
Unum Type-IV: A Floating-Point Unit with Dynamically
Varying Exponent and Mantissa Sizes

Micaela Moraes Serôdio

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. José João Henriques Teixeira de Sousa
Supervisor: Prof. Horácio Cláudio de Campos Neto

Examination Committee

Chairperson: Prof. Francisco André Corrêa Alegria
Supervisor: Prof. José João Henriques Teixeira de Sousa

Member of the Committee: Prof. Mário Pereira Véstias

September 2021

ii

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the require-

ments of the Code od Conduct and Good Practices of the Universidade de Lisboa.

iii

iv

Acknowledgments

This document marks the end of my 5-year journey as a university student and, I would like to start

by thanking the Instituto Superior Técnico and the Federal University of Santa Catarina. These two

universities gave me the necessary knowledge, material and conditions to develop this project, allowing

me to conclude my academic career with success. I would also like to thank all my colleagues and

teachers who made this whole journey stimulating and with a lot of personal, academic and social

learning. In particular, I would like to thank Professor José Teixeira de Sousa for his knowledge, advice,

for reviewing my thesis and also for creating in me a great interest in computer electronics and hardware,

to Professor Horácio Neto for the valuable insights and, also, to João Dias Lopes for all the help in the

development of this dissertation.

Finally, I would like to give special thanks to my family and friends for all the support and help they

gave me throughout this process. This achievement would not be possible without their support.

v

vi

Abstract

The main objective of this dissertation is to create a new floating-point format, called Unum-IV, that

replaces the unary numeral system used in the Regime bits of the Unum Type-III format, aka Posit

numbers, with a regular binary system. The Unum formats (types I, II and III) introduced the concept

of tapered precision: numbers having an absolute value close to 1 are given more significand bits and

fewer exponent bits. This way, it is possible to extraordinarily increase the dynamic range or accuracy,

depending on the application.

The new format recovers and extends Unum Type-I ideas but, like Unum-III, it is meant to be hard-

ware fiendly, is hence named Unum Type-IV. The main ideas of the new Unum-IV format are to use a

dynamically variably-sized significand and exponent with a 1’s complement representation of the expo-

nent, and a 2’s complement representation of the significand. The Unum-IV format uses one hidden

bit both in the exponent and significand representations to prevent redundancy. However, unlike other

formats, including Posits, that use a fixed hidden 1 bit only in the significand, Unum-IV uses dynamic but

simply computed hidden bits for both the significand and the exponent.

This proposal intends to be a suitable drop-in replacement for the IEEE 754 Floating-Point Standard,

using a dynamically sized significand and exponent, which allows the new format to fulfil the precision

or dynamic range needs of applications, using fewer hardware resources. This format is aimed at small

memory footprint and low energy consumption applications, such as those that can be found in the

Internet of Things (IoT). In fact, in most practical cases, Unum-IV can replace IEEE 754 double precison

numbers, which means half the memory footprint and 30% less hardware resources.

In this dissertation work, a Unum-IV Floating-Point Unit (FPU) with addition, subtraction, multiplica-

tion and division operations is implemented in software and hardware, in the C and Verilog languages,

respectively. To study it, the FPU is attached as a peripheral to an open-source RISC-V processor, and

the K-Nearest Neighbours (KNN) algorithm, a non-parametric machine learning algorithm, is used as

a proof of concept for comparing the Unum-IV and the IEEE Standard 754 Floating-Point formats. The

metrics used to compare the different number systems are the precision, dynamic range, resolution,

Units of Least Precision (ULP), and integrated circuit implementation results: silicon area, power con-

sumption, operation clock frequency. The percentage of accurate classifications in the KNN application,

using the IEEE-754 64-bit double precision floats as reference, is also studied.

Keywords: Computer Arithmetic, Unum Number, Posits, Floating-Point Unit, High Precision

Arithmetic, Approximate Computing

vii

viii

Resumo

O objetivo principal desta dissertação é a criação de um novo formato de vı́rgula flutuante, o Unum-

IV, que substitui o sistema numérico unário utilizado nos bits de regime do formato Unum Type-III,

também conhecido como Posits, com um sistema binário regular. Os formatos Unum (tipos I, II e III) in-

troduziram o conceito de precisão cónica, isto é, números com um valor absoluto próximo de 1 recebem

mais bits de mantissa e menos bits de expoente. Desta forma, é possı́vel aumentar extraordinariamente

a gama dinâmica e/ou precisão, dependendo do contexto em que é usado.

O novo formato recupera e estende ideias do formato Unum-I. No entanto, tal como o formato

Unum-III, este novo formato Unum-IV é voltado para versão otimizada de termos da utilização de

hardware. As principais ideias deste novo formato são a utilização de um significand e expoente de

tamanho dinamicamente varı́avel com uma representação de complemento para 1 do expoente, e uma

representação de complemento para 1 do significando. O formato Unum-IV contém um bit ”escondido”

nas representações de expoente e significando para não existir redundância nas representações. No

entanto, contrariamente aos restantes formatos, incluindo os Posits, que usam um bit implı́cito fixo a

1 apenas no significando, o Unum-IV utiliza bits implı́citos de forma dinâmica mas simples de calcular

tanto para o expoente como para o significando.

Esta proposta pretende ser um substı́tuto adequado para o Padrão de Vı́rugla Flutuante IEEE 754,

através de um significando e exponente de tamanho dinâmico, o que permite que o novo formato cumora

as necessidades de gama dinâmica ou precisão das aplicações, utilzando menos recursos de hardware.

O Unum-IV é um formato voltado para aplicações de baixo consumo energético e baixa utilização de

memória, como IoT. Na verdade, na maioria dos casos práticos, o Unum-IV pode substituir os números

IEEE 754 de precisão dupla, o que se traduz numa redução de memória utlizada, bem como uma

redução 30% dos recursos de hardware.

Nesta dissertação, foi implementada em software e hardware uma Unidade de Ponto Flutuante

(UPF) com adição, subtração, multiplicação e divisão de números no formato Unum-IV em C e Verilog,

respectivamente. Esta UPF foi anexada como periférico a um processador RISC-V de código aberto e

um algoritmo de classificação não paramétrico (KNN) foi utilizado como prova de conceito para com-

parar os resultados das operações com Unum-IV e com IEEE 754 Standard. As métricas usadas para

comparar os diferentes sistemas numéricos são a precisão, gama dinâmica, resolução, ULP (”Units of

Least Precision”), resultados de implementação ASIC, como a área ocupada, consumo energético e

frequência do relógio. Os resultados obtidos com os dois modelos na aplicação KNN são comparados

em termos da percentagem de classificações corretas, sendo que a referência é dada pelo formato de

64 bits IEEE 754.

Palavras-chave: Aritmética Computacional, Computação Unum, Unidade de Ponto Flutu-

ante, Aritmética de Alta Precisão

ix

x

Contents

Acknowledgments . v

Abstract . vii

Resumo . ix

List of Tables . xiii

Listings . xiv

List of Figures . xv

List of Acronyms . xix

1 Introduction 1

1.1 Topic Overview . 1

1.2 Motivation . 2

1.3 Objectives . 3

1.4 Dissertation Outline . 3

2 Background 5

2.1 IEEE Standard 754 Floating-Point . 5

2.1.1 Single-Precision . 5

2.1.2 Other IEEE 754 Standard Formats and ”Bfloat16” Format 7

2.2 Unum . 8

2.2.1 Unum Type-I . 8

2.2.2 Unum Type-II . 9

2.2.3 Unum Type-III: Posits . 9

3 Unum Type-IV 13

3.1 Unum Type-IV Generic Format . 13

3.2 Field Extractions . 16

3.2.1 Exponent Extraction . 16

3.2.2 Significand Extraction . 17

3.2.3 Examples . 17

3.3 Features . 18

3.3.1 Special Cases . 18

3.3.2 Exceptions . 18

xi

3.3.3 Rounding . 18

3.3.4 Dynamic Range and Precision . 19

3.4 Examples . 22

3.4.1 Unum-IV to Decimal Conversion . 22

3.4.2 Unum-IV<4,1> Enconding . 24

4 Hardware Implementation 25

4.1 Unum Type-IV Floating-Point Unit . 26

4.2 Functional Units . 28

4.2.1 Unpack Unit . 28

4.2.2 Processing Units . 30

4.2.3 Pack Unit . 35

4.2.4 Auxiliary Components . 38

4.2.5 Functional Units Pipeline Stages . 40

5 Evaluating and Comparing Unum Type-IV to Other Formats 41

5.1 Comparison Metrics . 41

5.1.1 Precision Bits . 41

5.1.2 Dynamic Range . 42

5.1.3 Hardware Resources . 42

5.1.4 Decimals of Accuracy . 42

5.1.5 Units of Least Precision . 42

5.2 Comparing Unum Type-IV Features with Other Formats 43

5.3 Comparing Unum Type-IV Dynamic Range with Other Formats 45

5.4 Comparing Unum Type-IV Precision with Other Formats 46

5.4.1 Unum-IV<8,2> vs. Quarter-Precision IEEE-Style floats 49

5.4.2 Unum-IV<8,2> vs. Posit<8,1> vs. Posit<8,0> . 51

5.5 Comparing Unum Type-IV Hardware Resources with Other Formats 52

5.5.1 IEEE 754 and Unum Type-IV Comparison . 52

5.5.2 Posits and Unum Type-IV Comparison . 55

5.6 Comparison Summary . 56

6 Proof of Concept: KNN Application 58

6.1 Algorithm . 59

6.2 Implementation . 60

6.3 Experimental Results . 64

6.3.1 Experiment 1 . 64

6.3.2 Experiment 2 . 65

xii

7 Conclusions 67

7.1 Achievements . 68

7.2 Future Work . 69

Bibliography 71

xiii

List of Tables

2.1 IEEE 754 Standard and ”Bfloat16” Format Features. 8

3.1 Exponent and Significand Extraction for DATA W=32 and EXP SZ W=4. 18

3.2 ”Round to the nearest, ties even” Mode. 19

3.3 Unum Type-IV Dynamic Ranges. 20

3.4 Unum Type IV Precision. 21

3.5 Unum-IV<4,1>. 24

4.1 FPU Interface. 27

4.2 Specification for the Operation Selection. 30

4.3 Functional Units Pipeline Stages . 40

5.1 Qualitative Comparison Between IEEE 754 Standard and Unum Type-IV. 43

5.2 Resolution for Different Unum-IV, Posits and IEEE754 Format Configurations. 49

5.3 ASIC Implementation Results. 53

5.4 Silicon Area of the Different Modules using Unum-IV<32,4>. 54

5.5 FPGA Results Comparison Between Different Unum-IV and Posits Configurations. 55

5.6 Silicon Area Comparisons Between Different Unum-IV and Posits Configurations. 55

5.7 Binary32, Bfloat16, Posit<16,3> and Unum-IV<16,3> Comparisons. 56

6.1 Parameters used in the KNN Clustering Application. 64

xiv

Listings

3.1 Pseudo-code of the Exponent Extraction Algorithm. 17

3.2 Pseudo-code of the Significand Extraction Algorithm. 17

4.1 Verilog Code to Instantiate the Parameterizable Unum-IV Floating Point Unit. 27

4.2 Rounding Bits Assignment. 37

6.1 Unum-IV and KNN Header File. 60

6.2 Double Random Generator. 62

6.3 Data Structures. 62

6.4 Square Distance Functions. 63

6.5 Insertion in Ordered List. 63

6.6 Classification step code. 64

xv

List of Figures

2.1 IEEE 754 Single-Precision Representation Format. 5

2.2 Unum Type-I Representation Format. 8

2.3 Visual Representation of the Unum Type-II Projective Real Number Line [15]. 10

2.4 Unum Type-III Representation Format. 10

2.5 Unum Type-I,II and III Advantages and Disadvantages. 11

3.1 Generic Unum-IV Representation Format. 14

3.2 Unum-IV<16,2> and Unum-IV<16,3> Precision Bits vs Binade (Exponent). 21

3.3 Unum-IV<32,3> and Unum-IV<32,4> Precision Bits vs Binade (Exponent). 21

3.4 Example 1 of an Unum-IV<32,4> Bit String. 23

3.5 Example 2 of an Unum-IV<32,4> Bit String. 23

3.6 Example 3 of an Unum-IV<32,4> Bit String. 23

4.1 IoB-SoC Block Diagram with the Unum-IV Module Attached as a Peripheral. 25

4.2 Unum-IV FPU. 26

4.3 Unum-IV FPU Datapath. 28

4.4 Unum-IV Unpack Stage Block Diagram. 29

4.5 Unum-IV Addition/Subtraction Unit. 31

4.6 Unum-IV Multiplication Unit. 33

4.7 Unum-IV Division Unit. 34

4.8 Unum-IV Pack Unit. 36

4.9 Unum-IV Exponent Difference Flow Diagram. 38

5.1 Dynamic Range for Different Unum-IV and IEEE754 Format Configurations. 45

5.2 Exponent vs Significand Bits Comparison Between Unum-IV<16,3> & 16-bit IEEE 754

Format. 46

5.3 Exponent vs Significand Bits Comparison Between Unum-IV<32,3> & 32-bit IEEE 754

Format. 47

5.4 Exponent vs Significand Bits Comparison Between Unum-IV<32,4> & 32-bit IEEE 754

Format. 47

5.5 Exponent vs Significand Bits Comparison Between Unum-IV<64,4> & 64-bit IEEE 754

Format. 48

xvi

5.6 Exponent vs Significand Bits Comparison Between Unum-IV<128,4> & 128-bit IEEE 754

Format. 48

5.7 Decimals of Accuracy Comparison Between Unum-IV<8,2> & 8-bit Floats. 50

5.8 Decimals of Accuracy Comparison Between Unum-IV<8,2> & Posit<8,0> (LEFT).Decimals

of Accuracy Comparison Between Unum-IV<8,2> & Posit<8,1> (RIGHT). 51

5.9 ULP Comparison Between Unum-IV<8,2> & 8-bit Floats. 52

6.1 KNN Application. 59

6.2 Accuracy of Classification for Unum-IV<32,4> and 32-bit Floats. 65

6.3 Accuracy of Classification for Unum-IV<32,4> and 64-bit Floats. 66

xvii

xviii

List of Acronyms

FPU Floating-Point Unit

FPGA Filed Programmable Gate Array

RISC Reduced Instruction Set Computer

SoC System on Chip

FU Functional Unit

ALU Arithmetic and Logic Unit

FP Floating Point

SP Single Precision

DP Double Precision

NaN Not a Number

AI Artificial Intelligence

ML Machine Lerning

IoT Internet of Things

qNaN Quiet Not a Number

sNaN signaling Not a Number

HPC High Performace Computing

BD Big Data

MSB Most Significant Bit

IEEE Institute of Electrical and Electronics Engineers

DL Deep Learning

ASIC Application-Specific Integrated Circuit

ULP Units of Least Precision

xix

xx

Chapter 1

Introduction

1.1 Topic Overview

We live in an era where the trade-off between performance, cost, resources, and power consump-

tion significantly impacts the computer science area. The increase in the complexity of the algorithms

due to Big Data (BD) analysis, the need for High-Performance Computing (HPC) and the never-ending

need for energy-efficient computing in fields of Machine Learning (ML), Artificial Intelligence (AI) and the

Internet of Things (IoT) are creating a new computing paradigm. The majority of numerical computa-

tion algorithms require the capacity to perform arithmetic operations and manipulation of real numbers.

In digital electronics, the most extensively adopted approximation of the real numbers is given by the

floating-point formats.

Throughout our history, some disasters happened due to floating-point issues, usually because of

rounding errors [1], such as the Patriot Missile Failure on February 25, 1991, where an Americal Patriot

Missile battery in Dharan, Suadi Arabia failed to intercept an incoming Iraqi Scud missile. That happened

due to a rounding error in the time calculation, which costed the life of 38 people.

Another disaster was the explosion of the Ariana-5 rocket launched by the European Space Agency

in 1996. The rocket exploded just forty seconds after the lift-off due to a software error in the inertial

reference system. One more example of a floating-point error disaster was the Sleipner Oil Platform

that collapsed to the ocean floor due to a floating-point error in the structural analysis, costing a nearly 1

billion dollar loss. There were other famous disasters in different areas caused by issues of the floating-

point format design, like the overflow, underflow and rounding error problems [2].

During the 1960s and the 1970s, there was no ubiquity in the floating-point format, so each com-

puter manufacture developed its floating-point system, resulting in floating-point inconsistency across

platforms. In 1985, the IEEE Standard for Floating-point Arithmetic (IEEE 754) [3] was established by

the Institute of Electrical and Electronics Engineers (IEEE), and it is, nowadays, the most common rep-

resentation of real numbers on computers, including Intel-based PC’s, Macs and most Unix platforms.

This format has been reviewed and replaced two times, in 2008 [4] and 2019 [5] but there were only

minor changes between them to maintain compatibility in existing implementations.

1

However, some drawbacks have been identified in the IEEE 754 Standard [6, 7, 8], such as:

• Overflow and Underflow: overflowing to −∞ or +∞ and underflowing to 0, increases the relative

error by an infinite factor and leads to sign information loss, respectively.

• No Gradual Overflow and Fixed-Accuracy: accuracy is flat across a vast range, then ”falls off a

cliff”.

• Wasted bit-patterns: there are too many NaN representations and two bit-patterns to represent 0,

the ”negative zero” (0−) and the ”positive zero” (0+).

• There is no guarantee of identical results across systems.

• Exponents usually take too many bits.

• Equality verification test between two floating-point is complex due to the presence of redundant

representations.

Throughout the years, different number systems and techniques have been proposed to overcome

these challenges. In [9], Morris suggested a ”tapered” system to solve the fixed accuracy problem of the

floating-points [10].

In 2013, John L. Gustafson introduced a new binary and arithmetic way of representing real numbers,

a number system called ”Universal Numbers” [6, 11, 12, 13]. They have so far three different types

of representation. Type-I is a super-set of the IEEE 754 Standard floating-point format, and it was

introduced in [6]. This format uses a variable-length storage format for the exponent and fraction fields

and a ”u-bit” at the end of the fraction that indicates if a ”real” number (u=0) is an exact float or lies in

the open interval between two consecutive exact (u=1). The Type -II [14] enables a clean mathematical

design based on the projective reals and relies on lookup tables. It is a direct map of signed integers

to the projective real number line. The last version introduced in 2017 is the Type-III format, also known

as Posits [15, 16]. Posits are a hardware-friendly version of Unums [17, 18], with all the advantages

from the previous types, but where the problems found in Type-I due to the variable sizes are solved.

Posits have a different format than IEEE 754 floats, consisting of 4 fields: the sign, regime, exponent,

and fraction field.

Recent studies on Posits suggest it solves many of the drawbacks of the IEEE 754 Standard for

floating-point arithmetic [8, 19, 20, 21], and are especially useful for Deep Learning (DL) applications [22,

23, 24].

Over the years, other notable formats have been introduced for DL algorithms [25, 26], for example,

the ”Bfloat16” format [27, 28, 29, 30] introduced by a Google research group to replace the 32-bit IEEE

754 floating-point format in energy-efficient applications.

1.2 Motivation

Nowadays, even though many shortcomings have been pointed out upon the IEEE 754 Standard,

it is still the most commonly implemented in microcontrollers and general-purpose microprocessors to

2

perform floating-point arithmetic. However, the trade-off between the dynamic range and the precision

of the floating-point formats can be explored to create a new number system that avoids those short-

comings. The Unum system introduced the concept of tapered precision, which means that numbers

having an absolute value close to 1 are given more mantissa bits and fewer exponent bits, whereas the

other numbers trade-off mantissa bits with exponent bits. This way is possible to extraordinarily increase

the dynamic range and accuracy at the said ranges.

The Unum-III number system (Posits) looks very promising as an IEEE 754 replacement, but, in this

thesis, we show that it can still be improved to provide more accuracy and dynamic range for the same

number of bits to represent the numbers. More specifically, the unary representation of the “regime” bits

of the Posits limits its accuracy or dynamic range and beg for optimisation.

Hence, the principal motivation of this dissertation is to design a new floating-point format suitable for

replacing Posits, improving its accuracy and dynamic range without requiring more hardware resources.

1.3 Objectives

The main objective of this dissertation is to come up with a number system that can overcome the

shortcomings in accuracy and dynamic range identified in the Unum Type-III format.

This proposal intends to be a suitable replacement for the IEEE 754 Standard for floating-point arith-

metic in low energy consumption applications by using an exponent and mantissa of dynamic size.

In order to achieve this objective, the state-of-the-art of the IEEE 754 Standard and the different

Unum floating-point formats and arithmetic is studied in detail, a new format, Unum-IV, is proposed, and

software and hardware models are developed.

The hardware model is a parameterisable Unum-IV Floating-Point Unit (FPU) with four basic opera-

tions (addition, subtraction, division and multiplication) is implemented.

To verify the new FPU, the FPU is attached as a peripheral to a RISC-V System on Chip produced

by IOBundle, Lda, a Lisbon-based computer architecture company, and simulated. Additionally, the

new FPU and an IEEE 754 FPU has been synthesised in an Integrated Circuit flow using the UMC

130nm silicon technology. The synthesis results in terms of the clock frequency, silicon area and power

consumption are compared to the IEEE 754 FPU and the published results of a Posits FPU.

To verify the advantages in terms of accuracy and dynamic range, the Unum-IV FPU software model

is and tested against the IEEE 754, already implemented in the C Standard library, using a K-Nearest

Neighbours (KNN) application [31] as proof of the concept.

1.4 Dissertation Outline

This dissertation is composed of seven chapters, including the present one. In the second chapter,

the IEEE 754 Standard formats and the Unum formats are presented. In the third chapter, the new

Unum Type-IV format is introduced and detailed. In the fourth chapter, the hardware implementation of

a parameterised floating-point unit using the Unum Type-IV number system is fully described. In the fifth

3

chapter, the IEEE 754 Standard is compared against the Unum Type-IV format. In the sixth chapter,

a KNN application is implemented and tested using different number systems, and the experimental

results are discussed. Finally, in the seventh chapter, the conclusions are presented, the achievements

are pointed out, and the directions of the future work are outlined.

4

Chapter 2

Background

This chapter describes the existing Floating-Point (FP) Unum formats (Unum Type-I, Unum Type-II

and Unum Type-III), the IEEE 754 Standard and the ”Bfloat16” format.

2.1 IEEE Standard 754 Floating-Point

The IEEE 754 Standard, established in 1985 by the IEEE [3, 4, 5], is a standard that specifies

formats and methods for floating-point arithmetic in computer programming environments. The format

comprises three fields, sign, exponent and significand, exception conditions, rounding modes and their

default handling. The implementation of the FP system may be performed in software, hardware or a

combination of both. The IEEE 754 standard allows for FP computations to have the same results. It

means that the standard defines a family of commercially feasible ways for systems to perform floating-

point arithmetics.

The standard specifies formats for binary and decimal FP data, operations, conversions between

FP formats and integer formats, exceptions and how to handle them. The formats approached in more

detail in this chapter are the Single-Precision (SP) and the Double-Precision (DP) formats, because they

are compared and tested against the new number system proposed in this dissertation, using a KNN

application.

2.1.1 Single-Precision

The single-precision floating-point is one of the formats belonging to the IEEE 754 family. It has a

width of 32 bits and is encoded as shown in Figure 2.1.

Exponent

31

30

22 0

23

S Fraction

Figure 2.1: IEEE 754 Single-Precision Representation Format.

5

As represented in Figure 2.1, this format has three representation fields:

• S: the sign bit that indicates the sign of the significand of the signed number representation.

• Exponent: a biased 8-bit unsigned integer with a range between 0 and 255. The bias is 127,

meaning that the actual 0 of the exponent is represented by an exponent biased value of 127. The

0 and 255 values of the biased exponent are reserved for ”special” numbers explained in detail in

Section 2.1.1. The actual exponent range is [-126:127].

• Fraction: the 23 explicit bits of the significand. The significand has a 23-bit fraction on the right side

of the binary point plus an implicit leading bit on the left side. That hidden bit is always 1, unless

the biased exponent is 0. As a result, the significand is in the format 0.fraction if the exponent is

equal to -126 and in the 1.fraction format, otherwise.

The formula to convert the single-precision IEEE 754 FP format into the decimal representation is

given by the following equation

X =

(−1)S × 2Exponent−127 × 1.fraction, if Exponent 6= 0

(−1)S × 2−126 × 0.fraction, otherwise
(2.1)

Special Cases

There are four types of ”special” representation patterns: the ”subnormal” numbers, the ”Not a Num-

ber” patterns (NaNs), the +∞ and the −∞.

The 32-bit combinations where the biased exponent field is encoded with all zeros are the”subnormal”

numbers. These numbers fill the underflow gap around zero. In those cases, the implicit leading bit is

0 instead of 1, and even though the biased exponent is 0, the actual exponent is -126 as shown in

Equation 2.1; it is interpreted with the value of the smallest allowed exponent. These denormalized

numbers are used to create a gradual underflow.

The other special representations are bit patterns where the exponent is encoded with all ones. If

fraction=0, there are 2 possible combinations: S=0, which is used to represent +∞, and S=1 which

represents −∞. The other possible combinations with fraction 6= 0 are used to represent the NaNs,

interpreted as an undefined value. For example, dividing zero by zero results in an ”undefined real”

number and, therefore, computed as a NaN in computing systems.

The NaNs are separated into two types: the quiet NaN (qNaN) and the signalling (sNaN). The dif-

ference between them is that the qNaNs are used to propagate errors resulting from invalid operations,

and the sNaNs signal an invalid operation exception. NaNs are a symbolic entity encoded in FP format,

produced by the following operations: ∞−∞, −∞+∞, 0×∞, 0/0 and∞/∞. The sNaNs correspond to

a bit pattern of the fraction where the most significant bit is set to zero, and at least one of the remaining

bits set to one. For the qNaNs, the fraction needs to have the most significant bit set to 1.

6

Rounding

The IEEE 754 provides four rounding modes: the round to nearest or ties to even; round toward +∞;

round towards −∞; round towards 0. The default rounding mode provided by the standard is the first

one, round to nearest.

Operations

The operations required by the IEEE 754 standard are the addition, subtraction, division, square

root, fused multiply-add, remainder calculation, conversions between the IEEE 754 supported formats,

comparisons, sign manipulation, scaling and quantizing, miscellaneous operations and total-ordering

operations.

Exceptions

In the IEEE 754 standard, there are five types of exceptions: invalid operations, divide by zero,

overflow, underflow and inexact results. When any exception occurs, it must be signalled by a status

flag and issue a trap. The invalid operation occurs when the operation result is a qNaN, for example, an

operation that has a NaN as an input. The divide by zero operation must return a signed∞ if the number

to be divided is different from 0. Overflow occurs when the number is larger than the maximum possible

value of the representation format. On the other hand, underflow occurs when the result of an operation

is a number that has a smaller absolute value than the smallest representable value of the format used.

Finally, the inexact exception happens when the rounded result of an operation is not exact and, in that

case, no trap occurs.

2.1.2 Other IEEE 754 Standard Formats and ”Bfloat16” Format

The IEEE 754 Standard [5] includes four formats: half-precision (16 bits), single-precision (32 bits),

double-precision (64 bits) and quadruple-precision (128 bits). The different formats features and be-

haviour is similar, with a difference in the number of bits of the format, fields size and bias.

The exponent field has 5 bits for the 16-bit, 8 bits for the 32-bit, 11 bits for the 64-bit and 15 for the

128-bit formats. The fraction field has 10, 23, 53 and 112 bits, and the bias is equal to 15, 127, 1023,

16383, respectively.

Table 2.1 summarises all the IEEE 754 Standard Floating-Point Formats plus the ”Bfloat16” format.

”Bfloat16” [30] is a 16-bit format, with one sign bit, eight exponent bits and seven fraction bits. The 8-bit

exponent allows this format to have an identical dynamic range compared with the 32-bit float, so it is a

truncated version of the IEEE 754 single-precision format. The main idea was to replace the 32-bit IEEE-

754 with a format that occupies half of the computer memory, making it faster, simpler, and cheaper, with

the downside of losing precision. However, as stated before, research show [32, 33, 34, 27] that many

ML models tolerate this trade-off between speed and precision, as they increase the performance using

less memory and reach the same results without degradation.

7

Table 2.1: IEEE 754 Standard and ”Bfloat16” Format Features.

Format Width [Bits] Exponent [Bits] Exponent Bias Significand [Bits] Dynamic Range [Decades]

IEEE 754 Half-Precision 16 5 15 10 explicit + 1 implicit 12.04

Google Bfloat16 16 8 127 7 explicit + 1 implicit 83.47

IEEE 754 Single-Precision 32 8 127 23 explicit + 1 implicit 83.39

IEEE 754 Double-Precision 64 11 1023 52 explicit + 1 implicit 631.56

IEEE 754 Quadruple-Precision 128 15 16383 112 explicit + 1 implicit 9882.51

2.2 Unum

The ”Universal Numbers”, or Unums, introduced by John L. Gustafson in 2013 are a binary and arith-

metic representation format for real numbers. Unums have so far three different types of representation.

Type-I is a superset of the IEEE 754 Standard floating-point format, introduced in [6]. Type-II enables a

clean mathematical design based on the projective reals and relies on lookup tables. This format was

explained and detailed by Gustafson in an 2016 interview [14]. It is a direct map of signed integers to

the projective ”real” number line. The last version, introduced in 2017 is the Type-III, aka, Posits [15].

Type III is a hardware-friendly version with all the advantages from the previous types, and where the

problems found in Type I due to the variable sizes are solved.

The main idea of John L. Gustafson was to create a new number system for computers that could

be a suitable replacement to the IEEE 754 format. This implies a system that could give more accurate

results using fewer or the same number of bits, respects all the algebraic laws that IEEE 754 breaks,

and saves memory resources, energy and power consumption.

2.2.1 Unum Type-I

As described in [15], Unum Type-I is a superset of IEEE 754. The representation format is as shown

in Figure 2.2. This format uses a ”u-bit” (U) to indicate if the number is an exact float (U=0) or if the

number lies in the open interval between two consecutive floats (U=1).

Exponent Fraction Exponent SizeS U Fraction Size

Figure 2.2: Unum Type-I Representation Format.

The sign (S) bit indicates if the number is a negative or a positive value. If the sign bit is 1 the number

is negative, otherwise it is positive or zero. The exponent and fraction fields also have a similar definition

as in the IEEE 754 format.

However, in the IEEE 754 format, the fields have a fixed size, whereas in Unum Type I, they have

variable size, depending on the exponent size and significand size fields. They can go from 1 bit to the

maximum set by the user, meaning that they can vary in size to save storage and bandwidth.

This format is a compact way to express interval arithmetic. However, it requires extra management

8

at the hardware implementation due to the variable width of the exponent and significand field. It also

can avoid rounding errors, underflow and overflow because of the interval arithmetic approach.

However, there are disadvantages of the Unum Type-I format inherited from the IEEE 754, in partic-

ular, the existence of redundant representations, later solved by Unum Type-III as will be shown below.

The Unum Type-I format is explained in more detail in [6].

2.2.2 Unum Type-II

Unum Type-II, introduced in 2016, intended to solve some of the drawbacks of Unum Type-I, such as

the existence of redundant representations. While Unum Type-I is a superset of IEEE 754, Unum Type-II

is a complete redesign, losing compatibility with IEEE 754.

Unum Type-II format enables a clean mathematical design based on projective reals. They are a

direct-map of signed integers onto the ”real” projective line, relying on look-up tables. This format has

many ideal mathematical properties based on the projective reals. As John L. Gustafson explained in an

interview [14], Unum Type-II shares about 80 % of the mathematical advantages of Unum Type-I, such

as the ability to avoid overflows, underflows and rounding errors. Unum Type-II is a configurable accu-

racy, fast and simple format, which allows the user to design a custom number system for a particular

workload, particularly interesting for the deep learning community.

Figure 2.3 shows the visual representation of a 5-bit Unum-II projective ”real” number line. The

upper right quadrant has an ordered set of real numbers (xi), whereas the upper left quadrant has the

symmetric of those values (−xi). As for the lower quadrants, they hold the reciprocal values of the upper

quadrants. This geometry of the projective reals is what gives the format many ideal mathematical

properties.

The last bit of the 5-bit representation format is the ”u-bit”; if U=0 the representation is exact, oth-

erwise (U=1), the number represents the open interval between consecutive exact numbers. The most

significant bit is the sign bit.

One of the main disadvantages of this format is that they rely on look-up tables, which are limited to

20 bits or less to be hardware efficient, which results in low precision for certain operations. This format

is explained in more detail in [6] and [14].

2.2.3 Unum Type-III: Posits

Unum Type-III, or Posits as they are also known, were introduced by John L. Gustafson in 2017 [15].

They are determined by the format size (n) and by the number of bits necessary to represent the

exponent size (es). Therefore, the notation used in this dissertation to express the configuration is

Posit<n,es>. Figure 2.4 shows the generic representation format of Posits with four fields.

• S: follows the same definition as Unum Type-I: S=0 if the number is positive and S=1 if the number

is negative.

• Regime: used to calculate a scale factor of useedRegime. The number of regime bits is variable and

9

Figure 2.3: Visual Representation of the Unum Type-II Projective Real Number Line [15].

can land between 1 and n-1 bits. It is determined by a run of identical bits, ending either because

there are no more bits in the n-bit word or because it runs into an opposite bit. The useed value is

a described as a “batched” form of powers of two, which depends on m the number of bits of the

exponent, and is given by useed = 22
m
.

• Exponent: represents the scaling factor of 2Exponent. Unlike the floats, there is no bias in the

exponent representation. This field has a variable length depending on the Regime field, after

which it follows.

• Fraction: represents the significant digits on the right side of the significand’s binary point. It

follows the same logic as the IEEE 754 floats, but the main difference is that the implicit leading bit

is always 1, as there is no sub-normal mode.

Regime ExponentS Fraction

Figure 2.4: Unum Type-III Representation Format.

The formula to convert a Type-III value into its decimal representation is given by the following equa-

tion

X = (−1)S × useedRegime × 2Exponent × 1.fraction (2.2)

Type-III has no NaN bit representation. Instead interrupts are advocated for this and other special

cases. The interrupts are handled by an interruption handler that can be set to either report the error or

10

work around it to continue computing. That means that Posits can use more bit patterns to represent real

numbers and that fewer hardware resources are used. In terms of the bit patterns available, the Posits

architecture has only one representation for 0 compared with the two zero representations in IEEE floats,

the 0+ and 0−. This is an advantage because it follows the mathematical logic of the concept of 0. On

the other hand, the Type-III format does not have signed ∞ representations. There are no subnormal

numbers in Posits, since the hidden bit is always 1. It means that there is no ”gradual underflow”.

With Posits, the numbers close to 1 are given more significand bits (more precision bits) and fewer

exponent bits. This is an important concept called tapered precision.

The dynamic range can be larger than the IEEE 754 dynamic range because of the variably-sized

exponent. Gustafson intended to have a drop-in replacement for the IEEE floats, with a faster, more

accurate, more hardware-friendly and lower cost number system. Figure 2.5 is extracted from [16] and

sums up the advantages and disadvantages of all Unum types.

Figure 2.5: Unum Type-I,II and III Advantages and Disadvantages.

11

From the figure, it is possible to conclude that Unum Type-III is the most promising Unum format for

replacing IEEE 754, and some studies show that Posits can have better behaviour in DL applications

compared to floats [8, 23, 22, 21, 29, 19].

Even though this format is the most promising, there are features of Unum Type-I that might be

interesting to keep exploring, such as the exponent size field, the level of compatibility with IEEE 754,

the use of variably-sized significand and exponent, and its bit-efficiency.

The Regime field in Type-III field behaves as a ”super exponent”, which does not appear to be the

best approach to increase the dynamic range or the precision. In fact, those bits can be more useful if

used to extend the significand or exponent width. This is the weakest aspect of the Type-III system.

There are other minor weaknesses of this format, such as the fact that there is no difference between

the −∞ and +∞ representations, 64-bit Posits can not represent the maximum corresponding float [35],

and the level of compatibility with IEEE 754 is lower than Unum Type-I.

In the following chapters, a new Unum format, called Unum-IV, is proposed and explained in detail.

This new format explores and combines ideas from both Unum Type-I and the Unum Type-III formats,

specifically, the use of an exponent size field, the use of variably-sized significand and exponent. Unum-

IV also dispenses with NaN, −∞ and +∞, and does not have two different patterns to represent 0.

However, the new format solves the main problem of Posits: the space wasting of the Regime bits as

explained above.

The new Unum-IV format uses regular exponent and significand fields, but resorts to an elaborate

scheme to avoid redundant representations by introducing a dynamic hidden bit not only in the signif-

icand but also in the exponent. The significand’s hidden bit also serves as the sign, which needs no

specific field.

12

Chapter 3

Unum Type-IV

This chapter introduces a new floating-point representation format developed during this thesis,

called Unum Type-IV. The new Unum Type-IV, shortly Unum-IV, replaces the unary numeral system

used in the type-III format, aka Posit numbers, with a regular binary system. The Unum formats (types

I, II, and III) introduced the concept of tapered precision: numbers having an absolute value close to 1

are given more significand bits and fewer exponent bits, and the very large or very small numbers give

up significand bits and use more exponent bits. This way, it is possible to extraordinarily increase the

dynamic range and accuracy at the said ranges. The main idea in this new representation is to use

a hidden bit in the exponent and a hidden bit in the significand to prevent redundant representations.

This new format recovers and extends Unum Type-I ideas while being hardware friendly like the Unum

Type-III format. Hence, it is named Unum type-IV.

This new format, like Posits, uses the balance between two aesthetics for calculation involving real

numbers: (1) the non-rigorous but cheap, fast and ”good enough” approach, and (2) the mathematically

rigorous and expensive approach, both in execution time and storage.

3.1 Unum Type-IV Generic Format

The Unum-IV generic format has three fields: the exponent, the fraction and the exponent size.

In order to avoid redundant representations, a hidden bit is added to the exponent as well as to the

significand. These hidden bits optimise the use of all bit patterns as representable real numbers. In

both cases, exponent and significand, the hidden bit is the Most Significant Bit (MSB) and the extraction

of exponent and significand is explained in Section 3.2. The significand and exponent in this format

are both signed, with the hidden bits providing the sign information. The exponent is in 1’s complement

format, so there is no need for a bias as in IEEE 754 and the significand is in 2’s complement format,

which dispenses with the sign bit field used in other formats such as the IEEE-754 format.

The Unum-IV configuration and enconding is determined by the format size (DATA W) and by the

number of bits necessary to represent the exponent size (EXP SZ W). Therefore, the notation

Unum-IV<DATA W,EXP SZ W>

13

is used here to denote a DATA W-bit Unum-IV with EXP SZ W bits for the exponent size field. The

generic Unum-IV floating-point format is encoded as shown in Figure 3.1, and the next subsections

explain each of the fields.

E
(Exponent)

DATA_W - 1 DATA_W - exp_size

EXP_SZ_WDATA_W - 1 - exp_size

0EXP_SZ_W-1

exp_size bits

DATA_W - EXP_SZ_W – exp_size bits

EXP_SZ_W bits

F
(Fraction)

Exp Size
 (Exponent Size)

Figure 3.1: Generic Unum-IV Representation Format.

Using this encoding, and processing the fields as explained below, one can obtain the significand s

and the exponent e of the real number r represented in the Unum-IV<DATA W,EXP SZ W> format and

given by

r = s× 2e (3.1)

Exponent Size (Exp Size)

The Exponent Size (Exp Size) is a small unsigned integer, which has a width defined by the param-

eter EXP SZ W, and can assume a value in the range from 0 to 2EXP SZ W− 1. The Exp Size field allows

for tapered accuracy since it represents the number of explicit bits necessary to represent the exponent

of the number in the 1’s complement format. It establishes a higher accuracy for numbers that are close

to 1, and a lower accuracy for very large or very small numbers.

Denoting the Exp Size bits by ExpSizei, the explicit exponent size in bits ExpSz is given by

ExpSz =

EXP SZ W−1∑
i=0

ExpSizei2
i (3.2)

Exponent (E)

The Exponent (E) field holds the explicit exponent, as indicated by its name. Unlike the IEEE 754,

the exponent is not biased and is represented as a signed integer in the 1’s complement format with

a hidden (implicit) most significant bit. The exponent hidden bit is always the negation of the most

significant bit of the E field. Moreover, the 1’s complement representation breaks for the widest exponent

and most negative 1’s complement exponent: (1)00...00, where the hidden bit is shown in brackets

followed by EXP SZ W zeros. This combination is reserved for subnormal representations to allow for a

graceful underflow. Subnormal representations are also used in the the IEEE 754 standard, though with

a different implementation.

The E field width is ExpSz, therefore it is variably-sized. If ExpSz = 0, the E field is not present.

Following the logic of the 1’s complement signed integers, if the hidden bit is zero the exponent is

positive and negative otherwise.

14

When E is filled with zeros and Exp Size is filled with ones, indicating the widest possible expo-

nent, the subnormal representation applies, as explained above. In this mode, the exponent is valued

−2ExpSz + 2, which is one unit more than the normal 1’s complement valuation of −2ExpSz + 1. Hence,

the exponent’s magnitude falls in the following range of values: [-2ExpSz + 2 : 2ExpSz − 1].

Without the subnormal representation, there would be a noticeable gap between 0 and smallest neg-

ative and positive numbers. By filling this gap around 0, the logarithmic distance between the numbers

when approaching zero increases but not as abruptly as with a simple flush to zero approach. This

allows computation results to lose precision slowly when very small. Hence, in the new Unum-IV format,

the exponent value is given by

e =

0, if ExpSz = 0

−2ExpSz + 2, if ExpSz = 2EXP SZ W − 1 ∧ E = 0

EExpSz−1(−2ExpSz + 1) +
∑ExpSz−1

i=0 Ei2
i, otherwise

(3.3)

The exponent hidden bit EHB is introduced to avoid redundant representations. It does not need to

be stored in memory, and is given by

EHB =

absent, if ExpSz = 0

EExpSz−1, otherwise
(3.4)

Fraction (F)

The Fraction (F) field represents the significant digits on the right side of the significand binary point.

Like in the IEEE 754 format, in the Unum-IV format, the significand has an implicit leading bit. However,

unike in the IEEE 754 format, this hidden bit is not always 1.

In the Unum-IV case, the significand is represented by a signed 2’s complement number, and the

hidden bit is always the complement of the fraction’s MSB, except for the subnormal representation

(see previous section), where the hidden bit equals the fraction’s MSB. Thus, if the hidden bit is 0, the

represented number is positive or zero; if the hidden bit is one, the number is negative. The F field

bit-width FracSize depends of course on the format width and exponent size and is given by

FracSize = DATA W− ExpSz − EXP SZ W (3.5)

Hence, in the new Unum-IV format, the significand is given by

s =

−F−1 +
∑FracSize

i=1 F−i2
−i, if ExpSz = 2EXP SZ W − 1 ∧ E = 0

−F−1 +
∑FracSize

i=1 F−i2
−i, otherwise

(3.6)

The significand’s hidden bit FHB in the new Unum-IV format dispenses with the sign bit as in the

IEEE-754 format and is given by

15

FHB =

FMSB , if ExpSz = 2EXP SZ W − 1 ∧ E = 0

FMSB , otherwise
(3.7)

Tapered Precision

The tapered precision is easily verified after having explained the format’s fields in the previous

sections. The sum of the exponent and fraction sizes is constant and given by

ExpSz + FracSize = DATA W − EXP SZ W (3.8)

On the one hand, the very large or very small numbers require more exponent bits to represent, get

fewer fraction bits and therefore less precision. On the other hand, the numbers closer to magnitude

1 require less exponent bits, get more fraction bits and therefore more precision. The numbers whose

exponent equals 0 do not require any exponent bits and get all the available DATA W - EXP SZ W bits

for precision.

3.2 Field Extractions

In this section, the exponent and significand binary format extraction is explained and exemplified.

As mentioned before, the exponent and significand of the Unum-IV format are both variably-sized, so

the field extractions can’t be performed in parallel. In these conditions, the extractions are sequenced.

Firstly, the exponent size is extracted because it only depends on the second parameter in the Unum-

IV<DATA W, EXP SZ W> notation, that is, EXP SZ W.

The ExpSize field is extracted by taking the EXP SZ W least significant bits of the Unum-IV number.

Using the Unum-IV<32,4> configuration as an example, the ExpSize field is given by the four least

significant bits of the 32-bit Unum-IV word, and it is interpreted as an unsigned 4-bit integer.

After extracting the ExpSize value, the exponent and significand can be both extracted in parallel.

3.2.1 Exponent Extraction

The exponent extraction follows the algorithm shown in the Listing 3.1. The hidden bits are shown in

brackets and the exclamation mark expresses the bit inversion. For example, (1) means that the implicit

hidden bit is 1.

There are three different scenarios in the exponent extraction. The first scenario is when ExpSize=0,

which implies that the exponent is also zero. These are the numbers close to 1 and do not require an

exponent. The second scenario is when the ExpSize = 2EXP SZ W − 1, the maximum exponent size

allowed by the Unum-IV<DATA W, EXP SZ W> configuration, and the exponent E field is all zeros. This

is the subnormal representation, where the significand’s hidden bit is flipped compared to the normal

16

representations, and the exponent is incremented by 1 to fill the gap around zero of the Unum-IV normal

representation.

For example, in the Unum-IV<32,4> case, this scenario corresponds to ExpSize = 15 and the E field

with 15 zeros. The third and normal scenario is when the exponent is extracted by left-concatenating

the exponent and significant hidden bits to the E and fraction bits.

Listing 3.1: Pseudo-code of the Exponent Extraction Algorithm.

i f (ExpSize == 0)

Exponent = 0

else i f (ExpSize == 2ˆEXP SZ W−1 && E == 0) / / Except ion

Exponent = (! E [ExpSize−1])E [ExpSize−1:0] + 1

else

Exponent = (! E [ExpSize−1])E [ExpSize−1:0]

3.2.2 Significand Extraction

The significand extraction follows the algorithm shown in the Listing 3.2. As in the exponent extrac-

tion, the hidden bit is shown in brackets, the exclamation mark expresses the bit inversion, and the dot

represents the binary point of the significand.

There are two different extraction scenarios for the significand, In both scenarios, the significand is

extracted by concatenating the implicit hidden bit to the left of the binary point, and the fraction bits to the

right of the binary point. The first scenario corresponds to the subnormal numbers when the E field is all

zeros and ExpSize filed all ones. In this scenario, the hidden bit is the same as the fraction’s MSB. The

second scenario is for the normal representation and the hidden bit is the complement of the fraction’s

MSB.

For example, in the Unum-IV<8,2> case, the first scenario corresponds to ExpSize = 3 and the E

field with 3 zeros. If the F is field with 3 zeros, then the significand is given by (0).000. An example for

the second scenario is when F is equal to 10000, the significand is (0).10000.

Listing 3.2: Pseudo-code of the Significand Extraction Algorithm.

i f (ExpSize == 2ˆEXP SZ W−1 && E ==0) / / Except ion

S i g n i f i c a n d = (F [DATA W−ExpSize−EXP SZ W−1]) .F [DATA W−ExpSize−EXP SZ W−1:0]

else

S i g n i f i c a n d = (! F [DATA W−ExpSize−EXP SZ W−1]) .F [DATA W−ExpSize−EXP SZ W−1:0]

3.2.3 Examples

Table 3.1 exemplifies the significand and exponent extraction for a 32-bit Unum-IV format with a 4-bit

exponent size field. From Table 3.1 it is possible to conclude that the exponent minimum width is 0, and

the maximum is 16, including the implicit leading hidden bit. The significand has a width between 14

and 29 bits, also with the hidden bit.

17

Table 3.1: Exponent and Significand Extraction for DATA W=32 and EXP SZ W=4.

Exponent Size Exponent Significand

0(min) 0 (F27).F27...F1F0

1 (E0)E0 (F26).F26...F1F0

2 (E1)E1E0 (F25).F25...F1F0

3 (E2)E2E1E0 (F24).F24...F1F0

. . .

i (Ei−1)Ei−1...E1E0 (F27−i).F27−i...F1F0

. . .

8 (E7)E7...E1E0 (F19).F19...F1F0

. . .

15 ∧ E 6= 0 (E14)E14...E1E0 (F12).F12...F1F0

15 ∧ E = 0 (E14)E14...E1E0 + 1 (F12).F12...F1F0

3.3 Features

3.3.1 Special Cases

The Unum Type-4 format does not have any special numbers such as ”NaN”, −∞, +∞, ∞, 0+

or 0−. Instead of having a range of representations locked for those special cases (losing space for

real representable numbers), every combination of bits is used to represent a real number. Hardware

exceptions may be implemented when interesting conditions occur. That simplifies the hardware and

also extends the dynamic range.

3.3.2 Exceptions

There are three different types of exceptions in the present Unum-IV implementation: the divide

by zero, overflow and underflow exceptions. The divide by zero exception occurs when in a division

operation the divisor is zero. The overflow exception happens when some operation results in a number

that would require a larger exponent than allowed by the Unum-IV format used. The underflow exception

occurs when some operation produces a result that would require an exponent more negative than

allowed by the format.

The exceptions are handled using flags that monitor the various stages for producing the results.

If particular conditions happen, the respective flags are activated, simplifying the hardware used. The

exception can then be tread by special hardware circuits or software routines.

3.3.3 Rounding

There are two rounding modes in the present Unum-IV implementation: “the round to the nearest”,

ties even” and the “truncation mode”. The rounding or truncation is necessary since operations with

18

floating-point numbers can often result in non-representable numbers in terms of precision. Thence,

the result needs to be rounded to the nearest representable Unum-IV value or truncated to the last

representable digit. The default mode is the ”round to the nearest, ties even”.

As in IEEE754, the ”round to the nearest, ties even” mode uses three extra bits of less significance

than the significand bits, a guard bit, a round bit and a sticky bit. The most significant bit is the guard

bit, and the least significant bit is the sticky bit.

In this mode, if the exact result can not be represented by an Unum-IV number, the result is rounded

to the nearest of two possible values. If there is a tie between the two possibilities, then the even

alternative is chosen. The action to be taken according to those three bits is shown in Table 3.2.

Table 3.2: ”Round to the nearest, ties even” Mode.

Guard Bit Round Bit Sticky Bit Action

0 X X Round Down

1 0 0 If the significand LSB is 1: Round Up

Otherwise: Round Down

1 0 1 Round Up

1 1 0 Round Up

1 1 1 Round Up

The X (”Don’t Care”) means that the bit can either be 0 or 1. In either case, it will have no impact

on the action to be taken. In terms of the rounding action: rounding up implies adding 1 bit to the

significand, and rounding down does not require any action.

3.3.4 Dynamic Range and Precision

The length of the significand determines the precision of the representable floating-point number.

The ratio between the smallest and the largest positive number determines the dynamic range of the

number system in evaluation. Since the Unum-IV number system has a variably-sized significand and

exponent, the Unum-IV dynamic range and precision depend on the value of the parameter EXP SZ W.

The larger this parameter is, the greater the exponent contribution in the format, and therefore the dy-

namic range will increase.

The relation between the exponent size field and the dynamic range is: increasing the number of bits

available to represent the exponent increases the dynamic range, and vice-versa. However, increasing

the EXP SZ W means decreasing the maximum number of bits available to the fraction field since they

are the remaining bits of the format. Therefore, if the maximum number of fraction bits decreases, so

does the precision.

The principal advantage of the Unum-IV format is the ability to choose the parameters, DATA W and

EXP SZ W, to adjust the trade-off between the dynamic range and precision to meet the performance

19

needs of an application. If the application needs more accurate answers with numbers of small magni-

tude, it will need more fraction bits and fewer exponent bits. On the other hand, if the application works

within a range of extremely small or large values, it will need more exponent bits with less fraction bits

available, increasing the dynamic range. This trade-off can make a huge difference in applications that

process large amounts of data.

In the Unum-IV generic format, the smallest and largest positive representable number, minpos and

maxpos respectively, are given by

minpos = 2

[
−2[2

EXP SZ W−1]+2

]
× 2−[DATA W−(2EXP SZ W−1)−EXP SZ W]

maxpos = 2

[
2[2

EXP SZ W−1]−1

]
×
(
1− 2−[DATA W−(2EXP SZ W−1)−EXP SZ W]

) (3.9)

Hence, the dynamic range, measured in decades, is given by the following formula

Dynamic Range = log10

(
maxpos

minpos

)
(3.10)

Table 3.3, summarises and exemplifies the relation between the generic parameters of the Unum

Type-IV number system and the dynamic ranges.

Table 3.3: Unum Type-IV Dynamic Ranges.

Unum-IV< n,k > minpos (≈) maxpos (≈) Dynamic Range [Decades]

n=8, k=2 1.95× 10−3 1.12× 102 4.76× 100

n=16, k=2 7.63× 10−6 1.28× 102 7.22× 100

n=16, k=3 1.84× 10−40 1.67× 1038 7.80× 101

n=32, k=3 2.80× 10−45 1.70× 1038 8.28× 101

n=32, k=4 3.45× 10−9868 7.08× 109863 1.97× 104

n=64, k=4 8.03× 10−9878 7.08× 109863 1.97× 104

n=128, k=4 3.06× 10−9883 7.08× 109863 1.97× 104

The number of precision bits (number of fraction bits) for each representable Unum-IV value p bits

is given by

p bits = DATA W− ExpSz − EXP SZ W (3.11)

where

• ExpSz: number of exponent bits, excluding the implicit leading bit.

Therefore, the number of precision bits can go from DATA W-2EXP SZ W+1-EXP SZ W to DATA W-

EXP SZ W bits.

Table 3.4 shows some examples of the relationship between the Unum-IV parameters and the num-

ber of precision bits.

20

Table 3.4: Unum Type IV Precision.

Unum-IV <n,k> p bits

n=8, k=2 from 3 to 6

n=16, k=2 from 11 to 14

n=16, k=3 from 6 to 13

n=32, k=3 from 22 to 29

n=32, k=4 from 13 to 28

n=64, k=4 from 55 to 60

n=128, k=4 from 109 to 124

Figs. 3.2 and 3.3 help visualize the tapered precision of the Unum-IV format with different parameters,

where the p bits are plotted in function of the binades. A binade, in software engineering, is the set of

numbers of a format with the same base 2 exponent, i.e., the group of bit patterns that have the same

exponent bits. Note that the word decade denotes the set of numbers with the same base 10 exponent.

-6 -4 -2 0 2 4 6 8
11

11.5

12

12.5

13

13.5

14

Binade (Exponent)

P
re

c
is

io
n
 b

its
 (

p
b
it
s)

Exponent vs Precision bits

Unum-IV<16,2>

-150 -100 -50 0 50 100 150
6

7

8

9

10

11

12

13

Binade (Exponent)

P
re

c
is

io
n
 b

its
 (

p
b
it
s)

Exponent vs Precision bits

Unum-IV<16,3>

Figure 3.2: Unum-IV<16,2> and Unum-IV<16,3> Precision Bits vs Binade (Exponent).

-150 -100 -50 0 50 100 150
22

23

24

25

26

27

28

29

Binade (Exponent)

P
re

c
is

io
n
 b

its
 (

p
b
it
s)

Exponent vs Precision bits

Unum-IV<32,3>

-40000 -20000 0 20000 40000
10

15

20

25

30

Binade (Exponent)

P
re

c
is

io
n
 b

its
 (

p
b
it
s)

Exponent vs Precision bits

Unum-IV<32,4>

Figure 3.3: Unum-IV<32,3> and Unum-IV<32,4> Precision Bits vs Binade (Exponent).

When the numbers have exponents near 0, they have a higher resolution because the Unum-IV

system has more space for fraction bits. As they run far from 0, either to the positive or negative

side, the precision decreases symmetrically because the number of bits used to represent the exponent

increases. The gradual underflow achieved by the denormalized numbers also enables a gradual loss

21

of precision.

3.4 Examples

3.4.1 Unum-IV to Decimal Conversion

Three examples of the decoding of the Unum-IV format are presented in Figs. 3.4, 3.5, 3.6 and

their mathematical meaning and field extraction are explained in detail. Each example is a 32-bit string

Unum-IV, DATA W=32, with a 4-bit exponent size field, EXP SZ W=4.

These examples were selected to give a more concrete way of understanding how the encoding of

Unum-IV takes place and express the tapered precision, the wide dynamic range and the gradual un-

derflow attached to this format. The first example is the smallest positive number, and the second is the

largest positive number representable by the Unum-IV<32,4> format. In both examples, the exponents

use the maximum number of exponent bits allowed, 15 exponent explicit bits, and the significand has

the minimum number of precision bits (13 fraction bits). The last and third example represents the clos-

est number to 1, which has the maximum number of precision bits (28 fraction bits) since there is no

exponent bit in the format, meaning that the exponent is equal to 0.

Following the tapered precision concept, where the numbers with a magnitude near 1 have more

precision bits than the numbers extremely small or large numbers and analysing the exponent magnitude

of the examples, it is possible to conclude that the last example (near 1) has more precision bits than

the previous examples.

The first example is an extremely small number with the minimum fraction width allowed by the cho-

sen parameters and falls on the exponent range lower bound (the exception expressed in the extraction

algorithm). This exception case uses the fraction most significant as the implicit leading bit and incre-

ments by one the exponent to ensure the closure around 0 of the Unum Type IV numerical system

(gradual underflow).

The smallest and largest positive number clearly show the wide dynamic range achieved with the

variably-sized exponent and significand compared with the IEEE 754 floats. As can be seen in Table 3.3,

Unum-IV<32,4> has a dynamic range in order of 20 thousand (1.97 × 104) of decades, while the IEEE

754 floats have a dynamic range of 83 decades, approximately. The difference can be explained by

the fact that IEEE 754 floats have a biased exponent of 11 bits, whereas the exponent of the Unum-

IV<32,4> format can be up to 16 bits, counting with the implicit leading bit.

Smallest Positive Number

In the first example, the exponent size is the maximum allowed by the parameter EXP SZ W=4,

24 − 1 = 15 (colour-coded orange). In terms of the exponent, the explicit bits are filled with all 0’s

000000000000000 (colour-coded green) and the hidden bit is the complement of exponent field MSB.

Following the algorithm of the exponent extraction in Listing 3.1, the exponent falls in the exceptional

case criteria. Therefore, to the exponent (1)000000000000000, a bit is added, resulting in (1)0000000000

22

0 1 1 1 1 1

Figure 3.4: Example 1 of an Unum-IV<32,4> Bit String.

00001. The exponent represents −32766 in 1’s complement format. The remaining 32− 4− 15 = 13 bits

represent the explicit fraction bits. In the exceptional case, the hidden bit is given by the fraction MSB

resulting in a (0).0000000000001 significand (colour-coded blue). The significand is given by 2−13 and

the decimal value of this example is 2−13 × 2−32766 ≈ −3.45× 10−9868.

Largest Positive Number

1 1

Figure 3.5: Example 2 of an Unum-IV<32,4> Bit String.

Since the exponent size is the same as in the previous example the exponent size is 15, meaning

that the exponent has 15 explicit bits. The exponent bits are the most significant bits of the Unum-IV

bit string, 111111111111111, and the implicit bit is the complement of the MSB of the exponent explicit

bits, 0. Thus, the exponent bits (0)111111111111111, represent 232767 as a 1’s complement signed

integer. Lastly, the remaining 13 bits, 1111111111111, are the fraction bits. The significand hidden

bit is the complement of MSB of the fraction field, 0. Then, the significand is (0).1111111111111 and

represents 0+2−1 +2−2 +2−3 +2−4 +2−5 +2−6 +2−7 +2−8 +2−9 +2−10 +2−11 +2−12 +2−13 as a 2’s

complement signed integer. Using the formula of the decimal representation given by the Equation 3.1,

the first example results in ≈ 7.08× 109863.

Largest Number Smaller Than One

1 0 0 0 0

Figure 3.6: Example 3 of an Unum-IV<32,4> Bit String.

Lastly, the exponent size is 0. As consequence, there is no exponent bits in the Unum-IV bit string and

the exponent contributes with a scale factor of 20 in the decimal conversion equation. In this case, the

fraction field has the maximum available width, 28 bits. Evaluating (0).1111111111111111111111111111,

23

the significand is evaluated as
∑28

i=1 2
−i and the decimal representation of the last example is 20 ×∑28

i=1 2
−i = 0.9999999962747097015380859375.

3.4.2 Unum-IV<4,1> Enconding

The encoding of all Unum-IV<4,1> bit pattern combinations (16) is shown in Table 3.5. This format

expresses compactly the fact that the Unum-IV uses all the bit combinations to represent a numerical

value, whereas formats like the IEEE have reserved bit patterns for the 0+, 0−, +∞, -∞ and the NaN

representations, leaving a lot of redundant representations. As can be seen in the 4-bit Unum-IV<4,1>

encoding, there are no redundant representations in the Unum-IV number system. The exponent varies

between 0 and 1 explicit bits, and the fraction varies between 2 to 3 bits. There is only one bit pattern

combination to represent the 0 (0001), and the gradual underflow is achieved by the following combina-

tions: 0001, 0011, 0101 and 0111. The brackets are used to represent the implicit leading bits of both

exponent and significand fields.

Table 3.5: Unum-IV<4,1>.

Unum-IV<4,1> Exponent Size Fraction Size Exponent Significand Unum-IV<4,1>

Decimal Conversion

0000 0 3 0 (1).000 −1

0001 1 2 (1)1 (0).00 0

0010 0 3 0 (1).001 −0.875

0011 1 2 (1)1 (0).01 0.25

0100 0 3 0 (1).010 −0.75

0101 1 2 (1)1 (1).10 −0.5

0110 0 3 0 (1).011 −0.675

0111 1 2 (1)1 (1).11 −0.25

1000 0 3 0 (0).100 0.5

1001 1 2 (0)1 (1).00 −2

1010 0 3 0 (0).101 0.625

1011 1 2 (0)1 (1).01 −1.5

1100 0 3 0 (0).110 0.75

1101 1 2 (0)1 (0).10 1

1110 0 3 0 (0).111 0.875

1111 1 2 (0)1 (0).11 1.5

24

Chapter 4

Hardware Implementation

Peripherals

External
Memory

Internal
Memory

S
P

LIT

RISC-V CPU
PicoRV32

32bit

SRAM

2SRAM _ ADDR _W

Boot_ctr

Boot
ROM

L1 CacheL1 Cache L1 CacheL2 CacheL1 CacheL1 Cache

L1 CacheL1 Cache L1 CacheAXI DMAL1 CacheL1 CacheUSER
PERIPHERALS

USER
PERIPHERALS

L1 CacheEthernet

L1 CacheUART

L1 CacheTimer

ETH PHY
10/00 Mbps

RS232-USB

AXI-Interconnect

DDR4
Controller

IoB-SoC
@167MHz

S
P

LIT

L1 CacheUnum4L1 CacheUNUM4

Figure 4.1: IoB-SoC Block Diagram with the Unum-IV Module Attached as a Peripheral.

This chapter presents an Unum Type-IV Floating-Point Unit (Unum-IV FPU) developed during this

thesis [36]. The proposed Unum-IV FPU was implemented in Verilog and was attached as peripheral to

an open-source IoB-SoC equipped with a RISC-V CPU, an internal SRAM memory subsystem, a UART

(iob-uart), and an optional external DDR memory subsystem [37]. The Unum-IV FPU IP core was added

to the list of peripherals, as shown in Figure 4.1.

25

4.1 Unum Type-IV Floating-Point Unit

In this thesis, the design of a parameterized and pipelined Floating-Point Arithmetic Unit based on

the new Unum Type-IV format was explored and implemented in Verilog. The hardware implementation

supports four types of operations: addition, subtraction, division and multiplication, and it also supports

two rounding modes: the truncation and the ”round to the nearest, ties even”.

Unum-IV FPU is parameterized so that any Unum-IV< DATA W,EXP SZ W > arithmetic can be

supported, with the option of having different rounding modes associated. Consequently, the FPU has

three parameters:

• DATA W: the size of the Unum-IV operands.

• EXP SZ W: the number of bits available to represent the exponent size.

• ROUNDING: rounding mode selector. If 1, the rounding mode is ”Round to the Nearest, Ties

Even”. Otherwise, the only rounding procedure performed to the result is the truncation of the

significand.

UNUM-IV
FPU

clk

rst

start

a

b

o

done

div_by_zero

overflow

underflow

Figure 4.2: Unum-IV FPU.

The top-level module has six input and five output signals as illustrated by the Unum-IV FPU sym-

bol in Figure 4.2. These interface inputs and outputs size, direction and description are explained

in Table 4.1. The operand A and B signals have a DATA W-bit width and are interpreted as Unum-

IV< DATA W,EXP SZ W > representation numbers; the operation selection controlled by the 2-bit op

input interpreted as in Table 4.2. This signal has 2 bits because there are four supported operations;

the start, clk and rst signals are 1-bit sized and belong to the control logic of this design. As for the

outputs, the o is the Unum-IV< DATA W,EXP SZ W > result of the operation performed; the done is

a flag that signals the conclusion of the calculation; the div by zero, underflow, overflow are exception

flags activated if the results fall outside of the format limits or if the operation is invalid.

26

Table 4.1: FPU Interface.

Signal Size Direction Description

clk 1 Input System Clock

rst 1 Input Asynchronous active high reset

start 1 Input Strobe to start calculation

op 2 Input Operation selection

a DATA W Input Operand A

b DATA W Input Operand B

o DATA W Output Calculation Result

done 1 Output Strobe to signal the end of calculation

div by zero 1 Output Strobe to signal an invalid operation (x/0)

underflow 1 Output Strobe to signal an underflow result

overflow 1 Output Strobe to signal an overflow result

Listing 4.1 is an example Verilog code used to instantiate a parameterizable Unum-IV FPU based

in Unum-IV<32,4> format. The rounding parameter is 1, so the arithmetic results will round using the

”Round to the Nearest, Ties Even” mode.

Listing 4.1: Verilog Code to Instantiate the Parameterizable Unum-IV Floating Point Unit.

fpu # (.DATA W(3 2) , . EXP SZ W (4) , .ROUNDING(1)) u0 (

. c l k (c l k) ,

. r s t (r s t) ,

. s t a r t (en) ,

. a (a) ,

. b (b) ,

. op (op) ,

. o (o) ,

. over f low (over f low) ,

. underf low (underf low) ,

. d i v by ze ro (d i v by ze ro) ,

. done (done)

) ;

The hardware implementation of Unum-IV arithmetic is based on three hardware stages, as shown

in Figure 4.3. The first stage is the unpacking module, where the Unum-IV exponent and significand

are extracted from each Unum-IV operand, following the algorithms shown in Listings 3.1 and 3.2. The

intermediate stage is the processing module, where the four basic supported operations are performed.

The remaining and final stage is the packing module, where the computed exponent and significand

are packed in the Unum-IV format. As can be seen in Figure 4.3, Unum-IV FPU has a hierarchical

architecture, comprising three main stages. The hierarchy flow is controlled by the Control Logic (CL),

preventing the propagation of errors and allowing exceptions handling.

27

Unpack A

Unpack B

Control Logic

Multiplication

Division

Addition/
Subtraction

Pack O

Control Logic

Unum-IV FPU
 Datapath

A

B

O

Figure 4.3: Unum-IV FPU Datapath.

The CL block consists of a two-bit register ”op”, containing the operation to be executed, and a ”start

and ”done” flag for each module to ensure that the result is correctly propagated and to prevent loss of

data.

4.2 Functional Units

The proposed Unum-IV FPU has five principal parameterizable Functional Units (FUs) that make

usage of five auxiliary units: a barrel shifter, an adder and subtractor, an exponent difference module,

leading zeros/one’s detector, a shift and subtract serial divider and a multiplier.

4.2.1 Unpack Unit

The Unpack (unpack) unit used in Unum-IV FPU is parameterized and has four parameters. Two

of those parameters are propagated from the fpu top-level module, DATA W and EXP SZ W, and the

others are local parameters obtained in fpu top-level module, EXP MAX W and MAN MAX W, corre-

sponding to the maximum exponent and significand width allowed by the Unum-IV format used, respec-

tively. EXP MAX W is obtained directly for the EXP SZ W parameter as 2EXP SZ W and MAN MAX W is

computed as DATA W− EXP SZ W + 1.

This unit has four input ports (clk, rst, start and x). The input x is the DATA W-bit Unum-IV operand;

the clk and rst are propagated from the top-level module; the unpack start signal results of the propaga-

28

tion of the fpu module start signal. The Unpack unit has three output ports (e, m, done). The e port is the

extracted exponent from the x input word with EXP MAX W bits; the m port is the extracted significand

with MAN MAX W width; the done is the strobe that indicates that the unpacking stage is finished.

Exponent Extraction Significand Extraction

Bit Extension to
EXP_MAX_W

Bit Extension to
MAN_MAX_W

Exponent

EXP_MAX_W

Significand

MAN_MAX_W

Figure 4.4: Unum-IV Unpack Stage Block Diagram.

The unpack unit is responsible for taking an Unum-IV input and extracting the exponent, fraction and

exponent size fields. The data flow is performed as shown in the block diagram presented in Figure 4.4.

When the start is high, the unpack is activated, and the EXP SZ W least significant bits of the input X

is extracted as an unsigned integer, corresponding to the ExpSize field. Then, the exponent and sig-

nificand are extracted from the input X using extraction algorithms presented in Listings 3.1 and 3.2,

respectively. Since the exponent is a signed integer in 1’s complement representation, the exponent is

converted to the 2’s complement representation. This conversion is performed because the main differ-

ence between the two representation formats is that 1’s complement has two representations of zero,

the negative zero and the positive zero, whereas, in 2’s complement, there is only one representation for

zero. The operations between the 1’s complement are also more complex and require more hardware

than the 2’s complement. For those reasons, the exponent is converted to the 2’s complement represen-

tation format to be manipulated in the processing unit and then converter back to the 1’s complement

format in the packing stage. To do this conversion, if the exponent is negative, then the exponent is

incremented by one. On the packing unit, the reverse process occurs.

Lastly, the exponent and significand are extended to the maximum width of each field, if necessary,

and stored in the e and m output registers. The done signal is activated in this last pipeline stage,

signalling the end of the unpacking stage.

29

4.2.2 Processing Units

Two operation bits are used for this FPU, meaning that up to four operations are available. The pro-

cessing stage can perform additions, subtractions, divisions and multiplications, as shown in Table 4.2.

The addition and subtraction are performed by the same unit, while the division and multiplication are

performed by different units.

In the processing unit, if the rounding mode selected is the ”round to the nearest, ties even”, then the

significand receives three extra bits for the least significant part (all set to zero) at the beginning of the

processing stage. In that stage, the significand suffers many operations, for example, the shifts, that can

change those bits.

Table 4.2: Specification for the Operation Selection.

Operation Bits Description Operation

00 Addition A+B

01 Subtraction A-B

10 Division A/B

11 Multiplication A*B

Addition/Subtraction Unit

The Addition/Subtraction (adder) unit used in Unum-IV FPU is parameterized and has five parame-

ters. Two of those parameters are propagated from the fpu top-level module, DATA W and EXP SZ W,

and the remaining others are local parameters obtained in the fpu top-level module, EXP MAX W,

MAN MAX W, EXTRA, corresponding to the maximum exponent and significand width allowed by the

Unum-IV format used and the extra bits needed by the rounding mode, respectively. EXP MAX W is

obtained directly for the EXP SZ W parameter as 2EXP SZ W, MAN MAX W is computed as DATA W −

EXP SZ W + 1 and EXTRA is given by 3× ROUNDING.

This unit has eight input ports (clk, rst, start, e a, e b, m a, m b, op). The inputs e a and e b

are the exponents of operand A and B, both extracted in the unpacking stage. The m a and m b are

the significands of the operand A and B, also obtained from the unpacking stage. The clk and rst

are propagated from the top-level module, and the start is the result of a logical AND between the

done signals of the two operands unpack stages. Lastly, the op input is the least significant bit of the

operations selector, which is used to determine the kind of operation to be performed. If it is 0, then the

addition is performed. Otherwise, a subtraction is performed.

The module has five output ports (e o, m o, done, over and under). The e o port is the result

exponent from the addition or subtraction between A and B, with EXP MAX W bits, the m o port is the

result significand with MAN MAX W width, the done is the strobe to indicate to the top module that the

processing stage is finished, and the over and under outputs are the exception flags, set to one when

an overflow or underflow happened, respectively.

30

The block diagram of the Unum-IV proposed addition and subtraction unit is shown in Figure 4.5.

Exponent Difference
Calculation Swap

Shift Right

Count Leading
Zeros/Ones

Significand
Addition/Subtraction

Shift Left

Exponent Adjust

Exponent A Significand A Significand BExponent B

Exponent Significand

Largest Exponent

Exponent
Difference

Largest Significand

Smallest
Significand

Shifted
Significand

Added/Subtracted
Significand

Shifted
Significand

MAN_MAX_WMAN_MAX_WEXP_MAX_WEXP_MAX_W

EXP_MAX_W MAN_MAX_W

Figure 4.5: Unum-IV Addition/Subtraction Unit.

The unit has six pipeline stages. In the first stage, the extracted exponents and significands of

each operand are stored in registers. The exponent difference between operand A and B is computed

using a parameterized exponent difference module implemented as described in 4.2.4. The exponent

difference module will output the absolute difference and the greatest exponent. In the second stage,

a swap between the significands takes place. If the greatest exponent belongs to operand A, then the

significand of B needs to be right-shifted to align the exponents and vice-versa. A parameterized leading

zeros/ones detector gathers the shift size for the alignment, as described in 4.2.4. Since the significands

are signed, the shift is arithmetic. In the third stage, the significands are stored in registers accordingly

31

with the shifted significand. If the operand A exponent is greater than the operand B exponent, the first

operand is the non-shifted significand A and the other is the shifted significand B. On the other hand, if

operand B has the largest exponent, the first operand will be the non-shifted B, and the second is the

significand A.

In the fourth stage, the significands are added or subtracted in an adder/subtracter module as ex-

plained in 4.2.4. If an overflow occurs, the significand overflow is set to 1. If the significand result is

an overflow, the significand is right-shifted by one, and the greatest exponent is incremented by one.

Whenever the exponent suffers an adjustment, an overflow detection happens. These significand and

exponent adjustments take place in the fifth stage.

The last stage is composed by the normalization, where the added or subtracted significand is left-

shifted if necessary. To verify the need for shifting a leading zeros/one’s detection is performed. If the

exponent is the smallest possible by the Unum-IV configuration set by the FPU, then no shift is performed

nor any exponent adjustments, meaning there is no normalization. If the exponent falls outside the

exponent range, then the overflow or underflow output is set to 1. Finally, if none of those two conditions

is met, then the exponent is subtracted by the shift size and the significand is left-shifted by the shift size

obtained by the leading zeros/one’s detector.

Multiplication Unit

The multiplication (mult) unit used in Unum-IV FPU is parameterized and has five parameters. The

parameters are the same for all processing units: DATA W, EXP SZ W, MAN MAX W, EXP MAX W and

EXTRA.

This unit has seven input ports (clk, rst, start, e a, e b, m a, m b) and five output ports (e o, m o,

done, over and under). The inputs e a and e b are the exponents of operand A and B, both extracted in

the unpacking stage. The m a and m b are the significands of the operand A and B, also obtained from

the unpacking stage. The clk and rst are propagated from the top-level module, and the start is the result

of a logical and between the done signals of the two operands unpack stages. The e o output port is the

multiplication exponent between A and B, with EXP MAX W bits, the m o port is the result significand

with MAN MAX W width, the done is the strobe to indicate to the top module that the processing stage

is finished, and the over and under outputs are the exception flags, set to one when an overflow or

underflow happened, respectively.

The block diagram of the Unum-IV proposed multiplication unit is shown in Figure 4.6.

This unit is composed of five pipeline stages. The multiplication module is more simple than the

addition and subtraction module. In this module, an addition between the extracted exponents stored in

registers takes place.

32

Exponent Addition Significand
Multiplication

Count Leading
Zeros/Ones

Shift Left Exponent Adjust

Exponent A Significand A Significand BExponent B

Exponent Mantissa

MAN_MAX_WMAN_MAX_WEXP_MAX_WEXP_MAX_W

Multiplied SignificandAdded Exponent

Shift Right

Exponent

EXP_MAX_W MAN_MAX_W

Exponent Adjust

Mantissa

Shifted mantissa

Figure 4.6: Unum-IV Multiplication Unit.

For this, the parameterized adder/subtracter module is used and set in the adder mode, with an

EXP MAN MAX+1-bit result. The significands are multiplied in this unit using a 2*MAN MAX W-bit mul-

tiplier. These operations perform in parallel since there are no dependencies between them. Then, if

both significands have the same MSB, the added exponent is incremented by one, and the multiplica-

tion partial result MAN MAX W+EXTRA most significant bits of the multiplication result are stored in a

signed significand register. Otherwise, the multiplication result stored is from the second MSB to the

MAN MAX W+EXTRA-1 bit, resulting in MAN MAX W+EXTRA bits saved in the signed significand reg-

ister. In this case, there are no adjustment needs for the added exponent. Finally, the normalization

might take three different steps.

In this first scenario, if the exponent result is equal to the smallest exponent allowed by the Unum-IV

configuration, then no normalization is performed, and the exponent and significand are ready to be

outputted by the unit along with the overflow and underflow flags set to 0.

In the second scenario, a leading zeros/ones detector is used for the stored significand result to

compute the left-shift size needed by the significand. Then, to adjust the exponent, the added exponent

is subtracted by the shift size.

In the last scenario, after the first normalization described in the previous situation, if the added

exponent is lower than the smallest exponent and the difference between that exponent and the added

exponent is smaller than the significand size (MAN MAX W+EXTRA), then the second normalization

takes place. In this normalization, the exponent is set to the smallest exponent and the significand

33

is arithmetical right-shifted by that difference. Any other scenario where the exponents fall outside of

the exponent range set by the Unum-IV configuration parameters is an exception. Either it can be an

overflow if the exponent falls outside the exponent range upper bound or an underflow if the normalized

exponent falls outside of the lower bound.

Division Unit

The parameterized division (divide) unit has the same five parameters as the other processing units

(DATA W, EXP SZ W, MAN MAX W, EXP MAX W and EXTRA). It has seven inputs ports (clk, rst, start,

e a, e b, m a, m b) and six output ports (e o, m o, over, and div by zero). The inputs e a and e b are the

extracted exponent from the unpacking stage, and the inputs m a and m b are the extracted significands.

These inputs are propagated as the result of the unpacking stage. The clk and rst are both propagated

from the top-level module, and the start input is the result of a logical and between the done signals

of the two operands unpack stages. The e o output is the division exponent between A and B, with

EXP MAX W bits, the m o port is the result significand with MAN MAX W width, the done is the strobe

to indicate to the top module that the processing stage is finished, the over and under outputs are the

exception flags, set to one when an overflow or underflow happened, respectively. There is one more

exception flag that is only used for the division, the div by zero. This flag is set to one when operand B

is equal to zero, being handled as an invalid operation.

The block diagram of the Unum-IV proposed division unit is shown in Figure 4.6.

Exponent Subtraction Mantissa Division

Count Leading
Zeros/Ones

Shift LeftExponent Adjust

Normalization

Exponent A Mantissa A Mantissa BExponent B

Exponent

MAN_MAX_WEXP_MAX_WEXP_MAX_W

EXP_MAX_W MAN_MAX_W

Exponent Adjust

xor

Mantissa

Division Sign

Divided mantissa

Shifted mantissa

Subtracted exponent

MSB

MSB

Figure 4.7: Unum-IV Division Unit.

34

The division operation between two operands takes 5+MAN MAX W+1 clock cycles. In the first stage

of the division module, the extracted exponents and significands from the unpacking stage are stored

in registers, and operand B is evaluated. If its significand is equal to zero, the flag div by zero is set to

one, and the operation is interrupted. Assuming that it is not interrupted, the exponents are subtracted

between themselves using the parameterizable adder/subtracter module in the subtraction mode with

EXP MAX W-bit signed operand inputs and EXP MAX W+1-bit output result.

For the significand division, an unsigned division is performed. Therefore, since the operands are

both 2’s complement signed numbers, the significands are converted to theirs unsigned format before

entering the division module. The division is performed by a subtract and shift serial division module

explained in detail in 4.2.4. This module takes MAN MAX W+1+EXTRA clock cycles to obtain the un-

signed division result. The sign of the division is given by a logical XOR between the MSB of both

operands. After the division is executed, the normalization process begins, where, firstly, the quotient

of the significand division is right-shifted, and the exponent is adjusted by adding the shift size to the

exponent. Then, the MAN MAX W+EXTRA significand bits of the quotient are stored as the significand

result of the division and reconverted to the 2’s complement format is the sign bit is set to one.

As in the multiplication unit, there are different normalization steps depending on the Unum-IV format.

In the first scenario, if the exponent result is equal to the smallest exponent allowed by the Unum-IV

configuration, then no normalization is performed, and the exponent and significand are ready to be

outputted by the unit along with the overflow and underflow flags set to 0.

In the second scenario, a leading zeros/ones detector is used for the stored significand result to

compute the left-shift size needed by the significand. Then, to adjust the exponent, the added exponent

is subtracted by the shift size.

In the last scenario, after the first normalization described in the previous situation, if the added

exponent is lower than the smallest exponent and the difference between that exponent and the added

exponent is smaller than the significand size (MAN MAX W+EXTRA), then the second normalization

takes place. In this normalization, the exponent is set to the smallest exponent and the significand

is arithmetical right-shifted by that difference. Any other scenario where the exponents fall outside of

the exponent range set by the Unum-IV configuration parameters is an exception. Either it can be an

overflow if the exponent falls outside the exponent range upper bound or an underflow if the normalized

exponent falls outside of the lower bound.

4.2.3 Pack Unit

Two different modules can be generated to pack the FPU operation result into the Unum-IV format

depending on the rounding mode chosen using the ROUNDING parameter. If the parameter is set to

one, the selected is the ”round to the nearest, ties even” procedure, which is more complex than the

truncation mode (ROUNDING=0). The block diagram of the Unum-IV proposed packing unit is shown in

Figure 4.8.

35

Exponent

Unum-IV Flags

Rounding

Exponent Adjust

Exponent Size
 Calculation

Count Leading
Zeros/Ones

Pack in DATA_W-bit Unum-IV Format

Exponent Size
 Calculation

Count Leading
Zeros/Ones

Mantissa

Exponent Mantissa

Rounding
 Bit

Exponent Size Final Mantissa Final Exponent

0 1 0 1 0 1

EXP_MAX_WMAN_MAX_W

Figure 4.8: Unum-IV Pack Unit.

For the truncation mode, the generated module has four parameters (DATA W, EXP SZ W, MAN MAX W

and EXP MAX W), five inputs (clk, rst, start, exp and mant) and two output ports (o and done). On the

other hand, for the ”round to the nearest, ties even” mode, the generated module has five parameters

(DATA W, EXP SZ W, MAN MAX W, EXP MAX W and EXTRA), five input ports (clk, rst, start, exp and

mant) and three output ports (o, done and over).

The module with the truncation mode (pack0) takes 3 clock cycles to generate the result. In the first

stage, the exponent and mantissa propagated from one of the processing units are stored in registers.

Since the exponent was converted to the 2’s complement format during the unpacking stage, the ex-

ponent is reconverted to the 1’s complement format. For that purpose, if the MSB of the exponent is

equal to one, then the exponent is decremented by one. In the exceptional case, where the MSB and

the second MSB of the significand are equal, the exponent is decremented by two. This happens when

the exponent is the smallest possible allowed by the Unum-IV format used, and the significand is not

normalized as explained in the previous chapter. The exponent reconverted in 1’s complement format

is stored in a pipeline register afterwards, and the exponent size is calculated using a parameterized

leading zeros/one’s detector for the exponent. The number of leading zeros or ones obtained is then

subtracted to the maximum exponent size minus one (EXP MAX W-1).

Lastly, each field is stored in a DATA W-bit register accordingly to the Unum-IV¡DATA W, EXP SZ W¿

format used. So, the exponent size is stored in the EXP SZ W least significant bits of the register. From

the MAN MAX W-bit significand, only a portion of those bits are stored depending on the exponent size

(truncation) determined in the previous step. The MSB of both exponent and significand is not stored in

the format as they are implicit leading bits. Then the missing field is the exponent, which is placed on

36

the remaining bits of the Unum-IV register. The done is set to one, and the Unum-IV output is ready in

the last and third pipeline stage.

The module with the ”round to the nearest, ties even” mode (pack) is very similar to the pack0

module. The main difference is the rounding logic, which requires more hardware. So, this module

receives as an input a significand with MAN MAX W+3 bits. The first stage follows the same logic since

it only manipulated the exponent. So, the exponent is reconverted to its 1’s complement format, and the

exponent size is calculated using a leading zeros/one’s detector. Then, the rounding bits are assigned

accordingly with the exponent size (exp size) determined. Those bits are assigned as described in

Listing 4.2, where the rounding logic is also described.

Listing 4.2: Rounding Bits Assignment.

/ / Rounding B i t s

assign m lsb = mant reg [3+ exp s ize] ;

assign g u a r d b i t = mant reg [2+ exp s ize] ;

assign r o u n d b i t = mant reg [1+ exp s ize] ;

assign s t i c k y b i t = mant reg [exp s ize +1−1];

/ / Round

assign round = (˜ g u a r d b i t)? 1 ’b0 : (˜ (r o u n d b i t | s t i c k y b i t) & ˜ m lsb) ? 1 ’b0 : 1 ’b1 ;

assign ex t ra = ({{MAN MAX W−1{1’b0}} ,1 ’ b1} << exp s ize) ;

assign mantissa = (round)? mant reg [MAN MAX W−1+EXTRA: 3] + ex t ra :

mant reg [MAN MAX W−1+EXTRA : 3] ;

The mant reg is a register where the propagated significand of the processing unit is stored. Whereas

the m lsb, guard bit, round bit, sticky bit, round, extra and mantissa are all wires. The m lsb is the least

significant bit of the significand without taking into account the extra bits, the guard bit (guard bit) is the

MSB of the extra bits, the round bit (round bit) is the intermediate bit, and the sticky bit (sticky bit) is

the least significant. The round bit is a wire that verifies the need for rounding. It is set to one if the

significand needs to be rounded. This rounding logic was described in Table 3.2. Since the significand

size stored in the format varies with the exponent size, the extra wire has a MAN MAX W-bit width with

the LSB set to one, which is left-shifted to ensure that the extra rounding bit is incremented to the least

significant bit of the explicit significand.

After that, the rounded significand needs to be normalized, and the exponent needs to be consequen-

tially adjusted, if necessary. There are two different scenarios for this stage. Either the significand is

positive and becomes negative with the rounding, meaning that it positively overflowed, or the significand

is negative and becomes positive, meaning that it negatively overflowed. In the first case, the exponent

is logical right-shifted by one, and the exponent is also incremented by one. In this case, the exponent

might overflow, so the overflow output can be set to one. Otherwise, the exponent is decremented by

one and the rounded significand is shifted by one. Since the exponent might suffer an adjustment, the

exponent size needs to be recalculated with the resource of a leading zeros/one’s detector as in the

other module. Finally, the packing of each field into the Unum-IV format is done exactly like in the pack0

module. The pack module takes more hardware than the pack0 module, and also takes more clock

cycles since it has four pipeline stages (instead of three).

37

4.2.4 Auxiliary Components

Exponent Difference Module

This module is parameterizable, having the maximum exponent size as a parameter and has two

inputs (e a and e b), corresponding to the extracted exponents from the operand A and from the operand

B, respectively. A signed subtraction is performed between those two inputs. Then, the outputs are

obtained from that subtraction. The diff out output is the absolute difference between the two exponents

and the e larger is a result of a multiplexer, where the e a and e b are the inputs and the decision is

made based in their value. If e b is smaller, then the e larger is e a and vice-versa.

1

EXP_MAX_W

Exponent A

EXP_MAX_W

Exponent B

Subtraction

Absolute Difference

Difference Larger Exponent

0
Exponent A> Exponent B

Figure 4.9: Unum-IV Exponent Difference Flow Diagram.

Barrel Shifter

The parameterized barrel shifter module was designed to perform left and right shifts. The shift

right operation can only be configured as arithmetic, this is, with sign extension. The barrel shifter was

implemented to perform significand shifts, so, logically, the two configuration parameter of the module

are the significand length (MAN MAX W) and the extra rounding bits (EXTRA). Considering that the

barrel shifter only performs two types of shifts, there is a 1-bit input of the module that defines which is

performed (left if 1, right if 0). The other two inputs are the value to be shifted and the shift size (0 to

EXP MAX W).

Leading Zeros/Ones Detector

A parameterized leading zeros or one detector module was adopted in the Unum-IV FPU to obtain

the normalization shift size and detect the exponent width. Since the significand and exponent are

signed, the detector needed to detect the number of leading zeros if the input is positive or zero or

38

to detect the number of leading ones if it is negative. The Leading Zeros/One’s Detector is the key to

perform shiftings and the normalization process in all operations available in the FPU. This unit compares

sequentially two adjacent bits from the most significant to the least and counts the number of times that

those bits are equal. The comparison stops when two adjacent bits are different, and the number of

leadings bits is reported. Thus, the unit has one input and one output. The input can either be the

exponent or the significand, as previously mentioned, so the configuration parameters are the exponent

width (EXP MAX W), the significand (MAN MAX W) width and the extra bits required by the rounding

mode(EXTRA) if any. The only output of this unit will be the number of leading zeros or ones detected if

any.

Serial Subtract and Shift Divider

To perform divisions, the FPU division unit uses a fixed-point serial divider to divide the significands.

The divider added as a parameterizable module, takes MAN MAX W+1+EXTRA cycles to complete

the division due to the fact that the divider is a shift and subtract serial divider. The module takes

MAN MAX W+1+EXTRA cycles because of the data width (DATA W) parameter of the divider, which

can be 2*MAN MAX W or 2*MAN MAX W+EXTRA depending on the rounding mode. The EXTRA is a

0 is there the rounding mode only requires truncation of the significand and 3 if the ohter mode is set

in the instatiation of the FPU. The divider it can be set as an unsigned or signed divider, however in

the division unit of this FPU the selected mode to perform the significand division is the unsigned one.

This module has two registers for the operands, the divider and divisior, and the results are other two

registers, the quotient and the remainder.

Adder/Subtracter

The adder/subtracter module was used in the proposed FPU to add and subtract significands in

the addition or subtraction module, respectively, to subtract the operand exponents if the operation per-

formed by the FPU is a division and to add the exponents if it is a multiplication. Hence the module

receives two operands as inputs and a 1-bit operation selector to indicate which operation will be per-

formed, an addition or a subtraction. If the operation bit set to 0, it selects the subtracter mode. Other-

wise, the module will stage as an adder. Since the exponent and significand are variably-sized, instead

of implementing a fixed-sized adder/subtracter with a wide bit length, a parameterized unit was adopted.

One of the parameters is the operand width, which depends on the exponent width, EXP MAX W, or

the significand operand width, MAN MAX W. The other parameter is the extra bits used for the rounding

mode, which can either be equal to 0 or 3. The sum of those two parameters comprises the bit width of

the parameterized adder or subtracter.

The output result of the addition or subtraction has an extra bit to save the carry bit of the operation

result. Also, an overflow flag is set to signal out the occurrence of an overflow. Since both exponent and

significand fields are signed, the adder/subtracter is also signed. Therefore, the logic behind it is the

same as for signed integer operations. If it is an addition and the operands have the same MSB and the

39

result MSB is different, an overflow occurs. On the other hand, if it is subtractions, the operands have

different MSBs, and the subtraction outcome MSB is different from the operand to be subtracted MSB,

an overflow occurs.

4.2.5 Functional Units Pipeline Stages

Each FU has a latency due to pipelining: 3 pipeline stages for the Unpacking FU, 6 stages for the

Addition/Subtraction FU, 4 stages for the Multiplication FU, 5+MAN MAX W+1+EXTRA stages for the

Division Unit and 3 or 4 stages for the Packing FU, depending on the rounding mode choosen. Therefore,

if an addition or subtraction is performed between two Unum-IV numbers, the Unum-IV FPU will take

3+6+3+(1) stages to output the result. On the other hand, if a multiplication is selected by the operation

selector, the FPU will take 3+4+3+(1) stages to process the result. Finally, the operation with more

latency is the division, which would take 3+5+MAN MAX W+1+EXTRA+3+(1) clock cycles to output the

result. The brackets represent an extra pipeline stage that is only added to the contabilization if the

Packing FU generated uses the ”round to the nearest, ties even” mode. The latency of each FU is

presented in Table 4.3.

Table 4.3: Functional Units Pipeline Stages

Functional Unit Pipeline Stages

Unpacking Unit 3

Addition/Subtraction Unit 6

Multiplication Unit 4

Division Unit 5+MAN MAX W+1+EXTRA

Packing Unit (pack0 / pack) 3 / 4

40

Chapter 5

Evaluating and Comparing Unum

Type-IV to Other Formats

As stated previously, the main goal of this work is to introduce a new number system that can be a

replacement for IEEE 754. This chapter presents and explains the main differences between the Unum

Type-IV and other formats.

5.1 Comparison Metrics

In this section, the metrics used to evaluate and compare the Unum Type-IV with other formats, such

as the IEEE 754 Standard, Unum Type-III (Posits) and ”Bfloat16”, are introduced.

5.1.1 Precision Bits

The number of precision bits introduced in Chapter 3 is a metric of study used to compare the

precision variation along with the range of representable values of each format. The number of precision

bits is equivalent to the number of explicit significand bits. If the significand has a fixed width, then the

number of precision bits is constant. Otherwise, the number of precision bits will vary depending on the

other fields of the respective format. For the Unum Type-IV, as described in Chapter 3, the number of

precision bits depends on the exponent size (ExpSz) and the EXP SZ W parameter, and it is given by

p bits = DATA W− ExpSz − EXP SZ W (5.1)

where:

ExpSz: number of explicit exponent bits.

41

5.1.2 Dynamic Range

The dynamic range, also introduced in Chapter 3, is a metric of study used to compare the range

of representable values of each format. This metric, measured in decades, is the logarithmic base 10

of the ratio between the largest (maxpos) and smallest (minpos) representable positive values, given by

the following formula

Dynamic Range = log10

(
maxpos

minpos

)
(5.2)

5.1.3 Hardware Resources

The hardware resource metrics used in this dissertation to compare Unum Type-IV with the other

floating-point formats are given by the silicon area implemented or estimated, the power consumption

and clock frequency, both obtained from the implementation of the respective FPUs in the ASIC. In

Section 5.5, these metrics are used and compared in detail for different configurations.

5.1.4 Decimals of Accuracy

The metric of study used to compare the accuracy is the Decimal Accuracy proposed by John L.

Gustafson in [15] given by the inverse of the decimal error in a decibel scale. The Decimals of Accuracy

are the number of accurate digits to the right of the decimal point between a correct number and a

computed number in the respective format. The formula is given by

Decimals of Accuracy = log10(
1

Decimal Error
) = −log10(|log10(

xcomputed

xexact
)|) (5.3)

where:

Decimal Error= |log10(xcomputed

xexact
)|

In this dissertation, the formula adapts to the worst case, where it calculates the Decimals of Accu-

racy between two consecutive representable values. This strategy gives a clear vision of the accuracy

from the smallest positive value and the largest positive value of each format. Therefore, the formula

used is

Decimals of Accuracy = −log10(|log10(
xi

xi+1
)|) (5.4)

where:

xi and xi+1 represent two consecutive representable values, either in Unum-IV or IEEE 754 format.

5.1.5 Units of Least Precision

Another measure used in this dissertation to evaluate the resolution of the formats is the Units of

Least Precision (ULP), which associates to a representable value the weight of the last bit of the signifi-

cand. This measure gives the spacing between two consecutive floating-point numbers, and it is variable

42

depending on the exponent and precision. The ULP of a xi number is given by

ULP(xi) = 2−p × 2e (5.5)

where:

p is the number of explicit significand bits of xi (precision bits) and e is the exponent of xi.

5.2 Comparing Unum Type-IV Features with Other Formats

Table 5.1 presents a qualitative comparison between the most relevant features separating Unum

Type-IV, Unum Type-III and IEEE 754 number systems. The Unum-IV and Posits formats have some

distinctive features which can not be found in the IEEE 754 number system.

Table 5.1: Qualitative Comparison Between IEEE 754 Standard and Unum Type-IV.

Features IEEE 754 Posits Unum-IV

[n-bit] [n-bit] [n-bit]

Portability/Reproducibility No Yes Yes

Redundant Representations Many None None

NaNs Representations 2n−e − 2 w/ e = {5, 8, 11, 15} None None

Infinity Representations 2 (−∞/+∞) 1 (∞) None

Zero Representations 2 (0−; 0+) 1 (0) 1 (0)

Real Number Representations Exceptions: NaNs,+∞,−∞ Exceptions: ∞ 2n

Overflow ”Falls of a Cliff” Gradual (tapered accuracy) Never. Exceptions: 1
0 =∞

Underflow Gradual Gradual Gradual

Exponent Fixed-Size; Biased; Unsigned; Variable-Size; Unsigned Variable-Size; Signed (1’s Complement);

0 Implicit Leading Bits 0 Implicit Leading Bits 1 Implicit Leading Bit

Significand Fixed-Size; Unsigned; Variable-Size; Signed (2’s Complement) Variable-Size; Signed (2’s Complement);

1 Implicit Leading Bit 1 Implicit Leading Bit 1 Implicit Leading Bit

Precision Bits Fixed Variable Variable

There are existing works [6, 7, 8] that point out the main disadvantages of the IEEE 754 Standard,

as the portability/reproducibility feature in Table 5.1 because there is no guarantee of identical results

across systems, meaning that there is no portable or repeatable behaviour. The IEEE 754 standard

specifies the binary format and the semantics of the operations. Although, the standard leaves plenty

of space for the compilers to diversify the implementation of IEEE 754. Therefore, the same code may

produce slightly different results on different systems.

In terms of redundant representations, there are no redundant representations in the Unum-IV and

Posits formats, unlike IEEE 754 that has many due to the NaN bit pattern representations. Whereas the

IEEE 754 floating points are polluted with NaN values, Unum-IV uses all those patterns to represent real

numbers. To understand the NaN problem, let’s compare the number of NaN representations in the 32-

bit IEEE format, which has 16777214 NaN combinations, meaning that any 32-bit Unum-IV configuration

format has at least more 16777214 representable real numbers than the IEEE format, corresponding to

0.4% of the total number of values. There are no wasted representations for the Unum Type-IV format.

Unum-IV has no representation for infinities, whereas IEEE 754 has two distinct bit patterns represen-

43

tations, −∞ and +∞. As stated in some works that evaluate the IEEE 754 disadvantages, the overflow

is captured by the infinity representations, creating infinite relative errors. As for the zero representation,

the IEEE has two combinations, 0− and 0+, while the Unum-IV has only a bit pattern representation for

zero. The Posits format has just one representation for the infinity and another for zero. The existence

of two representations for zero leads to an undesired complexity in mathematical equality. Unlike IEEE

754, the Unum-IV and Posits number systems verify the equality of two numbers by simply checking

their bit sequence. If two Unum-IV or Posit numbers have the same bit-pattern combination, then their

equality is proved. In IEEE 754, equality is more complex due to the redundancy in the format and the

0+ and 0−. Mathematically, even though the two representations of zero are distinct, they compare as

equal. The other issue with equality is the existence of NaN, represented by the various bit sequences

with an all-ones exponent and non-zero significand. These reasons make it impossible for IEEE 754 to

verify the equality of two numbers by only comparing their bit patterns.

When an overflow occurs, the IEEE 754 Standard assigns the result to infinity. In practical terms, if a

number exceeds the maximum representable number of the format, then the compiler using IEEE 754

will be overflowed to infinity, which will create an infinite relative error. For the underflow case, IEEE 754

assigns the result to zero. On the other hand, the Unum-IV arithmetic uses flags to be interpreted by

an interruption handler to interrupt the calculation if any exception flags are activated. This strategy is

adopted to avoid propagating errors due to the lack of precision or range of the chosen formats. Both

underflow scenarios are gradual due to the presence of ”subnormals” numbers, although Unum-IV uses

tapered precision on top of the subnormals to delay the underflow. For the overflow, IEEE 754 ”falls

off a cliff” because it does not gradually overflow. Instead, it uses a vast combination of bit patterns to

represent the NaN values. Discordantly, the Unum-IV is more symmetrical, so it also gradually overflow

through the tapered precision achieved by the variably-sized exponent and significand. This lack of

symmetrically in IEEE 754 compared with the Unum Type-IV format can be seen in Figure 5.7. The

Unum Type-III number system never overflows to infinity or underflows to zero [15]. There is just one

exception described in Table 5.1.

These main differences between the two formats are all reached by the different formats of exponents

and significands. As for the IEEE 754 Standard, the exponent has a fixed number of bits (5 for half-

precision; 8 for single-precision; 11 for double-precision; 15 for quad-precision), and it is biased and

unsigned. The significand also has a fixed number of explicit bits (10 for half-precision; 23 for single-

precision; 52 for double-precision; 112 for quad-precision), has an implicit leading bit, and it is unsigned.

For the Unum-IV format, both exponent and significand have a hidden bit, are signed, 1’s complement

and 2’s complement, respectively, and have a variable size. Finally, the Posits significand is signed (2’s

complement), has an implicit leading bit always equal to 1, whereas the exponent is an unsigned integer,

both with a variable size.

The tapered precision of these two Unum formats presents an advantage, also because one of the

points referred to as an issue for IEEE 754 is that the exponent usually takes too many bits.

44

5.3 Comparing Unum Type-IV Dynamic Range with Other Formats

As referred to in Chapter 3, the dynamic range is the ratio between the largest and the smallest

positive values that a specific number system configuration can assume in decades. The Unum Type-

IV number system can have greater or matching dynamic ranges with the IEEE 754 Standard formats

depending on the configuration adopted. The half-precision IEEE 754 has a dynamic range of about

12 decades, single-precision has about 83 decades, double-precision has nearly 652 decades, and

the quad-precision format has about 9882 decades. These four formats are the formats defined in the

standard, having 5, 8, 11 and 15 exponent bits, respectively.

The Unum Type-III Standard Draft [35] includes the Posit<16,1>, Posit<32,2>, Posit<64,3> and

Posit<128,4> configuration. The Posit<16,1> configuration has a dynamic range of about 16 decades,

Posit<32,2> has about 73 decades, Posit<64,3> has nearly 299 decades, and, finally, 128-bit Posit<128,4>

has, approximately, 1214 decades.

Figure 5.1 shows the dynamic range, in decades, for the different IEEE 754 and Posits standards, and

some of the most significant configurations of Unum-IV, namely, Unum-IV<16,3> with about 78 decades,

Unum-IV<32,3> with nearly 83 decades, Unum-IV<32,4> with, approximately, 19731 decades, Unum-

IV<64,4> and Unum-IV<128,4> with 19741 and 19746 decades, respectively.

Figure 5.1: Dynamic Range for Different Unum-IV and IEEE754 Format Configurations.

As can be seen in Figure 5.1, the Unum-IV< 16, 3 > configuration has almost the same dynamic

range as the 32-bit IEEE 754 float, which is stored occupying twice of the computer memory. Unum-

IV< 32, 4 > has more than 237 times the dynamic range compared with the IEEE 754 bit string with the

same width (single-precision), has more than 30 times the dynamic range of the 64-bit IEEE 754 format,

which uses the double of the format memory, and it also has a slightly better dynamic range that the

quadruple-precision floats, with 128 bits of memory.

Figure 5.1 also shows that Unum Type-IV not only has a wider dynamic range for the same bit width

45

as Posits but also with using half of it.

5.4 Comparing Unum Type-IV Precision with Other Formats

In computer arithmetic, besides the dynamic range of the data representation, accuracy and perfor-

mance are critical features that must be considered.

In Figures 5.3, 5.4, 5.2, 5.5 and 5.6, the number of significand bits is shown as a function of the

exponent range of each format. The highlighted areas are the ”golden zone” where the Unum-IV format

in question has at least the same resolution as floats.

Figure 5.2: Exponent vs Significand Bits Comparison Between Unum-IV<16,3> & 16-bit IEEE 754
Format.

Since IEEE 754 uses fixed-size exponent and fraction, the number of fraction or precision bits, as

described in Chapter 3, is constant. For example, the 16-bit floats, the fraction field has ten explicit bits.

As for the remaining formats defined in the standard, in the 32-bit, 64-bit and 128-bit floats, the fraction

has 23, 52 and 112 bits, respectively. The Unum-IV format has variable resolution, having more precision

bits for exponents near 0 and fewer precision bits for numbers with a higher magnitude. Therefore, the

”precision” plot of Unum-IV has a sine form as expected.

Figure 5.2 shows that Unum-IV<16,3> has a wider dynamic range and, on average, outperforms the

16-bit floats in terms of accuracy. The ”golden area” covers almost all the exponent range covered by

the binary16 format, and out of this zone, the Unum-IV precision suffers a reduction of only one bit.

46

Figure 5.3: Exponent vs Significand Bits Comparison Between Unum-IV<32,3> & 32-bit IEEE 754
Format.

Figure 5.4: Exponent vs Significand Bits Comparison Between Unum-IV<32,4> & 32-bit IEEE 754
Format.

As for the 32-bit floats, Figures 5.3 and 5.4 show that for the same size, both Unum-IV<32,3> and

Unum-IV<32,4> have exponent ranges where they have more fraction bits than the binary32 format.

The ”golden area” occupied by Unum-IV<32,3> is wider than Unum-IV<32,4> because of the smaller

dynamic range, having space for more precision bits. Near 0, Unum-IV<32,3> gives a maximum of 29

precision bits, outperforming the 32-bit floats by 6 bits, while Unum-IV<32,4> has just more 5 bits. On

the edges where the floats overflow and underflow, outside the golden area, Unum-IV<32,3> has 22

bits, having a smaller resolution by one bit and Unum-IV<32,4> has 21 bits of precision.

47

Therefore, Unum-IV<32,3> has a similar dynamic range to the 32-bit floats and covers a larger area

where numbers have at least the same resolution than floats compared with Unum-IV<32,4>. In terms

of accuracy, it is a better option to replace 32-bit floats if the range is enough. The advantage of Unum-

IV<32,4> is that besides having, on average, better resolution in the binary32 range than floats, it also

has a massive difference in the dynamic range, covering the 64-bit and 128-bit floats ranges.

Figure 5.5: Exponent vs Significand Bits Comparison Between Unum-IV<64,4> & 64-bit IEEE 754
Format.

Figure 5.6: Exponent vs Significand Bits Comparison Between Unum-IV<128,4> & 128-bit IEEE 754
Format.

Figure 5.5 shows the comparison between two double-precision formats, the 64-bit float and Unum-

IV<64,4>. As can be seen, the 64-bit Unum-IV configuration has a wider dynamic range, covering

exponents from -32766 to 32767 and a comfortable ”golden area”, where it can have a higher resolution

48

than the 64-bit floats with 52 bits of precision. Finally, Figure 5.6 also shows that the Unum-IV<128,4>

numbers have the same or better resolution for a vast area of exponents, as well as a greater dynamic

range.

Table 5.2: Resolution for Different Unum-IV, Posits and IEEE754 Format Configurations.

Formats ULPMin ULPofOne ULPMax

Binary16 2−24 2−10 25

Posit<16,1> 2−28 2−12 228

Unum-IV<16,3> 2−132 2−13 2121

Binary32 2−149 2−23 2104

Posit<32,2> 2−120 2−27 2120

Unum-IV<32,3> 2−148 2−29 2105

Unum-IV<32,4> 2−32778 2−28 232755

Binary64 2−1074 2−52 2971

Posit<64,3> 2−496 2−58 2496

Unum-IV<64,4> 2−32811 2−60 232722

Binary128 2−16494 2−112 216271

Posit<128,4> 2−2016 2−118 22016

Unum-IV<128,4> 2−32875 2−124 232658

Table 5.2 displays the resolution of the formats used in Figure 5.1, using the ULP metric. The ULPMin

gives the minimum spacing between two consecutive representable values, the ULPofOne gives the

weight of the last bit of the significand for numbers with exponent equal to zero (Exponent=0), and the

ULPMax gives the maximum spacing. From Table 5.2 it is possible to verify that Unum Type-IV has a

better resolution compared with the IEEE 754 and Posits formats using the same bit width.

These comparisons highlight a crucial feature of the Unum-IV, which is the possibility of replacing

IEEE 754 formats with Unum-IV formats that use less storage in the computer memory.

5.4.1 Unum-IV<8,2> vs. Quarter-Precision IEEE-Style floats

In Figure 5.7, a quarter-precision IEEE-style float format (not standardized) is tested against Unum-

IV<8,2> to compare both formats. These two low precision configurations are selected because they

present comparable dynamic ranges and are practical to analyse the whole range since both sets have

only 256 elements. The 8-bit IEEE-style format used in this comparison follows the IEEE 754 Standard

rules even though this format does not make part of the standard formats. It has a sign bit, a 4-bit

exponent and a 3-bit fraction field. It has a total of 14-bit patterns that represent NaN values and a

dynamic range of about five decades, where the smallest positive value is 1
512 , and the largest is 240.

The Unum-IV configuration chosen, Unum-IV<8,2>, implies that the format has a total of 8 bits, the

exponent ranges between 0 and 6 explicit bits, and the fraction is set between 3 and 6 bits, depending

49

on the exponent size. Therefore, Unum-IV<8,2> has a dynamic range of about 4.8 decades, where the

smallest positive value is also 1
512 and the largest is 112.

Figure 5.7 shows the application of this metric of study to analyse the accuracy between the positive

range of the 8-bit IEEE-style float number system and Unum-IV<8,2>. The xx axis represents the index

i of a set of xi representable values of each format, both ordered from the smallest (minpos) to the

largest positive (maxpos) number.

Figure 5.7: Decimals of Accuracy Comparison Between Unum-IV<8,2> & 8-bit Floats.

These graphs reveal that Unum-IV<8,2> is more accurate on average than the 8-bit floats. The

results show that Unum-IV<8,2> has a minimum of 0.52, a maximum of 2.17 and an average of 1.58

decimals of accuracy. The 8-bit float format has a minimum of 0.52, a maximum of 1.55 and an average

of 1.40 decimals. The decimal accuracy is at the highest in the centre of the graph for Unum-IV, which

is where the most common numbers used in the computations occur. As expected, due to the tapered

precision of this format, the accuracy tends to decrease in both directions. At the centre of the graph

are the numbers with smaller exponents, in terms of magnitude, requiring fewer exponent bits and using

more fraction bits. As the numbers run from the centre, the exponent magnitude increases, demanding

more exponent bits, which provides less accurate results. Figure 5.7 shows that the floats have tapered

accuracy on the left as they use subnormals to obtain a gradual underflow. On the right side, the floats

”fall of a cliff” to accommodate all the NaN values (14 in this case). On the other hand, the results show

that the Unum-IV format has tapered accuracy on both sides, becoming closer to symmetrically tapered

accuracy.

50

5.4.2 Unum-IV<8,2> vs. Posit<8,1> vs. Posit<8,0>

Here two Posits configurations (Posit<n,es>) are chosen to compare with Unum-IV<8,2>, Posit<8,0>

and Posit<8,1>.

Posit<8,1> has a total of 8 (n) bits, a maximum of 1 exponent (es) and of 4 explicit significand bits.

Therefore, Posit<8,1> has a dynamic range of about 7.23 decades, where the smallest positive value

is also 1
4096 and the largest is 4096. Posit<8,0> has a total of 8 bits, with 0 exponent bits and maximum

of 5 explicit significand bits. Therefore, Posit<8,1> has a dynamic range of about 3.61 decades, where

the smallest positive value is also 1
64 and the largest is 64.

Figure 5.8 shows the application of this metric of study to analyse the accuracy between the positive

range of Unum-IV<8,2>, Posit<8,0> and Posit<8,1>.

Figure 5.8: Decimals of Accuracy Comparison Between Unum-IV<8,2> & Posit<8,0> (LEFT).Decimals
of Accuracy Comparison Between Unum-IV<8,2> & Posit<8,1> (RIGHT).

As can be seen in Figure 5.8, Unum-IV<8,2> is more accurate on average than the Posit<8,1> for-

mat due to the higher resolution of Unum-IV<8,2>. It is possible to take that Posit<8,1> has a minimum

of 0.22, a maximum of 1.8605 and an average of 1.46 decimals of accuracy. However, Posit<8,1> has a

greater dynamic range than the Unum-IV format, with a difference of nearly two decades. As Posit<8,0>

is concerned, Unum-IV<8,2> is less accurate because Posit<8,0> format has a higher resolution at the

cost of having a smaller dynamic range. Posit<8,0> has a minimum of 0.52, a maximum of 2.17 and an

average of 1.7625 decimals of accuracy.

Figure 5.9 shows the ULP variation of the 8-bit float, Posit<8,1> and Unum-IV<8,2> format from the

smallest (minpos) to the largest positive representable value (maxpos). The ULP expresses the distance

between two consecutive numbers and measures the resolution of a floating-point format.

51

Figure 5.9: ULP Comparison Between Unum-IV<8,2> & 8-bit Floats.

Since the number of precision bits of the 8-bit floats is fixed and equal to 3, the ULP expression is

given by 2−3∗2e, depending exclusively on the exponent. Whereas The Unum-IV<8,2> and Posit<8,1>

ULP variation depends both on the exponent and precision. The Unum-IV and Posits ULP variation slows

down as the numbers get closer to one because they receive more bits of precision.

From Figure 5.9, it is possible to infer that the Unum-IV<8,2> format has a higher resolution for a

considerable portion of the format range because the ULP is smaller, meaning that they have smaller

spacing between consecutive floating-point numbers.

5.5 Comparing Unum Type-IV Hardware Resources with Other For-

mats

5.5.1 IEEE 754 and Unum Type-IV Comparison

In this section, the ASIC implementation results for the new Unum-IV FPU and an existing IEEE 754

FPU, both designed using a UMC 130nm process, are presented and discussed.

Table 5.3 compares the ASIC implementation results of the Unum-IV FPU developed in this disserta-

tion with the IEEE 754 FPU developed by a colleague in the IObundle company [38]. Both Unum-IV FPU

and IEEE 754 FPU are parameterizable, so they are compared with different configurations in terms of

the silicon area (Area), frequency (Clock Frequency) and power consumption (Power).

The results show that the Unum-IV FPU exponent size(EXP SZ W) width configuration influences

the power consumption and silicon area. For the same data width (DATA W), the power consumption

and silicon area used grows with the number of exponent size bits, as can be seen in Table 5.3.

52

The Unum Type-IV configurations selected to implement and compare with IEEE 754 take into ac-

count their dynamic range and precision, as they intend to replace the following IEEE 754 formats. The

32-bit IEEE 754 format has an exponent ranging from -126 to 127 and 23 precision bits. For those rea-

sons, the Unum-IV<16,3> and Unum-IV<32,3> are implemented with an EXP SZ W=3, to cover the

same exponent range. However, the Unum-IV<16,3> precision varies between 6 and 13 bits, whereas

Unum-IV<32,3> varies between 22 to 29 bits. On the other hand, the 64-bit IEEE 754 exponent ranges

between -1022 to 1023. However, the Unum-IV parameters do not specify this range. The smallest

EXP SZ W that covers the 64-bit float range is 4, which gives an exponent ranging between -32766 and

32767. Thus, Unum-IV<32,4> and Unum-IV<64,4> configurations are selected. Unum-IV<32,4> is a

low-precision version (ranging from 13 to 28 bits) of Unum-IV<64,4> (ranging from 55 to 60 bits).

Another Unum-IV<DATA W, EXP SZ W> configuration that has a minor influence in the implemen-

tation results is the Unum-IV FPU rounding mode configuration (Rounding Mode). When the truncation

mode is selected (Rounding Mode=0), the silicon area and power consumption are smaller than when

using the ”round to the nearest, ties even” rounding mode (Rounding Mode =1). These differences are

justified because the ”round to the nearest, ties even” rounding mode uses extra registers and logic

gates to perform rounding operations, and also because all the significand registers have three extra

bits.

Table 5.3: ASIC Implementation Results.

FPU Data Width ExpSize Width Rounding Mode Area [mm2] Power [mW] Clock Frequency [MHz]

Unum-IV

16 3
0 45.19 6.26 200

1 49.89 7.01 200

32

3
0 98.31 13.30 200

1 104.58 14.08 200

4
0 112.36 14.25 200

1 123.95 15.38 200

64 4
0 304.70 40.13 175.19

1 344.93 38.94 190.25

IEEE 754
32 —— 1 67.66 7.44 200

64 —— 1 267.34 27.97 169.15

To make a fair comparison between the Unum-IV FPUs and the IEEE 754 FPUs, they must use the

same rounding mode. Therefore, the selected rounding mode to make the comparisons is the ”round to

the nearest, ties even” because it is the default mode of IEEE 754.

In terms of silicon area, the results show that if the data width is the same between the FPUs, then

the IEEE 754 FPUs are smaller than the Unum-IV FPUs. These area differences are explained by the

fact that the Unum-IV FPUs exponents and significands are extended to their maximum size allowed

by the configuration (EXP MAX W and MAN MAX W). Thus, all the modules like the barrel shifters and

adders will be as large as the configuration parameters. The other reason is that the field extractions

require more logic since Unum-IV has variably-sized exponent and significand. Thus, the unpacking and

packing require more hardware.

53

Despite that, the main focus of this dissertation was to develop an FPU with a configurable exponent

and significand sizes. It is also relevant to compare the FPUs based on their number system configu-

ration and dynamic range to verify if it was possible and advantageous to replace a format with another

using less memory storage.

Let us take Unum-IV<16,3> into consideration. This format has the same exponent range as the

single precision IEEE 754 (binary32), having a similar dynamic range. In this scenario, the Unum-

IV< 16, 3 > FPU is 1,36x smaller than the binary32. Unum-IV<32,4> has a higher dynamic range

compared with the double-precision IEEE 754 (binary64), and its FPU is 2,16x smaller.

Table 5.4 shows the silicon area used by each module using a Unum-IV<32,4> configuration.

Table 5.4: Silicon Area of the Different Modules using Unum-IV<32,4>.

Unum-IV<32,4> FPU Modules Area (mm2)

Unpack A 4.96

Unpack B 4.96

Addition/Subtraction 27.09

Multiplication 37.68

Division 33.16

Pack O 12.49

The processing modules have a similar silicon area use, using more than 81% of the total area.

The multiplication module is the largest in terms of the silicon area because it uses the system 64-bit

multiplier, which is not that efficient in this terms. The division module has a smaller area because

the significand division is performed by an implemented pipelined subtract and shift component, which

reduces the silicon area. The pack and unpack modules use almost the same components, with the

main difference of the pack module having an extra rounding procedure, increasing its silicon area by

2.5×.

As far as power is concerned, the Unum-IV FPUs consumes more than the IEEE FPUs for the

same data width. However, if the comparison is made based on formats with similar dynamic ranges,

then the Unum-IV FPUs consumes less or almost the same power. For the same examples used for

the silicon area comparison, it is possible to verify that the power consumption of the Unum-IV<16,3>

FPU is slightly smaller (7.01 mW) than the binary32 FPU (7.44 mW). The other example is between

binary64 and Unum-IV<32,4>, where the Unum-IV configuration has a higher dynamic range compared

to binary64 and where the binary64 FPU consumes 1,82x more power.

Both FPUs make use of the pipeline to maximize the clock frequency, and their frequency is com-

parable. However, there is still room for optimizations as the double precision is not maximized to 200

MHz.

54

5.5.2 Posits and Unum Type-IV Comparison

In the comparison between the Unum-IV and Posits hardware resources utilization, the published

FPGA results in [39]are used to estimate the ASIC area of a Posits FPU. In that article, a pipelined FPU

with an adder and multiplier is implemented in an FPGA using the Posits standard configurations.

Unum Type-IV and Posits with the same bit-width and without the division unit are compared using

FPUs that implement the multiplication and addition/subtraction, using pipeline and the same rounding

mode to ensure that the comparison is fair. The FPGA sysnthesis results are first shown in Table 5.5.

Table 5.5: FPGA Results Comparison Between Different Unum-IV and Posits Configurations.

Format Configuration LUTs FFs DSPs Estimated Gates

Posit

<16,1> 533 208 1 6205

<32,2> 1162 658 4 19100

<64,3> 2775 2018 16 63965

Unum-IV

<16,3> 721 517 1 8690

<32,3> 1288 854 4 20710

<64,4> 2854 1651 10 47525

The FPGA synthesis results clearly show that the Posits and Unum-IV implementations have a similar

size. From these results, the silicon area of a Posits FPU can be estimated. First the number of NAND2

equivalent system gates is estimated from the FPGA results for the Posits FPU, assuming 6 gates per

LUT and 2500 gates for each DSP unit. Then the silicon area of the Posits FPU is calcuated based on

the area of a NAND2 gate.

Table 5.6 compares the silicon area of the Unum-IV FPU to the estimated silicon area of the Posits

FPU for the following standard configurations: Posit<16,1>, Posit<32,2> and Posit<64,3>. For the

Unum-IV, the ASIC results are obtained by directly implementing the Unum-IV<16,3>, Unum-IV<32,3>

and Unum-IV<64,4> FPU configurations, using a UMC 130nm process. It could be shown that the sili-

con area estimated from the Unum-IV FPU FPGA results and its actual silicon area are similar. However,

the actual results are shown since they are available.

Table 5.6: Silicon Area Comparisons Between Different Unum-IV and Posits Configurations.

Format Configuration
Maximum Precision

[Bits]

Dynamic Range

[Decades]

Estimated ASIC Area

[mm2]

ASIC Area

[mm2]

Posit

<16,1> 12 16.86 31.77 —————–

<32,2> 27 72.25 97.79 —————–

<64,3> 58 298.62 327.5 —————–

Unum-IV

<16,3> 13 77.96 ——————————- 34.42

<32,3> 29 82.78 —————————— 74.14

<64,4> 60 19740.9 ——————————- 240.46

The results in Table 5.6 show that the Unum-IV area is similar or smaller than the Posits area. Given

that the accuracy and dynamic range of the Unum-IV has been shown superior to those of the Posits,

55

one concludes that the Unum-IV format is a better replacement for the IEEE 754 format than the Posits.

For the same bit width, Unum-IV<16,3> has a similar area, a wider dynamic range by almost 30

decades and a greater maximum number of precision bits compared with Posit<16,1>. Unum-IV<32,3>

uses 25% less area than Posit<32,2> while having a similar dynamic range and supporting more preci-

sion bits. Finally, Unum-IV<64,4> uses nearly 36% less area, has 66x more decades of dynamic range

than the Posit<64,3> configuration, and also supports more precision bits.

5.6 Comparison Summary

These metrics show that Unum-IV configurations can translate to more accurate computation due to

their variable precision. In general, Unum-IV formats have a ”golden area”, where they have as many

precision bits as floats of the same width, with the advantage of also having greater dynamic ranges. This

can be advantageous for applications like machine learning applications. Studies [32, 33, 34] show that

many ML algorithms can tolerate formats with lower precision without ruining the results. For example,

Google developed a 16-bit format called ”Brain Floating Point”, shortly, ”Bfloat16” [28]. This idea came

from ”Google Brain”, an artificial intelligence research group from Google. They pointed that the 16-bit

float format does not have enough dynamic range for most deep learning applications, so they created

the ”Bfloat16”, which solves the range problem by having a similar dynamic range as 32-bit floats do.

Table 5.7 compares the single-precision IEEE 754 format with the ”Bfloat16”, the Unum-IV<16,3>

and the Posit<16,3> format. The four formats are compared in terms of exponent size, fraction size,

dynamic range and resolution.

Table 5.7: Binary32, Bfloat16, Posit<16,3> and Unum-IV<16,3> Comparisons.

Formats Exponent Significand minpos maxpos Dynamic Range ULP ULP ULP

[Bits] [Bits] (≈) (≈) [Decades] (≈) Min ofOne Max

Binary32 8 23 explicit + 1 implicit 1.40× 10−45 3.40× 1038 83.39 2−149 2−23 2104

Bfloat16 8 10 explicit + 1 implicit 1.15× 10−41 3.40× 1038 83.47 2−136 2−10 2117

Posit<16,3> [0-3] [0-10] explicit + 1 implicit 1.93× 10−34 5.19× 1033 67.43 2−112 2−10 2112

Unum-IV<16,3> [0-7] explicit + 1 implicit [6-13] explicit + 1 implicit 1.43× 10−42 1.70× 1038 77.96 2−132 2−13 2121

As ”Bfloat16”, Unum-IV<16,3> has an identical dynamic range as 32-bit floats using half of the

memory size. The main difference between these two formats is the tapered precision attached to

the Unum-IV format, whereas ”Bfloat16” has a fixed 8-bit fraction field, Unum-IV<16,3> has a fraction

field that floats between 6 and 13 fraction bits. Thus, the Unum-IV has a range of numbers where it

outperforms the brain floats in precision terms. In the worst-case scenario, where Unum-IV has less

resolution than ”Bfloat16”, they only have an extra fraction bit. As for the best-case (numbers near

1), Unum-IV has an addition of six extra fraction bits. For those reasons, as ”Bfloat16” appeared to

replace the 32-bit floats in machine learning applications to increase performance and reduce memory

usage, Unum-IV<16,3> can also be a valuable alternative to the ”Bfloat16”, producing better or the

same results.

Posit<16,3> has both a smaller dynamic range and resolution compared with Unum-IV<16,3>. This

56

format can be efficiently replaced by the proposed Unum-IV<16,3> format, producing results at least in

the same or in a more extensive range of values without losing precision.

In Chapter 6, a machine learning application is tested using Unum-IV<32,4> against the 32-bit floats

to verify the Unum-IV advantages over IEEE 754 format, such as higher dynamic range and accuracy.

57

Chapter 6

Proof of Concept: KNN Application

In this chapter, a K-Nearest Neighbours (KNN) application [31] is implemented using three differ-

ent data types: the IEEE 754 double-precision format, which is used as a reference, the IEEE 754

single-precision format, and the Unum-IV<32,4> format. Unum-IV<32,4> is suitable to be used in ML

applications such as the KNN and tested against the 32-bit IEEE 754 floats because these types of

applications use a high amount of floating-point operations and have a level of accuracy tolerance that

others do not. It is expected that Unum-IV<32,4> exceed both 32-bit and 64-bit floats in terms of dy-

namic range. In terms of accuracy, the variable-precision format should also exceed the 32-bit floats for

numbers near 1. Therefore, two different tests are made to compare the accuracy of the classification

results for benchmarks that cover those features, using the 64-bit float results as a reference.

The K-Nearest Neighbours [40, 41] algorithm is one of the simplest supervised ML algorithms, which

can be used for both classification, regression and search problems. This type of supervised ML algo-

rithms uses labelled data to produce a method to predict the label of given unlabeled data. The KNN

algorithm is simple, easy to understand. It is one of the most used algorithms in ML applications and is

also robust to the noisy training data and non-parametric, as there is no assumption for underlying data

distribution.

The algorithm finds the K closest labelled data to the data point to be classified using the distance as

criteria, and then it predicts the test point classification by the majority class voted by its K neighbours.

Therefore, the class with the most votes is held as the predicted class of the unlabeled data point.

The number of neighbours is user-defined and very important because as the number of K increases

up to a certain point, the predictions become more stable and accurate.

58

6.1 Algorithm

The KNN algorithm follows four main steps:

• Init Step: firstly, all the dataset structures are initiated with randomly generated coordinates and

labels. Then, all the set of data points to be classified are assigned random coordinates. The goal

of the algorithm is to predict the class label of each of those test points.

• Calculation Step: for all the test points to be classified, the distance to each dataset point is

computed. The metric used is the square distance between two points a and b, which is the

Squared Euclidean Distance (SED). The Euclidean Distance (ED) and the Manhattan Distance

(MD) are the most common metrics applied in this kind of applications. The first step to employing

the SED metric is to initiate all the K neighbours with infinite distance. Then, for all the dataset

points, the distance to each test point is computed.

• Insertion Step: for each test point, the distances are inserted in an ordered array of neighbours.

• Classification Step: the neighbours vote, and the best voted data class is assigned to each test

point label.

The algorithm ends when all test points are classified.

KNN
New Data Point

Category A

Category B

Category C

X X

Y Y

Figure 6.1: KNN Application.

In the KNN task:

• N: the dataset size;

• K: the number of neighbours;

• C: the number of data classes;

• M: the number of samples to be classified, the test points.

59

6.2 Implementation

The software code that performs the KNN algorithm given in the previous subsection is implemented

for three different data types: the double, the float and the Unum-IV<32,4> number system. Float is

a data type used to represent the floating-point numbers, given by the 32-bit IEEE 754 single-precision

floating-point numbers. Double is also a data type used to express the 64-bit IEEE 754 double-precision

floating-point numbers. These two are defined in the C standard library.

To compare the accuracy of the classification results using different data types, we also implemented

the Unum-IV FPU in software, with the addition of the data type conversion between the reference

datatype (Double) and the Unum-IV<32,4>. Thus an Unum-IV library is implemented, where the data

type is defined as an integer with 32 bits and the unpacked fields of Unum-IV are defined as a structure

(exponent, significand and exponent size) in the Unum-IV header file shown in Listing 6.1.

Listing 6.1: Unum-IV and KNN Header File.

/ / Def ine

. . .

#include <s t d i n t . h>

/ / Typedef Unum−IV Format

typedef struct {

i n t 3 2 t exponent ;

i n t 3 2 t s i g n i f i c a n d ;

i n t 3 2 t exp s ize ;

}Unum4Unpacked ;

typedef i n t 3 2 t unum4 ;

/ / Unum−IV Funct ions

Unum4Unpacked unum4 unpack (unum4 inpu t) ;

Unum4Unpacked unum4 add sub (Unum4Unpacked a , Unum4Unpacked b , i n t 3 2 t * over f low , i n t 3 2 t op) ;

Unum4Unpacked unum4 mul (Unum4Unpacked a , Unum4Unpacked b , i n t 3 2 t * over f low , i n t 3 2 t * underf low) ;

Unum4Unpacked unum4 div (Unum4Unpacked a , Unum4Unpacked b , i n t 3 2 t * over f low , i n t 3 2 t * underf low ,

i n t 3 2 t * d i v by ze ro) ;

unum4 unum4 pack (Unum4Unpacked o , i n t 3 2 t * over f low) ;

unum4 double2unum4 (i n t 6 4 t input , i n t 3 2 t * f a i l e d) ;

unum4 float2unum4 (i n t 3 2 t input , i n t 3 2 t * f a i l e d) ;

/ / Knn Funct ions

void knn double (double random [] , double t e s t p o i n t s [] , unsigned char l abe l r and [] ,

i n t votes acc [] , i n t doub le c lass []) ;

void knn unum4 (double random [] , double t e s t p o i n t s [] , unsigned char l abe l r and [] ,

i n t votes acc [] , i n t unum4 class []) ;

void k n n f l o a t (double random [] , double t e s t p o i n t s [] , unsigned char l abe l r and [] ,

i n t votes acc [] , i n t f l o a t c l a s s []) ;

The implemented Unum-IV library has six functions. The functions are the following:

60

• unum4 unpack(): function that unpacks a 32-bit Unum-IV strings into a structure that contem-

plates the three Unum-IV fields, exponent, significand and exp size, respectively.

• unum4 add sub(): function that performs an addition or subtraction between two unpacked 32-bit

Unum-IV structures. The function returns the Unum-IV unpacked structure as the result of the

operation with an overflow flag.

• unum4 mul(): function used to perform a multiplication between two unpacked 32-bit Unum-IV

structures. The function returns the Unum-IV unpacked structure and the overflow and underflow

flags.

• unum4 div(): function that perform a division between two unpacked 32-bit Unum-IV structures.

The function returns the same structure and flags of the multiplication with a ”divide by zero” extra

flag.

• unum4 pack(): a function that receives the Unum-IV unpacked structure returned from the pre-

vious functions, rounds the result using the ”Round to the Nearest, Ties Even” mode and packs

the result into a 32-bit Unum-IV string. This function returns the 32-bit Unum-IV string and the

rounding overflow flag.

• double2unum4(): function that performs the conversion from a 64-bit IEEE double-precision

floating-point number to a 32-bit Unum-IV<32,4> number. Therefore, the function returns a 32-bit

Unum-IV string and a ”failed” flag. The ”failed” flag is set to 1 if the conversion fails.

• float2unum4(): function that performs the conversion from a 32-bit IEEE double-precision floating-

point number to a 32-bit Unum-IV<32,4> number. Therefore, the function returns a 32-bit Unum-IV

string with the ”failed” flag.

After the Unum-IV library is implemented in C language, the KNN application is implemented for

doubles, floats and the Unum-IV<32,4> number formats. As can be seen in Listing 6.1, there are three

functions:

• knn double(): the function that performs the KNN algorithm using doubles as the datatype. The

classification results of this function are used as a reference for the other data types.

• knn unum4(): the function that performs the KNN algorithm using the Unum-IV<32,4> format

as the datatype. The classification results of these functions are evaluated in terms of accuracy

against the 32-bit floats.

• knn float(): function that performs the KNN algorithm using 32-bit floats as the datatype. This

function is implemented the same way as the 64-bit double format.

In the main function, the three last functions are called for the same labeled data points (random[])

and unlabeled data points (random[]). All the data points are generated using the double random gen-

erator function shown in Listing 6.2.

61

Listing 6.2: Double Random Generator.

/ / Double Random Generator

double random double (double min , double max) {

double d = (double) rand () / ((double) RAND MAX + 1) ;

return (min+ d * (max−min)) ;

}

Since the data is randomly generated using the double data type, it is converted to the respective

format inside each KNN function. For the floats, there is no cast needed to convert the doubles into

floats, whereas for the Unum-IV<32,4> the double2unum4() function is called to convert each data

point before performing the algorithm described in the previous section.

The labelled dataset and the neighbour information are assigned to specific structures as shown in

Listing 6.3. In the labeled dataset structure, the x and y coordinates are stored along with the class label

of each data point. The neighbour information, composed by the distance to the test data point and the

index in the dataset array, is inserted in the ordered neighbour structure of that specific test point.

In Listing 6.3, only the Unum-IV format structures are shown because they are implemented the

same way in the other datatypes. The main difference is in the data types used for the two-dimensional

coordinates and the distance.

Listing 6.3: Data Structures.

/ / l abe led dataset (unum4)

struct datum unum4 {

unum4 x ;

unum4 y ;

unsigned char l a b e l ;

} data unum4 [N] , x unum4 [M] ;

/ / neighbour i n f o (unum4)

struct neighbor unum4 {

unsigned i n t i dx ; / / index i n dataset ar ray

unum4 d i s t ; / / d is tance to t e s t po i n t

} neighbor unum4 [K] ;

As mentioned before, different distance metrics can be implemented using the KNN algorithm. How-

ever, the Squared Euclidean Distance is selected as a metric because there is no need to square root

the distances to compare them and, also, because the Unum-IV FPU has only four basic two-argument

operations (addition, subtraction, division and multiplication).

The Squares Euclidean Distance (SED) for two dimensional (A,B) problems is given by

SED = (Ax −Bx)
2 + (Ay +By)

2 (6.1)

Listing 6.4 shows the difference in the SED implementation using floats or doubles, both defined in

the C standard library, and the implementation using the Unum-IV library developed in this dissertation.

Three steps need to be followed to perform an Unum-IV operation: the unpacking of the operands, the

62

operation execution and the packing of the result into the 32-bit Unum-IV string.

Listing 6.4: Square Distance Functions.

/ / square d is tance between 2 po in t s a and b (f l o a t)

f l o a t s q d i s t f l o a t (struct da tum f loa t a , struct da tum f loa t b) {

f l o a t X = a . x−b . x ;

f l o a t X2=X*X;

f l o a t Y = a . y−b . y ;

f l o a t Y2=Y*Y;

return (X2 + Y2) ;

}

/ / square d is tance between 2 po in t s a and b (unum4)

unum4 sq dist unum4 (struct datum unum4 a , struct datum unum4 b) {

i n t 3 2 t over f low =0 , underf low =0;

Unum4Unpacked X = unum4 add sub (unum4 unpack (a . x) , unum4 unpack (b . x) , &over f low , 1) ;

unum4 x = unum4 pack (X,& over f low) ; / / a . x−b . x

Unum4Unpacked X2= unum4 mul (unum4 unpack (x) , unum4 unpack (x) , &over f low , &underf low) ;

unum4 x2 = unum4 pack (X2,& over f low) ; / / x ˆ2

Unum4Unpacked Y = unum4 add sub (unum4 unpack (a . y) , unum4 unpack (b . y) , &over f low , 1) ;

unum4 y = unum4 pack (Y,& over f low) ; / / a . y−b . y

Unum4Unpacked Y2=unum4 mul (unum4 unpack (y) , unum4 unpack (y) , &over f low , &underf low) ;

unum4 y2 = unum4 pack (Y2,& over f low) ; / / y ˆ2

return unum4 pack (unum4 add sub (unum4 unpack (x2) , unum4 unpack (y2) , &over f low , 0) , &over f low) ;

}

As for the insertion step, Listing 6.5 shows how the insertion of the neighbour’s distance and index

into the ordered neighbour’s structure is implemented for the Unum-IV numbers. Every time a distance

of a dataset point to a test point is computed, that dataset point is compared against the neighbours

already inside the neighbour’s structure of that specific test point.

Listing 6.5: Insertion in Ordered List.

for (i n t i =0; i<N; i ++) { / / f o r a l l da taset po in t s

/ / compute d is tance to x [k]

unum4 d = sq dist unum4 (x unum4 [k] , data unum4 [i]) ;

/ / i n s e r t i n ordered l i s t

for (i n t j =0; j<K; j ++) {

d i s t = unum4 add sub (unum4 unpack (d) , unum4 unpack (neighbor unum4 [j] . d i s t) , &over f low , 1) ;

i f (˜ over f low && d i s t . s i g n i f i c a n d <0){

insert unum4 ((struct neighbor unum4){ i , d} , j) ;

break ;

}

}

If a dataset point has a smaller distance to a test point than the dataset points saved in that test

point neighbours structure, then the neighbour with the largest distance to the test point is replaced by

that dataset point. Therefore, when all the dataset points distances are computed and inserted in the

neighbour’s list, the neighbour’s vote and the classification of the test point is predicted.

63

In the classification step, the neighbours of each test point vote in their classes and the best-voted is

assigned as the test point class as shown in Listing 6.6.

Listing 6.6: Classification step code.

/ / c l a s s i f i c a t i o n o f each t e s t po in t

/ / c l ea r a l l votes

i n t votes [C] = {0} ;

i n t b e s t v o t a t i o n = 0;

i n t best vo ted = 0;

/ / make neighbours vote

for (i n t j =0; j<K; j ++) { / / f o r a l l neighbors

i f ((++ votes [d a t a f l o a t [n e i g h b o r f l o a t [j] . i dx] . l a b e l]) > b e s t v o t a t i o n) {

best vo ted = d a t a f l o a t [n e i g h b o r f l o a t [j] . i dx] . l a b e l ;

b e s t v o t a t i o n = votes [bes t vo ted] ;

}

}

6.3 Experimental Results

The proof of concept application was run for two different sets of benchmarks, using the parameters

shown in Table 6.1. The number of neighbours is defined as 10 to provide a more accurate classification,

as explained before. To compare the performance between Unum-IV<32,4> and the IEEE single-

precision floating-point format, we use the IEEE double-precision format results as a reference.

Table 6.1: Parameters used in the KNN Clustering Application.

Data Set Size Number of Neighbours Number of Data Classes Number of Samples to be Classified

[N] [K] [C] [M]

100000 10 4 100

6.3.1 Experiment 1

In the first test, ten different benchmarks are randomly generated. The dataset points range between

0.99999 and 1, and the test points range between 0.9 and 1. This setup provides sparsely dispersed

datasets. These benchmarks are suitable to compare and verify if Unum-IV and 32-bit floats have

enough resolution to give accurate answers for numbers near 1.

Since the 32-bit floats have a 23-bit significand, the effective resolution of the format lies between six

and seven decimal fractional digits. Hence, it is expected that the 32-bit floats might not have enough

resolution to give accurate classifications to the test points. On the other hand, for numbers near 1,

Unum-IV<32,4> can have a maximum of 28 bits of significand. Therefore, the Unum-IV format can lead

to more accurate classifications than 32-bit floats because it supports 6 to 9 decimal fractional digits of

resolution.

64

Figure 6.2: Accuracy of Classification for Unum-IV<32,4> and 32-bit Floats.

The results of the first test show that Unum-IV<32,4> produced more accurate classifications than

the 32-bit floats for all the ten benchmarks, meaning that they have a higher percentage of correct

classifications. The accuracy of Unum-IV is set between 90 to 100 per cent, while the 32-bit floats can

only afford results between 23 and 83 per cent of accuracy compared with the 64-bit floats classifications.

As expected, Unum-IV<32,4> outperforms the 32-bit floats for numbers with small magnitude.

6.3.2 Experiment 2

In the second test, another ten different benchmarks are randomly generated. However, the dataset

points and test points generation use a wider range than the previous test, ranging between 0 and 1022.

The main focus of this test is to compare the Unum-IV<32,4> classifications with the results of the

64-bit float. It is expected that in this test, both formats provide similar classifications, considering their

dynamic ranges.

65

Figure 6.3: Accuracy of Classification for Unum-IV<32,4> and 64-bit Floats.

All the data used in the set of benchmarks are supported by the 32-bit floats, which, nonetheless, may

not apply to the square distance between the labelled and unlabeled points, as the computed distance

might fall outside the range of the 32-bit floats. For this reason the 32-bit floats have a poor performance,

as most of the computed distances overflow, resulting in less accurate classifications. On the other side,

we have the Unum-IV format performs correctly in all the benchmarks, which is easily explained by the

fact that the Unum-IV< 32, 4 > has a greater dynamic range than 32-bit and 64-bit floats. Another note

that can be added to these results is that the behaviour of floats towards the overflow of assigning it to

the +∞ can cause mathematical incongruities, as the operations are not interrupted.

Finally, both experimental results show that Unum-IV<32,4> can indeed produce more accurate

results than the IEEE 754 single-precision floating-point format for numbers with a small magnitude but

also cover all the IEEE 754 double-precision dynamic range with very accurate results. This means

that for these type of applications that tolerate some accuracy loss, the 32-bit Unum-IV<32,4> can be

a compelling replacement for the 64-bit IEEE 754 format. Unum-IV<32,4> has a wider dynamic range

than the 64-bit IEEE 754 using half of the computer memory for the format and can provide near-one

results with higher accuracy than the IEEE 754 format with the same word size.

The implementation results obtained in Chapter 4 showed that the Unum-IV FPU using the Unum-

IV<32,4> configuration uses nearly half of the silicon area and power consumption than the IEEE 754

double-precision FPU.

With the addition of the conclusions obtained with these two experiments in terms of accuracy, it is

possible to conclude that Unum-IV<32,4> can satisfy the application requirements while guaranteeing

computational efficiency and lowering the power.

66

Chapter 7

Conclusions

In this dissertation, Unum Type-IV, a new floating-point number system, is proposed, implemented,

tested and compared with the IEEE Standard for Floating-Point Arithmetic, and with the Unum Type-III

format, also known as Posits, proposed by John L. Gustafson in 2017 [15].

For over 30 years, the IEEE Standard for Floating-Point Arithmetic (IEEE 754) has been the most

widely used format to represent floating-point numbers in computer systems. However, the IEEE 754

has some limitations and drawbacks that have been pointed out by John L. Gustafson, who proposed

the Unum Type-I and Unum Type-II formats [6] before proposing Posits.

Like Posits, the proposed Unum Type-IV number system intends to be a suitable drop-in replacement

for IEEE 754 floats, targeting low-power consumption applications. The new representation format was

named Unum Type-IV because it extends and recovers ideas from the previous Unum formats, and

improves upon them. Like its predecessors the Unum Type-IV is a tapered-accuracy numerical format,

where numbers that are close to 1 get more significand bits and fewer exponent bits, and very large or

very small magnitude numbers get more exponet bits and fewer significand bits.

Unum Type-III or Posits has been so far the most interesting of these proposals, and has gained

considerable support in the community. It has been the most viable format for replacing IEEE 754, and

many research papers present studies on its properties and possible hardware implementations, which,

by the way, are quite competitive with IEEE 754 hardware implementations. Posits’ hardware is about

50% larger than IEEE 754 hardware for the same bit width, but Posits offer a lot more precision and

dynamic range than same size IEEE 754 numbers. Moreover, smaller-size Posits can replace floats in

many applications, making them look interesting even from the hardware size perspective.

The new Unum-IV proposal considerably improves the precision and dynamic range properties of

Posits, lowering the barrier to overthrow the IEEE 754 format even more. Moreover, its hardware is

competitive with the Unum-III hardware.

67

7.1 Achievements

In this work, we introduced a new floating-point number system, which can replace the IEEE 754 for-

mat offering significantly more precision and dynamic range, and beating the previous Unum-III proposal

in terms of precision bits and dynamic range decades per logic gate.

The first step to achieve this goal involved studying the state-of-the-art of the IEEE 754 Standard and

the different Unum formats to understand their drawbacks and how the new proposal could add value.

Then, the Unum Type-IV format is proposed, which introduces variably-sized exponent and signif-

icand scheme that effectively increases the dynamic range and accuracy compared to Unum-III. The

new scheme is based on a dynamic hidden bit for the 1’s complement exponent and another dynamic

hidden bit for the 2’s complement significand, that dispenses with the use of a unary representation for

the super exponent called Regime bits in Unum-III (Posits). Compared to Posits, accuracy and dynamic

range is increased by using a binary representation for both the exponent and the significand.

A parametrizable Unum-IV Floating-Point Unit (FPU) is developed in Verilog and implemented in

FPGA and ASIC technology and tested in different format configurations. The new FPU is compared

with IEEE 754 and Posits FPUs in terms of the used silicon. The new FPU has three hardware lev-

els, unpacking, processing and packing, and includes four basic two-argument operations: addition,

subtraction, division and multiplication.

A corresponding parametrizable IEEE 754 FPU is also implemented in FPGA and ASIC technology,

and the synthesis results show that, for same bit width configurations, the area and power consumption

of the Unum-IV FPU is lower. Published results on a Posits FPU have been used for comparison.

For equivalent hardware size, Unum-IV has much more maximum precision than IEEE 754 and more

maximum precision than Posits. For equivalent hardware size, Unum-IV has much more dynamic range

decades than IEEE 754 and more dynamic range decades than Posits. This shows that Unum-IV has a

better performance in terms of power consumption and silicon area than IEEE 754 and Posits.

For example, the 32-bit Unum-IV<32,4> configuration has 30x the dynamic range in decades com-

pared with 64-bit floats while using 2.1569x less silicon area with 1.8189x less power consumption with

a higher maximum clock frequency (200 MHz against 169.15 MHz of the 64-bit floats), using half of the

computer memory for the format. This means Unum-IV<32,4> can produce similar results as when

using 64-bit floats using half the memory and about 30% less silicon.

For the same bit width, the Unum-IV<32,4> has a 237x larger dynamic range compared with the

32-bit floats. In terms of accuracy, it can outperform the 32-bit floats as the Unum-IV fraction bits float

between 28 and 21 bits, whereas the 32-bit floats have a fixed fraction with 23 bits. Thus, in the best

scenario, the Unum-IV<32,4> produces answers with five additional accuracy bits, and in the worst

case, with fewer two bits of accuracy.

For Posits, the 64-bit Unum-IV<64,4> configuration has a dynamic range with more 19442 decades

and a significand with 2 extra precision bits compared with Posit<64,3> while using 1.32x less silicon

area, for example. This means the Unum-IV<64,4> can produce better results in terms of the dynamic

range and precision than the 64-bit Posit<64,3>, while using about 32% less silicon.

68

For equivalent hardware size, Unum-IV<32,3> has more 2 precision bits and about 10 more dynamic

range decades than Posit<32,2> format with the same bit width.

Finally, the Unum-IV<32,4> FPU was implemented in C language, and a KNN application was used

as a proof of concept to compare the performance of the Unum-IV<32,4> and the 32-bit floats in two

different sets of tests, using the 64-bit float results as a reference. As expected, the results showed that

the Unum-IV outperforms the 32-bit floats and produces similar results to the 64-bit floats.

It is concluded that the initial goals of this dissertation have been achieved: the proposed floating-

point system can be a suitable replacement for the IEEE 754, in particular for the area of HPC and low

precision applications, and beats its main competitor, Unum-III (Posits).

7.2 Future Work

As a follow-up to this work, some ideas to improve the proposed numerical system and its perfor-

mance can be studied and applied. For instance, we provide a few examples are advanced here:

• Use hardware description of a Posits FPU for simulation, synthesis and FPGA testing. In this

work published results are used, which affects the precision of the comparisons and reduces the

flexibility in devising new experiments.

• Using a variable-precision floating-point arithmetic function (VPA) to evaluate the results obtained

with both Unum-IV<32,4> and 32-bit floats, instead of using 64-bit floats as reference. With this, it

is possible to gather better evaluations of the performance in terms of accuracy, especially between

Unum-IV<32,4> and doubles.

• Adding fused operations in the Unum-IV FPU, such as multiply-add, add-multiply, sum and dot

product. These fused operations prevent the rounding error from accumulating by deferring the

rounding step until the last iteration when the computation involves more than one operation.

Hence, the results could be more accurate and, for example, it may allow for the Unum-IV<32,4>

format to safely replace the 64-bit floats in HPC.

• Incorporating the Unum-IV FPU in libraries such as Tensorflow or Keras to increase the testing

scale and the performance analysis of the new number system in different datasets and architec-

tures.

• Lastly, as the synthesis results showed, there is still plenty of room for hardware optimization in the

parametrizable Unum Type-IV FPU to improve the area, power consumption and clock frequency.

69

70

Bibliography

[1] D. Goldberg. What Every Computer Scientist Should Know about Floating-Point Arithmetic. ACM

Comput. Surv., 23(1):5–48, Mar. 1991. ISSN 0360-0300. doi: 10.1145/103162.103163. URL

https://doi.org/10.1145/103162.103163.

[2] A. Di Franco, H. Guo, and C. Rubio-González. A Comprehensive Study of Real-World Numerical

Bug Characteristics. In 2017 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 509–519, 2017. doi: 10.1109/ASE.2017.8115662.

[3] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, pages 1–20, 1985.

doi: 10.1109/IEEESTD.1985.82928.

[4] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, 2008. doi: 10.1109/

IEEESTD.2008.4610935.

[5] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),

pages 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[6] J. Gustafson. The End of Error: Unum Computing. 02 2015. ISBN 1482239868. doi: 10.1201/

9781315161532.

[7] W. Kahan and J. Darcy. How Java’s floating-point hurts everyone everywhere. . . . 1998 Workshop

on Java . . . , pages 1–81, 1998. URL https://people.eecs.berkeley.edu/~wkahan/JAVAhurt.

pdf.

[8] E. Ternovoy, M. G. Popov, D. V. Kaleev, Y. V. Savchenko, and A. L. Pereverzev. Comparative

Analysis of Floating-point Accuracy of IEEE 754 and Posit Standards. In 2020 IEEE Conference

of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 1883–

186, 2020. doi: 10.1109/EIConRus49466.2020.9039521.

[9] R. Morris. Tapered Floating Point: A New Floating-Point Representation. IEEE Transactions on

Computers, C-20(12):1578–1579, 1971. doi: 10.1109/T-C.1971.223174.

[10] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov.

Accelerating Scientific Computations with Mixed Precision Algorithms. Computer Physics Commu-

nications, 180(12):2526–2533, Dec 2009. ISSN 0010-4655. doi: 10.1016/j.cpc.2008.11.005. URL

http://dx.doi.org/10.1016/j.cpc.2008.11.005.

71

https://doi.org/10.1145/103162.103163
https://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf
https://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://dx.doi.org/10.1016/j.cpc.2008.11.005

[11] P. Lindstrom, S. Lloyd, and J. Hittinger. Universal Coding of the Reals: Alternatives to IEEE Floating

Point. In Proceedings of the Conference for Next Generation Arithmetic. Association for Computing

Machinery, 2018. ISBN 9781450364140. doi: 10.1145/3190339.3190344. URL https://doi.org/

10.1145/3190339.3190344.

[12] E. Morancho. Unum: Adaptive Floating-Point Arithmetic. In 2016 Euromicro Conference on Digital

System Design (DSD), pages 651–656, 2016. doi: 10.1109/DSD.2016.39.

[13] J. L. Gustafson. A Radical Approach to Computation with Real Numbers. Supercomputing Frontiers

and Innovations, 3(2), 2016. ISSN 2313-8734. URL https://superfri.org/superfri/article/

view/94.

[14] W. Tichy. Unums 2.0: An Interview with John L. Gustafson. Ubiquity, 2016:1–16, 10 2016. doi:

10.1145/3001758.

[15] J. Gustafson and I. Yonemoto. Beating Floating Point at its Own Game: Posit Arithmetic. Super-

computing Frontiers and Innovations, 4:71–86, 01 2017. doi: 10.14529/jsfi170206.

[16] J. L. Gustafson. Posit arithmetic, [Online], 2017. URL https://posithub.org/docs/Posits4.pdf.

[17] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar, K. Niyogi, F. Merchant, and

R. Leupers. Parameterized Posit Arithmetic Hardware Generator. 2018 IEEE 36th International

Conference on Computer Design (ICCD), 2018. doi: 10.1109/iccd.2018.00057.

[18] A. Podobas and S. Matsuoka. Hardware Implementation of POSITs and Their Application in

FPGAs. In 2018 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 138–145, 2018. doi: 10.1109/IPDPSW.2018.00029.

[19] M. Klöwer, P. D. Düben, and T. N. Palmer. Posits as an Alternative to Floats for Weather and Climate

Models. In Proceedings of the Conference for Next Generation Arithmetic 2019. Association for

Computing Machinery, 2019. ISBN 9781450371391. doi: 10.1145/3316279.3316281. URL https:

//doi.org/10.1145/3316279.3316281.

[20] F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen. Posits: the Good, the Bad and the Ugly. Dec.

2018. URL https://hal.inria.fr/hal-01959581.

[21] E. Ternovoy, M. G. Popov, D. V. Kaleev, Y. V. Savchenko, and A. L. Pereverzev. Comparative

Analysis of Floating-Point Accuracy of IEEE 754 and Posit Standards. In 2020 IEEE Conference

of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pages 1883–

186, 2020. doi: 10.1109/EIConRus49466.2020.9039521.

[22] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L. Gustafson, and D. Kudithipudi. Deep

Positron: A Deep Neural Network Using the Posit Number System. In 2019 Design, Automa-

tion Test in Europe Conference Exhibition, pages 1421–1426, 2019. doi: 10.23919/DATE.2019.

8715262.

72

https://doi.org/10.1145/3190339.3190344
https://doi.org/10.1145/3190339.3190344
https://superfri.org/superfri/article/view/94
https://superfri.org/superfri/article/view/94
https://posithub.org/docs/Posits4.pdf
https://doi.org/10.1145/3316279.3316281
https://doi.org/10.1145/3316279.3316281
https://hal.inria.fr/hal-01959581

[23] S. H. Fatemi Langroudi, Z. Carmichael, J. Gustafson, and D. Kudithipudi. PositNN Framework:

Tapered Precision Deep Learning Inference for the Edge. pages 53–59, 07 2019. doi: 10.1109/

SpaceComp.2019.00011.

[24] J. Johnson. Rethinking Floating Point for Deep Learning. CoRR, abs/1811.01721, 2018. URL

http://arxiv.org/abs/1811.01721.

[25] T. Trevisan Jost, Y. Durand, C. Fabre, A. Cohen, and F. Pétrot. VP Float: First Class Treatment

for Variable Precision Floating Point Arithmetic. pages 355–356, 09 2020. doi: 10.1145/3410463.

3414660.

[26] A. Agrawal, S. M. Mueller, B. M. Fleischer, X. Sun, N. Wang, J. Choi, and K. Gopalakrishnan.

Dlfloat: A 16-b Floating Point Format Designed for Deep Learning Training and Inference. In 2019

IEEE 26th Symposium on Computer Arithmetic (ARITH), pages 92–95, 2019. doi: 10.1109/ARITH.

2019.00023.

[27] N. Burgess, J. Milanovic, N. Stephens, K. Monachopoulos, and D. Mansell. Bfloat16 Processing

for Neural Networks. 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH), 2019. doi:

10.1109/arith.2019.00022.

[28] S. Wang and P. Kanwar. BFloat16: The secret to high performance on Cloud TPUs [Google

Cloud Blog], 2019. URL https://cloud.google.com/blog/products/ai-machine-learning/

bfloat16-the-secret-to-high-performance-on-cloud-tpus. Accessed on 03-2021.

[29] A. Y. Romanov, A. L. Stempkovsky, I. V. Lariushkin, G. E. Novoselov, R. V. Solovyev, V. A. Starykh,

I. I. Romanova, D. V. Telpukhov, and I. A. Mkrtchan. Analysis of Posit and Bfloat Arithmetic of Real

Numbers for Machine Learning. IEEE Access, pages 1–1, 2021. doi: 10.1109/ACCESS.2021.

3086669.

[30] J. Turley. What is bfloat16, Anyway?, Mar 2020. URL https://www.eejournal.com/article/

what-is-bfloat16-anyway/.

[31] IObundle. Iob-knn: KNN Application Implementation, . URL https://github.com/IObundle/

iob-knn.

[32] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep Learning with Limited Numerical

Precision, 2015.

[33] A. Rodriguez, E. Segal, E. Meiri, E. Fomenko, Y.-H. Jim, H. Shen, and B. Ziv. Lower Numerical

Precision Deep Learning Inference and Training. 2018.

[34] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and K. Nealis. Exploration of Low

Numeric Precision Deep Learning Inference Using Intel® FPGAs. In 2018 IEEE 26th Annual Inter-

national Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 73–80,

2018. doi: 10.1109/FCCM.2018.00020.

73

http://arxiv.org/abs/1811.01721
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://www.eejournal.com/article/what-is-bfloat16-anyway/
https://www.eejournal.com/article/what-is-bfloat16-anyway/
https://github.com/IObundle/iob-knn
https://github.com/IObundle/iob-knn

[35] Posit Working Group. Posit Standard Documentation Release 3.2-draft. URL https://posithub.

org/docs/posit_standard.pdf.

[36] Unum-IV: Parameterized Floating Point Unit. GitHub. URL https://github.com/IObundle/

iob-unum4.

[37] IObundle. RISC-V System on Chip Template Based on the picorv32 Processor, . URL https:

//github.com/IObundle/iob-soc.

[38] IObundle. Iob-fpu: Parameterized Floating Point Unit, . URL https://github.com/IObundle/

iob-fpu.

[39] L. Forget, Y. Uguen, and F. de Dinechin. Comparing posit and IEEE-754 hardware cost. working

paper or preprint, Apr. 2021. URL https://hal.archives-ouvertes.fr/hal-03195756.

[40] S. Imandoust and M. Bolandraftar. Application of K-Nearest Neighbor (KNN) Approach for Predict-

ing Economic Events: Theoretical Background. Int J Eng Res Appl, 3:605–610, 01 2013.

[41] Okfalisa, I. Gazalba, Mustakim, and N. G. I. Reza. Comparative Analysis of K-Nearest Neighbor

and Modified K-Nearest Neighbor Algorithm for Data Classification. In 2017 2nd International con-

ferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE),

pages 294–298, 2017. doi: 10.1109/ICITISEE.2017.8285514.

[42] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagliavini, A. Emerson, A. Tomás,

D. S. Nikolopoulos, E. Flamand, and N. Wehn. The transprecision computing paradigm: Concept,

design, and applications. In 2018 Design, Automation Test in Europe Conference Exhibition (DATE),

pages 1105–1110, 2018. doi: 10.23919/DATE.2018.8342176.

74

https://posithub.org/docs/posit_standard.pdf
https://posithub.org/docs/posit_standard.pdf
https://github.com/IObundle/iob-unum4
https://github.com/IObundle/iob-unum4
https://github.com/IObundle/iob-soc
https://github.com/IObundle/iob-soc
https://github.com/IObundle/iob-fpu
https://github.com/IObundle/iob-fpu
https://hal.archives-ouvertes.fr/hal-03195756

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	Listings
	List of Figures
	List of Acronyms
	1 Introduction
	1.1 Topic Overview
	1.2 Motivation
	1.3 Objectives
	1.4 Dissertation Outline

	2 Background
	2.1 IEEE Standard 754 Floating-Point
	2.1.1 Single-Precision
	2.1.2 Other IEEE 754 Standard Formats and "Bfloat16" Format

	2.2 Unum
	2.2.1 Unum Type-I
	2.2.2 Unum Type-II
	2.2.3 Unum Type-III: Posits

	3 Unum Type-IV
	3.1 Unum Type-IV Generic Format
	3.2 Field Extractions
	3.2.1 Exponent Extraction
	3.2.2 Significand Extraction
	3.2.3 Examples

	3.3 Features
	3.3.1 Special Cases
	3.3.2 Exceptions
	3.3.3 Rounding
	3.3.4 Dynamic Range and Precision

	3.4 Examples
	3.4.1 Unum-IV to Decimal Conversion
	3.4.2 Unum-IV<4,1> Enconding

	4 Hardware Implementation
	4.1 Unum Type-IV Floating-Point Unit
	4.2 Functional Units
	4.2.1 Unpack Unit
	4.2.2 Processing Units
	4.2.3 Pack Unit
	4.2.4 Auxiliary Components
	4.2.5 Functional Units Pipeline Stages

	5 Evaluating and Comparing Unum Type-IV to Other Formats
	5.1 Comparison Metrics
	5.1.1 Precision Bits
	5.1.2 Dynamic Range
	5.1.3 Hardware Resources
	5.1.4 Decimals of Accuracy
	5.1.5 Units of Least Precision

	5.2 Comparing Unum Type-IV Features with Other Formats
	5.3 Comparing Unum Type-IV Dynamic Range with Other Formats
	5.4 Comparing Unum Type-IV Precision with Other Formats
	5.4.1 Unum-IV<8,2> vs. Quarter-Precision IEEE-Style floats
	5.4.2 Unum-IV<8,2> vs. Posit<8,1> vs. Posit<8,0>

	5.5 Comparing Unum Type-IV Hardware Resources with Other Formats
	5.5.1 IEEE 754 and Unum Type-IV Comparison
	5.5.2 Posits and Unum Type-IV Comparison

	5.6 Comparison Summary

	6 Proof of Concept: KNN Application
	6.1 Algorithm
	6.2 Implementation
	6.3 Experimental Results
	6.3.1 Experiment 1
	6.3.2 Experiment 2

	7 Conclusions
	7.1 Achievements
	7.2 Future Work

	Bibliography

