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Abstract

Associated with the continuous advances in both modeling and computing resources, numerical
simulations became an everyday tool in science and engineering activities [1]. Yet, for multi-parameter
models, using classical numerical techniques, where one solution is computed for each set of parame-
ters, those approaches suffer from the so called curse of dimensionality, due to the exponentialy large
number of solutions involved. Alternative approaches, such as reduced order methods, have been
developed to avoid this problem. This work is focused on the application of one of these techniques,
the Proper Generalized Decomposition (PGD) for obtaining approximated complementary solutions,
one compatible and other equilibrated, for the essential unknowns of two simple problems of plane
elasticity. These solutions are used to compute global and local bounds of their errors and based on
this information it is possible to drive a mesh adaptivity process, which accounts for the effect of
varying the parameters.

For the problems analysed, namely a square plate subjected to a traction and a plate fixed at
both ends subjected to a pressure on top, even using finer meshes, it is observed that the number of
modes required to obtain an accurate solution turns out to be smaller than a few dozens. However,
for a given level of accuracy, using finer meshes generally implies a large number of modes, since
more details of the model are being captured. It is also observed that higher values for the bounds
of the error of local outputs occur in general when the materials have extreme opposite values of the
Young’s modulus and these bounds are smaller when the properties are equal. Finally, using a mesh
adaptivity process oriented for a given quantity of interest, led in general to smaller values for the
error on that local output than an uniform refinement or the refinement based on either the global
error indicator or the local error indicator for another quantity. Using the global error indicator to
drive the adaptivity process led to smaller global errors for the solutions and to a balance between
the different local error bounds.

Keywords: 2D Elasticity, Model Order Reduction, Proper Generalized Decomposition, Quantities
of Interest, Errors Estimation, Adaptivity Process

1. Introduction

1.1. Motivation

This work is focused on the application of the
Proper Generalized Decomposition (PGD). This
technique operates by constructing a separated rep-
resentation for the solution of the problem involving
a priori unknown functions of the model parame-
ters, such that:

u(x1, x2, ..., xn) =

N∑
i=1

F 1
i (x1) × ... × Fni (xn)

where the number of terms N and the functions
F ji (xj) are unknown a priori.

The complexity of the PGD scales linearly with
the dimension of the space in which the model is
defined, instead of the exponentially-growing com-
plexity characteristic of mesh based discretization
techniques [2]. Considering a model defined in a
parametric space of dimension D = 3 and using
M = 10 points to discretize the parametric domain,
results inN×M×D = N×30 solutions to compute,
instead of the MD = 103 required for a classical
mesh-based numerical technique approach.

Since the PGD, as most numerical techniques,
provides an approximation of the solution, it is cru-
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cial to control its errors. In this work, the dual
error analysis technique is explored, which consists
in computing error bounds based on two comple-
mentary solutions, one compatible and other equili-
brated. This information of the errors, is then used
to drive an adaptivity refinement process.

1.2. Objectives

This work is developed based on the work done in
the PhD Thesis of Jonatha Reis, recently concluded
[3], seeking to identify by means of its application to
two simple 2D elasticity problems, advantages and
disadvantages of this approach. To achieve this, the
following objectives are estabilished:

• Formulate the problem to analyse and the ap-
proaches available to compute an approximate
solution;

• Formulate the PGD separated representation
of the solution as a function of the material
properties;

• Formulate the dual error analysis technique
and its application to adaptivity process;

• Analyse the results of PGD and mesh adap-
tivity process on each problem, as a way to
identify its pros and cons.

2. Theoretical Background
2.1. 2D Elasticity and FEM formulations

Consider the 2D linear elastic body defined in the
domain Ω ⊂ R2 with boundary Γ, subjected to
body forces b, tractions t, and imposed displace-
ments u on the boundary, which is decomposed in
Neumann, ΓN , and Dirichlet, ΓD, conditions, such
that ΓN ∩ ΓD = ∅.

x

y ΓD

ΓN

Ω

b

Figure 1: Representation of the reference problem.

The unknowns considered in the problem in
Fig. 1, are the stresses, σ, and the displacements,
u, represented by the vectors in expression (1).

σ =

σxxσyy
σxy

 u =

[
ux
uy

]
(1)

In the (x, y) cartesian reference system the com-
patibility equation is given by:

ε = Du D =

 ∂
∂x 0
0 ∂

∂y
∂
∂y

∂
∂x

 (2)

The constitutive relation is expressed by:

ε = Cσ (3)

where for an isotropic material with Young’s mod-
ulus E and Poisson ratio ν, the elasticity operator
C, for plane stress state, is given by:

C =
1

E

 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

 (4)

A compatible finite element formulation can be
used to compute an approximation for the un-
knowns in expression (1). For this approach, as the
starting point, an approximation for the displace-
ment field uh must be given. Then the fundamental
equation is expressed by:

K û = f̂ (5)

where K is the global stiffness matrix, û is the vec-
tor of nodal displacements and f̂ is the vector of
equivalent nodal forces. Using this approach an ap-
proximation for the generalized displacement field
uh is obtained which strongly satisfies compatiblity,
while equilibrium is imposed in a weak form [4].

An hybrid-equilibrium formulation approach
can also be applied to approximate the unknowns
(1). For this approach, as the starting point, an
approximation for the stress field sh and boundary
displacements vh must be given. Then the resulting
system is given by:

[
−F DT
D 0

]{
ŝ
v̂

}
=

{
ê

t̂

}
(6)

where F is the flexibility matrix, ê is the work of
the imposed displacements and deformation on the
auto-equilibrated stress basis and t̂ is the work of
applied tractions on the boundary displacements
basis. Using this approach, an approximation for
the generalized stress field sh is obtained, that satis-
fies equilibrium strongly, and an approximation for
the generalized boundary displacements vh, which
weakly satisfies compatiblity together with the as-
sociated strains [4].
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2.2. PGD Separated Representation

The main objective is to obtain the solution of the
problem as a function of the material properties.

Therefore, a vector µ with np parameters
µ1, µ2, ..., µnp is defined, consisting of the mate-
rial properties, where each is defined in its own
domain Ωi ⊂ R, with i = 1, 2, ..., np. The vec-
tor of the parameters µ is defined as µ ⊂ Ωµ =
Ω1 ×Ω2 × ... ×Ωnp ⊂ Rnp . The finite element for-
mulations, presented in Sec. 2.1 are used to trans-
form the continuous problem into a discrete one, so
that the PGD algebraic equation can be solved.

The PGD parametric solutions for the problem
unknowns are given by:

û(µ) ≈ ûnkPGD(µ) =

nk∑
m=1

um
np∏
i=1

Umi (µi) (7)

ŝ(µ) ≈ ŝnsPGD(µ) =

ns∑
m=1

sm
np∏
i=1

Smi (µi) (8)

where nk and ns corresponds to the number of
modes used in the approximation, um and sm the
space functions that describes, in each mode, the
displacement and the stress field, and Umi (µi) or
Smi (µi) are the coefficients that defines the weight
related to each parameter µi. The application of
the PGD provides, for the problem under analysis,
a pair of approximated solutions, one compatible,
uk, and the other equilbrated, σs.

2.3. Integration of the Separated Representation

Since the solutions are represented in a separated
form, the evaluation of its integrals is computation-
ally inexpensive. As an example, consider the inte-
gral over the domain Ωµ = Ωµ1

× Ωµ2
of a generic

function F (x, µ1, µ2):

∫
Ωµ1×Ωµ2

F (x, µ1, µ2) dµ1 dµ2 (9)

where x stands for the spacial coordinates and
µ = {µ1, µ2} the vector of the material parameters.
As the problem stands, the integral must be com-
puted in Ωµ1 × Ωµ2 for each value of x. But, since
the solution for F (x, µ1, µ2) is available in a sepa-
rated form, within the PGD framework the integral
yields:

∫
Ωµ1×Ωµ2

N∑
i=1

F xi (x)× Fµ1

i (µ1)× Fµ2

i (µ2) dµ1 dµ2 =

=
N∑
i=1

F xi (x)

(∫
Ωµ1

Fµ1

i (µ1) dµ1

) (∫
Ωµ1

Fµ2

i (µ2) dµ2

)
(10)

It is possible to see that the integral over Ωµ1
×

Ωµ2
is decoupled into one-dimensional integrals over

Ωµ1
and Ωµ2

. This concept can be generalized for
a model defined with np parameters, so that in the
PGD framework, the integral in Ωµ1×Ωµ2×...×Ωnp
is transformed into a series of one-dimensional prob-
lems for each Ωi. This is an essential characteristic
of the PGD numerical technique, allowing to tackle
high-dimensional models while avoiding the curse of
dimensionality.

2.4. Error Bounds
2.4.1 Global Error Bounds
Given a pair of complementary solutions, one com-
patible and the other equilibrated, we can relate the
energy of the difference of both solutions, ε2, with
the energy of their errors as:

ε2 =

∫
Ω

(σk − σs)(εk − εs) dΩ ≥
{∫

Ω
(σ − σs)(ε− εs) dΩ∫

Ω
(σ − σk)(ε− εk) dΩ

(11)

Which, using the elastic constitutive relations,
can be expressed as:

ε2 =

∫
Ω

(εTk Cεk + σTs C−1σs − 2σTs εk) dΩ =

ne∑
e=1

ε2[e]

(12)

Thus, the global error bound, ε2, is obtained as
a sum of the elemental errors contribution.

2.4.2 Local Outputs and Error Bounds
In the context of a project, obtaining a displacement
or reaction values local outputs at specific regions of
the structure is extremely important for the design
and safety verification tasks. To obtain these val-
ues, a virtual problem must also be defined, with its
nature (displacement or force) and also its weight
function, depending on the local output to be de-
termined.

The local output associated with the exact dis-
placement field, Lk(u), can be bounded [4]:

L̃k(σa)− εalocal ≤ Lk(u) ≤ L̃k(σa) + εalocal (13)

With the corrected average local output,
L̃k(σa), and the square of the error bound, ε2alocal ,
given by:

L̃k(σa) =
1

2

∫
Ω

(σTs C σs + σTs εk + εTk C−1 εk + εTk σs) dΩ

(14)

(
1

2
ε ε

)2

= ε2alocal =
1

8

ne∑
e

(ε2 ε2[e] + ε2[e] ε
2) (15)

Similar expressions are defined for reaction val-
ues Ls(σ).
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2.5. Adaptivity Process

The equations previously presented for specific val-
ues of the parameters, are now extended to all the
parametric domain.

The global error in equation (12), written as a
function of the material parameters, is integrated
in the space of the parameters, obtaining a global
error indicator:

Ψglobal =

∫
Ωµ

ε2(µ) dΩµ (16)

Similarly, using equation (15), writing it as a
functions of the material parameters and integrat-
ing in the space of the parameters, results in a local
error indicator:

Ψlocal =

∫
Ωµ

ε2alocal(µ) dΩµ (17)

3. PGD Implementation

The following scheme presents the Matlab program developed by Dr. Jonatha Reis, that applies the PGD
numerical technique and also the mesh adaptivity refinement process, based on the two complementary
PGD solutions, one compatible, the other equilibrated.

Main_nD.m -
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Geometry / Mesh

?
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P.V: Virtual Problem

6

Stoping Criterias

Parametric Domain
ΩE, Ων

-�
�
�
��@@

@
@@
�

�
�
��@

@
@

@@
Adaptivity

Yes

?

�
�

�
�Uniform meshes generated in Gmsh

�
�
�
���

@
@
@
@@�

�
�
��

@
@
@
@@

@
@
@
@@
�
�

�
��

Global?

Local?
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PGD_Pos_MidErrAdapt_nD_v1.m*

-

'
&

$
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6

End
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- End
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?
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PGD_Output_Algebric_nD_vals_v2.m�

'
&

$
%Output: Lk ou Ls�End

Figure 2: Scheme of the program in Matlab environment that implements the PGD numerical technique
and mesh adaptivity process.

4. Results and Discussion
4.1. Square Plate

Consider the example shown in Fig. 3, of a square
plate with two materials subjected to a traction
(right) and its symmetry simplification (left), which
in the homogeneous case, has an analytical solution:

S1

S2

1.0

0.50

0.50

S2

S1

S1

S2

Figure 3: Square plate (right) and symmetry sim-
plifcation (left)

 σxx
σyy
σxy

 =

 1.0
0
0


 εxx

εyy
εxy

 =


1
E
− ν
E

0


Fig. 4 and Fig. 5, shows the PGD constuction

of the solution for the equilibrated stress compo-
nent σxx and the compatible displacement field u,
respectively, at the 4 corners of the parametric do-
main when the problem is solved in ΩE = [0.1; 2.1]
and Ων = 0.3. In general, the number of modes to
achieve an accurate solution is found to be smaller
than a few dozens. It can be seen that the modes of
each case are represented by the same space func-
tions, varying just its weights depending on the pa-
rameter combination.
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Figure 4: PGD construction of the solution for the equilibrated stress component σxx, presenting the
solutions with the first 3 PGD modes. Uniform mesh: ne = 256. Approximation functions of degree 1.

5



E1 = E2 = 0.1

+

+

+

...

0 1

0 + 1 2

3

0 + 1 + 2

0 + 1 + 2 + 3 0 + 1 + ... + N

9.4

4.7

0

1

0.5

0

0

4.4

8.8

0

5

10

0.82

0.41

0

10

5

0

0

5

10

0

5

10

E1 = 2.1 |E2 = 0.1

+

+

+

...

0 1

0 + 1 2

3

0 + 1 + 2

0 + 1 + 2 + 3

0 + 1 + ... + N

0.5

0.25

0

1

0.5

0

0

2.9

5.8

0

0.5

1

0.6

0.3

0

6.8

3.4

0

0

4.33

8.65

0

3.4

6.8

E1 = 0.1 |E2 = 2.1

+

+

+

...

0 1

0 + 1 2

3

0 + 1 + 2

0 + 1 + 2 + 3

0 + 1 + ... + N

4.5

2.25

0

1

0.5

0

0

0.3

0.6

0

2.7

5.4

0.4

0.2

0

5.4

2.7

0

0

3.65

7.3

0

2.7

5.4

E1 = E2 = 2.1

+

+

+

...

0 1

0 + 1 2

30 + 1 + 2

0 + 1 + 2 + 3

0 + 1 + ... + N

0.26

0.13

0

1

0.5

0

0

0.2

0.4

0

0.5

1

0.32

0.16

0

1

0.5

0

0

0.5

1

0

0.5

1

Figure 5: PGD construction of the solution for the compatible displacement field u, presenting the
solutions with the first 3 modes. Uniform mesh: ne = 256. Approximation functions of degree 2.
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Fig. 6 shows the stresses developed at bottom
and left supports when the materials have extreme
opposite values for the Young’s modulus.

0 0.250.50.75 1

−2

−1

0

1

2

x

σ
y
y

(a) E1 = 2.1 ; E2 = 0.1

0 0.250.50.75 1

−2

−1

0

1

2

x

σ
y
y

(b) E1 = 0.1 ; E2 = 2.1

01234
0

0.25

0.5

0.75

1

σxx

y

(c) E1 = 2.1 ; E2 = 0.1

01234
0

0.25

0.5

0.75

1

σxx

y

(d) E1 = 0.1 ; E2 = 2.1

Figure 6: 1st row: Stress σyy distribution devel-
oped at the bottom side support; 2nd row: Stress
σxx distribution developed at the left side support.
Uniform mesh: ne = 1024.

The resultants of both stress distribution at the
bottom support respect

∫ 1

0
σyy dx = 0, since there

isn’t any vertical load applied to the plate. While
for the stress distribution at the left support, its re-

sultant balances the unit traction, as
∫ 1

0
σxx dy = 1.

4.2. Quantities of Interest (QoI )

We start by looking at the value of the moment re-
action at the left support of the plateM1. Fig. 7 il-
lustrates the virtual problem used for obtaining that
QoI, which corresponds to imposing at the plate’s
left side a unit rotation.

E1
ν1

E2
ν2

θ1 = 1

M1

Figure 7: Virtual problem scheme for obtaining the
moment reaction at the left support.

Fig. 8 presents the value ofM1 and its bounds,
for various combinations of the Young’s modulus,
which are detailed in Fig. 9.

(a) uniform: ne = 16 (b) uniform: ne = 1024

Figure 8: Values of the moment reaction M1 and
its bounds.

0.5 1 1.5 2

5 · 10−2

0.1

0.15

0.2

0.25

E1

M1 (µ)± εalocal
M1 (µ) + εalocal

M1 (µ)

M1 (µ)− εalocal

(a) E2 = 0.1, ν1 = 0.3, ν2 = 0.3

0.5 1 1.5 2

5 · 10−2

0.1

0.15

0.2

0.25

E2

M1 (µ)± εalocal

M1 (µ) + εalocal
M1 (µ)

M1 (µ)− εalocal

(b) E1 = 2.1, ν1 = 0.3, ν2 = 0.3

0 0.5 1 1.5 2
−0.1

−7.5 · 10−2

−5 · 10−2

−2.5 · 10−2

0

2.5 · 10−2

E1

M1 (µ)± εalocal

M1 (µ) + εalocal
M1 (µ)

M1 (µ)− εalocal

(c) E2 = 2.1, ν1 = 0.3, ν2 = 0.3

0 0.5 1 1.5 2
−0.1

−7.5 · 10−2

−5 · 10−2

−2.5 · 10−2

0

2.5 · 10−2

E2

M1 (µ)± εalocal
M1 (µ) + εalocal
M1 (µ)

M1 (µ)− εalocal

(d) E1 = 0.1, ν1 = 0.3, ν2 = 0.3

Figure 9: Cut sections for the graph presented in
Fig. 8(a), at E2 = 0.1, E1 = 2.1, E2 = 2.1 and
E1 = 0.1

It can be seen in Fig. 8 and Fig. 9, that the
absolute value of the moment reaction is greater
when the bottom part is stiff and the upper flexi-
ble. The values are zero when both materials have
equal Young’s modulis. Using a mesh with more el-
ements, as shown in Fig. 8(b), the bounds become
smaller.

Driving an adaptive refinement process based on
the global and local error indicators, using the re-
action moment as the QoI, the meshes in Fig. 10
are obtained:

(a) uniform :
ne = 1024

(b) local : ne =
1070

(c) global : ne =
1379

Figure 10: Finite element meshes obtained by uni-
form refinement and by driving an adaptive refine-
ment process based on the global and local error
indicators, using the moment reaction at the left
side as the QoI.
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It is observed that the mesh obtained based on
the global error indicator captures the transition
of mechanical properties, while the mesh obtained
based on the local error indicator, also captures the
effect of the virtual problem, with more elements at
bottom left corner.

Fig. 11 shows the bounds of the error in the mo-
mentM1 for all the combinations of the parameter
values. The mesh obtained by uniform refinement
has the largest error bounds compared with the oth-
ers two, while using the mesh obtained based on the
local error indicator has the smallest error bounds,
as expected.

Figure 11: Error Bounds of the momentM1 for all
the combinations of the parameters values. The val-
ues are presented for the meshes shown in Fig. 10.

The displacement at the top side of the plate
is another QoI to consider. Fig. 12 illustrates the
virtual problem used to obtain that output. For
a homogeneous problem, this value has the exact
solution presented in Tab. 1.

E1
ν1

E2
ν2

δvf2 = 1

Figure 12: Virtual problem scheme for obtaining
the average displacement output at the top side

E ν δv exact
2.1 0.3 0.14286
0.1 0.3 3

Table 1: Exact solution of the homogeneous prob-
lem, presented for fixed ν and extreme E values.

Fig. 13 presents the value of δv and its bounds,

for all the combinations of the parameters values.

(a) uniform: ne = 16 (b) uniform: ne = 1024

Figure 13: Values of the vertical displacement at
the top side δv and its error bounds.

0 0.5 1 1.5 2
−3.5

−2.5

−1.5

−0.5

E1

δv (µ)± εalocal

δv (µ) + εalocal
δv (µ)

δv (µ)− εalocal

(a) E2 = 0.1, ν1 = 0.3, ν2 = 0.3

0 0.5 1 1.5 2
−1.5

−1

−0.5

0

E2

δv (µ) ± εalocal

δv (µ) + εalocal
δv (µ)

δv (µ)− εalocal

(b) E1 = 2.1, ν1 = 0.3, ν2 = 0.3

Figure 14: Cut sections for the plot presented in
Fig. 13(a), at E2 = 0.1 and E1 = 2.1

As seen in Fig. 13, we have higher value for the
displacement at the top side when the two mate-
rials are flexible and the smaller value when the
two materials are stiff. For all the other cases the
displacements are between those two. As can be
seen better in Fig. 14, higher values for the error
bounds occur when the two materials have extreme
opposite values of the Young’s modulus and smaller
when they are equal.

Tab. 2 summarizes the integrals of the error
bounds, involving the two QoI’s previously consid-
ered. The values of the integrals presented for each
QoI, are obtained using the meshes presented in
Fig. 10. Ψglobal is smaller for the mesh based on
the global error indicator. The mesh based on the
local output error provides smaller value of the in-
tegral Ψlocal for the output M1, from which it was
obtained.

uniform
ne = 1024

global
ne = 1070

local
ne = 1379

Ψglobal Ψglobal Ψglobal

1.90× 10−3 3.02× 10−5 6.53× 10−5
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uniform
ne = 1024

global
ne = 1070

local
ne = 1379

QoI Ψlocal Ψlocal Ψlocal

M1 1.72× 10−7 2.18× 10−9 3.60× 10−10

δv 4.27× 10−7 8.79× 10−11 4.41× 10−10

Table 2: Integrals of the error bounds for M1 and
δv, using the meshes in Fig. 10.

5. Plate fixed at both ends

Fig. 15 shows the second practical problem analised,
with the model of the plate (left) as a function of
the geometry parameters a and b and its symmetry
simplification (right). Fig. 15 also shows the QoI to
be considered δV , that corresponds to the weighted
average of the vertical displacement at the plate’s
middle span.

S1

S1

S2

b

a

a
4

a
2

a
4

S1

S1

S2

b
2

1.5
a

fy(y)

δV

Figure 15: Plate fixed at both ends (left) and sym-
metry simplification (right). Virtual problem for
obtaining the average vertical displacement δV at
the plate’s middle span.

Using the geometry parameters relation (a =
b = 1), typical meshes are shown in Fig. 17 and the
integrals of the error bounds during the adaptive
process are presented in Fig. 16.
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Figure 16: Integrals of the error bounds, as a func-
tion of the number of elements for the meshes ob-
tained by uniform refinement and the refinements
based on the global and local output error indica-
tors. (a = b = 1).

As seen in Fig. 16, the meshes obtained by uni-
form refinement have the higher values of both in-
tegrals, and so, higher error bounds for the global
and local output solutions. It can also be seen in
Fig. 16, that the meshes based on the global er-
ror indicator leads to smaller global error bounds,

while using the meshes obtained based on the local
error indicator leads to smaller results for the local
output error bounds.

ne = 48

Ψlocal = 1.98× 10−4

ne = 768

Ψlocal = 1.95× 10−6

ne = 540

Ψlocal = 5.69× 10−7

ne = 590

Ψlocal = 4.18× 10−7

unif.

local

global

Figure 17: Schematic representation of the meshes
obtained by an uniform refinement and the refine-
ments driven by the global and local output error
indicators. (a = b = 1).

From Fig. 17, is seen that the meshes based on
the global error indicator are able to capture the,
transition of mechanical properties and geometric
singularities, while the meshes obtained based on
the local output error indicator, also captures the
effect of the virtual load in the solution.

Fig. 18 shows the displacement at the plate’s
middle span for all combinations of the parame-
ters values and its bounds, which are detailed in
Fig. 19. It can be seen again that the higher value
of displacement occurs when the materials are flex-
ible and smaller when they are stiff. From the same
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set of figures, it can be seen that the highest error
bounds occur when the materials have extreme op-
posite values of the Young’s modulus and smaller
for the cases where they are equal.

Figure 18: Values of the displacement δV1 and its
bounds for all combinations of the parameters val-
ues. (a = b = 1) ; Uniform mesh: ne = 48.
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(a) E2 = 2.1, ν1 = 0.15, ν2 = 0.15

0.5 1 1.5 2

0.2

0.4

0.6

E2

δV1
(µ)± εalocal

δV1
(µ) + εalocal
δV1

(µ)

δV1
(µ)− εalocal

(b) E1 = 2.1, ν1 = 0.15, ν2 = 0.15

Figure 19: Cut sections for the plot presented in
Fig. 18, at E2 = 2.1, E1 = 2.1.

Fig. 20 shows the stress diagrams at the plate’s
middle span when Young’s modulus values are ex-
treme opposite and when they are equal. The
cases presented in Figs. 20(a) and 20(b), exhibit
stress descontinuities at material transitions and
high stress values at stiff materials’ top and bottom
fibre. While the cases where the Young’s modu-
lus are equal, the stress diagram exhibits a smooth
distribution along the height without descontinu-
ities and with the maximum values at the top and
bottom fibres as predicted by the elementary beam
theory for a homogeneous cross section.
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Figure 20: Stress diagrams σxx at the plate’s mid-
dle span for specific combination of the parameters
values. (a = 1; b = 2). Uniform mesh: ne = 512.

6. Conclusions and Future Studies

One of the essential characteristics of the PGD
worth remarking, which allows it to deal with high-
dimensional models without major issues, is the
separated representation of the solution of the prob-
lem and the advantage that this represents, partic-
ularly in the evaluation of integrals.

In general, for the problems analysed, it was
seen that the number of modes required to yield an
accurate solution turns out to be smaller than a few
dozens. This also holds when using finer meshes,
however, for a given level of accuracy, they generally
imply more modes until convergence is reached. It
is also observed that higher values for the bounds of
the error of the local outputs occur in general when
the materials have extreme opposite values of the
Young’s modulus and these are smaller when they
are equal. Finally, using a mesh adaptivity pro-
cess oriented for a given quantity of interest, led in
general to smaller values for the error on that local
output than an uniform refinement or the refine-
ment based on either the global error indicator or
the local error indicator for another quantity. Us-
ing the global error indicator to drive the adaptivity
process led to smaller global errors for the solutions
and to a balance between the different local error
bounds. In the particular context of structural me-
chanics, one subject proposed for further develop-
ment is obtaining solutions for simple problems as
a function of the geometry parameters. However,
obtaining a separated representation for those can
be a complicated task.
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