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Abstract

With the increase in widespread use of Global Navigation Satellite Systems (GNSS), more and
more applications require precise position data. Of all the GNSS positioning methods, the most precise
ones are those that are based in differential systems, like Differential GNSS (DGNSS) and Real-Time
Kinematics (RTK). However, these systems require a very precise estimate of their reference station
position to have good precision. This is the problem this thesis set out to study. Four positioning
methods were analyzed, namely Least Squares (LS), Weighted Least Squares (WLS), Extended Kalman
Filter (EKF) and Unscented Kalman Filter (UKF), using only pseudorange measurements. It was
also tested the Hatch Filter, RAIM and statistical methods, in order to characterize several possible
methods of auto-survey for a static receiver. After testing, it is seen that the EKF and UKF present
much better mean error results than LS and WLS, with an attained precision below 1 meter after
about 4 hours. It was also verified the importance of RAIM for the self-survey procedure. Chosen
the combination of methods that gives the best results, it was tested against existing implementations
showing it is very competitive, especially considering the differences between the used receivers. Finally,
these results were used in a DGNSS test, which verified a significant improvement in the position
estimate as the base station position estimate improves.
Keywords: GNSS, GPS, Base-station, Auto-surveying

1. Introduction
Global Navigation Satellite Systems (GNSS), of
which the most famous is the Global Positioning
System (GPS), are deeply woven into the fabric of
our contemporaneous society.

Initially large and unwieldy, today’s GNSS-
enabled devices are small, sleek and inexpensive and
enabled many new possibilities: self-driving vehi-
cles, autonomous harbour freight transport, small,
unmanned aircraft, etc. As a consequence, ever-
more accurate receivers where required, to provide
more accurate position solutions for these and other
new fields.

While it is possible to obtain a position esti-
mate with a single receiver, using static reference
receivers to obtain differential measurements allows
much more accurate estimates. This is the basis for
methods like like Differential GNSS (DGNSS) and
Real-Time Kinematics (RTK).

However, this raises an important question:
what is the real position of the reference receivers?
This is the question that this thesis tries to answer.
Using several methods, a comparative analysis of
current position estimation methods will be done,
with regards to both precision and time to conver-
gence of the position solution.

2. Background
2.1. Error sources in GPS measurements
The GPS signals do not always travel in a pure
vaccum and the measurement of both GPS signals
and satellite positions aren’t perfect. This leads
to several error sources that affect the GPS signals,
which can be due to the signal propagation medium
(tropspheric and ionospheric errors), uncertainties
in the GPS atomic clocks, ephemeris errors, multi-
path phenomena, relativistic effects, etc. The com-
bination of all the previous errors result in an over-
all error value that is known as the User Equiva-
lent Range Error (UERE), given by the Root-Sum-
Squared (RSS) of all the different components. This
error is assumed to be gaussian-distributed, and all
the components are treated as independent random
variables. For pseudorange measurements, the total
system UERE is 7.03 meters (1σ) [1].

3. GPS Observables
The two most used GPS observables are the pseu-
dorange and the carrier phase, which give a measure
of the distance between receiver and satellite.
3.1. Pseudorange
A GPS receiver can determine its position by usage
of ranging codes, using a modified version of the so
called time-of-arrival (TOA) ranging method. As
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such, the GPS receiver determines the distance be-
tween receiver and satellite by the time of propa-
gation of the signal. However, since different de-
lays and errors afect the signal the computed range
won’t be the true range; as such, it is given the
name pseudorange. The distance, as seen by the re-
ceiver, between the receiver and a GPS satellite in
orbit is given by

r = c (tu − ts) = c∆t (1)

where r is the true range to the satellite, ts is the
true time of departure of the signal from the GPS
satellite, tu is the true time of arrival of the signal
to the receiver, c is the speed of light in a vaccum
and ∆t is the true travel time of the signal.

Adding the different delays and errors, we can
write a new equation for the time of arrival method
using the pseudorange

ρi = ri + cδtr − cδti + T i + Ii +MP i + ερ (2)

where δtr and δti are the receiver and satellite clock
errors (in seconds), T i is the tropospheric delay (in
meters) between the receiver and satellite i, Ii is
the ionospheric delay (in meters) between the re-
ceiver and satellite i, MP i is the multipath error
(in meters) between the receiver and satellite i and
ερ denotes any unmodelled errors in the pseudor-
ange.

3.2. Carrier phase
Another observable is the phase of the GPS carrier
signal, with measurement resolution on the order of
millimeters [2]. However, this only applies to the
fractional part of the phase, since the total num-
ber of cycles since broadcast is unknown and the
receiver attributes an arbitrary integer number to
this component. Solving this ambiguity, a receiver
can provide very accurate measurements.

In an error-free situation the carrier phase mea-
sured by a receiver r, φr, relative to satellite s is
given by [2]

φsr = φr(t)− φs(t−∆t) +Ns
r (3)

where φr(r) is the receiver-measured carrier phase
at time t, φs(t − ∆t) is the carrier phase at the
time of transmission and Ns

r is the number of whole
cycles between transmission and reception, i.e. the
integer ambiguity.

Multiplying 3 by the carrier wavelength, λ, using
the time of propagation to define the true range and
adding the modelled error terms, we get the carrier
phase model. Denoting the carrier phase in units of
length, Φtr(t), we can write

Φsr = r+cδtr+cδts+λNs
r +T i−Ii+MP i+εφ (4)

where δtr and δti are the receiver and satellite clock
errors (in seconds), T i is the tropospheric delay (in

meters) between the receiver and satellite i, Ii is
the ionospheric delay (in meters) between the re-
ceiver and satellite i, MP i is the multipath error (in
meters) between the receiver and satellite i and εφ
denotes any unmodelled errors in the carrier phase.

Finally, since the carrier phase depends on an
arbitrary integer N , this parameter will be different
every time the satellite lock is lost, a phenomenon
called cycle slip and whose detection and correction
is necessary. In the case of the single-frequency re-
ceiver, this detection is only indirect, while much
more easier to detect in dual-frequency receivers [3].

4. Maximum Likelihood Estimation
Since GNSS position estimates are tainted by noise,
we can use statistical methods to analyse their prop-
erties and give a better estimate of the true position
of a GNSS antenna. One such method is the Max-
imum Likelihood Estimation. In this method, we
use the known density probability function of the
measurement data, where each sample is assumed
independent, conditioned by a parameter θ and a
sample set, x. From here, we can define the likeli-
hood function, L(θ,x), as [4]

L(θ|x) = fX(x|θ) =

n∏
i=1

fX(xi|θ), with θ ∈ Θ (5)

where fX( · |θ) is the probability density function
of the random variable X knowing that θ is the true
value of the desired parameter, θ represents, by con-
vention, both the unknown parameter and the esti-
mated parameter and Θ is the parametric space of
possible parameters.

The Maximum Likelihood Estimate, θ̂ is the the
argument that maximizes the likelihood function

L(θ̂|x) = arg max
θ∈Θ
L(θ|x) (6)

One can also use the logarithm of the likelihood
function, designated log-likelihood function

ln
[
L(θ̂|x)

]
= arg max

θ∈Θ
ln [L(θ|x)] (7)

which is analytically simpler. For a continuous
parametric space, we can use the normal process
of finding the maxima of a function. For a given
parameter vector θ with p > 1 number of param-
eters the maximum likelihood function verifies the
condition

∂ ln [L(θ1, . . . , θp|x)]

∂θj

∣∣∣∣
θ=θ̂

= 0, with j = 1, . . . , p

(8)
Then, we check if that point is a maxima of the

function [5]

H(θ) = ∇2 ln [L(θ1, . . . , θp|x)] = hij(θ), (9)

with i, j = 1, . . . , p
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where

hij(θ) =
∂2 ln [L(θ1, . . . , θp|x)]

∂θi∂θj
(10)

If these conditions are verified, then θ̂ is the
maximum likelihood estimate of the parameter vec-
tor θ. This computation was done using the mle
function of Matlab’s Statistics and Machine Learn-
ing Toolbox.

5. Position Determination
5.1. Least Squares
Let the satellite-receiver true range be [3]:

ri =

√
(xi − x)

2
+ (yi − y)

2
+ (zi − z)2

(11)

where
(
xi, yi, zi

)
are the coordinates of satellite i

and (x, y, z) is the true receiver position, both in an
ECEF reference frame.

Combining the pseudorange model of Equation
2 with Equation 11 and assuming the modeled er-
rors have been removed from the pseudorange mea-
surement we can write [6]

ρi =

√
(xi − x)

2
+ (yi − y)

2
+ (zi − z)2

+ cδtr
(12)

where on the right side we obtain the four unknown
parameters: receiver coordinates (x, y, z) and re-
ceiver clock offset δtr. Since we have four unknown
parameters, we will require at least four indepen-
dent measurements to be able to determine all the
unknown parameters.

To solve Equation 12, which is non-linear, we
can apply Taylor’s series expansion to the satellite-
receiver range, yielding [7]

ri = ri0+
x0 − xi

ri0
∆x+

y0 − yi

ri0
∆y+

z0 − zi

ri0
∆z (13)

where x0 = (x0, y0, z0) is the initial position esti-
mate, ri0 is the satellite-receiver distance computed
at x0 and ∆x = x−x0, ∆y = y−y0 and ∆z = z−z0

Moving the term ri0 to the left side, we ob-
tain the linearized pseudorange equation for a single
satellite. Expanding the system to n ≥ 4 satellites
we rewrite it in matrix notation [7]ρ

1 − r1
0

...
ρn − rn0

 =


x0−x1

r10

y0−y1
r10

z0−z1
r10

1

...
...

...
...

x0−xn

rn0

y0−yn
rn0

z0−zn
rn0

1




∆x
∆y
∆z
cδt


(14)

or, in a more compact notation

∆ρ = H∆x (15)

Finaly, the solution for this equation is given by

∆x = H−1∆ρ (16)

or, in the case of more than four satellites by the
Least Squares solution [7]

∆x̂ =
(
HTH

)−1
HT∆ρ (17)

and the position estimate can be calculated by up-
dating the initial estimate with the estimated devi-
ations

x̂ = x0 + ∆x (18)

A diagram illustrating the Least Squares process
is given in Figure 1.

Figure 1: Least Squares algorithm

5.2. Weighted Least Squares
While the Least Squares solution assumes all errors
are independent and identically distributed, this is
usually not the case. By defining a weighting ma-
trix Q, corresponding to the inverse of the measure-
ment error covariance matrix [8], and applying it to
the Least Squares solution we obtain the Weighted
Least Squares solution [8]

∆x̂ =
(
HTQH

)−1
HTQ∆ρ (19)

There are several possible formulations for the
measurement error covariance matrix and, subse-
quently, for the weighting matrix [3] [8]. For the
present thesis, the satellite measurements were as-
sumed uncorrelated with standard deviation given
by [9]

σi =
σURAi

sin εi
(20)

where σURAi is the broadcasted User Range Accu-
racy for satellite i and εi is the satellite elevation
angle. This results in a diagonal weighting matrix
with elements

Qii =
1

σ2
i

=
sin2 εi
σ2
URAi

(21)
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5.3. Extended Kalman Filter
A different positioning method, which takes into
account the previous position estimates and the
system dynamics, is the Extended Kalman Filter
(EKF). The EKF works in discrete time, tk, and
for each iteration k of the filter we have two steps:

• Prediction, where we estimate the state vec-
tor x̂k using the observations from the previous
iteration,

• Filtering, where we estimate x̂k using the
state vector estimate of the prediction step and
the current observations.

5.3.1. Dynamics model
In this thesis, the P model for the EKF was imple-
mented. In this model, the state vector is [6]

x =


x
y
z
xφ
xf

 (22)

For this case, the state transition matrix Φ is
given by [6]

Φ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 ∆t
0 0 0 0 1

 (23)

And the noise covariance matrix is [6]:

Q =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 qφ 0
0 0 0 0 qf

 (24)

where qφ and qf are associated with the Allan vari-
ance parameters. In the case of a low-cost temper-
ature compensated crystal oscillator we get [10]

qφ ≈
h0

2
=

2 · 10−19

2

qf ≈ 2π2h−2 = 2π2
(
2 · 10−20

)
which, for a low-cost temperature compensated
crystal oscillator are [10]

h0 = 2 · 10−19

h−2 = 2 · 10−20
(25)

From Equations 23 and 24 we can obtain the
noise covariance matrix of the discrete-time dynam-

ics dynamics model, Qk, as [6]

Qk ≈ ΦQΦT∆t (26)

= ∆t


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 c2
(
qφ +

qf∆t2

3

)
c2qf∆t

2

0 0 0
c2qf∆t

2 c2qf

 (27)

where the clock variances where multiplied c2 be-
cause the clock errors are in units of meters.

5.3.2. Observations Model
The observations equation of the EKF is given by
[6]

zk = h [x(tk)] + vk (28)

where zk is the measured pseudorange vector with
n ≥ 4 observations, vk the observations noise and
h [x(tk)] is the navigation equation vector

h(x) =


√

(x1 − x)
2

+ (y1 − y)
2

+ (z1 − z)2
+ cδtr

...√
(xn − x)

2
+ (yn − y)

2
+ (zn − z)2

+ cδtr


(29)

In order to linearize the navigation equations,
we obtain the Jacobian matrix of 29. This matrix
is called the observation matrix, H, and is given by

Hk =

[
∂h(x)

∂x

]
x=x+

k−1

, (30)

For the P model used in this thesis, the observation
matrix for n observations can be defined as

Hk =

ax1 ay1 az1 1 0
...
axn ayn azn 1 0

 (31)

where the elements of the observation matrix are
axi = xi−x̂

r̂i , ayi = yi−ŷ
r̂i and azi = zi−ẑ

r̂i , and the
satellite-receiver range is

r̂i =

√
(xi − x̂)

2
+ (yi − ŷ)

2
+ (zi − ẑ)2

(32)

Finally, the observation noise covariance matrix
is given by

Rk =


σ2

1 0
σ2

2

. . .

0 σ2
n

 (33)
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Figure 2: Flowchart of the EKF algorithm for GPS
positioning [6] [11]

5.4. Unscented Kalman Filter
Another possible implementation of the Kalman
Filter for a non-linear system is the Unscented
Kalman Filter (UKF). In this method, instead of
linearizing the non-linear model, the Unscented
Transform (UF) is used to obtain the statistics of
the result of the non-linear function given a set of
sample points. The points used in the UT are called
sigma points, and together form the sigma vector,
X . For a given iteration k, these points are given
by [12]

X0,k = x̂k

Xi,k = x̂k +
√
n+ τ

(√
Pk

)
i

Xi+n,k = x̂k −
√
n+ τ

(√
Pk

)
i

with i = 1, . . . , n

(34)
where n is the size of x, τ is the scale factor of
the sampling and

(√
Pk
)
i

designates the i-th line of√
Pk and

√
Pk can be obtained using the Cholesky

decomposition [12]. After this sampling, the sigma
points are propagated through the non-linear func-
tion f

Yi, k = f (Xi,k) with i = 0, . . . , 2n (35)

and then the statistics of the resulting vector can be
obtained by means of a weighted average [12], from
which we can determine the mean and covariance

matrix

ŷk =

2n∑
i=0

WiXi,k

Pyy =

2n∑
i=0

Wi (Yi,k − ŷk) (Yi,k − ŷk)
T

(36)

where the weight values Wi are given by

W0 =
τ

n+ τ

Wi =
1

2 (n+ τ)

(37)

Figure 3: Flowchart of the UKF algorithm for GPS
positioning [12]

5.5. Carrier-Smoothed Code - the Hatch Fil-
ter

A set of techniques that allow the incorporation of
the very precise carrier phase measurements in the
position estimation wihout explicitly solving the in-
teger ambiguity problem are the Carrier-Smoothed
Code (CSC) methods. One such method is the
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Hatch Filter. The weighting factors W (n) for the
Hatch Filter, which are used to weight the influ-
ences of the carrier phase and pseudorange mea-
surements in the smoothed result are given by

W (n) = W (n− 1)− γ (38)

The weighting factor must be initialized in its first
iteration, for which we use the case where only the
pseudorange measurement is used:

W (1) = 1 (39)

Finally, the Hatch Filter equation is

ρs,k = W (n)ρk + (1−W (n)) (ρs,k−1 + Φk − Φk−1)
(40)

where γ is the averaging constant and defines the
averaging interval for the filter. Usually, it is set as
0.01 or 0.02, for a smoothing interval respectively of
100 or 50 seconds at 1Hz [13]. However, this filter
is corrupted by cycle slips and must be reinitialized
whenever they occur.

5.6. Differential GPS
Since this thesis’ theme is the positioning of base
stations for DGNSS techniques, it makes sense to
use one of those techniques to validate the obtained
results. The method used in this thesis is the
Double-Difference pseudorange method, also called
Code-Equivalent GPS Interferometer. The config-
uration of this system for two receivers and two
satellites is given in Figure 4 , where m and k are,

Figure 4: GPS interferometer configuration for twp
satellites

respectively, the reference and rover receivers, ρij
is the pseudorange between receiver j and satellite
i, ei is the direction vector to satellite i, b is the
vector from the reference to rover receivers, called
baseline vector and b·ei is the projection of b along
the direction of ei

Let us also consider that the distance between
the receivers and satellite is much greater than the
distance between receivers, which results in consid-
ering the GPS signal a planar wave at the receivers
and that both receivers share the same direction
vectors. Also, assume that the receivers are at ap-
proximately the same height, ensuring a similar tro-
pospheric error. By using the pseudorange model of
Equation 2 for both receivers, we can differentiate

the measurements from the same satellite between
the receivers, cancelling out the tropospheric, iono-
spheric, multipath and satellite clock bias terms.
This difference is called Single Difference (SD) and
is given by

SDi
km = ρik − ρim = rikm + cδtkm + εiρ,km (41)

where the subscript km represents the difference be-
tween receiver k and m for each parameter and m
was chosen as the reference receiver. From Figure
4 it is clear that the SD also corresponds to

SDi
km = b · ei (42)

Adding a second satellite, a new SD can be ob-
tained. By differencing these two SD, the receiver
clock bias term is cancelled out. This new difference
is the Double Difference and is given by

DDij
km = SDi

km − SD
j
km = rijkm + εijρ,km (43)

where the superscript ij denotes between which
satellites the difference is taken. We can also apply
the DD to Equation 42 to obtain the relationship
between the DD and the baseline vector:

DDij
km = b · ei − b · ej = b(ei − ej) = b · eij (44)

For this interferometer, the DD are all taken in
relation to the same satellite, which is the one with
highest elevation. Combining Equations 43 and 44
for n satellites we obtain the system
DD12

km

DD13
km

...
DD1n

km

 =


e12
x e12

y e12
z

e13
x e13

y e13
z

...
...

...
e1n
x e1n

y e1n
z


bxby
bz

+


ε12
km

ε13
km
...

ε1nkm

 (45)

which can be written in a more compact notation
as

y = B · b + e (46)

where y is the measured pseudorange DD vector, B
is the matrix of the components of the differenced
direction vectors, b is the baseline vector and e is
the measurement noise vector.

The baseline vector can then be determined
using for example a Least Squares method or a
Kalman Filter. In this case, we implemented a
very simple Kalman Filter with x = b, Φ = I3,
Q = 03×3 and H = B

5.7. RAIM
The Receiver Autonomous Integrity Monitoring
(RAIM) techniques allow a GPS receiver to detect
faulty satellites measurements that will degrade the
position solution [3].

Most of the RAIM algorithms follow the follow-
ing generic sequence of steps given a navigation so-
lution [14]:
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1. Use a detection parameter, the test statistic,
to detect the presence of a fault

2. Use the expected system noises and test statis-
tic relationship to describe a faulty measure-
ment

3. Establish a detection threshold based on the
desired probability of false alarm

4. Obtain the test statistic for each observation
and perform the fault detection

5. If there are detected faults, apply some method
to isolate the faulty satellite

6. Compute the protection levels (optional)

In this thesis, the focus will be on conventional
RAIM techniques, with Fault Detection (FD) and
Fault Detection and Exclusion (FDE) algorithms
based on Least Squares Residuals (LSR).

5.7.1. Fault Detection
This algorithm is responsible for checking for
anomalies in the received measurements and re-
quires at least 5 satellites. It works by dividing the
visible constellation into several subsets and using
that information to find the faulty satellite. For 5
satellites, since no redundancy exists, this algorithm
is merely informative.

5.7.2. Fault Detection and Exclusion
This algorithm, applicable only to sets of more than
5 satellites, excludes one satellite from each subset
and repeats the FD algorithm until it finds a subset
that won’t degrade the position solution.

5.8. Least Squares Residuals
For a set of pseudorange measurements, and using
the Least Squares solution, ∆x̂, given by Equation
17, we can obtain an estimate of the prefit-residuals
vector

∆ρ̂ = H∆x̂ (47)

From here, we can calculate the range residuals, w
[15]:

w = ∆ρ−∆ρ̂ = ∆ρ−
(
HTH

)−1
HT∆ρ (48)

For fault detection, we use the sum of squared
errors, SSE, as an error metric

SSE = wTw (49)

And then compute the test statistic, given by [15]

t =

√
SSE

n− 4
(50)

where n is the number of satellites used in the FD
algorithm. From here, a threshold λ can be defined
to perform a binary decision where t ≥ λ is con-
sidered a fault and t < λ is not. The detection

threshold is dependent on the false alarm proba-
bility, Pfa, and the number of visible satellites, n,
and cab be calculated by inverting the incomplete
gamma function [16]

1− Pfa =
1

2aΓ(a)

∫ λ2

0

e−
s
2 sa−1ds (51)

where a = (n − 4)/2 and the gamma function is
given by

Γ(x) =

∫ ∞
0

e−ttx−1dt ,with x ∈ R+ (52)

6. Experimental Results
In this chapter, the experimental methods and re-
sults are summarily described.

6.1. Experimental Setup
Data collection for this thesis was done using two
different types of receivers, two u-blox 6T receivers
and an Ashtech ProFlex 500 receiver, as well as dif-
ferent antennas and some processing software. All
the receivers were connected to a laptop computer
which provided both serial communication handling
and Internet Protocol (IP) communication. All the
used antennas were located at the top of the North
Tower of Instituto Superior Técnico.

6.2. Antenna reference position determina-
tion

In order to validate the experimental results, it was
necessary to compute an accurate estimate of the
antennas’ true position. This was done by process-
ing the data collected over a long survey window
with Precise Point Position algorithms. In this the-
sis, this was done by using IGS products and the
RTKLIB software, using a methodology similar to
the one described in [17]. The calculated positions
for each receiver are presented in Table 1

Ant X (m) Y (m) Z (m)

RF3 4918525.5233 -791212.0300 3969762.2262

RF6 4918532.1188 -791212.5264 3969754.7230

RF4 4918524.4824 -791213.3897 3969763.1602

Table 1: PPP position results for the used antennas

6.3. Algorithm validation using IGS station
data

6.3.1. Positioning algorithm validation
In order to validate the developed algorithms, they
were run against 24 hours of GNSS data from ESA’s
Malargüe Satellite Tracking Station in Mendoza,
Argentina. An initial implementation saw a very
large initial error with both EKF and UKF due to
mismatches between the initial position error esti-
mate and the actual error. This was solved by ini-
tializing the EKF and UKF with a LS result, which
greatly decreased the initial error and convergence

7



time. After this change the obtained results are
presented in Figure 5 and Table 2.

Error Metric LS WLS EKF UKF

Mean (m) 1.330 1.064 0.986 0.986

DRMS (m) 2.155 1.885 0.644 0.644

MRSE (m) 3.438 3.087 0.915 0.915

Table 2: Error metrics for the reference receiver
after correction of initial position

Figure 5: Absolute position error for the reference
receiver after correction of initial position

6.3.2. Hatch filter validation
After validating the positioning methods, the Hatch
Filter performance for different filtering parameters
was tested, in order to choose the best one to ap-
ply to the rest of the experimental results. Also,
since the Hatch Filter is dependent on cycle slip de-
tection, a simple algorithm based in the difference
between the smoothed and unsmoothed pseudor-
anges was implemented. For filtering constants of
0.005, 0.01, 0.015 and 0.02, it was observed that a
higher constant improves the error of the LS and
WLS, while slightly increasing the spread of the so-
lutions, while for the EKF and UKF a lower con-
stant yielded better results. A middle-ground value
of γ = 0.010 was then chosen for the rest of the
simulations.
6.4. Reference Station antenna position de-

termination
Applying the methods to the survey data of antenna
RF3, which will work as a reference station, the
obtained results are presented in Table 3.

From these results, it is clear that both EKF
and UKF present a much more precise and accurate
position solution, with an error bellow meter-level.
The Hatch Filter also results in a lower spread for
the LS and WLS results, but produces a slightly
higher mean error, while for the EKF and UKF the
effect is oposite.

6.5. Convergence over time of the position
solution

Another important metric is the time necessary for
the position solution to converge to below a given
error threshold, since not all base stations are per-
manent and only a short survey might be possible.
As such, the mean error over time was computed
and is presented in Figures 6 and 7.

Figure 6: Mean error variation over time for the
reference station antenna with no Hatch Filter

Figure 7: Mean error variation over time for the
reference station antenna with Hatch Filter and γ =
0.010

From these results, we see that the Hatch Filter
doesn’t change the overall mean error dynamic and
that even though both the Extended and Unscented
Kalman Filters present a higher initial error, their
mean error falls bellow the mean error of the Least
Squares methods relatively quickly, in just a few
hours. Even accounting for sharp decreases due to
constellation changes, the EKF and UKF show a
clear trend of more precise results with lesser vari-
ation after a few hours, with the UKF having the
lead in precision. The error increase after approxi-
mately 13 hours of surveying is most likely due to
constellation changes, as can be seen from Figure 8,
where there is a jump in the GDOP parameter to
much higher values.
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No Hatch Filter Hatch Filter with γ = 0.01

Error Metric LS WLS EKF UKF LS WLS EKF UKF

Mean (m) 1.386 1.300 0.750 0.602 1.388 1.312 0.732 0.587

DRMS (m) 1.589 1.557 0.818 0.750 1.341 1.377 0.826 0.755

MRSE (m) 2.264 2.249 1.558 1.349 1.990 2.028 1.565 1.355

Table 3: Error metrics for 24 hour position survey of the Reference Station Antenna

Figure 8: GDOP values for the 24 hour survey of
the reference station antenna

6.6. Improving the position estimate with
statistical methods

Another possibility to improve the position estimate
of the receiver is using statistical methods to obtain
a better ”average” value. To this end, a few meth-
ods were implemented.

6.6.1. The median as position estimate
This measure, given by the point that separates a
data set in two halfs, is designed to avoid biases
from fringe results. Applying this method to the
survey of the reference station, an increase in po-
sition estimate error, with and without the Hatch
Filter. As such, this leads us to exclude this method
as viable.

6.6.2. The weighted average as position esti-
mate

Another possible method to determine the position
estimate is the weighted average. By attributing
weights according to a specific criterion, an average
that disregards worse solutions is achieved. In this
case, the weighting was done using the inverse of
the GDOP parameter, de-weighting solutions with
lower expected accuracy. The results obtained from
this method show a slight increase in the position
error, which makes this method, using the GDOP
weighting criterion, unsuitable for position estima-
tion.

6.6.3. The MLE as position estimate
This method is based in the Maximum Likelihood
Estimation of Section 4. While initially both Nor-
mal and t-Location Scale distributions were consid-
ered for analysis, the MLE for the t-Location Scale

was unable to converge and only results pertaining
to the Normal distribution were used in this analy-
sis. The results of the MLE with Normal distribu-
tion are exactly the same as the previously deter-
mined mean, which is expected since the ML esti-
mator of the Normal distribution is the mean, re-
sulting in no improvement.

6.7. Filtering using a threshold
Instead of using all the data points, it is possible to
condition the data by imposing some filtering con-
dition with an associated threshold. For position
data, this can be accomplished by filtering the so-
lutions above a multiple of the standard deviation,
σ. Two different threshold were used: 1σ and 2σ.
For the 2σ threshold, the EKF and UKF present
a lower errror, but allow greater variation in the
data; meanwhile, for the LS and WLS, this greater
variation allows an increase in the estimate error.
For the 1σ threshold, the results show significantly
smaller variations but an increase in the mean error.
6.8. Final proposed positioning method
In order to more accurately compare each method
for their merits, the combination that gives the best
overall performance for each method was chosen.
For the LS and WLS this corresponds to a Hatch
Filter with γ = 0.010, estimate given by the mea-
surements’ mean and no thresholding, and for the
EKF and UKF the same methods but with a 2σ
threshold. The error measurements in these condi-
tions are presented in Table 4.

Error Metric LS WLS EKF UKF

Mean (m) 1.386 1.300 0.694 0.584

DRMS (m) 1.589 1.557 0.740 0.676

MRSE (m) 2.264 2.249 1.370 1.177

Table 4: Error metrics for 24 hour position survey
of the reference station antenna using the finalized
position methods

These results confirm that EKF and UKF show
much better results than LS and WLS in all metrics,
and as such they will be the selected methods for
base station position estimation.

6.9. Impact of RAIM in auto-surveying
In order to test how this algorithm impacts the po-
sition estimate, and in the absence of real RAIM
events, several different failures were added to the
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survey from Section 6.4. These consist in a 15 me-
ter pseudorange bias between epoch 100 and 200,
a 30 meter pseudorange bias between epoch 3000
and 3500 and a ramp bias, growing at the rate of 1
meter per second, between epochs 10000 and 12000,
applied to random satellites in the sub-constellation
that was used at that epoch. The RAIM algorithm
was run with a probability of false alarm of 8×10−7

[18]. The position error results with and without
RAIM are presented in Figures 9 and 10. The error
metrics for the entire observation are also presented
in Table 5. These results were obtained without the
Hatch Filter.

Error Metric LS WLS EKF UKF

Mean (m) 1.391 1.300 0.801 0.649

DRMS (m) 1.592 1.575 0.806 0.739

MRSE (m) 2.272 2.276 1.574 1.361

Table 5: Error metrics for 24 hour position survey
of the Reference Station Antenna after RAIM test

Figure 9: Reference station receiver error in
the presence of simulated faulty satellites without
RAIM

Figure 10: Reference station receiver error in the
presence of simulated faulty satellites with RAIM
FDE algorithm

From these results, it is clear that the RAIM
algorithm can prevent big position errors in the
present of faults, although only higher than a cer-
tain threshold due to the chosen probability of false
alarm. This shows the validity of RAIM augmenta-
tion even in the case of a static receiver.
6.10. Performance comparison with existing

auto-survey methods
In order to benchmark our methods, we must com-
pare them with a known auto-survey method, us-
ing the Survey-In mode for the u-blox 6T receivers
and RTKLIB in static mode for the ProFlex 500
receiver. These surveys were done in the same con-
ditions and for the same time, and the results are
presented in Figure 11. Comparing these results
with the results presented in Figures 6 and 7, we see
that the EKF and UKF methods proposed provide
a signifficantly better estimate than the Survey-In
mode, and, although worse, are moderately close to
those obtained by the ProFlex 500 receiver, within
approximately 25 centimeters of each other, which
is much higher quality than the receiver used in the
survey.

Figure 11: Auto-survey results for the u-blox 6T
and ProFlex receivers for a 24 hour survey

6.11. Differential GPS test
As a final performance test, the previous methods
were applied to a Double Difference DGPS setup in
order to determine the position of a rover receiver.
This made use of two u-blox 6T receivers, one con-
nected to antenna RF2 and another to RF6, and
the antenna position estimate was taken at 4 hour
intervals with both EKF and UKF. The results are
presented in Figures 12 and 12 and the mean error
is presented in Table 6, and clearly show that both
EKF and UKF produce accurate position estimates
for the base station, resulting in a sub-meter error
for the rover position.

7. Conclusions
With this work, it was shown that the EKF and
UKF provide much better position estimates than
the LS and WLS methods. It was also seen that the
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Extended Kalman Filter Unscented Kalman Filter

Hours 4 8 12 16 20 24 4 8 12 16 20 24

Mean error (m) 0.732 0.794 0.661 0.787 0.903 0.932 0.767 0.677 0.506 0.584 0.686 0.719

Table 6: Mean error for the DGPS receiver with base station position averaged after a set number of
hours

Figure 12: Rover position error with base station
position obtained with EKF and averaged after a
set number of hours

Figure 13: Rover position error with base station
position obtained with UKF and averaged after a
set number of hours

Hatch Filter shows mild improvements to the LS
and WLS methods, but only small improvements
for EKF and UKF, and that a 2σ threshold for
the position estimates bennefits the EKF and UKF,
with slight improvements to the WLS and a degra-
dation to the LS methods. These results prompted
the sole use of EKF and UKF as position estimation
methods. Finally, a DGPS setup was used to sim-
ulate a DGPS positioning scenario, validating the
previous results and achieving sub-meter accuracy
for the rover position estimate.
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