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Abstract—This paper presents a new floating-point format,
called Unum-IV, that replaces the unary numeral system used in
the Regime bits of the Unum Type-III format, aka Posit numbers,
with a regular binary system. The Unum formats (types I, II and
III) introduced the concept of tapered precision: numbers having
an absolute value close to 1 are given more significand bits and
fewer exponent bits. This way, it is possible to extraordinarily
increase the dynamic range or accuracy, depending on the
application. The new format recovers and extends Unum Type-I
ideas but, like Unum-III, it is meant to be hardware fiendly, is
hence named Unum Type-IV.
The main ideas of the new Unum-IV format are to use a dynam-
ically variably-sized significand and exponent with a 1’s com-
plement representation of the exponent, and a 2’s complement
representation of the significand. The Unum-IV format uses one
hidden bit both in the exponent and significand representations
to prevent redundancy. However, unlike other formats, including
Posits, that use a fixed hidden 1 bit only in the significand,
Unum-IV uses dynamic but simply computed hidden bits for both
the significand and the exponent. This format is aimed at small
memory footprint and low energy consumption applications, such
as those that can be found in the Internet of Things (IoT). In fact,
in most practical cases, Unum-IV can replace IEEE 754 double
precison numbers, which means half the memory footprint and
30% less hardware resources.

Index Terms—Unum Computing, Floating-Point Unit, Com-
puter Arithmetic, High Precision Arithmetic.

I. INTRODUCTION

We live in an era where the trade-off between performance,
cost, resources, and power consumption has a huge impact in
the computer science area. The increase of the complexity of
the algorithms and the demand on Big Data (BD) analyses, the
need for High-Performance Computing (HPC) and the never-
ending need for energy-efficient computing in fields of Ma-
chine Learning (ML), Artificial Intelligence (AI) and the In-
ternet of Things (IoT) are creating a new computing paradigm.
The majority of the numerical computation algorithms require
the capacity of a system to perform arithmetic operations and
manipulation of real numbers. In digital electronics, the most
extensively adopted approximation of the real numbers is given
by the floating-point formats.

Throughout our history, some disasters happened due to
floating-point issues, usually because of rounding errors [1],
such as the Patriot Missile Failure on February 25, 1991,
where an Americal Patriot Missile battery in Dharan, Suadi
Arabia, failed to intercept an incoming Iraqi Scud missile.

That happened due to a rounding error in the time calculation,
which costed the life of 38 people.

Another disaster was the explosion of the Ariana-5 rocket
launched by the European Space Agency in 1996. The rocket
exploded just forty seconds after the lift-off due to a software
error in the inertial reference system. One more example of
a floating-point error disaster was the Sleipner Oil Platform
that has collapsed to the ocean floor due to a floating error in
the structural analysis, costing a nearly 1 billion dollar loss.
There were other famous disasters in different areas caused by
issues of the floating-point format design, like the overflow,
underflow and rounding error problems [2].

During the 1960s and the 1970s, there was no ubiquity in
the floating-point format, so each computer manufacture devel-
oped its own floating-point system, resulting in floating-point
inconsistency across platforms. In 1985, the IEEE Standard for
Floating-point Arithmetic (IEEE 754) was established by the
Institute of Electrical and Electronics Engineers (IEEE), and it
is, nowadays, the most common representation of real numbers
on computers, including Intel-based PC’s, Macs and most Unix
platforms. This format has been reviewed and replaced two
times, in 2008 [3] and 2019 [4] but there were only minor
changes between them to maintain compatibility in existing
implementations.

However, some drawbacks have been identified in the IEEE
754 Standard [5], [6], [7], such as:

• Overflow and Underflow: overflowing to −∞ or +∞
and underflowing to 0, increases the relative error by
an infinite factor and leads to sign information loss,
respectively.

• No Gradual Overflow and Fixed-Accuracy: accuracy is
flat across a vast range, then ”falls off a cliff”.

• Wasted bit-patterns: there are too many NaN representa-
tions and two bit-patterns to represent 0, the ”negative
zero” (0−) and the ”positive zero” (0+).

• There is no guarantee of identical results across systems.
• Exponents usually take too many bits.
• Equality verification test between two floating-point is

complex due to the presence of redundant representations.
Throughout the years, different number systems and tech-

niques have been proposed to overcome these challenges.
In [8], Morris suggested a ”tapered” system to solve the fixed
accuracy problem of the floating-points [9].



In 2013, John L. Gustafson introduced a new binary and
arithmetic way of representing real numbers, a number system
called ”Universal Numbers” [5], [10], [11]. They have so
far three different types of representation. Type-I is a super-
set of the IEEE 754 Standard floating-point format, and it
was introduced in [5]. This format uses a variable-length
storage format for the exponent and fraction fields and a
”ubit” at the end of the fraction that indicates if a ”real”
number (u=0) is an exact float or lies in the open interval
between two consecutive exact (u=1). Type -II [12] enables
a clean mathematical design based on the projective reals
and relies on lookup tables. It is a direct map of signed
integers to the projective real number line. The last version
introduced in 2017 is Type-III or posits [13], [14], which is
a hardware-friendly version with all the advantages from the
previous types. Nowadays, even though many shortcomings
have been pointed out upon the IEEE 754 Standard, it is
still the most commonly implemented in microcontrollers
and general-purpose microprocessors to perform floating-point
arithmetic. However, the trade-off between the dynamic range
and the precision of the floating-point formats can be explored
to create a new number system that avoids those shortcomings.

II. UNUM TYPE-IV

The Unum Type-IV format explores and combines ideas
from both Unum Type-I and the Unum Type-III formats,
specifically, the use of an exponent size field, the use of
variable-sized significand and exponent, avoids redundant rep-
resentations by introducing a hidden bit into the exponent and
eliminates the use of NaN, −∞ and +∞ representations as
well as the use of two different patterns to represent 0.

A. Unum Type-IV Generic Format

The Unum-IV generic format has three fields: the exponent,
the fraction and the exponent size. In order to avoid redundant
representations, a hidden bit is added to the exponent as well as
to the significand. These hidden bits optimise the use of all bit
patterns as representable real numbers. In both cases, exponent
and significand, the hidden bit is the Most Significant Bit
(MSB). The significand and exponent in this format are both
signed, with the hidden bits providing the sign information.
The exponent is in 1’s complement format, so there is no
need for a bias as in the IEEE 754 and the significand is in
2’s complement format, which dispenses with the sign bit field
used in other formats such as the IEEE-754 format.

The Unum-IV configuration and enconding is determined
by the format size (DATA W) and by the number of bits nec-
essary to represent the exponent size (EXP SZ W). Therefore,
the notation

Unum-IV<DATA W,EXP SZ W>
is used here to denote a DATA W-bit Unum-IV with
EXP SZ W bits for the exponent size field. The generic
Unum-IV floating-point format is encoded as shown in Fig-
ure 1, and the next subsections explain each of the fields.

Using this encoding, and processing the fields as ex-
plained below, one can obtain the significand s and the

E 
(Exponent)

DATA_W - 1 DATA_W - exp_size

EXP_SZ_WDATA_W - 1 - exp_size

0EXP_SZ_W-1

exp_size bits

DATA_W - EXP_SZ_W – exp_size  bits

EXP_SZ_W bits

F 
(Fraction)

Exp Size
 (Exponent Size)

Fig. 1. Generic Unum-IV representation format.

exponent e of the real number r represented in the Unum-
IV<DATA W,EXP SZ W> format and given by

r = s× 2e (1)

1) Exponent Size (Exp Size): The Exponent Size (Exp Size)
is a small unsigned integer, which has a width defined by
the parameter EXP SZ W, and can assume a value in the
range from 0 to 2EXP SZ W − 1. The Exp Size field allows
for tapered accuracy since it represents the number of explicit
bits necessary to represent the exponent of the number in the
1’s complement format. It establishes a higher accuracy for
numbers that are close to 1, and a lower accuracy for very
large or very small numbers.

Denoting the Exp Size bits by ExpSizei, the explicit expo-
nent size in bits ExpSz is given by

ExpSz =

EXP SZ W−1∑
i=0

ExpSizei2
i (2)

2) Exponent (E): The Exponent (E) field holds the explicit
exponent, as indicated by its name. Unlike the IEEE 754, the
exponent is not biased and is represented as a signed integer
in the 1’s complement format with a hidden (implicit) most
significant bit. The exponent hidden bit is always the negation
of the most significant bit of the E field. Moreover, the 1’s
complement representation breaks for the widest exponent and
most negative 1’s complement exponent: (1)00...00, where the
hidden bit is shown in brackets followed by EXP SZ W zeros.
This combination is reserved for subnormal representations to
allow for a graceful underflow. Subnormal representations are
also used in the the IEEE 754 standard, though with a different
implementation.

The E field width is ExpSz, therefore it is variably-sized. If
ExpSz = 0, the E field is not present. Following the logic of
the 1’s complement signed integers, if the hidden bit is zero
the exponent is positive and negative otherwise.

When E is filled with zeros and Exp Size is filled with
ones, indicating the widest possible exponent, the subnormal
representation applies, as explained above. In this mode, the
exponent is valued −2ExpSz + 2, which is one unit more
than the normal 1’s complement valuation of −2ExpSz + 1.
Hence, the exponent’s magnitude falls in the following range
of values: [-2ExpSz + 2 : 2ExpSz − 1].

Without the subnormal representation, there would be a
noticeable gap between 0 and smallest negative and positive
numbers. By filling this gap around 0, the logarithmic distance
between the numbers when approaching zero increases but not
as abruptly as with a simple flush to zero approach. This allows
computation results to lose precision slowly when very small.



Hence, in the new Unum-IV format, the exponent value is
given by

e =



0, if ExpSz = 0

−2ExpSz + 2, if ExpSz = 2EXP SZ W − 1 ∧ E = 0

EExpSz−1(−2ExpSz + 1) +
∑ExpSz−1

i=0 Ei2
i, otherwise

(3)
The exponent hidden bit EHB is introduced to avoid redun-

dant representations. It does not need to be stored in memory,
and is given by

EHB =

{
absent, if ExpSz = 0

EExpSz−1, otherwise
(4)

3) Fraction (F): The Fraction (F) field represents the sig-
nificant digits on the right side of the significand binary point.
Like in the IEEE 754 format, in the Unum-IV format, the
significand has an implicit leading bit. However, unike in the
IEEE 754 format, this hidden bit is not always 1.

In the Unum-IV case, the significand is represented by
a signed 2’s complement number, and the hidden bit is
always the complement of the fraction’s MSB, except for
the subnormal representation (see previous section), where the
hidden bit equals the fraction’s MSB. Thus, if the hidden bit is
0, the represented number is positive or zero; if the hidden bit
is one, the number is negative. The F field bit-width FracSize
depends of course on the format width and exponent size and
is given by

FracSize = DATA W− ExpSz − EXP SZ W (5)

Hence, in the new Unum-IV format, the significand is given
by

s =


−F−1 +

∑FracSize
i=1 F−i2

−i,

if ExpSz = 2EXP SZ W − 1 ∧ E = 0

−F−1 +
∑FracSize

i=1 F−i2
−i, otherwise

(6)
The significand’s hidden bit FHB in the new Unum-IV

format dispenses with the sign bit as in the IEEE-754 format
and is given by

FHB =

{
FMSB , if ExpSz = 2EXP SZ W − 1 ∧ E = 0

FMSB , otherwise
(7)

4) Tapered Precision: The tapered precision is easily veri-
fied after having explained the format’s fields in the previous
sections. The sum of the exponent and significand sizes is
constant and given by

ExpSz + FracSize = DATA W − EXP SZ W (8)

On the one hand, the very large or very small numbers
require more exponent bits to represent, get fewer fraction bits
and therefore less precision. On the other hand, the numbers
closer to magnitude 1 require less exponent bits, get more
fraction bits and therefore more precision. The numbers whose
exponent equals 0 do not require any exponent bits and get
all the available DATA W - EXP SZ W bits for precision.

B. Features

1) Special Cases: The Unum Type-4 format does not have
any ”special” numbers such as ”NaN”, −∞, +∞, ∞, 0+

and 0−. Instead of having a range of representations locked
for those ”special” cases (losing space for real representable
numbers), every combination of bits is used to represent a real
number. The calculation is interrupted using flags when an
overflow, underflow, divide by 0 or other types of exceptions
occur. That simplifies the hardware and also extends the
dynamic range.

2) Exceptions: There are three different types of exceptions
in the Unum-IV number system: the ”divide by zero” excep-
tion, the ”overflow” exception and the ”underflow” exception.
The first exception occurs when a division operation between
two Unum-IV numbers is performed, and the divisor is zero.
The second happens when a two-argument operation like
addition, subtraction, division or multiplication results in a
number with a larger exponent than the exponents allowed by
the Unum-IV parameters used or when the conversion between
a decimal representation and this format falls outside of the
Unum-IV dynamic range higher bound. The last exception
occurs when the result has a smaller exponent than the smallest
positive representable value or when the conversion falls
outside the dynamic range lower bound.

All of those exceptions are handled using flags that control
the propagation of the results. If any of the exceptions happen,
the calculation or conversion is interrupted, and the error is
reported by the flag, simplifying the hardware used.

3) Rounding: There are two rounding modes: ”the round
to the nearest, ties even” and the truncation mode. The
rounding or truncation is necessary since the operations with
floating-point can result in a non-representable number relative
to the precision, so the result needs to be rounded to the
nearest representable Unum-IV value or truncated to the last
representable digit.

As in IEEE 754, the ”round to the nearest, ties even” mode
uses three extra bits of less significance than the significand
bits, a guard bit, a round bit and a sticky bit. The most
significant bit is the guard bit, and the least significant bit
is the sticky bit.

In this mode, if the exact result can not be represented by
an Unum-IV number, the result is rounded to the nearer of two
possible values. If there is a tie between the two possibilities,
then the even alternative is chosen.

C. Dynamic Range and Precision

The length of the fraction determines the precision of
the representable floating-point number. The ration between



the smallest and the largest positive number determines the
dynamic range of the number system in evaluation. Since the
Unum-IV number system has a variable-sized significand and
exponent, the Unum-IV dynamic range and precision depend
on the value of the parameter EXP SZ W. The larger this
parameter is, the greater the exponent contribution in the
format, and therefore the dynamic range will increase.
The relation between the exponent size field and the dynamic
range is: increasing the number of bits available to represent
the exponent increases the dynamic range, and vice-versa.
However, increasing the EXP SZ W means decreasing the
maximum number of bits available to the fraction field since
they are the remaining bits of the format. Therefore, if the
maximum number of fraction bits decreases, so does the
precision.
The principal advantage of the Unum-IV format is the ability
to choose the parameters, DATA W and EXP SZ W, to
adjust the trade-off between the dynamic range and precision
to meet the performance needs of an application. If the
application needs more accurate answers with numbers of
small magnitude, it will need more fraction bits and fewer
exponent bits. On the other hand, if the application works
within a range of extremely small or large values, it will
need more exponent bits with less fraction bits available,
increasing the dynamic range. This trade-off can make a huge
difference in applications that process large amounts of data.

In the Unum-IV generic format, the smallest and largest pos-
itive representable number, minpos and maxpos respectively,
are given by



minpos = 2

[
−2[2

EXP SZ W−1]+2

]

×2−[DATA W−(2EXP SZ W−1)−EXP SZ W]

maxpos = 2

[
2[2

EXP SZ W−1]−1

]

×
(
1− 2−[DATA W−(2EXP SZ W−1)−EXP SZ W]

)
(9)

Hence, the dynamic range, measured in decades, is given
by the following formula

Dynamic Range = log10

(
maxpos

minpos

)
(10)

Table I, resume and exemplifies the relation between the
generic parameters of the Unum Type-IV number system and
the dynamic ranges.

In terms of precision, the number of precision bits (equal to
the number of fraction bits) for each representable Unum-IV
value p bits is given by

p bits = DATA W− ExpSz − EXP SZ W (11)

where
• ExpSz: number of exponent bits, excluding the implicit

leading bit.

TABLE I
UNUM TYPE IV DYNAMIC RANGES.

Unum-IV< n, k > minpos (≈) maxpos (≈) Dynamic Range

n=8, k=2 1.95× 10−3 1.12× 102 4.76× 100

n=16, k=2 7.63× 10−6 1.28× 102 7.22× 100

n=16, k=3 1.84× 10−40 1.67× 1038 7.80× 101

n=32, k=3 2.80× 10−45 1.70× 1038 8.28× 101

n=32, k=4 3.45× 10−9868 7.08× 109863 1.97× 104

n=64, k=4 8.03× 10−9878 7.08× 109863 1.97× 104

n=128, k=4 3.06× 10−9883 7.08× 109863 1.97× 104

Therefore, the precision is variable and depends on the Unum-
IV number size and exponent. The tapered precision of this
format implies that numbers having an absolute value close
to 1 are given more significand bits and fewer exponent bits,
and the other numbers trade-off significand bits with exponent
bits.The precision bits can go from DATA W-EXP SZ W to
DATA W-2EXP SZ W+1-EXP SZ W bits.

Table II shows some examples of the relation between the
Unum-IV parameters and the number of precision bits.

TABLE II
UNUM TYPE IV PRECISION.

Unum-IV < n, k > p bits

n=8, k=2 from 3 to 6

n=16, k=2 from 11 to 14

n=16, k=3 from 6 to 13

n=32, k=3 from 22 to 29

n=32, k=4 from 13 to 28

n=64, k=4 from 55 to 60

n=128, k=4 from 124 to 109

III. HARDWARE IMPLEMENTATION

In this paper, the design of a parameterized and pipelined
Floating-Point Arithmetic Unit based on the new Unum Type-
IV format was explored and implemented in Verilog. The
hardware implementation supports four types of operations:
addition, subtraction, division and multiplication, and it also
supports two rounding modes: the truncation (ROUNDING=0)
and the ”round to the nearest, ties even” (ROUNDING=1).

The top-level module has six input and five output signals.
These interface inputs and outputs size, direction and descrip-
tion are explained in Table III.

The hardware implementation of Unum-IV arithmetic is
based on three hardware stages. The first stage is the un-
packing module, where the Unum-IV exponent and significand
are extracted from each Unum-IV operand. The intermediate
stage is the processing module, where the four basic supported
operations are performed. The remaining and final stage is the
packing module, where the computed exponent and significand
are packed in the Unum-IV format. The Unum-IV FPU
has a hierarchical architecture, comprising three main stages.
The hierarchy flow is controlled by the Control Logic (CL),
preventing the propagation of errors and allowing exceptions
handling.



TABLE III
FPU INTERFACE.

Signal Size Direction Description

clk 1 Input System Clock

rst 1 Input Asynchronous active high reset

start 1 Input Strobe to start calculation

op 2 Input Operation selection

a DATA W Input Operand A

b DATA W Input Operand B

o DATA W Output Calculation Result

done 1 Output Strobe to signal the end of calculation

div by zero 1 Output Strobe to signal an invalid operation (x/0)

underflow 1 Output Strobe to signal an underflow result

overflow 1 Output Strobe to signal an overflow result

A. Functional Units

The proposed Unum-IV FPU has five principal parameteriz-
able Functional Units (FUs) that make usage of five auxiliary
units: a barrel shifter, an adder and subtractor, an exponent
difference module, leading zeros/one’s detector, a shift and
subtract serial divider and a multiplier.

1) Unpack Unit: The Unpack Unit is responsible for taking
an Unum-IV input and extracting the exponent, fraction and
exponent size fields. The flow of this hardware floor is per-
formed as shown in the block diagram presented in Figure 2.

Exponent Extraction Significand Extraction 

Bit Extension to
EXP_MAX_W 

Bit Extension to
MAN_MAX_W 

Exponent

EXP_MAX_W

Significand

MAN_MAX_W

Fig. 2. Unum-IV Unpack Stage Block Diagram. Pipeline Stages: 3.

B. Processing Units

Two operation bits are used for this FPU, meaning that up to
four operations are available. The processing stage can perfom
additions, subtractions, divisions and multiplications. The ad-
dition and subtraction is performed by the same unit, while the
division and multiplication are performed by different units.

1) Addition/Subtraction Unit: The Addition/Subtraction
Unit is responsible for perfoming an addition (op=0) or
subtraction (op=1) between two unpacked Unum-IV inputs.
The blokc diagram of the Unum-IV proposed addition and
subtraction unit is shown in Figure 3.

2) Multiplication Unit: The Multiplication Unit is respon-
sible for perfoming a multiplication between two unpacked
Unum-IV inputs. The block diagram of the Unum-IV proposed
multiplication unit is shown in Figure 4.

Exponent Difference
Calculation Swap 

Shift Right 

Count Leading 
Zeros/Ones

Significand
Addition/Subtraction

Shift Left 

Exponent Adjust

Exponent A Significand A Significand BExponent B

Exponent        Significand

Largest Exponent

Exponent
Difference

Largest Significand

Smallest 
Significand

Shifted 
Significand

Added/Subtracted 
Significand

Shifted 
Significand

MAN_MAX_WMAN_MAX_WEXP_MAX_WEXP_MAX_W

EXP_MAX_W MAN_MAX_W

Fig. 3. Unum-IV Addition/Subtraction Unit. Pipeline Stages: 6.

Exponent Addition Significand 
Multiplication 

Count Leading 
Zeros/Ones

Shift Left Exponent Adjust

Exponent A Significand A Significand BExponent B

Exponent Mantissa

MAN_MAX_WMAN_MAX_WEXP_MAX_WEXP_MAX_W

Multiplied SignificandAdded Exponent

Shift Right

Exponent

EXP_MAX_W MAN_MAX_W

Exponent Adjust

Mantissa

Shifted mantissa

Fig. 4. Unum-IV Multiplication Unit. Pipeline Stages: 4.

3) Division Unit: The Division Unit is responsible for
perfoming a division between two unpacked Unum-IV inputs.
The block diagram of the Unum-IV proposed division unit is
shown in Figure 4.

Exponent Subtraction Mantissa Division 

Count Leading 
Zeros/Ones

Shift LeftExponent Adjust

Normalization

Exponent A Mantissa A Mantissa BExponent B

Exponent

MAN_MAX_WEXP_MAX_WEXP_MAX_W

EXP_MAX_W MAN_MAX_W

Exponent Adjust

xor

Mantissa

Division Sign

Divided mantissa

Shifted mantissa

Subtracted exponent

MSB

MSB

Fig. 5. Unum-IV Division Unit. Pipeline Stages: 5+MAN MAX W+1
EXTRA (0 or 3 extra bits).

C. Packing Unit

Two different modules can be generated to pack the FPU
operation result into the Unum-IV format depending on the



rounding mode chosen using the ROUNDING parameter. The
Pack Unit is responsible for packing the propagated result
from the processing stage into a Unum Type-IV bit string and
for outputing the interruption flags. The block diagram of the
Unum-IV proposed packing unit is shown in Figure 6.

Exponent

Unum-IV Flags

Rounding

Exponent Adjust

Exponent Size
 Calculation

Count Leading 
Zeros/Ones

Pack in DATA_W-bit Unum-IV Format

Exponent Size
 Calculation

Count Leading 
Zeros/Ones

Mantissa

Exponent Mantissa

Rounding    
      Bit

Exponent Size Final Mantissa Final Exponent

0 1 0 1 0 1

EXP_MAX_WMAN_MAX_W

Fig. 6. Unum-IV Pack Unit. Pipeline Stages: 3 + ROUNDING (0 or 1).

IV. EVALUATING AND COMPARING UNUM TYPE-IV TO
OTHER FORMATS

A. Qualitative Comparison

Table IV presents a qualitative comparison between the most
relevant features separating the Unum Type-IV, Unum Type-
III and IEEE 754 number systems. The Unum-IV and Posit
formats have some distinctive features which can not be found
in the IEEE 754 number system.

TABLE IV
QUALITATIVE COMPARISON BETWEEN IEEE 754 STANDARD AND UNUM

TYPE-IV.

Features IEEE 754 Posits Unum-IV

[n-bit] [n-bit] [n-bit]

Portability/Reproducibility No Yes Yes

Redundant Representations Many None None

NaNs Representations 2n−e − 2 w/ e = {5, 8, 11, 15} None None

Infinity Representations 2 (−∞/+∞) 1 (∞) None

Zero Representations 2 (0−; 0+) 1 (0) 1 (0)

Real Number Representations Exceptions: NaNs,+∞,−∞ Exceptions: ∞ 2n

Overflow ”Falls of a Cliff” Gradual (tapered accuracy) Never. Exceptions: 1
0
=∞

Underflow Gradual Gradual Gradual

Exponent Fixed-Size; Biased; Unsigned; Variable-Size; Unsigned Variable-Size; Signed (1’s Complement);

0 Implicit Leading Bits 0 Implicit Leading Bits 1 Implicit Leading Bit

Significand Fixed-Size; Unsigned; Variable-Size; Signed (2’s Complement) Variable-Size; Signed (2’s Complement);

1 Implicit Leading Bit 1 Implicit Leading Bit 1 Implicit Leading Bit

Precision Bits Fixed Variable Variable

B. Comparing Unum Type-IV Dynamic Range with other
Formats

The Unum Type-IV number system can have greater or
matching dynamic ranges with the IEEE 754 Standard formats
depending on the configuration adopted. The half-precision
IEEE 754 has a dynamic range of about 12 decades, single-
precision has about 83 decades, double-precision has nearly
652 decades, and the quad-precision format has about 9882
decades. These four formats are the formats defined in the
standard, having 5, 8, 11 and 15 exponent bits, respectively.

The Unum Type-III Standard draft includes the
Posit<16,1>, Posit<32,2>, Posit<64,3> and Posit <128,4>

configuration. The Posit<16,1> configuration has a dynamic
range of about 16 decades, the Posit<32,2> has about 73
decades, the Posit<64,3> has nearly 299 decades, and,
finally, the 128-bit Posit <128,4> has, approximately, 1214
decades.

Figure 7 shows the dynamic range, in decades, for the
different IEEE 754 and Posit Standard formats and some of
the most significant configurations of the Unum-IV, namely,
the Unum-IV<16,3> with about 78 decades, the Unum-
IV<32,3> with nearly 83 decades, the Unum-IV<32,4>
with, approximately, 19731 decades, the Unum-IV<64,4>
and the Unum-IV<128,4> with 19741 and 19746 decades,
respectively.

Fig. 7. Dynamic Range for Different Unum-IV and IEEE754 Format
Configurations.

As can be seen in Figure 7, the Unum-IV< 16, 3 >
configuration has almost the same dynamic range as the 32-
bit IEEE 754 float, which is stored occupying twice of the
computer memory. The Unum-IV< 32, 4 > has more than
237 times the dynamic range compared with the IEEE 754 bit
string with the same width (single-precision), has more than
30 times the dynamic range of the 64-bit IEEE 754 format,
which uses the double of the format memory, and it also has
a slightly better dynamic range that the quad-precision floats,
with 128 bits of memory. Figure 7 also shows that Unum
Type-IV not only has a wider dynamic range for the same bit
width as Posits but also with using half of it.

C. Comparing Unum Type-IV Precision with other Formats

In Figure 8 the number of significand bits is shown as a
function of the exponent range of each format. The highlighted
areas are the ”golden zone” where the Unum-IV format in
question has at least the same resolution as floats.

Since the IEEE 754 uses fixed-size exponent and fraction,
the number of fraction or precision bits is constant. The Unum-
IV format has variable resolution, having more precision bits
for exponents near 0 and fewer precision bits for numbers
with a higher magnitude. Therefore, the ”precision” plot of
the Unum-IV has a sine form as expected.

Figure 8 shows that for the same size, both Unum-
IV<32,3> and Unum-IV<32,4> have exponent ranges where
they have more fraction bits than the binary32 format.



Fig. 8. Exponent vs Significand Bits Comparison Between Unum-IV<32,3>
& 32-bit IEEE 754 Format. (LEFT) Exponent vs Significand Bits Comparison
Between Unum-IV<32,4> & 32-bit IEEE 754 Format. (RIGHT)

The ”golden area” occupied by Unum-IV<32,3> is wider
than Unum-IV<32,4> because of the smaller dynamic range,
having space for more precision bits. Near 0, the Unum-
IV<32,3> gives a maximum of 29 precision bits, outper-
forming the 32-bit floats by 6 bits, while Unum-IV<32,4>
has just more 5 bits. On the edges where the floats overflow
and underflow, outside the golden area, Unum-IV<32,3> has
22 bits, having a smaller resolution by one bit and Unum-
IV<32,4> has 21 bits of precision.

Therefore, Unum-IV<32,3> has a similar dynamic range
to the 32-bit floats and covers a larger area where numbers
have at least the same resolution than floats compared with
Unum-IV<32,4>. In terms of accuracy, it is a better option
to replace 32-bit floats if the range is enough. The advantage
of Unum-IV<32,4> is that besides having, on average, better
resolution in the binary32 range than floats, it also has a
massive difference in the dynamic range, covering the 64-bit
and 128-bit floats ranges.

D. Unum-IV<8,2> vs. Quarter-Precision IEEE-Style floats
vs. Posit<8,1>

In Figure 9, a quarter-precision IEEE-style float format (not
standardized) is tested against Unum-IV<8,2> to compare
both formats. These two low precision configurations are
selected because they present comparable dynamic ranges and
are practical to analyse the whole range since both sets have
only 256 elements. The 8-bit IEEE-style format used in this
comparison follows the IEEE 754 Standard rules even though
this format does not make part of the standard formats. It
has a sign bit, a 4-bit exponent and a 3-bit fraction field. It
has a total of 14-bit patterns that represent NaN values and
a dynamic range of about five decades, where the smallest
positive value is 1

512 , and the largest is 240.
The Unum-IV configuration chosen, Unum-IV<8,2>, im-

plies that the format has a total of 8 bits, the exponent ranges
between 0 and 6 explicit bits, and the fraction is set between 3
and 6 bits, depending on the exponent size. Therefore, Unum-
IV<8,2> has a dynamic range of about 4.8 decades, where
the smallest positive value is also 1

512 and the largest is 112.
Posit<8,1> has a total of 8 (n) bits, a maximum of 1

exponent (es) and of 4 explicit significand bits. Therefore,
Posit<8,1> has a dynamic range of about 7.23 decades, where
the smallest positive value is also 1

4096 and the largest is 4096.

Figure 9 shows the application of this metric of study to
analyse the accuracy between the positive range of the 8-
bit IEEE-style float number system, Posit<8,1> and Unum-
IV<8,2>. The xx axis represents the index i of a set of xi

representable values of each format, both ordered from the
smallest (minpos) to the largest positive (maxpos) number.

Fig. 9. Decimals of Accuracy Comparison between Unum-IV<8,2> & 8-bit
Floats. (LEFT) Decimals of Accuracy Comparison between Unum-IV<8,2>
& Posit<8,1> (RIGHT).

These graphs reveal that Unum-IV<8,2> is more accurate
on average than the 8-bit floats. The results show that Unum-
IV<8,2> has a minimum of 0.52, a maximum of 2.17 and an
average of 1.58 decimals of accuracy. The 8-bit float format
has a minimum of 0.52, a maximum of 1.55 and an average
of 1.40 decimals. The decimal accuracy is at the highest in
the centre of the graph for the Unum-IV, which is where
the most common numbers used in the computations occur.
As expected, due to the tapered precision of this format, the
accuracy tends to decrease in both directions. At the centre of
the graph are the numbers with smaller exponents, in terms
of magnitude, requiring fewer exponent bits and using more
fraction bits. As the numbers run from the centre, the exponent
magnitude increases, demanding more exponent bits, which
provides less accurate results. Figure 9 shows that the floats
have tapered accuracy on the left as they use subnormals to
obtain a gradual underflow. On the right side, the floats ”fall
of a cliff” to accommodate all the NaN values (14 in this
case). On the other hand, the results show that the Unum-IV
format has tapered accuracy on both sides, becoming closer
to symmetrically tapered accuracy.

As can be seen in Figure 9, Unum-IV<8,2> is more
accurate on average than the Posit<8,1> format due to the
higher resolution of Unum-IV<8,2>. It is possible to take that
Posit<8,1> has a minimum of 0.22, a maximum of 1.8605 and
an average of 1.46 decimals of accuracy. However, Posit<8,1>
has a greater dynamic range than the Unum-IV format, with
a difference of nearly two decades.

Figure 10 shows the ULP variation of the 8-bit float,
Posit<8,1> and Unum-IV<8,2> format from the smallest
(minpos) to the largest positive representable value (maxpos).
The ULP expresses the distance between two consecutive
numbers and measures the resolution of a floating-point for-
mat.

Since the number of precision bits of the 8-bit floats is
fixed and equal to 3, the ULP expression is given by 2−3 ∗
2e, depending exclusively on the exponent. Whereas Unum-



Fig. 10. ULP Comparison between Unum-IV<8,2> & 8-bit Floats.

IV<8,2> and Posit<8,1> ULP variation depends both on the
exponent and precision. The Unum-IV and Posit ULP variation
slows down as the numbers get closer to one because they
receive more bits of precision.

From Figure 10, it is possible to infer that the Unum-
IV<8,2> format has a higher resolution for a considerable
portion of the format range because the ULP is smaller,
meaning that they have smaller spacing between consecutive
floating-point numbers.

V. COMPARING UNUM TYPE-IV HARDWARE RESOURCES
WITH OTHER FORMATS

A. IEEE 754 and Unum Type-IV Comparison

Table V compares the ASIC implementation results of
the Unum-IV FPU developed in this dissertation with the
IEEE 754 FPU developed by a colleague in the IObundle
company [15]. Both Unum-IV FPU and IEEE 754 FPU are
parameterizable, so they are compared with different configu-
rations in terms of the silicon area (Area), frequency (Clock
Frequency) and power consumption (Power).

TABLE V
ASIC IMPLEMENTATION RESULTS.

FPU Data Width ExpSize Width Rounding Mode Area [mm2] Power [mW ] Clock Frequency [MHz]

Unum-IV

16 3
0 45.19 6.26 200

1 49.89 7.01 200

32

3
0 98.31 13.30 200

1 104.58 14.08 200

4
0 112.36 14.25 200

1 123.95 15.38 200

64 4
0 304.70 40.13 175.19

1 344.93 38.94 190.25

IEEE 754
32 —— 1 67.66 7.44 200

64 —— 1 267.34 27.97 169.15

In terms of silicon area, the results show that if the data
width is the same between the FPUs, then the IEEE 754 FPUs
are smaller than the Unum-IV FPUs. These area differences
are explained by the fact that the Unum-IV FPUs exponents
and significands are extended to their maximum size allowed
by the configuration (EXP MAX W and MAN MAX W).
Thus, all the modules like the barrel shifters and adders will
be as large as the configuration parameters. The other reason
is that the field extractions require more logic since the Unum-
IV has variably-sized exponent and significand. Thus, the
unpacking and packing require more hardware.

Despite that, the main focus of this dissertation was to
develop an FPU with a configurable exponent and significand

sizes. It is also relevant to compare the FPUs based on their
number system configuration and dynamic range to verify if
it was possible and advantageous to replace a format with
another using less memory storage.

Let us take Unum-IV<16,3> into consideration. This for-
mat has the same exponent range as the single precision
IEEE 754 (binary32), having a similar dynamic range. In
this scenario, Unum-IV< 16, 3 > FPU is 1,36x smaller than
the binary32. Unum-IV<32,4> has a higher dynamic range
compared with the double-precision IEEE 754 (binary64), and
its FPU is 2,16x smaller.

B. Posits and Unum Type-IV Comparison

In the comparison between the Unum-IV and Posit hardware
resources utilization, the paper [16] results are used to estimate
the ASIC area of a Posit FPU. In this article, a pipelined FPU
with an adder and multiplier was implemented in an FPGA
using the Posit Standard configurations.

Table VI compares the silicon area of the Unum-IV FPU
to the estimated silicon area of the Posits FPU for the
following standard configurations: Posit<16,1>, Posit<32,2>
and Posit<64,3>. For the Unum-IV, the ASIC results are ob-
tained by directly implementing the Unum-IV<16,3>, Unum-
IV<32,3> and Unum-IV<64,4> FPU configurations, using a
UMC 130nm process. It could be shown that the silicon area
estimated from the Unum-IV FPU FPGA results and its actual
silicon area are similar. However, the actual results are shown
since they are available.

TABLE VI
SILICON AREA COMPARISONS BETWEEN DIFFERENT UNUM-IV AND

POSITS CONFIGURATIONS.

Format Configuration
Maximum Precision

[Bits]

Dynamic Range

[Decades]

Estimated ASIC Area

[mm2]

ASIC Area

[mm2]

Posit

<16,1> 12 16.86 31.77 —————–

<32,2> 27 72.25 97.79 —————–

<64,3> 58 298.62 327.5 —————–

Unum-IV

<16,3> 13 77.96 ——————————- 34.42

<32,3> 29 82.78 —————————— 74.14

<64,4> 60 19740.9 ——————————- 240.46

The results in Table VI show that the Unum-IV area is
similar or smaller than the Posits area. Given that the accuracy
and dynamic range of the Unum-IV has been shown superior
to those of the Posits, one concludes that the Unum-IV format
is a better replacement for the IEEE 754 format than the Posits.

For the same bit width, Unum-IV<16,3> has a similar
area, a wider dynamic range by almost 30 decades and a
greater maximum number of precision bits compared with
Posit<16,1>. Unum-IV<32,3> uses 25% less area than
Posit<32,2> while having a similar dynamic range and sup-
porting more precision bits. Finally, Unum-IV<64,4> uses
nearly 36% less area, has 66x more decades of dynamic range
than the Posit<64,3> configuration, and also supports more
precision bits.

VI. PROOF OF CONCEPT: KNN APPLICATION

A KNN application was implemented using three different
data types: the IEEE 754 double-precision format, which is



used as a reference, the IEEE 754 single-precision format,
and the Unum-IV<32,4> format. The Unum-IV<32,4> is
suitable to be used in ML application such as the KNN and
tested against the 32-bit IEEE 754 floats because these type
of applications use a high amount of floating-point operations
and have a level of accuracy tolerance that others do not. It
is expected that Unum-IV<32,4> exceed both 32-bit and 64-
bit floats in terms of dynamic range. In terms of accuracy,
the variable-precision format should also exceed the 32-bit
floats for numbers near 1. Therefore, two different tests are
made to compare the accuracy of the classification results for
benchmarks that cover those features, using the 64-bit float
results as a reference.

The algorithm finds the K closest labelled data to the data
point to be classified using the distance as criteria, and then it
predicts the test point classification by the majority class voted
by its K neighbours. Thus, the class with the most votes is held
as the predicted class of the unlabeled data point.

A. Experimental Results

The proof of concept application was run for two different
sets of benchmarks. The number of neighbours is defined as
10 to provide a more accurate classification. To compare the
performance between Unum-IV<32,4> and the IEEE single-
precision floating-point format, we use the IEEE double-
precision format results as a reference.

1) Experiment 1: In the first test, ten different benchmarks
are randomly generated. The dataset points range between
0.99999 and 1, and the test points range between 0.9 and
1. This setup provides sparsely dispersed datasets. These
benchmarks are suitable to compare and verify if Unum-
IV and 32-bit floats have enough resolution to give accurate
answers for numbers near 1.

Since the 32-bit floats have a 23-bit fraction, the effective
resolution of the format lies between six and seven decimal
fractional digits. Hence, it is expected that the 32-bit floats
might not have enough resolution to give accurate classifi-
cations to the test points. On the other hand, for numbers
near 1, Unum-IV<32,4> can have a maximum of 28 bits of
fraction. Therefore, the Unum-IV format can lead to more
accurate classifications than 32-bit floats because it supports
6 to 9 decimal fractional digits of resolution.

Fig. 11. Accuracy of Classification for Unum-IV<32,4> and 32-bit Floats.

The results of the first test show that Unum-IV<32,4> have
a higher percentage of correct classifications than the 32-bit

floats for all the ten benchmarks. The accuracy of Unum-IV
is set between 90 to 100 per cent, while the 32-bit floats can
only afford results between 23 and 83 per cent of accuracy
compared with the 64-bit floats classifications. As expected,
Unum-IV<32,4> outperforms the 32-bit floats for numbers
with small magnitude.

2) Experiment 2: In the second test, another ten different
benchmarks are randomly generated. However, the dataset
points and test points generation use a wider range than the
previous test, ranging between 0 and 1022. The main focus
of this test is to compare the Unum-IV<32,4> classifications
with the results of the 64-bit float. It is expected that in this
test, both formats provide similar classifications, considering
their dynamic ranges.

Fig. 12. Accuracy of Classification for Unum-IV<32,4> and 64-bit Floats.

All the data used in the set of benchmarks are supported
by the 32-bit floats, which, nonetheless, may not apply to
the square distance between the labelled and unlabeled points,
as the computed distance might fall outside the range of the
32-bit floats. For this reason the 32-bit floats have a poor
performance, as most of the computed distances overflow,
resulting in less accurate classifications. On the other side,
we have the Unum-IV format performs correctly in all the
benchmarks, which is easily explained by the fact that Unum-
IV< 32, 4 > has a greater dynamic range than 32-bit and 64-
bit floats. Another note that can be added to these results is
that the behaviour of floats towards the overflow of assigning
it to the +∞ can cause mathematical incongruities, as the
operations are not interrupted.

Finally, both experimental results show that Unum-
IV<32,4> can indeed produce more accurate results than the
IEEE 754 single-precision floating-point format for numbers
with a small magnitude but also cover all the IEEE 754 double-
precision dynamic range with very accurate results. This
means that for these type of applications that tolerate some
accuracy loss, 32-bit Unum-IV<32,4> can be a compelling
replacement for the 64-bit IEEE 754 format. Unum-IV<32,4>
has a wider dynamic range than the 64-bit IEEE 754 using half
of the computer memory for the format and can provide near-
one results with higher accuracy than the IEEE 754 format
with the same word size.

With the addition of the conclusions obtained with these two
experiments in terms of accuracy, it is possible to conclude that
the Unum-IV<32,4> can satisfy the application requirements



while guaranteeing computational efficiency and lowering the
power.

VII. CONCLUSIONS

In this work, we introduced a new floating-point number
system, which can replace the IEEE 754 format offering
significantly more precision and dynamic range, and beating
the previous Unum-III proposal in terms of precision bits and
dynamic range decades per logic gate.

The first step to achieve this goal involved studying the
state-of-the-art of the IEEE 754 Standard and the different
Unum formats to understand their drawbacks and how the new
proposal could add value.

Then, the Unum Type-IV format is proposed, which intro-
duces variably-sized exponent and significand scheme that ef-
fectively increases the dynamic range and accuracy compared
to Unum-III. The new scheme is based on a dynamic hidden
bit for the 1’s complement exponent and another dynamic
hidden bit for the 2’s complement significand, that dispenses
with the use of a unary representation for the super exponent
called Regime bits in Unum-III (Posits). Compared to Posits,
accuracy and dynamic range is increased by using a binary
representation for both the exponent and the significand.

A parametrizable Unum-IV Floating-Point Unit (FPU) is
developed in Verilog and implemented in FPGA and ASIC
technology and tested in different format configurations. The
new FPU is compared with IEEE 754 and Posits FPUs in
terms of the used silicon. The new FPU has three hardware
levels, unpacking, processing and packing, and includes four
basic two-argument operations: addition, subtraction, division
and multiplication.

A corresponding parametrizable IEEE 754 FPU is also
implemented in FPGA and ASIC technology, and the syn-
thesis results show that, for same bit width configurations,
the area and power consumption of the Unum-IV FPU is
lower. Published results on a Posits FPU have been used for
comparison. For equivalent hardware size, Unum-IV has much
more maximum precision than IEEE 754 and more maximum
precision than Posits. For equivalent hardware size, Unum-
IV has much more dynamic range decades than IEEE 754
and more dynamic range decades than Posits. This shows
that Unum-IV has a better performance in terms of power
consumption and silicon area than IEEE 754 and Posits.

For example, the 32-bit Unum-IV<32,4> configuration has
30x the dynamic range in decades compared with 64-bit floats
while using 2.1569x less silicon area with 1.8189x less power
consumption with a higher maximum clock frequency (200
MHz against 169.15 MHz of the 64-bit floats), using half
of the computer memory for the format. This means Unum-
IV<32,4> can produce similar results as when using 64-bit
floats using half the memory and about 30% less silicon. For
the same bit width, the Unum-IV<32,4> has a 237x larger
dynamic range compared with the 32-bit floats. In terms of
accuracy, it can outperform the 32-bit floats as the Unum-IV
fraction bits float between 28 and 21 bits, whereas the 32-bit
floats have a fixed fraction with 23 bits. Thus, in the best

scenario, the Unum-IV<32,4> produces answers with five
additional accuracy bits, and in the worst case, with fewer
two bits of accuracy.

For Posits, the 64-bit Unum-IV<64,4> configuration has
a dynamic range with more 19442 decades and a significand
with 2 extra precision bits compared with Posit<64,3> while
using 1.32x less silicon area, for example. This means the
Unum-IV<64,4> can produce better results in terms of the
dynamic range and precision than the 64-bit Posit<64,3>,
while using about 32% less silicon. For equivalent hardware
size, Unum-IV<32,3> has more 2 precision bits and about 10
more dynamic range decades than Posit<32,2> format with
the same bit width.

It is concluded that the initial goals have been achieved: the
proposed floating-point system can be a suitable replacement
for the IEEE 754, in particular for the area of HPC and low
precision applications, and beats its main competitor, Unum-
III (Posits).

REFERENCES

[1] D. Goldberg, “What Every Computer Scientist Should Know about
Floating-Point Arithmetic,” ACM Comput. Surv., vol. 23, no. 1, p. 5–48,
Mar. 1991. [Online]. Available: https://doi.org/10.1145/103162.103163

[2] A. Di Franco, H. Guo, and C. Rubio-González, “A Comprehensive Study
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