently. This allows to reduce both circuit’s critical path and latency, increasing the amount

of hardware resources consumed.

4.2 PPG IP core

The PPG IP core aims the execution of the necessary processing tasks over raw PPG signals to obtain

instant heart rate values. This section provides a comprehensive description of the process of designing

the core dedicated to PPG signals. The decisions made to select the most suitable solution are also

described.

4.2.1 Design and optimization

This section describes the first designed solution of PPG IP core, followed by its optimization process.

As new versions are presented, more algorithm functionalities are included inside the core. Therefore,

the very first version has low complexity, being progressively enhanced. The original implementation

of the algorithm selected for computing instant heart rates is written in C language. It follows a con-

ventional software architecture with sequential computations. Designing an IP core to handle the most

complex processing tasks requires an insight of the software behaviour, described in Section 3.1.2.

The approach to this design problem consists of analysing the algorithm’s mechanics and data flows,

identifying candidate functionalities to be integrated in a single function (core).

Version 0: software-only

A preliminary software version was tested to be used as reference. It was dimensioned to 100-sample

buffers, meeting the specifications of the provided dataset example. The first step of the methodology

was skipped, as no hardware was developed. The second step involved the PS only. During the third

step, execution time was measured.

Version 1: dot product

Analysing the C implementation, the tasks with most computational cost are the dot products between

two arrays. Also, these occur frequently throughout the code. As such, the first version of PPG IP core

consists of a single product between two floats. The interfaces declared in this version implementation

38

are defined in Listing 4.1, showing that function arguments are mapped to AXI-Lite registers. Next IP

versions also use this interface type by default.

Listing 4.1: Declaration and interfaces of PPG IP Version 1 core.

1 void PPG1 (float *a, float *b, float *c, int16 t *instr) {
2 #pragma HLS INTERFACE s axilite port=return bundle=BUS A
3 #pragma HLS INTERFACE s axilite port=a bundle=BUS A
4 #pragma HLS INTERFACE s axilite port=b bundle=BUS A
5 #pragma HLS INTERFACE s axilite port=c bundle=BUS A
6 #pragma HLS INTERFACE s axilite port=instr bundle=BUS A
7

8 // program continues...
9 }

This first IP core is called at different stages of the algorithm, and these occurrences are discrimi-

nated in Table 4.1, applied to the example of Figure 3.1a. There are four distinct functions that make use

of the core. Two of them, linear regression and mean square, are executed twice, because each one

processes a single channel (RED or IR) at a time. The Pcorrelation function computes the correlation

between both channels. The autocorrelation is generically calculated an undefined number of times,

as it depends on periodicity search routine. As explained during the algorithm analysis, the preprocess-

ing stage is applied to both RED and IR channels, regardless the system parameters, unlike periodicity

search, that calls autocorrelation function until detecting the signal’s peak.

Table 4.1: Number of PPG IP Version 1 function calls, applied to the 100-sample example of Figure 3.1a. Accesses
are given by the sum of writes and reads.

Function Writes Reads Accesses
a b instr do op c

1. linear regression 100 100 100 100 1 401
2. linear regression 100 100 100 100 1 401
3. mean square 100 100 100 100 1 401
4. mean square 100 100 100 100 1 401
5. Pcorrelation 100 100 100 100 1 401
6. autocorrelation 914 914 914 914 11 3667

Total 1414 1414 1414 1414 16 5672

The number of core accesses is the sum of write and read occurrences. ”Writes” include:

• a and b, the floats to be multiplied;

• instr, an integer that specifies register initialization or register incrementation;

• do op, a flag that indicates the end of input passing, firing the core computation.

The meaning of the values taken by variables a and b, in the context of each function, are explicit in

Table 4.2. ”Reads” come down to c, which represents the returned value by the core, in this case the

accumulator of products between a and b. There is also a validation flag, c vld, for announcing that c is

ready to be read, whose accesses are not counted.

Version 2: array dot product

Version 2 features the dot product between two arrays, instead of two single numbers. This allows to

reduce the number of IP accesses, one of the main goals of this optimization process. As seen in

39

Table 4.2: Data flow of variables passed to the IP. ”sample” stands for a raw bio-signal value, while ”feature” denotes
a preprocessed sample; tmean means a shift value applied to the samples, as explained in Chapter 3.

Function a b

1. linear regression {−tmean, ..., tmean} IR sample
2. linear regression {−tmean, ..., tmean} RED sample
3. mean square RED feature RED feature
4. mean square IR feature IR feature
5. Pcorrelation IR feature RED feature
6. autocorrelation IR feature IR shifted feature

Listing 4.2, variable instr is no longer required. In fact, the management of register initialization and

incrementation is done inside the core. Also, the data flow of IP input variables is similar to the presented

in Table 4.2.

Listing 4.2: Declaration of PPG IP Version 2 core.

1 void PPG2 (float a[BUFFER SIZE], float b[BUFFER SIZE], float *c);

Following the procedure of Version 1, the IP accesses related to Version 2 are registered in Table 4.3.

Total number of IP calls has decreased from 5672 to 3232.

Table 4.3: Number of PPG IP Version 2 function calls, applied to the 100-sample example of Figure 3.1a.

Function Writes Reads Accesses
a[] b[] do op c

1. linear regression 100 100 1 1 202
2. linear regression 100 100 1 1 202
3. mean square 100 100 1 1 202
4. mean square 100 100 1 1 202
5. Pcorrelation 100 100 1 1 202
6. autocorrelation 1100 1100 11 11 2222

Total 1600 1600 16 16 3232

Version 3: a more efficient usage of PPG IP Version 2 core

The IP calls of the previous version can be optimized, taking into account that duplicated data is naively

being passed. Analysing carefully the data flow of Table 4.3, some values do not need to be overwritten:

at second call of linear regression function, Pcorrelation and autocorrelation functions. In these

cases, the values passed to a[] were already transferred in the preceding operations. As such, a more

efficient usage of Version 2 is suggested in Table 4.4.

Version 4: new approach to instruction variable

From analysis of the results from the previous implementation it was found that the number of IP calls can

be significantly reduced. A new version recovers the concept of instr variable, to distinguish operations

to be executed. This way, the complexity of IP specification increases, however its access decreases.

Considering the data flow obtained using Version 3, one can notice some room for improvement. In fact,

40

Table 4.4: Number of PPG IP Version 3 function calls.

Function Writes Reads Accesses
a[] b[] do op c

1. linear regression 100 100 1 1 202
2. linear regression 0 100 1 1 102
3. mean square 100 100 1 1 202
4. mean square 100 100 1 1 202
5. Pcorrelation 0 100 1 1 102
6. autocorrelation 0 1100 11 11 1122

Total 300 1600 16 16 1932

the sequence at which data is written to a[] and b[] compromises the effectiveness of suppressing

duplicated data. To overcome this, Version 4 provides a set of dot product combinations, allowing the

main application to execute them interchangeably. As such, given two memory data, a[] and b[], it is

possible to compute the following products: of an array itself (a · a or b · b); both arrays (a · b); or an array

and its shifted copy (a ·a′). The product combinations of type a ·a (or b ·b) and a ·b allow to manage more

efficiently the sequence of data passed to the IP. The product between an array and its shifted copy is

useful to calculate autocorrelation. As a consequence of the flexibility of multiplication operands, IP data

is managed by the sequence of Table 4.5.

Table 4.5: Data flow of variables passed to the IP Version 4, where a′ denotes the shifted copy of a; tag hold means
that the content of a variable at a given instruction is not changed, reusing the previous assigned value.

Function a[] b[] instr

1. linear regression {−tmean, ..., tmean} IR samples a · b
2. linear regression hold RED samples a · b
3. mean square hold RED features b · b
4. mean square IR features hold a · a
5. Pcorrelation hold hold a · b
6. autocorrelation hold hold a · a′

Table 4.6 summarizes the result of the optimization. As seen, the improvement is notable, thanks to

the management of the data written to the IP’s arrays. The autocorrelation function does not require any

modification of the values stored in a[] and b[]. Their content is maintained since the second execution

of the mean square function, as stated in Table 4.5. The absence of writes before the execution of

autocorrelation, the most called function of the algorithm, reduces the number of IP interactions. In

other words, the reuse of data values by a[] and b[] reduced the number of accesses, despite the

reintroduction of the instr word.

Versions 5, 6 and 7: integration of preprocessing functions

Analysing closely the sequence of IP calls alternating with software instructions, the possibility of encap-

sulating functions of Table 4.6 inside the core arises. Ultimately, these may be all executed by a single

instruction. This step is divided into three sub-multiple problems, consisting of the cumulative integration

of:

41

Table 4.6: Number of PPG IP Version 4 function calls.

Function Writes Reads Accesses
a[] b[] instr do op c

1. linear regression 100 100 1 1 1 203
2. linear regression 0 100 1 1 1 103
3. mean square 0 100 1 1 1 103
4. mean square 100 0 1 1 1 103
5. Pcorrelation 0 0 1 1 1 3
6. autocorrelation 0 0 11 11 11 33

Total 200 300 16 16 16 548

1. linear regression, mean square and Pearson correlation functions (Version 5);

2. DC subtraction routine (Version 6);

3. DC mean computation task (Version 7).

These three core versions share a common ground of providing two instructions, so that instr has only

two meanings: execution of preprocessing tasks (which depend on the version) and autocorrelation cal-

culation. As operations are included inside the preprocessing instruction, constant values are required

to perform those calculations. Therefore, additional accesses are carried to pass values as parameters.

These versions differ in the meaning and number of auxiliary transferred values. Version 7 achieves

the ideal scenario of executing all preprocessing tasks using hardware in a single instruction. Autocor-

relation function is executed separately, and repeatedly called by a control logic in software. In short,

Version 7 aggregates 241 accesses:

• 200 of which fill buffers a[] and b[];

• 3 are dedicated to auxiliary input parameters, for preprocessing;

• 12 specify the instructions (1 for preprocessing, 11 for autocorrelation);

• 12 trigger the operations;

• 14 retrieve output parameters (3 for preprocessing, 11 for autocorrelation).

This way, the process of integrating tasks with high computational cost inside a hardware core is com-

pleted.

Wordlength optimization: use of fixed-point representation

Once the functionalities embraced by the core are set, a process of optimizing the wordlength begins.

The purpose of this optimization is to define a finite data resolution, such that the resulting error –

the difference between exact and optimized values – is acceptable for a given context. Every variable

dimension must be specified, as the ultimate goal is to design an optimized hardware solution. Allocating

specific wordlengths to variables leads to a discrete range of their assigned values. An advantage of this

process is to find the optimal balance between both system precision and required hardware resources.

Most variables declared in the software implementation, of type float, are now represented by fixed-

point. Initially, bit resolution is assigned such that every intermediate calculation matches the exact value.

Then, resolution bits are gradually discarded and the resulting precision is evaluated. Attending to this

42

analysis, an error metric is set and one of the assessed versions is chosen accordingly to parametrize

the final PPG module of the system.

Until Version 7, an example buffer containing 100 PPG samples has been used as reference. How-

ever, Section 3.3 introduced the high-level architecture of the system, stating that 900 samples were

necessary to compute the heart rate of a 4.5-second sampling. The amount of samples can be rounded

to the nearest power of 2, so that all system variables are dimensioned more appropriately. Therefore,

the PPG core will handle buffers containing 1024 samples each.

The fixed-point notation allows to represent a real number with a specific amount of fractional bits

and integer bits. In this notation is implicit a binary point dividing both parts, similar to the decimal point

used in decimal numbers. In HLS, a variable is represented by fixed-point notation as <W,I>, where

W identifies the total number of bits and I specifies the number of bits of the integer part. The number

of fractional bits corresponds to the difference W-I. In brief, the methodology consists of designing, at

first, the pessimistic version that leads to null wordlength conversion errors. This version is taken as

reference from which the number of bits is reduced. This means that every variable is initially assigned a

wide number of bits, determined by holding the precision of the arithmetic operations between variables.

For instance, a product between two 10-bit variables should be stored as 20-bit. Resuming the notation

of IP versions begun in previous sections, this preliminary core using fixed-point is called Version 8.

Each IP’s internal variable is identified and dimensioned in Table A.1, of Appendix A, and a shortened

representation of this table is provided by Table 4.7. The column ”V8” corresponds to the pessimistic

version, where no fractional bits are discarded, and is followed by further versions presented next in this

section.

Regarding the integer part of a variable, it is necessary to determine the minimum and maximum

values each variable may carry. As such, datasets were tested and additional data was synthesised

to evaluate each variable’s range. Synthetic data was obtained modifying a subset of real PPG signal,

as described next. Several operations were applied, such as multiplication/division by constants, and

duplication/suppression of samples. The purpose is to obtain a wide collection of signals with extreme

values of frequency and amplitude. This procedure is useful to assess the range of values the system

must support. More concretely, signals with very low and high frequencies, covering pulses between

40 bpm and 180 bpm; signals presenting different AC component variations; signals whose amplitudes

range every order of magnitude tolerated by PPG sensor. In this particular case, the sensor provides

16-bit unsigned integer values, so amplitudes range from 0 up to 216 − 1 = 65535.

After the analysis of minimum and maximum values, a new version V9 was developed. The resolution

is reduced, but optimized, where each variable holds at least 12 fractional bits. Then, four additional

versions were created – V10, V11, V12 and V13 –, where most variables were provided 8, 4, 2 and 0

fractional bits, respectively. Table 4.7 provides two examples of variables that are assigned a different

number of bits at each version. The dimensioning obtained by applying this procedure to each internal

variable, when possible and depending on the meaning of the values stored, is listed in Table A.1. The

evaluation of the impact of progressively neglecting the arithmetic precision, by reducing the wordlength,

is discussed in Section 4.2.2.

43

Table 4.7: Dimensioning of the PPG IP core internal variables, with different wordlengths. Variables are represented
by fixed-point notation, <W,I>. W denotes the wordlength and I the number of integer bits. Six versions are
considered, varying in the number of bits dedicated to variables’ fractional part. An extended view of this table is
provided by Table A.1.

Variable V8 V9 V10 V11 V12 V13

prod <69,36> <38,26> <34,26> <30,26> <28,26> <26,26>
regC <79,46> <42,30> <38,30> <34,30> <32,30> <30,30>

number of fractional bits 33 12 8 4 2 0

Data stream: use of AXI-Stream protocol

Until this stage, data transfers to the IP have been made element by element, through AXI-Lite memory

mapped protocol. A more convenient way of transferring is addressed in this section, by proposing a

stream-based IP design. Streaming interface is an unidirectional channel from a master to a slave, so

writes and reads are done in separate mediums [78]. The AXI4-Stream protocol is now considered,

where data is sent sequentially, referred to the first sample. Stream is operated through a set of a

pre-dimensioned data structure, in this case called ap axis and discriminated in Listing 4.3, which also

includes the definition of AXI interface.

Listing 4.3: Declaration and interfaces of PPG IP Version 14 core.

1 struct ap axis {
2 ap int<64> data;
3 ap uint<1> last;
4 };
5

6 void PPG14 (hls::stream<ap axis> &strm in, hls::stream<ap axis> &
strm out) {

7 #pragma HLS INTERFACE ap ctrl none port=return
8 #pragma HLS INTERFACE axis port=strm in
9 #pragma HLS INTERFACE axis port=strm out

10

11 // program continues...
12 }

According to the specification, a 64-bit channel is considered, which means that each burst of this pro-

tocol is interpreted as containing 8 Bytes of data. Variables of Table A.1 marked with bold represent

data exchanged through IP core interfaces. Input data is referred to the top two rows, while output data

returned by the core corresponds to the bottom bold rows. Taking into account that, in Version 13, most

variables are less than 32 bits long, they may be paired and sent in a single 64-bit burst. Particularly,

four 16-bit samples of raw input data can be encapsulated into one package.

Finally, the process of core design is concluded. The presented versions are evaluated in the next

section, where the reasoning behind the selection of the preferable one is clarified.

4.2.2 Design evaluation

This section summarizes the evolution of IP accesses over the first seven proposed designs. Then,

timing results obtained by running these versions in a FPGA are detailed. An error analysis of the

fixed-point cores is discussed, from which the most advantageous solution is selected.

44

Evolution of IP accesses, versions V1-V7

The cumulative incorporation of functionalities inside the core, namely the ones discriminated in Ta-

ble 4.6, reduces the total accesses to the IP core. The evaluation of IP core interactions is summarized

in Table 4.8.

Table 4.8: Summary of the number of PPG IP accesses, from Version 1 (V1) to Version 7 (V7). Accesses are
discriminated into preprocessing (functions 1-5 of Table 4.6) and periodicity (function 6) stages. Total accesses
comprise total writes and total reads. Improvement ratio is calculated dividing total accesses of a given version by
its preceding one.

Version Total writes Total reads Total Improvement
Preprocessing Periodicity Preprocessing Periodicity accesses ratio

V1 2000 3656 5 11 5672 n. a.
V2 1005 2211 5 11 3232 1.75
V3 805 1111 5 11 1932 1.67
V4 510 22 5 11 548 3.53
V5 204 22 3 11 240 2.28
V6 206 22 3 14 245 0.98
V7 205 22 3 11 241 1.02

Analysing the ”Improvement ratio” column, the two highest values – 3.53 and 2.28 – can be seen

as prominent design enhancements. In fact, the first one marks the simplification of autocorrelation

provision. The second one shows the gain of including preprocessing tasks inside the core, reducing

drastically IP writes in 56%.

Timing results obtained by IP versions V1-V7

The developed cores are now compared to the software baseline in terms of execution times, running in

the FPGA. Figure 4.1 shows the elapsed time of processing a 100-sample buffer, considered in previous

sections, distinguishing the stages of preprocessing and periodicity search. The software version is run

using only the processing system of the SoC.

The inclusion of functionalities inside the core clearly decreases the execution time. The ratio be-

tween Version 7 and SW is 2.34, suggesting a room for further improvement using wider buffers.

Error analysis of IP versions V8-V13

Fixed-point cores vary in the number of bits dedicated to represent the fractional component of its vari-

ables. Precision of arithmetic operations differs and thus an error analysis is convenient to evaluate the

impact of precision loss throughout the calculation process. The variables declared inside each core

implementation, listed in Table A.1, are considered. Also, from the subset of synthetic data produced

as described in Section 4.2.1, five sets containing 1024 samples each were selected. This way, these

buffers are processed by the fixed-point cores, versions V8-V13, and the values carried by each variable

are registered.

At a first glance, the relative errors – given by the difference between observed and expected SW

values, divided by the latter – are analysed. Figure 4.2 depicts the maximum relative errors observed

45

Execution times of processing a 100-sample buffer
by V1-V7 cores, compared to SW baseline

46
89

433

1182

292

841

246

711

191

311

95

214

99

209

100

209

SW V1 V2 V3 V4 V5 V6 V7

Version

0

200

400

600

800

1000

1200

E
la

ps
ed

 ti
m

e
[

s]

Preprocessing
Periodicity

Figure 4.1: Execution times of versions V1-V7, compared to the SW baseline, after processing a 100-sample buffer.

at IP-returned variables, after processing five different sets by each core version, relatively to SW. It

also traces the value range that each variable carries, in green lines, useful to interpret the impact of

relative errors on the resultant values. This graphic confirms that, removing fractional bits, the relative

Maximum relative error of values returned by V8-V13 cores,
after processing five different sets, relatively to SW baseline

sumsq prePcorr sqprod aut

IP-returned variables

10-10

10-5

100

105

1010

1015

1020

V8
V9
V10
V11
V12
V13
vars range

Figure 4.2: Maximum relative error observed after processing five 1024-sample buffers by the fixed-point cores.
The sets comprise: S1 (real PPG data, from which the next sets were synthesised; observed HR is 85 bpm);
S2 (obtained by dividing each S1’s sample by a constant; signal with very low amplitude; HR is 85 bpm); S3
(multiplication of each sample by a constant; signal with very high amplitude; HR is 85 bpm); S4 (sample replication;
HR is 40 bpm); S5 (sample removal; HR is 171 bpm).

error increases. The heart rates computed by fixed-point cores match the obtained by SW version, so

the errors did not affect. Relative errors are higher at autocorrelation variable, aut, followed by sq prod.

The latter is an auxiliary variable returned by the core to the software side, by which its square root is

calculated. Taking into account that sq prod’s values range over tens of thousands, a loss of fractional

precision is acceptable. On the other hand, errors related to aut are more significant. As this variable

46

is requested during periodicity search, errors can be briefly assessed by the sequence of iterations of

this process. This means that if the algorithm computes autocorrelation values at the same delays as

the SW version, by the exact order, the search routine is done correctly. An error during this process

may lead to a period detection from the erroneous delay point. In fact, there is an error margin for each

iteration, given by the difference between the autocorrelations of consecutive delays, that is, points of the

autocorrelation function. Errors may be discarded if less than that margin, for the purpose of periodicity

search. This criteria was validated during the processing tests of the selected sets. Also, a note on

the other returned variables. The value of sumsqIR, ranging from tens to tens of thousands, is further

used to divide values of autocorrelation. Thus, in the context of relative error depicted on the bar graph,

fractional bits may be rejected. This is also valid to prePcorrel, whose values are used to compute

ratios as well.

Overall, the impact of these errors does not perpetuate throughout the algorithm execution, consid-

ering the selected test sets. Heart rate values are correctly computed by the fixed-point cores. The least

conservative core, Version 13, is a good candidate to be responsible for PPG signal processing and to

integrate the final system. A more concise validation test is though required to confirm its performance

and accuracy.

4.2.3 Design validation

To assess the accuracy of heart rate detection by the designed solutions, a large dataset of real PPG

data was required. The 2015 IEEE SP Cup competition database [59] was chosen, containing wrist-type

signals. This dataset includes records of eight subjects performing physical activities, namely walking

and running. This is advantageous to evaluate the algorithm sensitivity to motion artifacts. Data was

sampled at a frequency of 125 Hz, using a green LED, and split into 1000-sample sets, corresponding to

8-second frames. The ground truth values for heart rate of these sets have been determined sliding the

window by 2 seconds, using ECG. Given that cores have been designed to handle 1024-sample buffers,

the dataset was interpreted as slices with this dimension, resulting in 1324 sets. The validation test

assumes that heart rates obtained for 1000 samples are identical to the computed from 1024 samples.

The dataset was processed by the SW version and the optimized cores. The comparison between SW

and core results is summarized in Table 4.9.

One can notice that versions V8-V11 register results similar to the ones obtained by the SW base-

line. Version V12 presents a false positive in respect to SW baseline. In version V13, there are only

seven contradictions: two false positives and five different values. The first case means that this core

outperformed the SW, being able to detect a valid heart rate, rather than the SW version. These events

occurred thanks to the rounding of the value of a quality criteria, the autocorrelation ratio, where SW

computed 0.49 and the core 0.5. Therefore, this buffer was discarded by the SW version, but validated

by the core. The second case, mismatch values of an average 1.6 bpm, relates to precision loss during

autocorrelation peak detection.

Next, a comparison to the ground truth values is addressed. The SW version did not compute valid

47

Table 4.9: Comparison between the results obtained by SW-only and optimized cores. ”Positives” mean that cores’
results comply with SW’s, while ”negatives” mean the opposite; accuracy is the positive rate. ”FP” stands for ”false
positive”, corresponding to cases where SW does not return a valid heart rate, but the core does. ”FN”, a ”false
negative”, is the vice-versa. ”Diff. val. ” is the short form of ”difference values”; represents the occurrences of
when both cores return a valid heart heart differing to one another. In those cases, the average absolute error is
appended.

Version Positives Negatives Accuracy FP FN Diff. val. Avg. abs. error [bpm]

V8 1324 0 1 0 0 0 0
V9 1324 0 1 0 0 0 0
V10 1324 0 1 0 0 0 0
V11 1324 0 1 0 0 0 0
V12 1323 1 0.999 1 0 0 0
V13 1317 7 0.995 2 0 5 1.6

heart rate values corresponding to all 1324 instances, due to algorithm characteristics. In fact, only

35% of them can be compared to the exact values provided by the dataset. The bar graph depicted

on Figure 4.3 represents the absolute error of the computed heart rates, referred to the dataset ground

truth. Six distinct intervals are defined to distribute the occurrences of different error proportions. This

Absolute error of heart rate obtained by V8-V13 cores
relatively to dataset's ground truth

[0,3]]3,5]]5,10]]10,20]]20,50]]50,112]

Absolute error [bpm]

0

50

100

150

O
cc

ur
re

nc
es

V8/V9/V10/V11
V12
V13

Figure 4.3: Absolute errors obtained by fixed-point cores when processing real PPG database. Versions V8-V11
presented identical results, therefore they appear merged in a single category.

figure shows that the compared versions present similar absolute errors of the computed heart rates.

Therefore, precision loss over the fixed-point versions does not interfere much with the final result. More

specifically, and according to the information provided by Table 4.9, version V13 obtained seven results

differing from the SW baseline, out of 1324 comparisons. This means that the discarding of the fractional

bits by version V13 led to an accuracy loss of 0.5%, when compared to the conservative version V8. A

simpler core design, rejecting fractional bits, like V13, is seen as the solution that minimizes the hardware

resource usage.

48

Resources utilization

The process of designing the core takes into account the resources available in the targeted platform.

If the required resources exceed the maximum available on the device, the designer must perform ad-

justments to reduce hardware occupation, or select a more resourceful device. The Zynq-7010 SoC

resources to be occupied by the PPG IP core are listed in Table 4.10. DSP is the most consumed re-

source, which is related to the fact that PPG signal preprocessing stage is entirely executed inside the

core.

Table 4.10: Estimated resources to be used by the PPG IP core, referred to the Zynq-7010 SoC.

Resources Available Utilization

LUT 17600 1943 (11%)
FF 35200 1527 (4%)
BRAM 120 4 (3%)
DSP 80 16 (20%)

4.3 EEG IP core

The objective of creating the EEG IP core is to perform classification of EEG signals in hardware, with-

out intervention from the CPU. The KNN classifier comprises three main tasks. The first one is the

Canberra distances computation, the second one is sorting the computed distances and the third one

is the translation of the shortest distances into a predicted emotion. Taking into account the profiling

analysis of the KNN classifier, the candidate tasks to be integrated into a hardware specification are the

calculation of distances between test and training instances and the retrieval of the K shortest values.

The assessment of the emotion class does not execute significant processing tasks, and thus it may be

assured by software-only instructions. This section addresses the implementation of the module that

receives instances of feature sets to output the K nearest ones.

4.3.1 Design concept

Design methodology is similar to the presented in Section 4.2.1 for the PPG IP core. Therefore, the

optimization process is explained more briefly, rather than described step by step as previously.

The approach to tackle this problem is to develop two independent IP cores implementing the previ-

ously identified tasks. A first one for distances computation and a second one for sorting the distances.

Another possible approach would be the development of a single IP core where the distances between

points are sorted as they are computed. However, this would create complex nested loops, increasing

the latency of the core, and decreasing the throughput. Moreover, it would be impractical to use pipelin-

ing as operations have to compute values iteratively, or in other words they can not operate continuously.

In the architectural point of view, iterations should be executed in parallel, taking advantage of the hard-

ware resources available, and requiring less clock cycles to completion. By designing a dedicated core

for each task assuring that pipeline is feasible, cores accept new data on their inputs per clock cycle.

49

In other words, it is guaranteed that each core has unitary initiation interval. Thus, once the pipeline is

filled, cores’ outputs are produced each clock cycle. The process of designing the IP cores lies on the

optimization of their throughput. This achievement is crucial given the volume of data each core handles

to obtain a classification or numerical result.

Approach to implement the IP cores

A first strategy to implement the distances calculation task is to provide the training set to the core, and

memorize it, so that every test instance is then passed and a distance computed and returned, sequen-

tially. However, the storage of the training set is not feasible, due to limitations on the amount of on-chip

memory available. The Zynq-7010 SoC contains 120 BRAMs, embedded dual-port memories, holding

18K bits each. This means that a single SoC supports up to around 70K 32-bit values. This amount

may not be enough to store a training set inside, since the model must memorize sufficient instances

to successfully generalize upon unknown ones. For instance, assuming each instance comprises 160

features implies that the on-chip memory stores less than 440 entries. An alternative approach is to

first provide the test set to the IP core, storing it in a BRAM. Then, pass each instance of training set,

sequentially, which is previously initialized in an external memory. A distance is thus produced at the

rate training instances are transferred. This solution is a more generic way to handle large training sets,

since the usage of an external memory provides scalability over on-chip memory. In short, this is the

operation of the first EEG core, hereinafter referred to as EEG CALCDIST. Next paragraph addresses the

second piece, named EEG SORTDIST core.

Connecting EEG CALCDIST’s output to the input channel of EEG SORTDIST core enables the execution

of an insertion sort algorithm as distance values are produced. This algorithm is advantageous to sort an

array as its elements are received, despite performing less efficiently when compared to more advanced

algorithms, such as quicksort. Informally, insertion sort is equivalent to sorting playing cards in one’s

hands. The idea is to constantly keep an array in sorted order. Before pushing a new element, the array

position (index) where it will be placed is assessed. Then, the already sorted elements at the right of the

targeted index are moved, leaving a space for inserting the new element. As such, the sort distances

core initializes two local memories: near, to store the K shortest distances, and indexes, to save the

order at which those distances arrive at the core. The value of K is defined by the analysis of algorithm

profiling in Section 3.2.3, where was concluded that K = 21 led to more accurate classification results.

The number of indexes returned is customizable but limited to K, as explained next. After initialization,

the core is ready to accept data.

4.3.2 Implementation of distances calculator core

A preliminary version of EEG CALCDIST IP core is dimensioned to handle 64-bit values, meaning that

every feature, ranging between 0 and 1, follows the Q1.63 fixed-point format – having 1 integer bit and

63 fractional bits. This dimension was chosen given the fact that it is expected to use a 64-bit width

channel for data transfers through AXI Streaming. Then, additional versions supporting input values

50

with less precision were developed. In summary, four versions were considered, handling:

• 64-bit words, using Q1.63 fixed-point format, where a single feature is sent per transfer;

• 32-bit words, using Q1.31 fixed-point format, where 2 features are wrapped per transfer;

• 16-bit words, using Q1.15, and carrying 4 features per transfer;

• 8-bit words, using Q1.7, and carrying 8 features per transfer;

• 4-bit words, using Q1.3, and carrying 16 features per transfer.

Reducing words’ precision allows to transfer more data in a single data transfer, thus decreasing the

number of memory accesses and speeding up the execution of the algorithm. However, a less precise

system is more vulnerable to computational errors, misleading classification results. Accuracy and per-

formance of the aforementioned versions are summarized and compared in Section 4.3.4. The analysis

shows that transferring values more compactly, and thus requiring less clock cycles, pays off precision

losses. Hereafter, the second-least conservative version, that uses 8-bit words, is selected to be opti-

mized. The reasons behind this decision are explained in Section 4.3.4.

Interfaces

EEG CALCDIST core is declared as shown in Listing 4.4. Its interfaces comprise an input AXI4-Stream

channel of 64 bits (ap axis64) and an output AXI4-Stream channel of 16 bits (ap axis). The input channel

passes up to 8 features, with Q1.7 fixed-point format each, per transfer, which makes a total of 64 bits.

Given that features vary between 0 and 1, and Canberra distances can be seen as sums of 160 features

per instance, those distances are less or equal to 160. As such, 8 bits are needed to represent the

integer part of distance values, the output channel. Fractional bits are also dimensioned to 8 bits.

Although features contain only 7 fractional bits, 8 are used to round up the data width of output stream

to 16 bits. Thus, output channel produces a 16-bit distance per transfer, in Q8.8 fixed-point format.

Listing 4.4: Declaration and interfaces of EEG calculate distances core.

1 void EEG CALCDIST(hls::stream<ap axis64> &strm in, hls::stream<
ap axis> &strm out){

2 #pragma HLS INTERFACE ap ctrl none port=return
3 #pragma HLS INTERFACE axis port=strm in
4 #pragma HLS INTERFACE axis port=strm out
5

6 #pragma HLS ALLOCATION instances=udiv limit=8 operation
7

8 // program continues...
9 }

Core operation

The operation of EEG CALCDIST core is depicted in the block diagram of Figure 4.4. This high-level circuit

includes the essential elements that compose the datapath, such as memory registers and operators.

The module that computes Canberra distances is simplified by a green box named Canberra. The

diagram allows to visualize the data flowing from incoming stream channel down to the output port.

Figure 4.5 shows the expected data to arrive at input stream channel, but also the produced data by the

core, over time. First, a test set (orange) is passed, followed by training set (yellow). Distances (green)

51

are outputted as instances of the training set are received and processed.

Canberra ... (x8)
(x8)

+

distance

DEMUX1

stream
IN

training test

Canberra

stream
OUT

8

64

...

(x20)
......

MUX1

ctrl1

ctrl2

ADD1

/ 64

/ 64 / 64

/ 8 / 8 / 8 / 8

/ 16

/ 8

Figure 4.4: Block diagram of calculate distances core.

Canberra boxes implement the logic written in Listing 4.5. It consists of the computation of a partial

distance between two features. In other words, given two arrays, x and y, a partial result is the distance

between xi and yi, regarding a specific arrays’ dimension i. To obtain a Canberra distance, this box

must iterate over two complete test and training arrays. Then, the final result is the sum of all terms.

52

64x20
bits

64x20x1024
bits

16x1024
bits

execution
time

stream
OUT

stream
IN

Figure 4.5: Data flow of calculate distances EEG core, through AXI4-Stream ports, over time.

Listing 4.5: Pseudo-code of Canberra block.

1 input : fea tureTest , f e a t u r e T r a i n i n g

2 output : p a r t i a l D i s t a n c e

3 begin

4 num ← | f ea tu reTes t − f e a t u r e T r a i n i n g |

5 den ← f ea tu reTes t + f e a t u r e T r a i n i n g

6 i f den = 0

7 p a r t i a l D i s t a n c e ← 0

8 else

9 p a r t i a l D i s t a n c e ← num / den

10 end

11 return p a r t i a l D i s t a n c e

12 end

The high-level description of the core of Figure 4.4 has been implemented in C/C++ language, to be

synthesized into hardware. It includes the following steps:

1. a loop for reading test set features via an AXI4-Stream channel of 64 bits; loop has 160
8 = 20

iterations, assuming 160 features per instance and 8 features of 8 bits per transfer; data is stored

in a 64-bit BRAM;

2. a major loop for reading training set features through the same AXI channel, with 1024×20 = 20480

iterations, assuming a total of 1024 training instances, read in packages of 8 values each time;

(a) computation of the remainder of major loop index divided by 20, useful to perform control

instructions later on;

(b) an inner loop that iterates over the received 8 training features to compute the Canberra

distance between those training and corresponding 8 test features; this is a partial result that

needs to be appended to a register;

(c) a control instruction that initializes an accumulator register to 0, if the auxiliary remainder

matches 0, indicating the consumption of a new training instance;

(d) an inner loop that iterates 8 times to increment the register with the computed partial dis-

tances; after 20 major loop iterations, the register holds a complete Canberra distance;

(e) a control instruction that assesses the auxiliary remainder; matching 19 implies that previ-

ous inner loops completed 20 series, and thus a Canberra distance between test-training

instances is produced; if so, the distance value (16 bits) is written to an AXI4-Stream channel,

to be later consumed by EEG SORTDIST core; otherwise, the major loop is still computing a

53

partial Canberra distance.

Notes on the design techniques

The design of the EEG IP core applies particular techniques besides the ones presented in the beginning

of the chapter. The declaration in the sixth line of Listing 4.4 (#pragma HLS ALLOCATION) sets a limit on

resource allocation. This pragma allows to balance the resources and the performance, by restricting

the amount of instances of an operator in the RTL. In this case, the limited operator (udiv) is used in the

division computed inside the Canberra block, represented by a green box in Figure 4.4, as seen in line

9 of Listing 4.5. The Canberra block is instantiated 8 times, thus 8 udiv operators are sufficient.

The instructions that calculate Canberra distances are implemented by a spare high-level function,

Canberra(), which is called repeatedly, in the software point-of-view. In the hardware perspective,

multiple Canberra blocks are instantiated, so that distances can be computed in parallel. This way, re-

source allocation is extended to Canberra() thanks to an additional pragma defined inside: #pragma

HLS INLINE. This tag allows to remove function hierarchy, so that hardware resources are better shared

between Canberra() and its main function, EEG CALCDIST(). This means that resource allocation spec-

ified inside the main function is inherited by its sub-function, in this case Canberra(). The allocation of

8 dividers has arisen from the need for limiting this amount to the same number of parallel instances

that compute Canberra values, which is 8. By default, HLS tool increases latency if pipeline is applied

without any resource allocation, when unrolling internal loops, compromising the task scheduling. Loop

unrolling means to optimize the sequence of instructions inside a loop with a predetermined amount of

iterations.

Finally, the #pragma HLS PIPELINE statement was applied inside the major loop that receives collec-

tions of training features. This corresponds to step 2 of the high-level description explained previously.

This pragma allows the execution of instructions in pipeline. This way, each time a collection of 8 samples

is read, a pre-sum of Canberra distance is computed in parallel, without waiting for reading a complete

training example.

Latency estimation

It is crucial to guarantee the pipelined execution of the core’s tasks. Before the implementation of the

proposed core, it is necessary to define the performance requirements. As so, the estimation of the clock

cycles required to compute all output values can be drawn. To determine the latency of EEG CALCDIST,

the system producing Canberra distances at full capacity is considered. In other words, a single test

instance is paired with a set of 1024 training rows, so 1024 Canberra distances are produced. Assuming

that 8 features are transferred per cycle, and having in mind that each instance contains 160 values, it

takes:

• 160
8 = 20 cycles to read the test set;

• 1024× 160
8 = 20480 cycles to read the training set.

Therefore, 20500 cycles are needed to read the incoming data. Supposing that the design allows

54

pipeline, such that the core accepts new data every clock cycle (initiation interval is unitary), the de-

sign latency is expected to be 20500 cycles, plus the cycles to fill the pipeline.

Design optimizations

The core description was obtained after several design iterations. Such iterations included design opti-

mizations to reduce latency and loops’ complexity, and they are described in next paragraphs.

Initially, the local memory for storing the features of test set (featuresTest) was dimensioned as con-

taining 160 positions of Q1.7 values (8 bits). Taking into account that data is transferred via AXI4-Stream

through 64-bit packets, features were extracted by slicing each burst in 8-bit segments, and added to

the local memory. The optimized alternative considers a 64-bit memory with 20 values, matching the

previous data width. This way, memory filling is done with least clock cycles possible. This is possible

due to values being directly stored as 64 bits, avoiding any data decomposition, but later treated as 8-bit.

Listing 4.6: Declaration of local memory for storing test set features.

1 #define NFEATURES 160
2

3 static ap ufixed< 8, 1> featuresTest[NFEATURES]; // first version
4 static ap ufixed<64, 1> featuresTest[NFEATURES/8]; // optimized

Another modification was the rearrangement of data flow inside the main loop, that reads training

features. At first, the design implied the extraction of a complete training instance, composed by 160

features, before determining Canberra distance. Instead, the optimized design allows the computation

of preliminary results, more specifically regarding a collection of 8 features. This brings the possibility

of computing such partial values in a parallel way, rather than sequentially by waiting for a complete

training occurrence.

In summary, EEG CALCDIST is designed to handle instances with a specific dimension; in this case,

160 features per trial, corresponding to 32 electrodes times 5 wave bands. This core loads, counter-

intuitively, a single test trial followed by 1024 training instances. This amount was selected due to the

publicly available EEG repository on which this work relies, the DEAP dataset. All trials are expected

to be scaled between 0 and 1, and interpreted as Q1.7 fixed-point. In a real-time application, test

features are provided once EEG signals are processed, while the training set is pre-stored in an external

memory. Partial results of Canberra distances are computed as collections of 8 training features arrive

at the core. Final Canberra distances are transferred to EEG SORTDIST via AXI4-Stream once a complete

training instance is retrieved.

4.3.3 Implementation of sort distances core

EEG SORTDIST is designed to sort the outcome of the previous core, which transfers 1024 Canberra

distances using Q8.8 format. It is necessary to keep a record of the order at which those distances

were received, such that the shortest ones are identifiable through their indexes, rather than distance

values themselves. This procedure is essential to later query the training set to perform an emotion

classification successfully. Training instances are uniquely accessed through their memory address.

55

For this reason, possessing the values of shortest Canberra distances is not useful to access training

entries. Indexes act as keys to the memory map.

Interfaces

The interfaces of the sort distances core are represented in Listing 4.7. The purpose of each one is

discussed next.

The first argument of EEG SORTDIST, strm in, is an AXI4-Stream channel through which computed

Canberra distances are passed to be sorted. Its ap axis structure implies a data width of 16 bits,

interpreted as Q8.8 floating point format. It is expected to have the core responsible for computing

Canberra distances connected to strm in port. As such, the sorting algorithm is continuously executed

as distances are received.

The second argument, instr, serves an AXI4-Lite interconnection to customize the amount of dis-

tances to be sorted. It is an optional argument and, in its absence, K shortest distances are targeted.

In this architecture, K = 21.

The last one, dist i, is also an AXI4-Lite interface, representing a memory where the core writes its

output. The core returns the indexes – that is, the order at which distances arrive through the streaming

interface – of the K shortest distances. The low volume of outputted data requires a simple memory-

mapped communication interface, rather than a high-speed one like AXI4-Stream.

Listing 4.7: Declaration and interfaces of EEG sort distances core.

1 void EEG SORTDIST(hls::stream<ap axis> &strm in, ap uint<32> instr,
ap uint<32> dist i[K]){

2 #pragma HLS INTERFACE axis port=strm in
3 #pragma HLS INTERFACE s axilite port=return bundle=AXILite
4 #pragma HLS INTERFACE s axilite port=instr bundle=AXILite
5 #pragma HLS INTERFACE s axilite port=dist i bundle=AXILite
6

7 // program continues...
8 }

Additionally, EEG SORTDIST contains two internal BRAM memories – distances, defined as Q8.8,

and indexes, defined as 10-bit unsigned integers – both with size K = 21. These store, respectively, the

shortest Canberra distances and the corresponding order of their arrival at the core. The management

of both structures is explained next.

Version 1 approach: sorted array

A possible strategy to implement the previous interface is through the logic presented in Section 4.3.1.

First, a memory with K + 1 elements is initialized with the maximum value possible, such that every

incoming distance is less than the initialization value. Additionally, a memory with K + 1 elements

is initialized with zeros to store the distance indexes. Then, for each distance received, the memory

position where the distance will be stored is assessed. This step compares each memory element to

the input value, starting from the first memory element, until a greater value is found. Once this condition

is met, the insertion position has been found. Therefore, the elements located in the following positions

are moved one position to the right, to leave a space for insertion. Starting from the last memory element

56

to the insertion address, values are copied to the following address. This procedure is also applied to

the memory storing the indexes corresponding to the sorted distances. The input value is then written

at the insertion address, completing an insertion cycle. The same occurs at indexes memory, where the

index corresponding to the new distance is stored at the equivalent address. The described process is

repeated for all input values to be sorted, guaranteeing that distances is a sorted array at each iteration.

Once insertion sort algorithm is finished, the values stored in indexes memory is outputted to dist i.

The pseudo-code for implementing this solution is displayed in Listing 4.8. It considers two pre-

initialized memories as input, distances and indexes, to be sorted. The interface through which dis-

tances are passed is represented by strm in, similarly to the declaration of Listing 4.7. This solution

presents a typical software approach of implementing a sorting algorithm. The instruction of line 8 as-

sesses the memory position where the new element will be inserted. When the conditional statement

of this instruction is true, the loop declared at line 9 is executed. This routine corresponds to moving

memory elements one position to the right, up to a certain i-th element of distances and indexes.

After moving the elements and inserting the new distance, a break instruction discontinues the loop for

assessing an insertion position. This prevents the algorithm from inserting duplicates. Therefore, the

number of iterations run by the loop of line 7 is not deterministically countable. It depends on the order

at which elements are passed to be sorted.

Listing 4.8: Pseudo-code of insertion sort algorithm, based on a sorted array.

1 input : s t r m i n

2 d is tances [K] , indexes [K] / / p rev ious l y i n i t i a l i z e d

3 output : d is tances [K] , indexes [K] / / sor ted

4 begin

5 index ← 0

6 for each rece ivedDis tance in s t r m i n

7 for i ← 0 to K

8 i f rece ivedDis tance < d is tances [i]

9 for j ← K to i

10 d is tances [j] ← d is tances [j −1]

11 indexes [j] ← indexes [j −1]

12 end for

13 d is tances [i] ← rece ivedDis tance

14 indexes [i] ← index

15 break / / i n s e r t i o n i s completed ; a new dis tance can be read

16 end i f

17 end for

18 index ← index + 1

19 end for

20 end

In the context of the application, one of the goals is to assure that core’s throughput is one, that is, a

new output is produced at each clock cycle. At least, to keep sorting latency low to minimize the delay

between a computed distance and its subsequent memory insertion. It is also important to balance

this requirement with the amount of hardware resources used to implement the solution. Next section

suggests an alternative way to solve the sorting problem.

57

Version 2 approach: cell chain

A possible method to sort distances is to pass the input values through all memory elements, comparing

the distances to the stored values. The idea is to, at each memory address (cell), update or hold the

stored value, depending on its comparison to the received value. If the received distance is less than the

distance stored at a given cell, the cell is updated. Before being overwritten, the stored value is passed

to the next cell. Otherwise, the stored value is held and the input value is propagated to the next cell,

where the logic repeats. This iterative procedure can be seen as a chain, or an array, transferring values

between adjacent cells, or elements. This logic guarantees that, for each received distance, a precise

number of instructions is executed to complete an iteration of the insertion sort.

The high-level description underlying the hardware implementation of this EEG SORTDIST core version

is specified with the following logic flow:

1. loop with K iterations for BRAM memories initialization, to avoid data arrangement conflicts; these

memories include two components: distance values (distances) and respective indexes represent-

ing their order of arrival at the core (indexes); distance values are initialized to 255, the maximum

integer value supported by Q8.8 format; this procedure allows to perform insertion sort, since the

incoming distances are definitely less than 255; in turn, the indexes array is first arbitrarily filled

with zeros, as no value comparisons are made;

2. outer loop for reading incoming distances and updating index value; the number of total iterations

matches the number of distances, 1024; this is the main loop that encompasses additional steps:

(a) execution of a function block that:

i. receives the values of the first elements of distances and indexes, stored locally, the input

distance and its index;

ii. compares the stored distance to the received one; if the input distance is smaller:

A. the stored distance and index values are returned;

B. the stored distance is overwritten by the input distance;

C. the stored index is overwritten by the respective input index;

iii. otherwise:

A. the stored distance and index values remain unchanged;

B. the input distance and index are returned, to be used in the next iteration;

(b) an inner loop for propagating the execution of the previous function to the remain elements

of distances and indexes memories; this procedure works as a chain of multiple function

instances, passing information from the second element to the last; this loop iterates K − 1

times, because the first element is assessed during the insertion of an incoming distance; at

each loop execution, a pair (distance, index) is evaluated, taking into consideration the values

returned by the previous iteration; similarly, new values are returned to the next cell;

3. once sort is completed, a final loop writes the indexes of the shortest distances through AXI4-Lite.

58

Block diagram of Version 2

The design diagram of sort distances core is depicted in Figure 4.6. This provides a graphical view of

the datapath that implements the insertion sort of distances and indexes. A stream input containing

Canberra distances feeds the orange chain, composed by 21 cells. Inside these cells is represented a

local memory address that stores one of the nearest distances, labelled as distance i. The logic of

insertion is materialized with two multiplexers (MUX1, MUX2) and a comparison logic unit (COMP1). In short,

COMP1 evaluates if the input stream value is less than distance i, outputting a control signal, ctrl.

Depending on the outcome of the comparison, the new value stored inside distance i and the value

returned by MUX2 vary. If ctrl is true, MUX2 redirects the value stored in distance i to dist OUT, and

MUX1 selects the input distance dist IN to overwrite distance i. Signal dist OUT is passed to the next

orange cell, which repeats the described insertion logic.

In parallel, the control logic represented by ctrl is also taken to manage indexes memory, rep-

resented by a purple chain, on the bottom half of Figure 4.6. Whenever a distance i is updated,

index OUT carries the value stored in index i, and index i is pushed the value passed by index IN.

Otherwise, index i holds the same value and index OUT pushes index IN.

Once the insertion sort algorithm is completed, the values stored inside each index i register are

written to dist i, introduced in Listing 4.7. The produced data is transferred via an AXI4-Lite intercon-

nection.

This diagram does not represent the first step related to memory initialization, neither the computation

of indexes. Simply put, index IN is 0 when the first Canberra distance is read, being incremented by

one each time a new distance is read, up to 1023.

Design selection and optimization

The first implementation of the sort problem followed a software-based approach. It was set that, as dis-

tances arrived to the sort function, the algorithm searched for the specific array position where insertion

could be done. Then, after insertion, array’s elements were shifted one position to the right. The shifting

instructions were only executed during an element insertion, and skipped if the element was discarded.

Given that the latency was dependent on the order at which elements arrived at the core, it was not

possible to estimate a constant latency for the circuit. The execution of the algorithm could take longer

at certain iterations. In the best-case scenario, the latency of this implementation was 4096 clock cycles.

In the worst-case, latency was 46080 clock cycles.

An alternative solution presents a different way to handle the distances memory. From this perspec-

tive, the array is effectively sorted by the end of the algorithm, rather than after each element insertion.

The core receives distances and propagates them as a data chain, to be picked by logical cells, updating

values stored in memory. This approach solves latency issues raised by the first solution. On one hand,

latency can be measured, since all memory elements are subject to determined instructions. As seen

on the analysis of EEG CALCDIST core, using pipeline, latency is approximately given by the sum of time

needed to fill the pipeline and the number of elements to be sorted, 1024. In fact, the core has a latency

59

<

 distance_i

...stream
IN (x21)

MUX1

MUX2

 index_i

... (x21)

MUX3

MUX4index_IN

ctrl

distances

indexes

COMP1

ctrl

dist_OUTdist_IN

index_OUT

/
16

/
16

/
10

Figure 4.6: Block diagram of sort distances core, inspired from [79].

of 1055 clock cycles, a reduction of the latency of Version 1 in its best-case scenario by a factor of 4.

Comparing to the worst-case scenario of Version 1, the reduction factor is 45. Both factors correspond

approximately to the iteration latencies of Version 1’s best and worst cases, respectively. This occurs

60

due to the fact that, for each element insertion, a different sequence of instructions is executed. Re-

garding Version 2, the input data flows from the very first array element to the last one. During a data

trip, the value that is being transmitted along the chain may vary, being switched by a greater value if an

insertion is performed.

On the other hand, this solution presents a lower execution time due to the feasibility of applying

pipeline. As so, the pragma HLS pipeline directive is applied inside two loops of the high-level descrip-

tion: at local memory initialization (step 1) and read distances routine (step 2).

An additional pragma is used to reduce latency, known as pragma HLS array partition. This set-

ting converts a memory array into a set of smaller arrays. Partitioning this way increases the amount of

read/write ports, improving final design’s throughput [80]. Taking into account that latency of Version 1

is significantly greater than the obtained by Version 2, the latter is the selected to perform the distances

sorting task.

In summary, EEG SORTDIST is a dedicated core for receiving 1024 Canberra distances, 16-bit values

interpreted as Q8.8 in fixed-point. Its main goal is to sort those distances as they arrive at the core, and

finally return the indexes corresponding to the shortest ones. Before data retrieval, local BRAMs are

initialized, to be filled during insertion sort execution. The amount of produced indexes is customizable

by an input argument that should be less or equal toK = 21. Indexes are transferred through a AXI4-Lite

interconnection. Distances are obtained by using indexes as keys of the table containing training set’s

entries. The system that makes use of the developed cores may then query the training set to obtain

relevant information for classification. This interaction is explained later on Chapter 5. Before that, next

section provides a preliminary validation test of the developed designs.

4.3.4 Design validation

The pair of EEG cores is tested with DEAP dataset, to validate the proper operation of the proposed

functionality. The dataset is composed by records of 32 individuals, each one stimulated by 40 different

trials. Therefore, there are 1280 trials to be split into training and test instances. As such, 80% of these

(1024) is taken as the training set, being composed by 32 trials of each subject.

As explained in Section 3.2, the classifier distinguishes five emotions, numbered between 1 and

5. Each discrete label corresponds to a combination of continuous values of valence and arousal.

Therefore, it is required to convert the labels of DEAP dataset to fit the discrete scale. To validate the

classification results of the designed IP cores, the ground truth is the converted version of the DEAP

dataset, where emotions are labelled as {1, 2, 3, 4, 5}. This procedure grants the generalization of the

classifiers, so that they can be used in any system to identify different emotion classes.

Analysis of classification accuracy using features with variable wordlengths

The optimal wordlength to represent an EEG feature is also investigated. The idea is to find the best

trade-off between the classification accuracy and the required hardware resources. Using shorter

wordlengths allows to transfer more EEG features into the IP core per cycle. The execution of the

61

tasks for calculating Canberra distances takes less cycles. Thus, reducing the number of bits required

to instantiate a single feature speeds up the algorithm execution. On the other hand, the precision loss

leads to errors in results, which may cause obtaining the incorrect shortest distances.

The SW-only implementation uses 64-bit features and it is taken as a reference to the different fixed-

point versions considered. Section 4.3.2 presented four versions with variable wordlengths: 64, 32, 16,

8 and 4 bits. These values correspond to divisors of 64 bits, the length of the AXI4-Stream channel.

EEG features can be encapsulated following different configurations, up to 8 values per transfer. The

presented fixed-point versions provide, respectively, 63, 31, 15, 7 and 3 fractional bits to EEG features.

Each version is implemented and tested in HLS to evaluate the effects of reducing wordlength on emo-

tion classification. If the resulting errors are acceptable such that the algorithm requires less hardware

resources and is executed in shorter periods of time, those implementations are advantageous candi-

dates to be incorporated in the monitoring system.

Table 4.11 shows the accuracy of emotion classification obtained by four different core versions.

These cores differ in the wordlength to represent EEG features. The table registers the number of

occurrences of differing classification results, when comparing each version to the 64-bit reference.

The least precise version, using 4-bit words, predicts 105 out of 256 (41.0%) instances of the test set

correctly. The reference version (64-bit) has an identical classification rate, which leads one to assume

that 4-bit version is an appropriate candidate. However, observing the absolute errors of distances, the

4-bit version has an average of 18 units, corresponding to a relative error of 17% of a variable ranging

110 units, approximately. The classification accuracy in respect to the dataset is similar to the obtained

by the remaining versions, due to the characteristics of the training set. The majority of the training

instances belong to a single class, which biases the classification results. Therefore, the most relevant

metric to compare the effects of wordlength variation is the error of Canberra distance values.

The second-least precise version, using 8-bit words, predicts 102 out of 256 (39.8%) instances of the

test set correctly. Regarding the values of Canberra distances, this version has a relative error less than

1%, representing an average absolute error of 0.5 units. The 8-bit version compromises approximately

1.2% of the classification accuracy to reduce memory accesses by a factor of 8, when compared to 64-bit

implementation. The latency of the IP core is 20500 clock cycles. The low resource utilization is also

an advantage provided by this version. Therefore, the 8-bit version is advantageous in terms of both

computing time and resources, and it is the selected one to be implemented in the embedded system.

Resources utilization

Table 4.12 summarizes the resources expected to be used by the pair of EEG IP cores, assuming

the 8-bit versions selected previously. The utilization percentages are referred to the targeted platform

(Zynq-7010 SoC). The EEG CALCDIST core occupies more resources than EEG SORTDIST, and the most

consumed primitives are the LUTs.

62

Table 4.11: Summary of classification accuracy, errors, resource utilization and latency of four wordlength ver-
sions of the EEG IP core. The resource utilization is reported to the core that calculates Canberra distances,
EEG CALCDIST.

EEG feature wordlength 64-bit 32-bit 16-bit 8-bit 4-bit

Classification reference a n. a. 0 0 6 9
mismatches b dataset c 105 105 105 102 105

Distance absolute n. a. 0 4.1× 10−3 5.9× 10−1 1.8× 101

average error d relative n. a. 0 3.8× 10−5 5.4× 10−3 1.7× 10−1

LUT 45 78 44 29 33
Resources FF 50 61 32 19 22

utilization e (%) BRAM 1 1 1 1 0
DSP 0 0 0 0 0

Latency cycles (×103) 164 82 41 20.5 10.2

acorresponds to the 64-bit version.
bin a total of 256 tests.
cground-truth of DEAP, applied to the emotion map of Figure 3.7.
daverage error relatively to the values computed by 64-bit version.
eof a Zynq-7010 device

Table 4.12: Estimated resources to be used by the EEG IP cores, referred to the Zynq-7010 SoC.

Resources Available Utilization

EEG CALCDIST EEG SORTDIST

LUT 17600 5196 (29%) 2717 (15%)
FF 35200 7010 (19%) 1411 (4%)
BRAM 120 2 (1%) 2 (1%)
DSP 80 0 (0%) 0 (0%)

63

64

Chapter 5

HW/SW implementation

This chapter addresses the integration of the designed IP cores with the embedded software, and the

demonstration of the proposed system on the Zynq device. Section 5.1 introduces the selected de-

velopment board in which the monitoring system is evaluated. The system integration is explained in

Section 5.2. The acceleration results are presented in Section 5.3. Section 5.4 suggests a prototype to

test the system using suitable bio-sensors.

5.1 Development board

The proposed system is demonstrated using a development board and the custom hardware, which

includes designed IP cores. ZYnq BOard (ZYBO), shown in Figure 5.1, is the selected board to test

the operation of the proposed system. This low-cost board includes the Zynq-7010 All Programmable

SoC, featuring a 650 MHz dual-core ARM Cortex-A9 processor. Inside the SoC device there are custom

reconfigurable hardware blocks which are connected via reconfigurable interconnects. The main blocks

are: Configurable Logic Blocks (CLB), which contain LUT and FF, Block RAM and DSP blocks [81].

Moreover, the SoC is appropriated to handle multiple signals simultaneously, processing them in real-

time. Multiple peripherals are incorporated in the board, such as audio jacks, MicroSD slot, HDMI, VGA

and USB ports [2], that can be explored to extend the functionalities of the biometric system.

ZYBO enables the connection of external sensors, either digital or analog. Digital sensors are con-

nected to the processing system (PS). The connection of analog sensors is more complex. ZYBO

contains six sets of Peripheral MODule (Pmod) interfaces that allow the attachment of additional com-

ponents, namely bio-sensors. A specific Pmod, labelled ”JA”, contains four pairs of analog signal inputs,

which can be connected to the Zynq’s Xilinx analog-to-digital converter (XADC). The voltage of the input

signals must be limited to 1V peak-to-peak. The 12-bit XADC connects to the PS through AXI bus, and

supports a maximum sampling rate of 106 samples per second [2] [81].

65

Figure 5.1: ZYBO development board.

5.2 System integration

The biometric system is the integration of the target device (Zynq SoC) with the developed PPG and

EEG IP cores. These cores are included in the programmable logic of the SoC. The PPG core re-

ceives raw PPG signals and executes the peak detection algorithm to produce heart rate values. The

EEG core comprises two distinct modules constituting the foundation of a KNN classifier. The first one

(CALC DIST) accepts preprocessed EEG features and computes Canberra distances. The second mod-

ule (SORT DIST) receives those distances to assess the shortest ones, returning the indexes representing

their arrival order. The data flow shared by the IP cores is abstracted in the diagram of Figure 5.2. Heart

rate values can be sent to an external device or displayed in a local monitor. Indexes may be loaded

into a on-chip-memory, so that the succeeding processing application interprets that information into an

emotion classification.

Programmable Logic

EEG IP core

CALC_DIST SORT_DIST

PPG IP core
Heart ratePPG signal

EEG features

distances

indexes

Figure 5.2: Data flow between the designed IP cores.

66

5.2.1 System description

To allow data transfers between the PS and the IP cores, it is necessary to mediate the connection be-

tween these modules through additional components. A block diagram containing the final arrangement

of the involved components inside the biometric system is represented in Figure 5.3. This diagram is

a simplified version of the Appendix B diagram, reducing the majority of the signals to a generic bus.

Both diagrams were generated by Vivado IDE. Next paragraphs describe the purpose of the constituent

components.

DDR

FIXED_IO
axi_dma_0

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXIS_MM2S

axi_dma_1

AXI Direct Memory Access

S_AXI_LITE
M_AXI_MM2S

M_AXI_S2MM

M_AXIS_MM2S
S_AXIS_S2MM

axi_mem_intercon

AXI Interconnect

S00_AXI M00_AXI

axi_mem_intercon_1

AXI Interconnect

S00_AXI
M00_AXI

S01_AXI

eeg_calcdist_0

Eeg_calcdist (Pre-Production)

strm_outstrm_in

eeg_sort_0

Eeg_sort (Pre-Production)

s_axi_AXILite

strm_in

ppg_stream1_0

Ppg_stream1 (Pre-Production)

strm_outstrm_in

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

S_AXI_HP0_FIFO_CTRL

S_AXI_HP1_FIFO_CTRL

M_AXI_GP0

M_AXI_GP1

S_AXI_HP0

S_AXI_HP1

ps7_0_axi_periph

AXI Interconnect

S00_AXI
M00_AXI

M01_AXI

ps7_0_axi_periph_1

AXI Interconnect

S00_AXI M00_AXI

Figure 5.3: Block diagram representing the integration of the biometric system, obtained in Vivado IDE.

The Zynq’s PS, located at the bottom right of the diagram, is the diagram’s main block. This com-

ponent is the software interface responsible for managing the data flow depicted in Figure 5.2. The PS

contains essential modules and interfaces, such as:

• a dual-core ARM processor to run the embedded software (not represented in the diagram);

• a DDR memory controller to transfer data from external memory;

• two I2C interfaces to connect peripherals such as bio-sensors (not represented in the diagram);

• four High Performance (HP) AXI slave ports of 32 or 64 bits, to connect to AXI Interconnects with

AXI4-Stream transfers;

• two General Purpose (GP) AXI master ports of 32 bits, to connect to AXI Interconnects with AXI4-

Lite transfers.

The AXI buses are represented by two AXI Interconnect blocks connected to the HP ports of the

PS. These blocks establish a bridge between PS and PL ports. In the diagram of Figure 5.3, AXI

Interconnects link PS’s HP ports to the AXI4-Stream port of AXI Direct Memory Access (DMA) blocks

located in the PL. Also, AXI connects PS’s GP ports to AXI DMA’s AXI4-Lite ports.

AXI DMA provides a direct high-bandwidth access to the external memory to a AXI4-Stream port.

This feature allows to transfer volumes of data without the control of the PS, speeding up data transfers.

The block diagram contains two AXI DMA block with different configurations. The bottom one provides a

one-way channel to transfer EEG features from the memory to EEG CALCDIST IP core via AXI4-Stream.

The top AXI DMA block is a two-way channel, that allows the transfer of PPG samples from the memory

to the PPG IP core, but also to return PPG IP core’s products to the PS.

67

The custom IP cores designed in HLS are depicted by three blocks featuring the Vivado HLS logo.

These blocks contain their main interfaces represented (AXI4-Lite and AXI4-Stream).

5.2.2 Embedded software

Embedded software targeting the created hardware design is required to coordinate the IP cores with the

software instructions and to control specific accesses to the device. The embedded software application

is developed using the Vitis IDE tool and run by the processing system. The application coordinates

software instructions with IP core calls, being responsible for several tasks, such as:

• specifying the memory addresses and IP core interfaces where data is loaded or retrieved;

• enabling data transfers through DMA;

• triggering the execution of the cores;

• executing software-only instructions, namely determining the PPG’s autocorrelation maximum, as-

signing a class vote to each sorted index and assessing the final results of heart rate and emotion

class;

• measuring the execution time of IP cores and pieces of code.

A fundamental issue of the design methodology is the acceleration results obtained by the designed

cores, when compared to the software-only implementation. As such, this section provides the elapsed

time of running a complete execution of both PPG and EEG algorithms in the ZYBO board. First, the

respective SW-only versions are executed by the PS of the Zynq SoC, and the execution times are

registered. Then, the projects including the designed IP cores are loaded into the ZYBO board. Each IP

core is transferred to the PL of the Zynq, while the embedded software is run by the PS. The execution

times related to PPG and EEG algorithms are measured independently. The XTime library provides a

function for assessing the time from the timer counter registers of ARM, the Zynq’s processor [82]. This

function, XTime GetTime(), is included in the application to be run by the PS.

Regarding the execution of software-only instructions, it is important to introduce the concept of

optimization levels. The applications developed at Vitis IDE are written in C, whose compiler is the

GNU Compiler Collections (GCC). Optimization levels define the way the GCC compiler optimizes a

source code by, for instance, rearranging the sequence of instructions and attempting to improve the

performance [83]. Such optimization consumes memory and compilation time. There are five different

levels that offer optimizations with variable intensity. This section addresses two optimization levels: O0,

denoting the default absence of optimization, and O3, which applies a full optimization. An optimization

example is the function inlining, meaning that a function call is replaced by its body, rather than being

executed by a separate sequence of instructions in memory.

Optimization levels offer the possibility of reducing the execution time of a compiled code. Section 5.3

compares the results obtained by optimized and non-optimized codes implementing the PPG and EEG

algorithms.

68

5.2.3 System performance

The performance of the integrated system described previously is analysed in this section. Namely,

the Static Timing Analysis (STA) is performed, to verify that the design of Figure 5.3 meets the timing

constraints, before being loaded into the development board. This analysis reports any timing viola-

tions observed during signal propagation through design’s paths. To understand STA, essential timing

concepts are introduced next.

Vivado provides a STA report, where three main sections can be identified: Setup, Width and Pulse

Width. Setup refers to the data changes at a destination synchronous element before the clock arrival.

The time during which data must be stabilized before a clock edge is called setup time. Hold refers to

the data changes at a destination synchronous element after the clock arrival. The time during which

data must be stabilized after a clock edge is called hold time. In other words, hold time is the period

during which new data must not arrive before the next clock edge. Slack is the difference between the

achieved and the projected times for a specific path. A positive slack means that the design is working

at the specified clock and there is a margin between both times. A negative slack is a timing violation,

meaning that the design does not work correctly at the specified clock.

Inside Setup area, the main requirement to be met is the Worst Negative Slack (WNS). Similarly,

Hold’s main parameter is the Worst Hold Slack (WHS). The circuit is valid if both WNS and WHS are

positive values. Total Negative Slack (TNS) and Total Hold Slack (THS) represent the sum of all WNS

and WHS violations, respectively. If their values are zero, the timing constraints are met.

Table 5.1 shows that timing constraints of the complete system featuring PPG and EEG cores are

met, using a clock frequency of 100 MHz.

Table 5.1: Summary of timing constraints of the complete monitoring system, reported by Vivado. All timing con-
straints are met.

Setup Worst Negative Slack (WNS) 1.313 ns
Total Negative Slack (TNS) 0.000 ns

Hold Worst Hold Slack (WHS) 0.020 ms
Total Hold Slack (THS) 0.000 ns

Pulse Width Worst Pulse Width Slack (WPWS) 3.750 ns
Total Pulse Width Slack (TPWS) 0.000 ns

5.2.4 Hardware resources utilization

The hardware resources consumed by the integrated system are listed in Table 5.2. The utilization rates

are reported to the available resources of the Zynq-7010’s PL. Some observations can be highlighted:

• LUTs are the most used resource, with 51% occupation rate, when compared to FF (30%), DSP

(20%) and BRAM (14%);

• EEG CALCDIST IP core takes 32% of the used LUTs and 31% of the used FFs;

• DSPs are only occupied by the PPG IP core;

• the three custom IP cores represent 60% of the consumed LUTs, 53% of the FFs, 47% of the

69

BRAMs and 100% of the DSPs; this shows that DMA and AXI peripherals demand significant

hardware resources;

• overall, the Zynq is not fully occupied, which means that further functionalities may be added to

the biometric system.

Table 5.2: Hardware resources used by the complete monitoring system. The block names correspond to the
modules of block diagrams in Figures 5.3 and B.1.

Group Block name LUT FF BRAM DSP

PPG sub-system

ppg stream1 0 1319 995 2 16

ps7 0 axi periph 1
axi dma 1 2409 3318 3 0

axi mem intercon 1

EEG sub-system

eeg calc dist 0 2913 3307 1 0
eeg sort 0 1225 1325 1 0

ps7 0 axi periph 0
axi dma 0 1101 1549 1.5 0

axi mem intercon 0

Processing system processing system7 0 0 0 0 0
rst ps7 0 100M 16 33 0 0

Total used 8983 10527 8.5 16
Total available 17600 35200 60 80

5.3 Acceleration results

The results obtained by running the embedded solution in the Zynq are described in this section.

5.3.1 PPG sub-system

The processing of raw PPG signals by the PPG sub-system comprises two main stages: preprocessing

and periodicity search. The first stage is executed by the designed IP core, present at the PL. The

second stage is executed by the PS and recurring calls of the IP core. Table 5.3 shows the total elapsed

time of a complete execution of the PPG algorithm, discriminating the split times of both stages. The

times are referred to input PPG signals comprising two buffers of 1024 16-bit samples. These buffers

are shared with the channels of an optoelectronic sensor that collects PPG data. The values of the table

include the application of O0 and O3 optimizations. Regarding the non-optimized versions, the embedded

system (HW/SW O0) outperforms the results of the software-only version (SW O0). The overall execution

time was reduced by 64%, while the preprocessing and periodicity search stages were respectively

reduced by 86% and 58%. These values correspond to a speedup ranging between 2.4 and 7.4. The

O3 optimization applied to the HW/SW design (HW/SW O3) increased the overall execution time of the

equivalent software-only (SW O3) by 58%. This is due to the 90% increase of the execution time of

the periodicity search stage. However, the preprocessing stage is outperformed and its execution time

reduced by 50% (speedup of 2 times).

70

Table 5.3: Execution times, in µs, obtained by software-only (SW) and hardware/software (HW/SW) implementations
of the PPG sub-system. The execution times correspond to one complete execution of the heart rate calculator.
The speedup of the HW/SW implementations are referred to the SW times.

Processing stage SW HW/SW (speedup)

O0 O3 O0 O3

Preprocessing 451 99 61 (7.4) 48 (2.1)
Periodicity search 1709 340 722 (2.4) 645 (0.53)

Total 2160 439 783 (2.8) 693 (0.63)

The proposed way of tackling the preprocessing tasks has improved the performance, reducing the

execution times achieved by the software baselines. However, the periodicity search has not been

enhanced by the HW/SW implementation, which has room for improvement. The observed underperfor-

mance is motivated by the dependence of the periodicity task on control instructions executed between

autocorrelation computations. Once an autocorrelation value is calculated, the algorithm assesses the

next iteration step by comparing the computed value with the previous one, or a threshold. Moreover,

the delay to which the autocorrelation refers has to be updated. The periodicity search does not fol-

low a continuous data flow, as opposed to the preprocessing stage, since the computational tasks are

intercalated with control logic.

5.3.2 EEG sub-system

The EEG embedded system is a KNN classifier composed by a pair of IP cores, dedicated to the calcula-

tion and sorting of Canberra distances between sets of EEG features. Because of the direct connection

between first core’s output and second core’s input, the PS does not interact with the results obtained

by the first core. Therefore, the measurement of the execution time of calculation and sorting stages is

done jointly. The PS is responsible for assessing the classification given the results produced by the IP

cores pair.

Table 5.4 summarizes the execution times of the processing steps, applied to optimized and non-

optimized implementations. The high number of operations to be executed over a memory (training set)

containing 1024 sets of 160 EEG features created an opportunity to acceleration via HW. The results

show that the HW/SW co-design outperforms the SW-only O0 baseline by 100 times and the O3 version

by 40. The problem of calculating distances was approached by launching eight instances of Canberra

blocks to execute in parallel the correspondent arithmetic instructions. Moreover, the sorting task was

unlocked by the concept of a chain of sorting cells through which data (distances) propagated continu-

ously. The developed design is suitable to perform KNN classification exercises handling high volumes

of data in real-time.

71

Table 5.4: Execution times, in µs, obtained by software-only (SW) and hardware/software (HW/SW) implementations
of the EEG sub-system. The execution times correspond to one complete execution of the KNN emotion classifier.
The speedups of the HW/SW implementations are referred to the SW times.

Stage SW HW/SW (speedup)

O0 O3 O0 O3

Distances calculation 24130 8593 235.4 (100) 217.9 (41)Distances sort 896.6 309.6
Classification 1.67 0.51 14.67 (0.11) 4.23 (0.12)

Total 25028 8903.3 250.03 (100) 222.22 (40)

5.4 Prototype concept

The system described in Section 5.2 performs two main tasks: heart rate calculation from PPG and

emotion classification from EEG features. Two IP cores were designed to execute these tasks. The

PPG IP core implements a full algorithm, processing raw collected signals, to obtain the final result. The

EEG IP core is dedicated to the classification step, a specific task of the complex process of emotion

recognition.

To build an operational prototype, besides the PPG and EEG IP cores, it is necessary to develop

an additional block that processes raw EEG signals and obtains EEG features. This block, called ”EEG

preprocessing”, works as a Digital Signal Processor (DSP) integrated in the PS, for instance. Taking

into account that EEG signals are collected by analog sensors, an analog-to-digital converter is also

required. Moreover, a connection to the sensors and a connection to a Bluetooth module to support

wireless communication must be established. With these components added, the bio-sensors can be

attached to the system, constituting the prototype concept of Figure 5.4.

PPG
IP core

EEG
IP core

Programmable Logic

Processing System

AXI AXI

XADC

AXI

PPG
digital sensor

I2CBLE
connection

EEG
analog sensor

Zynq-7010 SoC
ZYBO

DDR
Memory

Controller

EEG
preprocessing

DDR

Figure 5.4: Materialization of the implemented system into a prototype.

A block representing a BLE module is suggested, so that the main results produced in the end of

each processing cycle are sent to an external device. This technology presents low power consumption,

being advantageous to transfer reduced data buffers in proximity of a host computer or mobile phone.

Assuming that an user’s heart rate is computed each second and their emotional state is assessed every

five seconds, it means that, per second, are sent:

• 1 byte representing a 8-bit heart rate value;

72

• 3
5 bytes corresponding to emotion classes of 3 bits.

In this example, the prototype throughput is 1.6 bytes per second.

The figure includes a DDR block representing an external memory. It may be used to load the

training set of the KNN classifier and to store the indexes produced by the EEG core. A XADC block

integrates the PL to enable the analog-to-digital conversion. Thanks to this component, EEG signals

can be quantized and handled by the PS, which in turn transfers the digital signal to the EEG IP core.

These transfers are mediated by AXI buses.

The biometric sensors recommended to be used are the Maxim Integrated’s MAX3010x1 and Olimex’s

passive EEG electrodes2, displayed in Figure 5.5. MAX3010x is a low-cost pulse oximeter operated by

light reflection, thus enabling PPG digital signal acquisition. This sensor is reliable for measuring heart

rate and oxygen saturation in the blood, as mentioned in Section 2.2.2. The EEG electrodes are inexpen-

sive devices for recording EEG analog signals. Olimex also provides the EEG-SMT kit3, a preprocessing

module supported by open-source software to visualize EEG signals. This kit supports four electrodes

and it is useful to understand how EEG waves behave.

(a) MAX30100 sensor (b) EEG electrode

Figure 5.5: Biometric sensors.

1MAX3010x webpage: https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/
6/6409.html; accessed on 1st June 2020.

2EEG-PE webpage: https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/; accessed on 1st June 2020.
3EEG-SMT webpage: https://www.olimex.com/Products/EEG/OpenEEG/EEG-SMT/; accessed on 1st June 2020.

73

https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.maximintegrated.com/en/design/technical-documents/userguides-and-manuals/6/6409.html
https://www.olimex.com/Products/EEG/Electrodes/EEG-PE/
https://www.olimex.com/Products/EEG/OpenEEG/EEG-SMT/

74

Chapter 6

Conclusions

A biometric system for monitoring vital signals in the context of remote assistance was presented. The

proposed system is comprised of two sub-systems designed to compute instant heart rate values and

to determine the emotional state of a user. The main goal of the thesis was to study the implemen-

tation of the sub-systems on an HW/SW embedded system, targeting a SoC FPGA, to accelerate the

execution of the proposed tasks. Such approach is an alternative to both general-purpose unit and

microcontroller-based applications. The sub-systems included hardware blocks dedicated to the most

critical signal processing routines. Heart rates are estimated processing PPG signals acquired by a

digital sensor, whereas emotions are assessed using a KNN classifier that operates over already com-

puted EEG features. Globally, the acceleration objective has been successfully achieved by the EEG

sub-system, in contrast to the PPG sub-system.

The system included IP cores dedicated to the execution of each sub-system’s tasks, targeting the

Xilinx’s Zynq-7010 SoC platform. The development of each sub-system’s IP cores followed a common

process. First, the algorithm for processing PPG signals and the classifier to map EEG features into

emotions were selected according to the state-of-the-art procedures and open-source repositories. More

particularly, the EEG classifier was mapped into a software specification using a low-level language,

taking as a reference a higher level implementation. The algorithms were analysed to understand the

data flow and to identify the critical tasks. The selected functions were isolated and converted into

custom IP cores. The development of the IP cores involved optimization processes, such as reducing the

number of IP accesses, the variables’ wordlength and the circuit’s latency. Dimensioning the wordlengths

involved a trade-off between the computation accuracy, the hardware resources consumed and the time

required to execute the processing tasks. The cores, located in the Zynq’s programmable logic, were

integrated with embedded software containing instructions executed by the processing system.

To evaluate the performance of the proposed system architecture, the execution times obtained by

both sub-systems were compared to the software-only benchmarks, and the number of consumed re-

sources was estimated. The results shown that the proposed PPG sub-system executed the prepro-

cessing stage 2 times faster than software-only and performed the periodicity search 2 times longer.

The gap observed at the periodicity search is due to the dependency of its execution on control instruc-

75

tions, rather than heavy computational tasks. The execution of the preprocessing stage of the heart

rate calculator takes 48 µs. The results obtained by the EEG sub-system are more promising. Over-

all, the classification of a single emotion by the proposed EEG sub-system outperformed the software

benchmark by 40 times. The computation and sort of distances benefit from the integration of dedicated

hardware blocks in a hybrid HW/SW architecture. The analysed example required 250 µs to translate

EEG features into an emotion, which confirms the possibility of performing a classification in real-time,

at the node.

This work studied the impact of reducing both the wordlength of the input data and the precision

of internal IP cores’ operators. A reduced wordlength allowed to compress the data, thus reducing

the number of memory accesses and execution times. Dimensioning the IP core operators with fewer

fractional bits allowed the IP cores to consume less resources. This has resulted in a cost of having

increased of the errors of arithmetic calculations, which were tolerated depending on the context of the

final result.

Regarding the hardware utilization, the proposed biometric system is feasible to be implemented with

the resources available in the targeted platform. The occupation rate of the Zynq-7010’s primitive blocks

is 36%. There is room for upgrading the developed IP cores and for implementing additional processing

modules. The IP cores were designed to be reused in further monitoring systems. The PPG IP core may

be integrated in different algorithms besides heart rate calculation. For instance, the specification of the

preprocessing task can be exploited in multiple PPG-based applications. Moreover, the EEG IP core is

prepared to process data from up to 32 EEG electrodes, supporting the implementation of multi-channel

systems in portable devices. This work is a starting point of the development of more complex biomet-

ric systems that may offer autonomy, portability and high processing capability to wearable monitoring

devices.

6.1 System improvements and future work

The proposed system provides the foundation of a more complex wearable device targeting a medical

remote application. Introducing a connection to the bio-sensors (an optoelectronic sensor and EEG elec-

trodes) and the DSP block for EEG signal preprocessing would be sufficient to have a fully operational

system. This way, an improvement regarding the EEG sub-system is the development of a processing

module of EEG signals. This module would handle the preprocessing stage, which includes noise re-

moval, signal enhancement and decomposing the signal into the major frequency bands to extract the

relevant patterns. The preprocessing module returns the EEG features that are loaded into the KNN

classifier. The raw EEG signals acquired by the analog electrodes require an analog-to-digital conver-

sion, before being preprocessed. This step is carried out by the Zynq’s XADC. Moreover, the future work

may include the study of the implementation of a SVM classifier on a similar HW/SW embedded system,

due to its broad use in the literature in emotion recognition applications.

The results obtained by the developed PPG IP core suggest a future improvement of the PPG sub-

system. The algorithm’s routine of detecting the peak of PPG signals alternates between control instruc-

76

tions and computation of autocorrelation values. This behaviour explains the deceleration observed

when comparing the execution times of the software-only benchmark to the obtained by the PPG IP

core. An alternate approach would be to start by tackling the computational tasks necessary to obtain

autocorrelation values, followed by the execution of the control instructions, such as the comparison

between the computed values. This method implies the computation of the autocorrelation values for

each possible delay, once the PPG signal is preprocessed. This approach offers the possibility of ex-

ecuting the autocorrelation function concurrently, leaving the peak detection for a later stage, selecting

the appropriate autocorrelation values. Moreover, the execution of the autocorrelation function could be

improved using the partial results calculated in previous executions. For instance, the computation of

the autocorrelation value at a given delay m executes iteration steps common to the ones performed

when computing the autocorrelation at the preceding delay m − 1. If autocorrelation is calculated at

adjacent delays, it is reasonable to see the autocorrelation function as a first-in, first-out method. This

approach allows to reuse the partial results of autocorrelation function, when applied to near delays, and

thus possibly reducing the execution time.

77

78

Bibliography

[1] A. J. Casson. Wearable EEG and beyond. Biomedical Engineering Letters, 9(1):53–71, 2019. ISSN

2093985X. doi: 10.1007/s13534-018-00093-6.

[2] Digilent. Zybo Reference Manual - Digilent Reference. URL https://reference.digilentinc.

com/programmable-logic/zybo/reference-manual.

[3] N. Jatupaiboon, S. Pan-Ngum, and P. Israsena. Real-time EEG-based happiness detection system.

The Scientific World Journal, 2013, 2013. ISSN 1537744X. doi: 10.1155/2013/618649.

[4] A. Khosla, P. Khandnor, and T. Chand. A comparative analysis of signal processing and classi-

fication methods for different applications based on EEG signals. Biocybernetics and Biomedical

Engineering, 40(2):649 – 690, 2020. ISSN 0208-5216. doi: 10.1016/j.bbe.2020.02.002.

[5] G. H. Klem, H. O. Lüders, H. Jasper, C. Elger, et al. The ten-twenty electrode system of the

International Federation. Electroencephalogr Clin Neurophysiol, 52(3):3–6, 1999.

[6] V. Jurcak, D. Tsuzuki, and I. Dan. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative

head-surface-based positioning systems. NeuroImage, 34(4):1600–1611, 2007. ISSN 10538119.

doi: 10.1016/j.neuroimage.2006.09.024.

[7] J. A. Russell. A Circumplex Model of Affect. Journal of personality and social psychology, 39(6):

1161, 1980.

[8] L. Parisi, S. Francia, S. Olivastri, and M. Tavella. Exploiting Synchronized Lyrics And Vocal Features

For Music Emotion Detection. 01 2019.

[9] R. J. Davidson, P. Ekman, C. D. Saron, J. A. Senulis, and W. V. Friesen. Approach-withdrawal

and cerebral asymmetry: emotional expression and brain physiology: I. Journal of personality and

social psychology, 58(2):330, 1990.

[10] T. J. Eric Kandel, James Schwartz. Principles of Neural Science. McGraw-Hill Medical, 4 edition,

2000. ISBN 9780838577011,0838577016.

[11] M. Lakshmi, D. Prasad, and D. Prakash. Survey on EEG signal processing methods. International

Journal of Advanced Research in Computer Science and Software Engineering, 4(1):84–91, 2014.

[12] S. M. Alarcao and M. J. Fonseca. Emotions Recognition Using EEG Signals: A Survey. IEEE

Transactions on Affective Computing, 10(3):374–393, 2017. ISSN 19493045. doi: 10.1109/TAFFC.

2017.2714671.

[13] M. Z. Ilyas, P. Saad, and M. I. Ahmad. A survey of analysis and classification of EEG signals

for brain-computer interfaces. Proceedings - 2015 2nd International Conference on Biomedical

79

https://reference.digilentinc.com/programmable-logic/zybo/reference-manual
https://reference.digilentinc.com/programmable-logic/zybo/reference-manual

Engineering, ICoBE 2015, (March):1–6, 2015. doi: 10.1109/ICoBE.2015.7235129.

[14] F. Lotte, L. Bougrain, A. Cichocki, M. Clerc, M. Congedo, A. Rakotomamonjy, and F. Yger. A review

of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of

Neural Engineering, 15(3), 2018. ISSN 17412552. doi: 10.1088/1741-2552/aab2f2.

[15] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural

Networks, 13(4):411 – 430, 2000. ISSN 0893-6080. doi: 10.1016/S0893-6080(00)00026-5.

[16] K. A. Ludwig, R. M. Miriani, N. B. Langhals, M. D. Joseph, D. J. Anderson, and D. R. Kipke. Using

a Common Average Reference to Improve Cortical Neuron Recordings From Microelectrode Ar-

rays. Journal of Neurophysiology, 101(3):1679–1689, 2009. doi: 10.1152/jn.90989.2008. PMID:

19109453.

[17] C. Carvalhaes and J. A. de Barros. The surface Laplacian technique in EEG: Theory and methods.

International Journal of Psychophysiology, 97(3):174–188, 2015.

[18] X. Yu, P. Chum, and K.-B. Sim. Analysis the effect of PCA for feature reduction in non-stationary

EEG based motor imagery of BCI system. Optik, 125(3):1498 – 1502, 2014. ISSN 0030-4026. doi:

10.1016/j.ijleo.2013.09.013.

[19] L. F. Velásquez-Martı́nez, A. M. Álvarez-Meza, and C. G. Castellanos-Domı́nguez. Motor imagery

classification for bci using common spatial patterns and feature relevance analysis. In International

Work-Conference on the Interplay Between Natural and Artificial Computation, pages 365–374.

Springer, 2013.

[20] D. Bansal and R. Mahajan. Eeg-based brain-computer interfacing (bci). EEG-Based Brain-

Computer Interfaces: Cognitive Analysis and Control Applications, page 21, 2019.

[21] D. Cvetkovic, E. D. Übeyli, and I. Cosic. Wavelet transform feature extraction from human PPG,

ECG, and EEG signal responses to ELF PEMF exposures: A pilot study. Digital Signal Processing,

18(5):861 – 874, 2008. ISSN 1051-2004. doi: 10.1016/j.dsp.2007.05.009.

[22] W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong. EEG feature extraction based on wavelet

packet decomposition for brain computer interface. Measurement, 41(6):618 – 625, 2008. ISSN

0263-2241. doi: 10.1016/j.measurement.2007.07.007.

[23] V. Lawhern, W. D. Hairston, K. McDowell, M. Westerfield, and K. Robbins. Detection and classifica-

tion of subject-generated artifacts in EEG signals using autoregressive models. Journal of Neuro-

science Methods, 208(2):181 – 189, 2012. ISSN 0165-0270. doi: 10.1016/j.jneumeth.2012.05.017.

[24] S. Kanoga and Y. Mitsukura. Review of Artifact Rejection Methods for Electroencephalographic

Systems. Electroencephalography, page 69, 2017.

[25] A. A. Chi Qin Lai, Haidi Ibrahim, Mohd Zaid Abdullah, Jafri Malin Abdullah, Shahrel Azmin Suandi.

Literature survey on applications of electroencephalography (EEG). 020070(September), 2018.

[26] Y. P. Lin, C. H. Wang, T. L. Wu, S. K. Jeng, and J. H. Chen. EEG-based emotion recognition in

music listening: A comparison of schemes for multiclass support vector machine. ICASSP, IEEE

International Conference on Acoustics, Speech and Signal Processing - Proceedings, pages 489–

492, 2009. ISSN 15206149. doi: 10.1109/icassp.2009.4959627.

[27] A. E. Vijayan, D. Sen, and A. P. Sudheer. EEG-Based Emotion Recognition Using Statistical Mea-

80

sures and Auto-Regressive Modeling. In 2015 IEEE International Conference on Computational

Intelligence Communication Technology, pages 587–591, Feb 2015. doi: 10.1109/CICT.2015.24.

[28] K. Dhindsa and S. Becker. Emotional reaction recognition from EEG. 2017 International Workshop

on Pattern Recognition in Neuroimaging, PRNI 2017, pages 1–4, 2017. doi: 10.1109/PRNI.2017.

7981501.

[29] Y. J. Liu, M. Yu, G. Zhao, J. Song, Y. Ge, and Y. Shi. Real-time movie-induced discrete emotion

recognition from EEG signals. IEEE Transactions on Affective Computing, 9(4):550–562, 2018.

ISSN 19493045. doi: 10.1109/TAFFC.2017.2660485.

[30] V. H. Anh, M. N. Van, B. B. Ha, and T. H. Quyet. A real-time model based Support Vector Machine

for emotion recognition through EEG. 2012 International Conference on Control, Automation and

Information Sciences, ICCAIS 2012, pages 191–196, 2012. doi: 10.1109/ICCAIS.2012.6466585.

[31] C. C. Chang and C. J. Lin. LIBSVM: A Library for support vector machines. ACM Transactions on

Intelligent Systems and Technology, 2(3), 2011. ISSN 21576904. doi: 10.1145/1961189.1961199.

[32] K. Schaaff and T. Schultz. Towards emotion recognition from electroencephalographic signals.

Proceedings - 2009 3rd International Conference on Affective Computing and Intelligent Interaction

and Workshops, ACII 2009, pages 1–6, 2009. doi: 10.1109/ACII.2009.5349316.

[33] M. Ali, A. H. Mosa, F. Al Machot, and K. Kyamakya. EEG-based emotion recognition approach for

e-healthcare applications. International Conference on Ubiquitous and Future Networks, ICUFN,

2016-Augus:946–950, 2016. ISSN 21658536. doi: 10.1109/ICUFN.2016.7536936.

[34] S. Koelstra, C. Mühl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and

I. Patras. DEAP: A database for emotion analysis; Using physiological signals. IEEE Transactions

on Affective Computing, 3(1):18–31, 2012. ISSN 19493045. doi: 10.1109/T-AFFC.2011.15.

[35] Y. Wei, Y. Wu, and J. Tudor. A real-time wearable emotion detection headband based on EEG

measurement. Sensors and Actuators, A: Physical, 263:614–621, 2017. ISSN 09244247. doi:

10.1016/j.sna.2017.07.012.

[36] A. Chatchinarat, K. W. Wong, and C. C. Fung. A comparison study on the relationship between

the selection of EEG electrode channels and frequency bands used in classification for emotion

recognition. Proceedings - International Conference on Machine Learning and Cybernetics, 1:

251–256, 2016. ISSN 21601348. doi: 10.1109/ICMLC.2016.7860909.

[37] M. Li, H. Xu, X. Liu, and S. Lu. Emotion recognition from multichannel EEG signals using K-nearest

neighbor classification. Technology and health care, 26(S1):509–519, 2018.

[38] Z. Mohammadi, J. Frounchi, and M. Amiri. Wavelet-based emotion recognition system using EEG

signal. Neural Computing and Applications, 28(8):1985–1990, 2017.

[39] S. Hatamikia, K. Maghooli, and A. M. Nasrabadi. The emotion recognition system based on autore-

gressive model and sequential forward feature selection of electroencephalogram signals. Journal

of medical signals and sensors, 4(3):194, 2014.

[40] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support vector machines.

IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[41] K. Dhindsa. Filter-Bank Artifact Rejection: High performance real-time single-channel artifact de-

81

tection for EEG. Biomedical Signal Processing and Control, 38:224 – 235, 2017. ISSN 1746-8094.

doi: 10.1016/j.bspc.2017.06.012.

[42] A. Delorme and S. Makeig. EEGLAB: an open source toolbox for analysis of single-trial EEG

dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1):9

– 21, 2004. ISSN 0165-0270. doi: 10.1016/j.jneumeth.2003.10.009.

[43] J. Allen. Photoplethysmography and its application in clinical physiological measurement. Physio-

logical Measurement, 28(3), 2007. ISSN 09673334. doi: 10.1088/0967-3334/28/3/R01.

[44] T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida. Wearable photoplethysmographic sensors—past

and present. Electronics, 3(2):282–302, 2014. ISSN 20799292. doi: 10.3390/electronics3020282.

[45] J. L. Moraes, M. X. Rocha, G. G. Vasconcelos, J. E. Vasconcelos Filho, V. H. C. de Albuquerque,

and A. R. Alexandria. Advances in photopletysmography signal analysis for biomedical applications.

Sensors (Switzerland), 18(6):1–26, 2018. ISSN 14248220. doi: 10.3390/s18061894.

[46] D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran. A review on wearable

photoplethysmography sensors and their potential future applications in health care. Physiology &

behavior, 176(12):139–148, 2017. doi: 10.1016/j.physbeh.2017.03.040.

[47] Y. Maeda, M. Sekine, and T. Tamura. The advantages of wearable green reflected photo-

plethysmography. Journal of Medical Systems, 35(5):829–834, 2011. ISSN 01485598. doi:

10.1007/s10916-010-9506-z.

[48] K. Matsumura, P. Rolfe, J. Lee, and T. Yamakoshi. iPhone 4s photoplethysmography: Which light

color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter

application in the presence of motion artifact? PLoS ONE, 9(3):1–12, 2014. ISSN 19326203. doi:

10.1371/journal.pone.0091205.

[49] P.-Y. Chiang, P. C.-P. Chao, T.-Y. Tu, Y.-H. Kao, C.-Y. Yang, D.-C. Tarng, and C.-L. Wey. Machine

Learning Classification for Assessing the Degree of Stenosis and Blood Flow Volume at Arteri-

ovenous Fistulas of Hemodialysis Patients Using a New Photoplethysmography Sensor Device.

Sensors, 19(15):3422, 2019.

[50] D. Chakraborty and J. B. Jeeva. Detection of Heart Rate Using Reflectance Mode Photoplethys-

mography. 2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, pages

1–3, 2019. doi: 10.1109/i-PACT44901.2019.8960204.

[51] D.-G. Jang, S. Park, M. Hahn, and S.-H. Park. A Real-Time Pulse Peak Detection Algorithm for the

Photoplethysmogram. International Journal of Electronics and Electrical Engineering, 2(1):45–49,

2014. ISSN 2301380X. doi: 10.12720/ijeee.2.1.45-49.

[52] W. Zong, T. Heldt, G. B. Moody, and R. G. Mark. An open-source algorithm to detect onset of

arterial blood pressure pulses. Computers in Cardiology, 30:259–262, 2003. ISSN 02766574. doi:

10.1109/cic.2003.1291140.

[53] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus,

G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: Compo-

nents of a new research resource for complex physiologic signals. Circulation, 101(23):e215–e220,

2000 (June 13).

82

[54] S. Das, S. Pal, and M. Mitra. Real time heart rate detection from PPG signal in noisy environment.

2016 International Conference on Intelligent Control, Power and Instrumentation, ICICPI 2016,

pages 70–73, 2017. doi: 10.1109/ICICPI.2016.7859676.

[55] G. B. Moody and R. G. Mark. A database to support development and evaluation of intelligent

intensive care monitoring. In Computers in Cardiology 1996, pages 657–660, Sep. 1996. doi:

10.1109/CIC.1996.542622.

[56] P. van Gent, H. Farah, N. van Nes, and B. van Arem. Analysing noisy driver physiology real-

time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project.

Journal of Open Research Software, 7(1), 2019. ISSN 20499647. doi: 10.5334/jors.241.

[57] M. A. F. Pimentel, A. E. W. Johnson, P. H. Charlton, D. Birrenkott, P. J. Watkinson, L. Tarassenko,

and D. A. Clifton. Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters. IEEE

Transactions on Biomedical Engineering, 64(8):1914–1923, 2017.

[58] A. Temko. Accurate Heart Rate Monitoring during Physical Exercises Using PPG. IEEE Transac-

tions on Biomedical Engineering, 64(9):2016–2024, 2017. ISSN 15582531. doi: 10.1109/TBME.

2017.2676243.

[59] Z. Zhang, Z. Pi, and B. Liu. TROIKA: A General Framework for Heart Rate Monitoring Using Wrist-

Type Photoplethysmographic Signals During Intensive Physical Exercise. IEEE Transactions on

Biomedical Engineering, 62(2):522–531, 2015.

[60] Z. Zhang. Photoplethysmography-Based Heart Rate Monitoring in Physical Activities via Joint

Sparse Spectrum Reconstruction. IEEE Transactions on Biomedical Engineering, 62(8):1902–

1910, 2015.

[61] S. Salehizadeh, D. Dao, J. Bolkhovsky, C. Cho, Y. Mendelson, and K. Chon. A Novel Time-Varying

Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals

During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Sensors, 16(1):

10, dec 2015. ISSN 1424-8220. doi: 10.3390/s16010010.

[62] E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam, and M. K. Hasan. A Robust Heart Rate Moni-

toring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts. IEEE

Transactions on Biomedical Engineering, 63(3):550–562, 2016.

[63] M. Boloursaz Mashhadi, E. Asadi, M. Eskandari, S. Kiani, and F. Marvasti. Heart Rate Tracking us-

ing Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise with Simultaneous

Accelerometry. IEEE Signal Processing Letters, 23(2):227–231, 2016.

[64] J. Xiong, L. Cai, D. Jiang, H. Song, and X. He. Spectral Matrix Decomposition-Based Motion

Artifacts Removal in Multi-Channel PPG Sensor Signals. IEEE Access, 4:3076–3086, 2016.

[65] H. Sharma. Heart rate extraction from PPG signals using variational mode decomposition. Biocy-

bernetics and Biomedical Engineering, 39(1):75–86, 2019. ISSN 02085216. doi: 10.1016/j.bbe.

2018.11.001.

[66] A. Garde, W. Karlen, J. M. Ansermino, and G. A. Dumont. Estimating respiratory and heart rates

from the correntropy spectral density of the photoplethysmogram. PloS one, 9(1):e86427, 2014.

[67] A. Garde, W. Karlen, P. Dehkordi, J. Ansermino, and G. Dumont. Empirical mode decomposition

83

for respiratory and heart rate estimation from the photoplethysmogram. In Computing in Cardiology

2013, pages 799–802, 2013.

[68] M. A. Motin, C. K. Karmakar, and M. Palaniswami. Ensemble Empirical Mode Decomposition With

Principal Component Analysis: A Novel Approach for Extracting Respiratory Rate and Heart Rate

From Photoplethysmographic Signal. IEEE Journal of Biomedical and Health Informatics, 22(3):

766–774, 2018.

[69] P. H. Charlton, M. Villarroel, and F. Salguiero. Waveform analysis to estimate respiratory rate. In

Secondary Analysis of Electronic Health Records, pages 377–390. Springer International Publish-

ing, jan 2016. ISBN 9783319437422. doi: 10.1007/978-3-319-43742-2 26.

[70] A. Schäfer and K. W. Kratky. Estimation of breathing rate from respiratory sinus arrhythmia: Com-

parison of various methods. Annals of Biomedical Engineering, 36(3):476–485, mar 2008. ISSN

00906964. doi: 10.1007/s10439-007-9428-1.

[71] M. Saeed, M. Villarroel, A. T. Reisner, G. Clifford, L.-W. Lehman, G. Moody, T. Heldt, T. H. Kyaw,

B. Moody, and R. G. Mark. Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): a

public-access intensive care unit database. Critical care medicine, 39(5):952, 2011.

[72] Y. Kong and K. H. Chon. Heart Rate Tracking Using a Wearable Photoplethysmographic Sensor

during Treadmill Exercise, 2019. ISSN 21693536.

[73] A. Onubeze. Developing a Wireless Heart-Rate Monitor with MAX30100 and nRF51822. 2016.

[74] J. Wan, Y. Zou, Y. Li, and J. Wang. Reflective type blood oxygen saturation detection system based

on MAX30100. In 2017 International Conference on Security, Pattern Analysis, and Cybernetics

(SPAC), pages 615–619, 2017.

[75] R. Joaquinito. A Wireless Biosignal Measurement System using the Zynq SoC and Bluetooth Low

Energy. Master’s thesis, Instituto Superior Técnico, 2016.

[76] S. Knežević, R. Stojanović, B. Ašanin, and D. Karadaglić. A single chip solution for pulse transmit

time measurement. 13th IEEE International Conference on BioInformatics and BioEngineering,

IEEE BIBE 2013, pages 13–16, 2013. doi: 10.1109/BIBE.2013.6701625.

[77] W. C. Fang, K. Y. Wang, N. Fahier, Y. L. Ho, and Y. D. Huang. Development and Validation of

an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform With

Convolutional Neural Network System-on-Chip Design. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 9(4):645–657, 2019. ISSN 21563365. doi: 10.1109/JETCAS.2019.

2951232.

[78] High-Level Synthesis. Vivado Design Suite User Guide. Xilinx, https://www.xilinx.com/

support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.

pdf, v2019.1 edition, 2019.

[79] R. Kastner, J. Matai, and S. Neuendorffer. Parallel Programming for FPGAs. ArXiv e-prints, May

2018.

[80] Xilinx and Inc. SDx Pragma Reference Guide, 2019. URL https://www.xilinx.com/html_docs/

xilinx2019_1/sdaccel_doc/nnz1534452175410.html.

[81] Xilinx and Inc. Zynq-7000 SoC First Generation Architecture, 2012.

84

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/nnz1534452175410.html
https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/nnz1534452175410.html

[82] Xilinx and Inc. Xilinx Standalone Library Documentation OS and Libraries Document Collection.

Technical report, 2019.

[83] R. M. Stallman. Using the GNU Compiler Collection. Technical report, 2008. URL https://www.

gnupress.org.

85

https://www.gnupress.org
https://www.gnupress.org

Appendix A

Dimensioning of PPG IP core internal

variables

87

Table A.1: Extended table containing the dimensioning of the PPG IP core internal variables, with different
wordlengths. Variables are represented by fixed-point notation, <W,I>. W denotes the wordlength and I the number
of integer bits. Six versions are considered, varying in the number of bits dedicated to variables’ fractional part. Bold
rows represent input (a[], b[]) and output (prePcorr, sumsq x, sq prod) data.

Variable Meaning Size

V8 V9 V10 V11 V12 V13

a[] raw RED u<16,16>

b[] raw IR u<16,16>

red[] processed RED <58,26> <32,18> <26,18> <22,18> <20,18> <18,18>

ir[] processed IR <58,26> <32,18> <26,18> <22,18> <20,18> <18,18>

regA accumulator(a) u<26,26>

regB accumulator(b) u<26,26>

inv bsize (1/BUFFERSIZE) u<32,1> u<11,1>

red mean regA*inv nsize u<57,26> u<32,16> u<24,16> u<20,16> u<18,18> u<16,16>

ir mean regB*inv nsize u<57,26> u<32,16> u<24,16> u<20,16> u<18,18> u<16,16>

xmean (-BUFFERSIZE/2+0.5) u<11,10>

prod xmean*red <69,36> <38,26> <34,26> <30,26> <28,26> <26,26>

regC BUFFERSIZE*prod <79,46> <42,30> <38,30> <34,30> <32,30> <30,30>

regD BUFFERSIZE*prod <79,46> <42,30> <38,30> <34,30> <32,30> <30,30>

inv sumx2 (1/SUM X2) u<32,1> u<29,1>

betaX regC*inv sumx2 <79,20> <32,5> <24,5>

betaY regD*inv sumx2 <79,20> <32,5> <24,5>

prod2 beta*xmean <90,30> <32,13> <21,13> <17,13> <15,13> <13,13>

prod3 red*red <116,58> <44,32> <40,32> <36,32> <34,32> <32,32>

regAA BUFFERSIZE*prod3 <126,68> <52,40> <48,40> <44,40> <42,40> <40,40>

regAB BUFFERSIZE*prod3 <126,68> <52,40> <48,40> <44,40> <42,40> <40,40>

regBB BUFFERSIZE*prod3 <126,68> <52,40> <48,40> <44,40> <42,40> <40,40>

prePcorr regAB*inv nsize <116,58> <42,30> <38,30> <34,30> <32,30> <30,30>

prod4 regBB*inv nsize <116,58> <42,30> <38,30> <34,30> <32,30> <30,30>

sumsq x regAA*inv nsize <116,58> <42,30> <38,30> <34,30> <32,30> <30,30>

sq prod prod4*sumsq x u<232,116> u<68,55> u<63,55> u<59,55> u<57,55> u<55,55>

88

Appendix B

Block diagram of the biometric system

89

D
D

R

F
IX

E
D

_I
O

ax
i_

dm
a_

0

A
X

I D
ire

ct
 M

em
or

y
A

cc
es

s

S
_A

X
I_

LI
T

E
M

_A
X

I_
M

M
2S

M
_A

X
IS

_M
M

2S
s_

ax
i_

lit
e_

ac
lk

m
_a

xi
_m

m
2s

_a
cl

k

ax
i_

re
se

tn

m
m

2s
_p

rm
ry

_r
es

et
_o

ut
_n

m
m

2s
_i

nt
ro

ut

ax
i_

dm
a_

1

A
X

I D
ire

ct
 M

em
or

y
A

cc
es

s

S
_A

X
I_

LI
T

E
M

_A
X

I_
M

M
2S

M
_A

X
I_

S
2M

M

M
_A

X
IS

_M
M

2S
S

_A
X

IS
_S

2M
M

s_
ax

i_
lit

e_
ac

lk

m
_a

xi
_m

m
2s

_a
cl

k

m
_a

xi
_s

2m
m

_a
cl

k

ax
i_

re
se

tn

m
m

2s
_p

rm
ry

_r
es

et
_o

ut
_n

s2
m

m
_p

rm
ry

_r
es

et
_o

ut
_n

m
m

2s
_i

nt
ro

ut

s2
m

m
_i

nt
ro

ut

ax
i_

m
em

_i
nt

er
co

n

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

ax
i_

m
em

_i
nt

er
co

n_
1

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

S
01

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N ee
g_

ca
lc

di
st

_0

E
eg

_c
al

cd
is

t (
P

re
-P

ro
du

ct
io

n)

st
rm

_o
ut

st
rm

_i
n

ap
_c

lk

ap
_r

st
_n

ee
g_

so
rt

_0

E
eg

_s
or

t (
P

re
-P

ro
du

ct
io

n)

s_
ax

i_
A

X
IL

ite

st
rm

_i
n

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

pp
g_

st
re

am
1_

0

P
pg

_s
tr

ea
m

1
(P

re
-P

ro
du

ct
io

n)

st
rm

_o
ut

st
rm

_i
n

ap
_c

lk

ap
_r

st
_n

pr
oc

es
si

ng
_s

ys
te

m
7_

0

Z
Y

N
Q

7
P

ro
ce

ss
in

g
S

ys
te

m

D
D

R

F
IX

E
D

_I
O

S
_A

X
I_

H
P

0_
F

IF
O

_C
T

R
L

S
_A

X
I_

H
P

1_
F

IF
O

_C
T

R
L

M
_A

X
I_

G
P

0

M
_A

X
I_

G
P

1

S
_A

X
I_

H
P

0

S
_A

X
I_

H
P

1

M
_A

X
I_

G
P

0_
A

C
LK

M
_A

X
I_

G
P

1_
A

C
LK

S
_A

X
I_

H
P

0_
A

C
LK

S
_A

X
I_

H
P

1_
A

C
LK

F
C

LK
_C

LK
0

F
C

LK
_R

E
S

E
T

0_
N

ps
7_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

ps
7_

0_
ax

i_
pe

rip
h_

1

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

rs
t_

ps
7_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

Figure B.1: Block diagram of the complete biometric project.

90

	1 Introduction
	1.1 Motivation
	1.2 Objectives and contributions
	1.3 Outline

	2 Background on biometric signals processing and HW/SW co-design
	2.1 Electroencephalography
	2.1.1 Signal processing
	2.1.2 Related work

	2.2 Photoplethysmography
	2.2.1 Applications and characteristics
	2.2.2 Related work

	2.3 FPGA-based medical devices

	3 Proposed biometric system
	3.1 Heart rate calculator using PPG
	3.1.1 Selection of the algorithm and reference datasets
	3.1.2 Algorithm description
	3.1.3 Software application profiling

	3.2 Emotion detector from EEG
	3.2.1 Selection of the classifier and classification datasets
	3.2.2 KNN classifier description
	3.2.3 Software implementation
	3.2.4 Software application profiling

	3.3 High-level HW/SW architecture

	4 PPG and EEG IP cores
	4.1 Development process and design techniques
	4.2 PPG IP core
	4.2.1 Design and optimization
	4.2.2 Design evaluation
	4.2.3 Design validation

	4.3 EEG IP core
	4.3.1 Design concept
	4.3.2 Implementation of distances calculator core
	4.3.3 Implementation of sort distances core
	4.3.4 Design validation

	5 HW/SW implementation
	5.1 Development board
	5.2 System integration
	5.2.1 System description
	5.2.2 Embedded software
	5.2.3 System performance
	5.2.4 Hardware resources utilization

	5.3 Acceleration results
	5.3.1 PPG sub-system
	5.3.2 EEG sub-system

	5.4 Prototype concept

	6 Conclusions
	6.1 System improvements and future work

	Bibliography
	A Dimensioning of PPG IP core internal variables
	B Block diagram of the biometric system

