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Instituto Superior Técnico, Lisboa, Portugal

September 2021

Abstract

In recent years, unmanned aerial vehicles such as drones have been gaining prominence as alterna-
tives for performing several tasks. Although this type of vehicle has undergone several improvements
in a short period of time, in most cases its flight time is not yet long enough to allow certain missions
to run only with the autonomy of a single vehicle. Additionally, the transport of large objects in
general is not feasible with a single drone. It is therefore necessary to consider the intervention of two
or more vehicles. In this context, this study aims to develop a controller for a multi-drone system,
in order to allow the transportation of objects that cannot be handled by just one vehicle. To this
end, different models were analyzed in order to characterize several scenarios of object transport,
including a 2D scenario with two birotors transporting a load and a 3D scenario with two quadrotors
transporting a load restricted to keep a horizontal configuration. Furthermore, the question of drone
autonomy and the replacement of vehicles was addressed, considering a mission scenario that goes
beyond the capabilities of the energy stored in a single vehicle and requires drone replacement to be
performed. The problem addressed involved optimizing the time instants for executing the take-off
of a replacement drone and determining the meeting point between the two drones, taking energy
consumption into account. The control strategy used for the development of this controller is based on
non-linear model predictive control (NMPC) algorithms. Backed with simulation results, it is shown
that the cooperation of vehicles for the purpose of carrying out the transport task is feasible, under
certain assumptions. Additionally, the vehicle replacement problem is implemented and tested, based
on an energy consumption model defined for each vehicle involved in the transport task. The numerical
simulations were created in MATLAB resorting to the solvers fmincon and ode45 and its results verify
the effectiveness of the proposed control strategies for both problems.
Keywords: Drones, Model Predictive control, multi-drone system, replacement of vehicles.

1. Introduction
1.1. Motivation
Although initially conceived for military purposes,
drones have nowadays a wide spectrum of appli-
cations which has resulted in their rapid develop-
ment and adaptation to various scenarios and envi-
ronments to carry out challenging missions. There
are many fields where the presence of these vehicles
can bring added-value. One such example is agricul-
ture. This sector has been increasingly challenged
due to climate change. In fact, according to FAO1

and ITU2, the world population and food produc-
tion worldwide will have to increase by 70% by 2050
[4]. Drones can greatly reduce the costs of this ac-
tion through analysis of soils and fields, crop moni-
toring, aerial planting, irrigation, among others [3].
Another area where drones can make a difference is
multimedia and film applications. Most films have

1Food and Agriculture Organization of the United Na-
tions.

2International Telecommunication Union

motion sequences whose image needs to be obtained
from different angles, which requires installing mul-
tiple cameras in different places or adopting a better
alternative: using drones. The performance of these
vehicles has increased more and more in this area.
However, there are still several challenges such as
estimating the actor’s position, understanding the
context of the scene at an artistic level and op-
erating in scenarios without prior information [5].
The versatility of drones in various contexts has in-
creased interest of researchers in exploring the co-
operation of these vehicles in order to solve increas-
ingly complex problems. One of these problems is
the transport of large objects. In this context, the
present study addresses the situation in which a sin-
gle vehicle cannot handle a large object and, there-
fore, the need for cooperation between two or more
of these vehicles arises. In this scenario, the problem
of drone autonomy will also be addressed so that the
mission to be carried out is not interrupted.
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1.2. State of the Art
Since the late 1980s, model predictive control
(MPC) has gained prominence as an optimization
technique due to its distinct ability to incorporate
constraints. In particular, the appearance of non-
linear predictive control allowed the development
of controllers that deal with nonlinearities present
in the dynamics of the models, which further ex-
tended the scope of MPC applications. In fact,
this control strategy can be very efficient in con-
trolling systems such as UAVs as seen in [7], where
the authors control a quadcopter using this tech-
nique, taking into account restrictions to the prob-
lem. Recently, the assignment of cooperative tasks
for multi-drone systems has been extensively stud-
ied, with different models and algorithms already
proposed. One such example is [8], that presents a
multi-drone approach to autonomous cinematogra-
phy planning where an architecture based on a co-
operative team is proposed. This new application
raises a series of challenges since vehicles are ex-
pected to make decisions in real time and to cap-
ture images autonomously, while following guide-
lines present in typical filming of cinematography
rules. This thesis explores another application of
multi-drone systems: the transport of objects large
enough that require two or more vehicles to per-
form the task. This situation was addressed in [9],
where the authors present a configuration where a
set of drones are rigidly connected to the object
to be transported. In the present study, a differ-
ent approach is adopted that considers a configu-
ration where each drone is connected to the object
by an articulation, which allows the total mobility
of the vehicle, that moves with the usual four de-
grees of freedom. Additionally, a centralized control
approach is considered, in contrast to the one pre-
sented in [9], which is implemented through a decen-
tralized controller. It is also important to address
the problem of drone autonomy, especially in mis-
sions that depend on more than one vehicle, since its
battery is a limited resource. There are several so-
lutions for extending a UAV mission. The approach
considered in this work is based on the replacement
of vehicles in order to ensure the continuity of the
assigned task. A relevant article that addresses this
issue is [6], applied to the area of structural in-
spection. For this purpose, the authors propose a
continuity-of-service algorithm based on an exten-
sion of the MAVLink protocol that implements the
replacement of vehicles automatically, through mes-
sages and commands that allow communication be-
tween drones.

2. Extended Abstract Outline
The extended abstract is organized as follows
section 3 presents the problem formulation,

where the configuration of the system, its limita-

tions and assumptions are addressed. In section 4,
four different systems are modeled, where their lim-
itations and assumptions are explained, based on
the study of the bi-rotor and the quadcopter. sec-
tion 5 presents the problem of control of the system
composed of two bi-rotors and a bar. section 6 ad-
dresses the development of the control strategy for
the transportation of a bar through the cooperation
of two drones. In section 7 , the drone autonomy
problem is also analyzed and solved through a vehi-
cle replacement strategy. In section 8, the simula-
tion results for each of the problems addressed are
presented. Finally, in section 9, the findings of this
study are discussed and recommendations are made
for future improvements in the results obtained.

3. Problem formulation
The central problem of this dissertation is the trans-
portation of large objects by a multi-drone system.
This system is composed of two quadcopters and a
bar. The drones and the bar are connected through
spherical joints that allow both vehicles to move
with freedom of movement, without compromising
the transport of this object. Fig. 1 shows this con-
figuration, where the joints are represented by two
circles, connecting each vehicle to the object.

Figure 1: Configuration of the quadcopter bar sys-
tem.

For this problem, the following premises are as-
sumed

1. The movement of the system in two dimensions
(x and y) is decoupled from the longitudinal
movement. In other words, these two sepa-
rate movements are considered since the sys-
tem moves at z = 0, where the three rotation
angles of drone i (φi, θi, ψi, i = 1, 2.) are con-
sidered as the angle of the bar around the z
axis, ψb.

2. The bar has a defined length c and negligible
width and height.

3. The center of mass of the system coincides with
the center of mass of the bar.

4. Both vehicles have autonomy to carry out the
task of transport until the end.

Throughout the work, an analysis of four different
models is carried out, with increasing complexity,
where the last situation addressed corresponds to
the quadcopter bar system described in this section.
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4. Systems modeling
4.1. Bi-rotor model
Consider the planar model of a drone, with mass m
and two rotors, represented in Fig. 2. The bi-rotor
moves with an angle θ in relation to the horizon-
tal plane, known as its pitch angle. Additionally, b
corresponds to the distance between each rotor and
the center of mass of the UAV, Fg corresponds to
the force of gravity, f1 and f2 correspond to the
forces generated by each rotor of the vehicle, and
f = f1 + f2 corresponds to the total thrust exerted
by the vehicle rotors.

Figure 2: Bi-rotor model, adapted from [2].

In order to define the dynamics of the bi-
rotor, the Euler-Lagrange equation is considered.
The generalized coordinates of this system fully de-
scribe it and are given by

q =
[
x z θ

]
,T (1)

where x and z correspond to the position of the
vehicle and θ to its pitch angle. The kinetic energy
(K) and the potential energy (U) of the system are
given by

K(q, q̇) =
1

2
mẋ2 +

1

2
mż2 +

1

2
Iθ̇2,

U(q) = mgz,
(2)

where I corresponds to the UAV moment of inertia.
Considering the Lagrangian function L = K(q, q̇)−
U(q), the Euler-Lagrange equation takes the form

∂
∂t (

∂L
∂q̇ )− ∂L

∂q =
[
−f sin (θ) f cos (θ) τ

]T
. (3)

Finally, the dynamics of the vehicle can be written
as

Iθ̈ = b(f1 − f2),

m

[
ẍ
z̈

]
=

[
0
−mg

]
+R(θ)

[
0

f1 + f2.

]
,

(4)

where R(θ) is the following rotation matrix

R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (5)

4.2. Bi-rotor bar model
Consider two bi-rotors, with masses m1 and m2,
that cooperate in order to carry a bar of length c,
negligible width and mass mb that is articulated to
both vehicles. The configuration of this articulation
allows both vehicles to move with freedom of move-
ment. Fig. 3 shows the bi-rotor bar system, where
the position of each rigid body is defined in the in-
ertial frame,

{
I
}

, as follows

pID1
=

[
x1
z1

]
, pID2

=

[
x2
z2

]
, pIbar =

[
xb
zb

]
. (6)

It is also possible to observe the pitch angles of each
bi-rotor, θ1 and θ2. Each time the bar is not parallel
to the horizontal plane, it assumes a rotation angle,
called θb. Furthermore, the forces generated by each
rotor (F1, F2, F3, F4) and the total thrust force
exerted on each vehicle are represented, which are
defined for each bi-rotor as follows

T1 = F1 + F2, T2 = F3 + F4. (7)

The pitch moments derived by the rotors of each
UAV are given by

τ1 = b(F1 − F2), τ2 = b(F3 − F4). (8)

Figure 3: Bi-rotor model.

The definition of the dynamics of this system
is the result of the solution of the Euler-Lagrange
equation, satisfied by the generalized coordinates
of the system. In this example, it is assumed that
the center of mass of the system coincides with the
center of mass of the bar. Thus, this system is de-
scribed in its entirety through the following gener-
alized coordinates

q =
[
xb zb θ1 θ2 θb

]
,T (9)

that are composed by the position of the bar (xb
and zb), the pitch angles of each vehicle (θ1 and
θ2) and the rotation angle of the bar, θb, performed
in the xz-plane. The kinetic energy (K) and the
potential energy (U) of the system are given by

K(q, q̇) =
1

2
mbẋ

2
b +

1

2
mbż

2
b +

1

2
m1ẋ

2
1 +

1

2
m1ż

2
1+

+
1

2
m2ẋ

2
2 +

1

2
m2ż

2
2 +

1

2
Ibθ̇

2
b +

1

2
I1θ̇

2
1 +

1

2
I2θ̇

2
2,

U(q) = mbgzb +m1gz1 +m2gz2,

(10)

where Ib corresponds to the moment of inertia of
the bar and I1 and I2 correspond to the moments of
inertia of each vehicle. Since both vehicles have the
same mass, the following simplification is adopted:
m1 = m2 = m.

It is remarked that the positions of both bi-rotors,
pID1

and pID2
, can be defined through the bar gen-

eralized coordinates, xb, zb and θb, and are given
by

x1 = xb −
c

2
cos(θb), x2 = xb +

c

2
cos(θb),

z1 = zb −
c

2
sin(θb), z2 = zb +

c

2
sin(θb).

(11)
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Moreover, their respective derivatives are

ẋ1 = ẋb +
c

2
θ̇b sin(θb), ẋ2 = ẋb −

c

2
θ̇b sin(θb),

ż1 = żb −
c

2
θ̇b cos(θb), ż2 = żb +

c

2
θ̇b cos(θb).

(12)

The Lagrangian function, L = K(q, q̇)−U(q), must
be written taking into account the generalized co-
ordinates defined in (9). For this purpose, the lin-
ear velocities of both vehicles (ẋ1, ż1, ẋ2 and ż2)
are replaced by its equivalent expressions defined
in (12). Hence, the following Lagrangian function is
obtained

L = (
1

2
mb +m)ẋ2b + (

1

2
mb +m)ż2b +m

c2

4
θ̇b+

+
1

2
Ibθ̇b

2
+

1

2
I1θ̇1

2
+

1

2
I2θ̇2

2
− (mb + 2m)gzb.

(13)

The dynamics of the bi-rotor are defined through
the Euler-Lagrange equation, which are given by

∂
∂t (

∂L
∂q̇ )− ∂L

∂q = F, (14)

where F are the generalized forces that act on the
system. In order to define vector F , it is required
to decompose the forces present in this system. Fig.
4 shows the decomposition of the total thrust force
exerted on each bi-rotor, T1 and T2, in the x and z
directions, that are given by

T1x = −T1 sin (θ1), T1z = T1 cos (θ1),

T2x = −T2 sin (θ2), T2z = T2 cos (θ2).
(15)

Figure 4: Decomposition of the total thrust force
of both vehicles and the total force exerted on the
bar.

Figure 5: Decomposition of the total force exerted
on the bar by both vehicles.

In Fig. 5, the positive direction of rotation of the
system is represented in red, which corresponds to a
counterclockwise rotation. Taking into account the
direction of this rotation, Tb is calculated as follows

Tb = T2 cos (θ2 − θb)− T1 cos (θ1 − θb). (16)

Finally, the Euler-Lagrange equation is given by

∂
∂t (

∂L
∂q̇ )− ∂L

∂q =


−T1 sin(θ1)− T2 sin(θ2)
T1 cos(θ1) + T2 cos(θ2)

τ1
τ2

T2 cos(θ2 − θb)− T1 cos(θ1 − θb)

 . (17)

System dynamics

The equations of motion of the system derived from
(17) are given by

θ̈1 =
τ1
I1
,

θ̈2 =
τ2
I2
,

θ̈b =
T2 cos(θ2 − θb)− T1 cos(θ1 − θb)

Ib +m c2

2

,

(2m+mb)

[
ẍb
z̈b

]
=

[
0

(−2m+mb)g

]
+R(θ1)

[
0
T1

]
+R(θ2)

[
0
T2

]
.

(18)

4.3. Quadcopter model
A quadcopter is a three-dimensional drone with four
rotors. The model of the quadcopter is defined as a
rigid body with four degrees of freedom (DOF) in
free flight: three DOF with respect to attitude and
one DOF with respect to the total thrust force ap-
plied to the vehicle. The position and orientation of
a quadcopter are described through two coordinate
frames: an inertial frame, {I}, which is fixed to the
Earth, and a body frame, {B}, which is fixed to
the center of mass of the UAV, both represented in
Fig. 6. In {I}, the unit vectors {e1, e2, e3} match
the x, y and z axes, respectively. The position and
velocity of the quadcopter is denoted in the inertial
frame by

pI = p =
[
x y z

]T
, ṗ =

[
ẋ ẏ ż

]T .

Figure 6: Coordinate systems and the forces and
moments generated by the quadrotor rotors.

The rotation angles used to represent the orienta-
tion of this vehicle are the Z −Y −X Euler angles,
and are given by Θ =

[
φ θ ψ

]T
, which correspond to

roll, pitch and yaw rotations, respectively [11]. The
transformation from the body frame to the inertial
frame is given by three consecutive rotations around
the three defined axes, using the Z − Y − X Eu-
ler angles convention. The rotation matrix between
the body frame and the inertial frame is defined,
through the referred rotations.

RI
B = Rz(ψ)Ry(θ)Rx(φ) = Rz(ψb − ψ)Ry(θ)Rx(φ)

=

cosψ cos θ cosψ sin θ sinφ− sinψ cosφ cosψ sin θ cosφ+ sinψ sinφ
sinψ cos θ sinψ sin θ sinφ+ cosψ cosφ sinψ sin θ cosφ− cosψ sinφ
− sin θ cos θ sinφ cos θ cosφ

 . (19)
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Note that the linear velocities of this vehicle,
given by ṗ =

[
ẋ ẏ ż

]T
, can be transformed, in or-

der to be expressed in the body reference, as fol-
lows vB =

[
vx vy vz

]T
. Similarly, the angular ve-

locities of the quadcopter expressed in {I}, given
by Θ̇ =

[
φ̇ θ̇ ψ̇

]T
, can be transformed into angular

velocities expressed in {B}, wB =
[
wx wy wz

]T .
Actuation

Fig. 6 shows the four forces (F1, F2, F3 and F4) that
are generated by the quadcopter rotors. Through
these forces, the total force exerted on the vehicle,
T , and the rolling, τx, pitching, τy and yawning, τz
moments, can be defined as follows

T =
4∑

i=1

Fi = F1 + F2 + F3 + F4,

τB =

τxτy
τz

 =

 d(F2 − F3)
d(F1 − F3)

c(F1 + F3 − F2 − F4)

 , (20)

where d is the distance between each rotor and cen-
ter of mass of the vehicle and c is a constant coeffi-
cient for the induced torque of the motor [10].

Quadcopter dynamics

The rotational dynamics of the quadcopter, ex-
pressed in {B}, is given by

IẇB = −wB × IwB + τB , (21)

where the inertial matrix, I, is defined as follows

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 .

The translational dynamics of the quadcopter are
expressed in {I}, and are given by

mp̈ = −mge3 + TRI
Be3, (22)

where m is the mass of the quadcopter and g is
the force of gravity. Together, Equations (21) and
(22) completely characterize the movement of this
vehicle.

4.4. Quadcopters transporting a bar
Consider a situation in which two quadcopters, with
masses m1 and m2, carry a bar of length l and
of negligible width and height, through spherical
joints that allow both vehicles to rotate. The coor-
dinate frames defined for this problem are the in-
ertial frame, {I}, the body frame, {Bi}, of each of
the drones (i = 1, 2), and the body frame of the
bar, {O}. The positions of the three rigid bodies
are given in the inertial frame, respectively, by

pD1 =

x1y1
z1

 , pD2 =

x2y2
z2

 , pbar =

xbyb
zb

 . (23)

In this problem, the system moves strictly at z =
0 and only its movement in the xy-plane is analyzed.

Thus, the rotation angles considered for each body
are Θ1 =

[
φ1 θ1 ψ1

]T , Θ2 =
[
φ2 θ2 ψ2

]T
, and ψb. Fig.

7 shows the Z rotation of the three rigid bodies.

Figure 7: System of two quadcopters carrying a bar
- top view.

In order to define the dynamics of the system,
the rotation matrix, RO

Bi, which describes the rota-
tion between {Bi} and {O}, must be described. For
this purpose, it is required to first define the rota-
tion matrix, RI

O, which defines the rotation between
the body frame of the bar and the inertial frame.
Hence, RI

O is defined considering the Z rotation of
the Euler angles, and its definition is given by

RI
O =

cosψb − sinψb 0
sinψb cosψb 0

0 0 1

 . (24)

RO
Bi can now be defined. For the sake of simplic-

ity of calculations, a generic body frame, {B}, is
considered.

RO
B = RO

I R
I
B = (RI

O)TRI
B = Rz(ψ − ψb)Ry(θ)Rx(φ) =

=

cos(ψb − ψ) cos θ sin(ψb − ψ) cosφ+ cos(ψb − ψ) sin θ sinφ − sin(ψb − ψ) sinφ+ cos(ψb − ψ) sin θ cosφ
sin(ψ − ψb) cosφ cos(ψb − ψ) cosφ+ sin(ψ − ψb) sin θ sinφ − cos(ψb − ψ) sinφ+ sin(ψ − ψb) sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ

 .
(25)

Translational dynamics of the system

In this problem, it is assumed that the center of
mass of this system coincides with the center of
mass of the bar. Thus, the translational dynam-
ics of the system is given by

msysp̈
I
b = −msysge3 + TO, (26)

where msys = m1 + m2 + mb corresponds to the
total mass of the system and TO is the total force
applied by the vehicles on the bar, given by

TO = RI
B1

 0
0
T1

+RI
B2

 0
0
T2

 =

=

(cosψ1 sin θ1 cosφ1 + sinψ1 sinφ1)T1
(sinψ1 sin θ1 cosφ1 − cosψ1 sinφ1)T1

cos θ1 cosφ1T1

+

+

(cosψ2 sin θ2 cosφ2 + sinψ2 sinφ2)T2
(sinψ2 sin θ2 cosφ2 − cosψ2 sinφ2)T2

cos θ2 cosφ2T2

 .
(27)

Rotational dynamics of the system

Each rigid body has its own rotational dynamics,
given by

IẇB1 = −wB1 × IwB1 + τB1 ,

IẇB2 = −wB2 × IwB2 + τB2 ,

Isysẇ
O = −wO × IsyswO + τO,

(28)
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where Isys is the moment of inertia of the system, I
corresponds to the moments of inertia of both UAV,
τB1 and τB2 correspond to the torque exerted on
each vehicle and τO is the total torque applied by
the vehicles on the bar, defined as follows

τO =

L0
0

×RO
B1

 0
0
T1

−
L0

0

×RO
B2

 0
0
T2

 =

 0
−L cos θ1 cosφ1T1 + L cos θ2 cosφ2T2

(− cos(ψb − ψ1) sinφ1 + sin(ψ1 − ψb) sin θ1 cosφ1)T1L+ (cos(ψb − ψ2) sinφ2 + sin(ψ2 − ψb) sin θ2 cosφ)T2L

 .
(29)

5. Control of the bi-rotors bar system
In this section, the control strategy applied to the
bi-rotor bar system is presented. The dynamics of
this system is shown in eq.(18) present in section
4.2.

Cost function

In this example, the control objectives are system
stabilization and trajectory optimization. There-
fore, the quadratic function is a suitable choice be-
cause its minimization leads to an optimal global
solution. The cost function is given by

J =

H∑
i=1

[(X(k + i)−X∗(k + i))TQ(X(k + i)−X∗(k + i))+

+ (U(k + i)− U∗(k + i))TRQ(U(k + i)− U∗(k + i))]

(30)

where Q and RQ correspond, respectively, to the
weight factors that are applied to the states and to
the control inputs.

Optimization problem

Adopting a model predictive control approach and
considering the desired trajectory X∗ and corre-
sponding input U∗, the optimization problem for
each iteration is given by

minimize
U,X

J

subject to

θ̈1 =
τ1
J1
,

θ̈2 =
τ2
J2
,

θ̈b =
T2 cos(θ2 − θb)− T1 cos(θ1 − θb)

Jb +m c2

2

,

ẍb = − sin(θ)T

2m+mb
,

z̈b = −g +
cos(θ)T

2m+mb
,

(31)

where T = T1 + T2. The results of the simulations
are presented in section 8.

6. Control of the quadcopters bar system
This section covers the control design for the quad-
copter bar system. The equations of motion of
the system are defined in equations (26) and (28)
present in section 4.2.

Cost function

In this example, the control objectives are system
stabilization and trajectory optimization. Thus, it

was considered appropriate to use a quadratic func-
tion for the cost function, where the deviation from
the desired setpoints is measured. The cost function
is given by

J =
H∑
i=1

[(X(k + i)−X∗(k + i))TQ(X(k + i)−X∗(k + i))+

+ (U(k + i)− U∗(k + i))TRQ(U(k + i)− U∗(k + i))]

(32)

where Q and RQ correspond, respectively, to the
weight factors that are applied to the states and to
the control inputs.

Optimization problem

Adopting a model predictive control approach and
considering the desired trajectory X∗ and corre-
sponding input U∗, the optimization problem for
each iteration is now defined

minimize
U1,U2,X1,X2,Xb

J

subject to

p̈Ib = −ge3 +
TO
msys

,

IẇB1 = −wB1 × IwB1 + τB1 ,

IẇB2 = −wB2 × IwB2 + τB2 ,

Isysẇ
O = −wO × IsyswO + τO.

(33)

The results of the simulations are presented in
section 8.

7. Drone replacement strategy
The benefit of addressing the problem of the drone
autonomy is that the transport task performed
through the cooperation of vehicles does not have
to be interrupted if one of the drones has reached its
maximum energy consumption and is unable to con-
tinue. Thus, if necessary, the replacement of drones
can occur during the mission and the task can be
carried out continuously until the end. The solution
to this problem takes into account the replacement
of UAVs and not batteries, since the latter situation
would force the multi-drone system to stop.

Energy consumption model

In order to optimize the vehicle replacement pro-
cess, it is necessary to efficiently manage the en-
ergy of each vehicle. For that purpose, this section
addresses the problem of minimizing energy con-
sumption of drones. Table 1 shows the values of
the parameters used in the simulations present in
this section.

Symbol Value
Mass of drone body [kg] m1,m2 1
Mass of bar [kg] mbar 0.5
Drone battery energy [J/kg] [1] E0 5.4

Table 1: Adapted parameters for drone replacement
problem.

The problem of minimizing the energy consump-
tion of each vehicle introduces a state ECi for each
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vehicle i (i = 1, 2), which represents the energy
consumed by each drone per unit of time. Thus,
the derivative of ECi

, ĖCi
, represents the energy

consumption rate of each drone per unit of time.
The power corresponds to the rate of the work that
is performed, whose formula is proportional to the
force times the speed. Therefore, by analogy, Ėci is
given by

ĖCi
= Ki

∣∣vTi v̇i∣∣+
∣∣wT

i Iiẇi

∣∣, i = 1, 2, (34)

where Ki = mi + mbarγ, (i = 1, 2) is a coefficient
that describes the impact of the weight of the ve-
hicle and the weight of the bar on the energy con-
sumption rate of the drone. In this coefficient, a
binary decision variable γ was adopted. This vari-
able has two possible states: if γ = 1, the drone
in question is carrying the bar and if γ = 0, the
bar is not being transported. Based on the value of
the parameters defined above, it is concluded that
the weight of the bar adds a 50% energy expense to
the energy consumption rate of each vehicle, since
Ki = 1.5, when γ = 1.

Note that the energy available for each drone per
unit of time, EDi

, is given by

EDi = E0 − ECi , (35)

where E0 corresponds to the battery energy for each
drone.

Suboptimal solution to the optimal state
transfer problem

Consider a drone (drone 1) that departs from the
base station located at (x, y) = (0, 0), carrying a
bar. It is assumed that this vehicle does not have
enough energy available to reach a predefined final
position. Thus, the intervention of another vehicle
is necessary. More precisely, drone 2 departs from
the same station and meets his peer, at a given
moment. From that moment, drone 2 will transport
the bar, until the end of the predefined trajectory.
In this context, it is also assumed that

• Each drone is able to transport the bar.

• For the sake of simplicity, it is considered that
the bar is a mass point and that the battery
energy value for each drone is E0 = 5.4 J (pre-
viously defined in Table 1.

• Drone 2 will depart from the base at a mo-
ment when drone 1 has low battery (less than
30%), that is, in the time interval where ED1 =
]0, 0.3E0].

• In this scenario, charging stations are not con-
sidered.

Regarding the replacement of drone 1, a question
arises: What will be the optimum moment, t1,
when drone 2 should depart from the base in
order to assist drone 1, with the objective of
minimizing the energy consumption of both
vehicles? The purpose of this section is to find the
answer to this question.

System under analysis

The system under analysis incorporates two con-
tinuous dynamic systems and, in addition to the
control variables associated with each vehicle, an
independent decision control variable: the switch-
ing time, t1. In this problem, the system is divided
as follows

• Subsystem 1, ẋ1 = f1(x1, u1), which is active in
the interval

[
t0, t1

]
, where t0 = 1, in discrete

time.

• Subsystem 2, ẋ2 = f(x2, u2), which is active in
the interval

[
t1 + 1, tf

]
.

In Fig. 8, the problem under analysis is repre-
sented.

Figure 8: Explanation of the energy consumption
optimization problem.

The trajectory of the system starts at a given
initial state, x0, and progresses to a final state, xf .
The state X1 marks the transition between the first
and the second set of dynamics. The problem then
lies in deciding the optimal instant time, t1, where
the switch should be made. In order to solve this
problem, an algorithm was proposed, that calcu-
lates t1 through a search made by intervals, based
on the minimum cost associated with each instant
of time. For this purpose, an initial estimate is de-
fined, t̂1, contained in the candidate values for t1.

Optimization Problem

In this example, two different scenarios are consid-
ered for transporting the bar.

• Case 1 - In this situation, it is considered that
both vehicles are symmetrical. That is, they
have the same mass and the same geometry.

• Case 2 - In this case, drone 1 follows the de-
scription of the vehicles considered in case 1,
while drone 2 presents a difference in geometry

7



which causes that, when transporting the bar,
it consumes more battery than the first drone.
The value considered for the mass of the bar is
now mbar = 0.9 kg. Thus, when drone 2 trans-
ports the bar, there is an additional energy ex-
pense of 90% to its energy consumption rate,
instead of the 50% expenditure considered in
the previous case.

For both problems, there are three variants of
the energy consumption model, depending on
what time the system is operating.

– From k = 1 to k = t1, the dynamics of
drone 1 are active, with the following energy
consumption model

ĖC1
= K1

∣∣vT1 v̇1∣∣+
∣∣wT

1 I1ẇ1

∣∣ , (36)

where K1 = m1 +mbar.

– From k = t1 + 1 to k = tf , the dynam-
ics of drone 2 are active, and its corresponding
energy model varies depending on the time in-
terval in which dynamics 2 is acting. Its energy
consumption model is given by

ĖC2 = K2

∣∣vT2 v̇2∣∣+
∣∣wT

2 I2ẇ2

∣∣ , (37)

where {
K2 = m2, k = t1 + 1, · · · , t2 − 1.

K2 = m2 +mbar, k = t2, · · · , tf .

System dynamics

For this example, the dynamics of each vehicle is
active at different times. Note that the dynamics
of the system is composed of the dynamics of each
drone and also the respective model of energy con-
sumption defined in (36) and (37). That is, from
k = 1 to k = t1, the following dynamics are active

IẇB1 = −wB1 × IwB1 + τB1 ,

(m1 +mbar)p̈1 = −(m1 +mbar)ge3 + T1R
I
B1
e3,

ĖC1
= K1

∣∣vT1 v̇1∣∣+
∣∣wT

1 I1ẇ1

∣∣ , (38)

and from k = t1 + 1 to k = tf the active dynamics
is given by

IẇB2 = −wB2 × IwB2 + τB2 ,

(m2 +mbarγ)p̈2 = −(m2 +mbarγ)ge3 + T2R
I
B2
e3,

ĖC2
= K2

∣∣vT2 v̇2∣∣+
∣∣wT

2 I2ẇ2

∣∣ . (39)

Cost function

In this example, the cost functions represent differ-
ent control objectives, and are the following

• J1 and J2 are the costs associated with the
movement of drone 1 and drone 2, respectively.
J1 is defined from the instants k ∈ 1, . . . , t1 and
J2 is computed from the instant immediately
after the switching instant, t1, until the final
simulation instant, tf .

• Jopt1 and Jopt2 are the costs associated with
minimizing the energy consumption of each
drone that express the objective of finding an
optimal flight speed in order to maximize the
distance traveled by each vehicle. That is, it
expresses the objective of minimizing the en-
ergy consumption of each drone. Jopt1 is cal-
culated in the same time interval as J1 as J2
and Jopt2 are calculated in the same period of
time.

Since Jopt1 and Jopt2 have different control ob-
jectives than J1 and J2, it is considered appropri-
ate to use the module in the definition of these
cost functions, in order to minimize the energy con-
sumption of each vehicle per unit of time. This is a
usual choice for energy consumption minimization
but other options could have could been made, tak-
ing into account convex functions of X1, X2, U1

and U2, as long as its definition was in line with the
control objectives required by Jopt1 and Jopt2 . The
cost functions considered in this problem are then
given by

J1 =
H∑
i=1

[(X1(k + i)−X∗
1 (k + i))TQ(X1(k + i)−X∗

1 (k + i))+

+ (U1(k + i)− U∗
1 (k + i))TRQ(U1(k + i)− U∗

1 (k + i))],

J2 =
H∑
i=1

[(X2(k + i)−X∗
2 (k + i))TQ(X2(k + i)−X∗

2 (k + i))+

+ (U2(k + i)− U∗
2 (k + i))TRQ(U2(k + i)− U∗

2 (k + i))],

Jopt1 =

H∑
i=1

[EC1(k + i)− Γ(‖v1(k + i)‖2],

Jopt2 =

H∑
i=1

[EC2(k + i)− Γ(‖v2(k + i)‖2)].

(40)

where Γ is a coefficient that when Γ > 1, attaches
more importance to minimizing the energy con-
sumption of the respective drone and when Γ < 1,
it gives more importance to optimizing the velocity
at which the vehicle moves. Additionally, Q and RQ

correspond, respectively, to the weight factors that
are applied to the states and to the control inputs
of both vehicles.

Optimization problem

The optimization problem for each iteration is now
defined

minimize
U1,U2,X1,X2,t1

J1k∈1,...,t1
+ Jopt1k∈1,...,t1

+ J2k∈t1+1,...,tf
+ Jopt2k∈t1+1,...,tf

subject to

for k = 1, · · · , t1
IẇB1 = −wB1 × IwB1 + τB1 ,

(m1 +mbar)p̈1 = −(m1 +mbar)ge3 + TRI
B1
e3,

0 < E1 < E0,

ĖC1 = K1

∣∣vT1 v̇1∣∣+
∣∣wT

1 I1ẇ1

∣∣ .
for k = t1 + 1, · · · tf

IẇB2 = −wB2 × IwB2 + τB2 ,

(m2 +mbarγ)p̈2 = −(m2 +mbarγ)ge3 + TRI
B2
e3,

0 < E2 < E0,

ĖC2
= K2

∣∣vT2 v̇2∣∣+
∣∣wT

2 I2ẇ2

∣∣ .
p1(t2) = p2(t2).

(41)

where {
γ = 0, k = t1, · · · , t2 − 1.

γ = 1, k = t2, · · · , tf .

8



The results of the simulations are presented in sec-
tion 8.

8. Simulations Results
This section shows some of the simulation tests that
validate the models previously described.

8.1. Bi-rotor bar model

Figure 9: System trajectory for H = 10, Ts = 0.3.

8.2. Quadcopters transporting a bar

(a) Bar tra-
jectory

(b) System
trajectory

Figure 10: System trajectory for H = 12, Ts = 0.2

and x(0) =
[
0.1 cos(0.01π) 0.1 sin(0.01π 0)

]T
.

8.3. Drone replacement strategy
The candidate values of t1 are chosen in a time in-
terval when the energy available of drone 1 per unit
of time, ED1

, is less than or equal to 30% of its ini-
tial energy, E0. Fig. 11 shows the candidate values
for t1 that are present in this interval (∆t), defined
from t1 = 13 to t1 = 16, in discrete time. After
k = 16, the instants of time are not considered can-
didate values of t1 since the transport of the bar by
drone 2 happens at t2 = t1+3. Thus, it is necessary
to wait 3 samples after the instant t1 for the trans-
port of the bar to occur and 1 sample to observe its
effects, in discrete time.

Figure 11: Choice of candidate values for t1 present
in ∆t.

In the simulation shown in Fig. 12, the evolution
of the total cost value, Jtotal, is represented for each
candidate for t1, (t1 = 13, 14, 15, 16) in both cases.
The optimal switching time found for both cases is
t1 = 1.6 seconds, since Jtotal is minimal for that
instant of time.

Figure 12: Total cost of both situations for H = 26
and Ts = 0.1.

Fig. 13 shows the energy consumption of the two
vehicles for both scenarios. These two situations
have four time periods in common, represented in
the figure by gray circles, dictated by the behavior
of drones.

1. Drone 1 starts the course while drone 2 waits
to intervene.

2. The beginning of this period marks the tran-
sition from dynamics 1 to the dynamics of the
second vehicle. After this switch, which occurs
at the optimum time t1, only drone 2 is in mo-
tion.

(a) During this time, drone 2 is in motion,
without carrying the bar.

(b) The initial moment of this interval, t2 =
t1 +0.3 seconds, marks the meeting of the
drones. From this moment on, the second
vehicle will carry the bar.

(a) Case 1 (b) Case 2

Figure 13: Vehicle energy consumption for both
cases.

9. Conclusions
The objective of this work was to develop a con-
troller in order to solve the problem of transporting
large objects by a multi-drone system. This purpose
was achieved through a strategy based on nonlin-
ear predictive control algorithms. Additionally, the
problem of performing missions with a duration
that goes beyond the autonomy of a single drone
in a multi-drone system was considered. The so-
lution to this problem took into account the afore-
mentioned non-linear MPC technique and a pseudo-
algorithm of searching for the optimum instant of
the departure of a second vehicle from the base
so that the replacement of the vehicle occurs. At
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the beginning of this study, the bi-rotor model was
studied, whose knowledge was then applied to the
analysis of a more complex system, composed of
two bi-rotors that carry a bar. Subsequently, the
quadcopter model was defined and this knowledge
was applied to the study of a system composed of
two drones that cooperate in order to transport a
bar. For this system, it was considered a different
configuration where the bar is connected to each
drone through spherical joints, which allows the to-
tal mobility of both vehicles. In the following two
chapters, the control strategies for the bi-rotor bar
system and the quadcopter bar system were ana-
lyzed, respectively. In both cases, simulations were
carried out in order to analyze the robustness of the
controller through different maneuvers performed
by the system. Finally, the last section of this work
was dedicated to the problem of vehicle replace-
ment. In this context, it was assumed that each
vehicle was able to transport the bar individually.
The problem was formulated in the following way:
It was considered that a drone would depart from
a given position in order to transport the bar to a
defined final position. However, this vehicle did not
have enough energy to complete the predefined tra-
jectory. Thus, the need arose to introduce another
UAV so that the second drone could depart from
the base and meet his peer, in order to finish the
rest of the trajectory, carrying the bar.

In conclusion, predictive control is a powerful tool
due to its ability to allow the incorporation of re-
strictions into optimization problems. It is possible
to solve problems of increasing complexity such as
the transport problem carried out through the coop-
eration of two quadcopters, presented in this work.
However, a compromise between the complexity of
the problem to be addressed and the added com-
putational burden of the problem must be taken
into account. There are several research paths that
can be followed, based on this work. On the one
hand, the problem of transporting large objects by
a multi-drone system can be explored through the
proposal of a decentralized control approach. This
would be an efficient solution to allow more drones
to be included in the system, without compromis-
ing its performance. On the other hand, a more
sophisticated approach to the problem of vehicle
replacement could be considered. For example, a
distributed strategy could be implemented so that
drones could communicate and possibly provide a
decentralized and scalable solution, robust to par-
tial system failures.
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