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Abstract

The analysis of the flow around bluff bodies is a well reviewed topic in computational fluid dynamics (CFD)
since it provides a canonical test case to perform code verification and solution validation. Furthermore, it features
complex physical phenomena (transition, separation, vortex shedding...) over a wide range of Reynolds numbers,
whose study finds relevant applications in the fields of aeronautics and offshore renewable energies. This work focuses
on the statistically unsteady flow around a circular cylinder, at a Reynolds number of 1 × 104, in fixed and imposed
motion conditions. The Reynolds-averaged Navier-Stokes (RANS) equations are used for modelling in order to
capture mean flow properties (in the sense of an ensemble average), and closed with the k−ω SST turbulence model.
Two-dimensional test cases are studied. An analysis of the available moving/deforming grid techniques to handle
imposed motion is performed, and the influence of the chosen technique on the selected set of boundary conditions for
the computational domain is studied. A systematic procedure to calculate the statistical, iterative and discretization
error is presented, both for the fixed and imposed motion cases, and a brief analysis of results from three dimensional
simulations is performed. Finally, flow field details are evaluated for selected test cases, a validation exercise is
presented, and the modelling limitations of the mathematical description are discussed. Similarities in the results
obtained with the moving/deforming grid techniques are shown, and insight is provided on cases in which the RANS
+ k − ωSST formulation successfully/unsuccessfully captures the mean flow properties.
Keywords: Cylinder, Moving/Deforming grids, RANS, Ensemble average, k − ω SST.

1. Introduction and Motivation

The analysis of the flow around cylinders employed in the
supporting structures of offshore platforms has been an
extensively documented topic in ocean engineering liter-
ature. Moreover, low aspect ratio cylinders (being this
quantity defined as the ratio between the cylinder length,
L, and the cylinder diameter, D), are known to model
offshore platform support structures (e.g. spar, mono-
column) more accurately than infinite/large aspect ratio
cylinders. As for aeronautical applications, the study of
the flow around bluff bodies has gained particular rele-
vance in the noise-reduction studies performed for landing
gears [1] and in the use of low aspect ratio circular pins as a
”flow control means to mitigate separation over a flapped
airfoil” [2].

1.1. Objectives

The core aim of the present work is to study the flow
around fixed and moving cylinders (imposed periodical
motion), in the latter case through the use of moving and
deforming grid techniques, with different sets of boundary
conditions applied. Additionally, since no clear agreement
has been found in the available literature regarding the
choice of deforming/moving grid methods to accurately
simulate the movement, the present study aims at provid-
ing further insight on this topic, analysing the problem
from a numerical standpoint and assessing the modelling
error of the obtained results, taking as a reference the

available experimental data from the literature. Further-
more, there is a focus in the analysis of some relevant flow
features (such as the characterization of the vortical pat-
terns in the cylinder wake) and in the discussion of the
recorded differences between the 2D and 3D test cases.
An additional objective is to diagnose relevant techniques
allowing to identify if the Reynolds equations in a statisti-
cally unsteady problem (such as the moving cylinder) are
capturing only the mean flow. If the diffusion provided by
the turbulence model is not sufficient, there is a risk to
start solving unwanted fluctuations.

2. Background

The three-dimensional analysis of the flow around cylin-
ders has been a well-reviewed topic over time. Gonçalves
[3] presented a comprehensive analysis of the flow around
very low aspect ratio fixed cylinders. Additionally, the
experimental work of Gonçalves [4] and numerical contri-
butions of Rosetti et al. [5] shed additional light on the
understanding of the flow around moving cylinders (both
in free motion and imposed motion). In [5] a moving grid
approach was used for the numerical treatment of the mesh
used in the moving cylinder case.

2.1. Vortex shedding: flow regimes and synchronization
regions for imposed motion

Williamson [6] collected a thorough historical perspec-
tive on the developments concerning the wake of bluff
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bodies. In his work [6], an overview of vortex shed-
ding regimes across a wide range of Reynolds numbers
is presented. These range from the laminar steady
regime, with a steady recirculation region comprising
two symmetrical vortices on each side of the wake (for
Re < 49), followed by the laminar vortex shedding,
and subsequent wake transition, shear layer transi-
tion and boundary layer transition. The sequence of
regimes is mainly motivated by fundamental shear flow
instabilities (thoroughly detailed in [6]), whose descrip-
tion is beyond the scope of the current investigation. For
Re = 1 × 104 (Reynolds number of the present computa-
tions), the flow is, according to [6], in the shear layer
transition regime. Additionally, Williamson [7] also
characterized the several vortex synchronization regions in
the cylinder wake as a function of the period/amplitude of
the imposed motion, using as relevant parameters the am-
plitude and wavelength ratio (most commonly referred
to as reduced velocity), defined as follows:

Amplitude ratio =
A

D
(1)

Wavelength ratio (Reduced V elocity) =
UT

D
=

λ

D
(2)

3. Problem Formulation
3.1. The RANS formulation for unsteady flows
When solving turbulent flows, it is often useful to adopt
a Reynolds decomposition approach to deal with the in-
trinsically unsteady features of turbulence. The Reynolds
decomposition can be applied to both steady and un-
steady flows, being the only difference between the two
the definition of the mean value of the decomposition:
in steady flows, the mean value of the decomposition
represents the time average of the quantity of interest,
whereas in unsteady flows, the mean value of the decom-
position represents the ensemble average of the quan-
tity of interest. Thus, for an unsteady flow, the Reynolds
decomposition is

φ(xi, t) = φ(xi, t) + φ′(xi, t) (3)

with

φ(xi, t) = lim
N→∞

1

N

N∑
n=1

φ(xi, t) (4)

Applying the averaging technique to the continuity and
momentum equations, the following result is obtained (for
incompressible flow), in tensor notation and Cartesian co-
ordinates:

∂(ρui)

∂xi
= 0 (5)

∂(ρui)

∂t
+

∂

∂xj

(
ρui uj + ρu′iu

′
j

)
= − ∂p

∂xi
+
∂τij
∂xj

(6)

The 2003 version of the k − ω SST model [8] is used in
the present study in order to provide closure for the RANS
equations.

3.2. Computational Domain
Bearing in mind an important goal of validating the nu-
merical work developed in the present project, the experi-
mental data of Gopalkrishnan [9] was taken as a reference
for the choice of computational domain. As displayed in
figure 1 (and taking the origin of the x − y coordinate
system to be placed at the center of the cylinder) the in-
let of the rectangular domain was placed at x = −40D,
the outlet at x = +78D and the side walls at y = +51D
and y = −51D. The depth of the computational domain
(along the z direction) was later adjusted according to the
cylinder length used in the 3D test cases.

3.3. Boundary Conditions
One of the main goals was to select physically accurate
BC in order to mimic the experimental conditions; addi-
tionally, it was fundamental to ensure compatibility be-
tween the chosen boundary conditions and the deform-
ing/moving grids methods employed in the moving cylin-
der test cases. This second goal was found to be relevant
after performing some tests and empirically verifying that
an additional set of boundary conditions should be tested
in order to seek a solution for the identified problem. This
aspect is further explored in subsection 3.3.2.

3.3.1 First set of boundary conditions: BC-DEF

The following set of boundary conditions was selected (the
corresponding names used in figure 1 are also presented):

• Inlet: uniform flow, with specified streamwise veloc-
ity vector (Ṽ = (1,0,0)[m/s]), specified k and ω, and
pressure (p) extrapolated; (BCInflow)

From an inlet turbulence intensity I = 1× 10−2, k =
1.5×10−4U2

∞ [m2/s2] is obtained. Furthermore, using
νt
ν = 1× 10−4, ω can be obtained from ω = k

νt
[1/s].

• Outlet: specified pressure (p = 0), and null stream-
wise derivatives for the remaining quantities (∂φ∂x = 0);
(BCPressure)

• Top and bottom walls: specified normal velocity
component (Vy = 0) and null normal derivatives for

the remaining quantities (∂φ∂y = 0); (BCSlipwall)

• Side walls: symmetry condition, Vz = 0; (BCSym-
metryPlane)

• Cylinder wall: no-slip and impermeability bound-
ary condition, with all velocity components set to be
equal to the wall velocity, and the normal pressure
derivative equal to zero. No wall functions were used.
(BCWall)

3.3.2 Second set of boundary conditions: BC-
MVG

In the simulations concerning the use of a moving grid
setup, the same choice of boundary conditions specified for
the deforming grid were originally applied. Nevertheless,
after performing the calculations according to this setup,
artificial pressure oscillations were observed, which moti-
vated a second choice of boundary conditions. Namely, at
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the outlet surface, the streamwise derivatives of all depen-
dent variables were set to zero (∂φ∂x = 0), corresponding to
the BCOutflow designation in the software ReFRESCO.
At the top and bottom walls the pressure was specified to
be zero (in order to avoid free pressure values in the direc-
tion of motion of the cylinder), with null normal deriva-
tives for the remaining quantities (∂φ∂y = 0), corresponding
to the BCPressure designation. The remaining bound-
ary conditions were maintained with respect to the BC-
DEF setup. Figure 1 illustrates both the computational
domain dimensions and the BC-DEF set of boundary con-
ditions analysed.
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Figure 1: BC-DEF set of boundary conditions and
computational domain dimensions.

4. Solution Procedure
4.1. Software ReFRESCO
The 2.5 version of the ReFRESCO software was used in
all the computations performed in the present work. Re-
FRESCO is a viscous-flow CFD code that solves multi-
phase (unsteady) incompressible flows using the Navier-
Stokes equations.

4.2. Numerical Model
The software ReFRESCO employs a PETSc (Portable Ex-
tensible Toolkit for Scientific Computation) solver for the
linear equations, and for the mass-momentum coupling.
The convective fluxes in the momentum equations were
in the present work discretised using a LIMITED QUICK
scheme [10] (QUICK scheme with a flux limiter), whereas
for the turbulence equation a first order upwind (FOU)
scheme was used. The time integration was performed us-
ing an implicit three-time level (2nd order) scheme for all
equations, except for turbulence. In this case a first order
scheme had to be employed, for robustness purposes.

4.3. Grids
The grids used in this investigation were obtained using
the Grid Generation Tools for Structured Grids [11]. The
structured grids generated for the simulations followed a

multi-block approach, with different regions in the com-
putational domain, in order to better capture the features
of the flow. As displayed in figure 2, the grid is symmetric
with respect to the x axis and therefore only the part of
the grid with positive y coordinates is presented.
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Figure 2: Details of the blocks used in the structured grid.
Due to symmetry with respect to the x axis, only half of
the whole computational domain is presented.

The grid blocks were designed in order to appropriately
capture the near wall and near wake region of the cylinder.
Consequently, a near-wall circular region (with a 3.5D ra-
dius) was used, and the near wake region was extended to
a length of 25D. This strategy allowed a good captur-
ing of the flow features in these zones (which comprised
a greater number of grid points), without unnecessarily
overloading the remaining blocks with a significant num-
ber of cells. In order to be able to later provide an estima-
tion of the discretisation error (through a grid refinement
study), several grids were generated, with a different num-
ber of points placed on the surface of the cylinder. Table 1
displays this information for all the used grids. The values
indicated under the column ”grid name” specify the num-
ber of points placed per each sector of 45 on the surface of
the cylinder; therefore, the total number of points on the
whole surface is obtained through a multiplication by 8.

Grid name (hi/h1) Points on the cylinder surface Total elements
Grid 40 1.6 40× 8 = 320 18400
Grid 48 1.33 48× 8 = 384 26496
Grid 56 1.14 56× 8 = 448 36064
Grid 64 1.00 64× 8 = 512 47104
Grid 80 0.80 80× 8 = 640 73600
Grid 96 0.67 96× 8 = 768 105984
Grid 112 0.57 112× 8 = 896 144256

Table 1: Number of points used on the surface of the
cylinder for each of the generated grids, and total number
of elements in each of the grids.

4.4. Mesh deformation and moving mesh algorithms
A fundamental part of the present study focused on the use
of two distinct deforming grid methods when performing
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the moving cylinder calculations. The Delaunay Graph
Mapping (DGM) method, [12] the Radial Basis Func-
tion (RBF) interpolation method and the Inverse Distance
Weighting (IDW) interpolation method are examples of
point-by-point techniques for mesh deformation. Both the
RBF and IDW methods are used in the present work, and
the underlying theory concerning these techniques can be
found in [13] and [14]. Using a moving grid method is
an alternative approach that can be used for the moving
cylinder test case. It essentially consists in displacing the
grid cells according to the imposed motion on the object,
without enforcing fixed boundaries on the computational
domain. This procedure was also employed in the present
work, in order to provide additional data to be compared
with the results obtained through the use of the two mesh
deformation algorithms. It shall be recalled that the use
of a moving grid approach implied/motivated the defini-
tion of a new set of boundary conditions, as previously
explained in subsection 3.3.2.

4.5. Test Cases

All the cases evaluated in the course of the present in-
vestigation comprised one fixed or driven cylinder placed
in the previously described computational domain, with
the aforementioned (two) sets of boundary conditions, at
a Reynolds number of Re = 10, 000. The choice of this pa-
rameter followed the aim of backing up the numerical and
experimental results of Rosetti et al. [5] and Gopalkrish-
nan [9], respectively. The driven motion test cases followed
literature data found in [5] [9], and therefore a sinusoidal
motion was imposed to the cylinder, y(t) = Asin(ωit),
being y(t) the transverse coordinate of the cylinder cen-
ter over time, A the amplitude of the prescribed periodic
motion and ωi the dimensional frequency of the move-
ment. Following [5] and [9], the non-dimensional ampli-
tude A/D = 0.3 was selected, and a range of reduced ve-
locities (which specify the non-dimensional motion period)
UR = UTi/D from 3 to 10 was chosen. Finally, additional
three-dimensional driven motion test cases were included
in order to provide a relevant comparison with the corre-
sponding two-dimensional setups.

4.6. Quantities of interest

A few post-processing routines were written in FORTRAN
90 in order to compute the minimum, maximum, average
and rms values of the total force coefficients and perform
a FFT (Fast Fourier Transform) of the forces’ time series
in order to evaluate the frequency content of the obtained
signals (this was later used for the statistical convergence
study, which will be further explored in section 5). For the
sake of brevity, only the results concerning the CDavg and
the CLrms will be detailed in the present document, since
they were considered to be representative of the overall
trends observed for the remaining computed quantities.

5. Numerical Convergence
5.1. General considerations

The main objective of the numerical convergence studies
(developed in detail for the 2D cases) was the comparison
of the fixed and forced motion test cases with respect to
the behaviour of the numerical error. A fundamental as-

pect that had to be taken into account when performing
the numerical convergence studies was the range of grids
selected for each of the fixed and imposed motion cases.
It was found that, in the imposed motion cases, the fre-
quency content revealed by the time history of the forces
was not as expected for all the generated grids. Therefore,
before quantifying the statistical and iterative components
of the error, an aspect that was found to deserve attention
at an early stage was the analysis of the frequency con-
tent displayed by the time traces of the force coefficients.
Thus, a FFT (Fast Fourier Transform) analysis was per-
formed for the solutions obtained for all the grids, in order
to evaluate if significant differences were found in the fre-
quency spectrum. Figures 3 and 4 display the obtained
FFT for two of the test cases. A clear peak is identified in
the fixed case, corresponding to the natural frequency as-
sociated with the vortex shedding phenomenon. In the im-
posed motion case the first peak (also associated with the
natural vortex shedding) is also present, displaying how-
ever a slight shift in frequency relatively to the fixed case.
The second peak (with greater intensity) represents the
excitation frequency of the imposed motion (f = 1/UR).
When refining the grid - from grid 64 to grid 80 - it
was observed that the frequency content displayed by the
FFT changed. While for the fixed the case the difference
was minimal (slight broadening of the energy peak corre-
sponding to the natural vortex shedding phenomenon, fig-
ure 3), the imposed motion case revealed the appearance
of unwanted low frequency content in the signal (figure
4). This was confirmed by an analysis of the time history
of the force coefficients, which showed the appearance of
additional low frequencies, both in moving and deforming
grid setups.

In order to analyse if the selected timestep for the
simulations was appropriate, a test was performed for
UR = 5.0, (for all the grids), using both a constant
∆ti/∆t1 and a constant hi/h1. Figure 5 displays the re-
sult for the variable CDavg. The influence of changing the
grid refinement ratio is preponderant over the influence of
changing ∆ti/∆t1, which justifies the use of a constant
Courant number for the grid/time refinement studies.

Naturally, the appearance of low frequency fluctuations
with grid/time refinement questions if the mean flow prop-
erties - according to the selected RANS formulation - are
correctly being captured. Thus, only the cases that dis-
played well defined energy peaks - predictably representing
in fact the mean flow frequency content - in the corre-
sponding FFT were selected for the statistical and itera-
tive convergence studies. Table 2 identifies the grids for
which the obtained frequency spectrum was as expected,
both for the fixed and imposed motion setups.

Reduced velocity (UR) Grids with expected frequency content
< 3 None
3 40, 48, 56, 64
5 40, 48, 56, 64
10 40, 48, 56, 64, 80

∞ (Fixed case) 40, 48, 56, 64, 80, 96

Table 2: Grids used for the numerical error estimation in
the fixed and imposed motion test cases.
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Figure 3: Frequency content of the CL signal, for
the fixed case, (FIXED-BC-MVG setup), using an
iterative tolerance of 5 × 10−6. Result obtained for
grid 64 and grid 80.
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Figure 4: Frequency content of the CL signal, for the
reduced velocity UR = 3.0, (RBF-BC-MVG setup),
using an iterative tolerance of 5 × 10−6. Result ob-
tained for grid 64 and grid 80.

5.2. Statistical convergence studies

The plots presented in figures 6 and 7 display the evolution
of the percentage statistical error (computed according to
the methodology proposed by Brouwer in [15]), for the
variable CDavg and for both the 2D fixed cases and 2D
imposed motion cases (with UR = 3.0). The behaviour of
the variable CLrms was found to be quite similar and is
herein omitted for the sake of brevity.

The first aspect that stands out when analysing figures
6 and 7 is the difference in the evolution of the statistical
error in the fixed vs. imposed motion case. On the one
hand, it is clear that in the fixed case, the statistical er-
ror reaches a plateau for values of iterative tolerance lower
than 1 × 10−5 (approximately). On the other hand, for
the imposed motion scenario, the statistical error displays
a steady decreasing trend as the iterative tolerance is low-
ered. Furthermore, it is relevant to compare the order of
magnitude of the statistical error for both cases, for typ-
ical values chosen for the iterative tolerance; establishing
this comparison for 5×10−4, it is clear that the statistical
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Figure 5: CDavg for all the imposed motion setups, UR =
5.0, with ∆ti/∆t1 = hi/h1, with constant ∆ti/∆t1 = 0.(6)
and constant hi/h1 = 0.(6).
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tion of iterative tolerance, for the fixed case.
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error is unacceptably large in the imposed motion scenario
(≈ 1 × 10−1 to 1 × 100 for the RBF method), while low
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enough in the fixed cases (lower than 1 × 10−3 for the
selected variable).

5.3. Iterative convergence studies
The iterative error associated to the selected variables
(for the same test cases) was also evaluated, using the
procedure referenced in [16] to perform error estimation.
Figure 8 displays the iterative convergence behaviour for
the CDavg in the imposed motion setups with UR = 3.0,
for the reference grid (grid 64). The results for the fixed
test cases and for CLrms are herein omitted for the sake
of brevity. After this analysis, an iterative tolerance of
5× 10−6 was chosen for the remaining test cases (run
over a total of 200 cycles).
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Figure 8: Iterative convergence for CDavg for the im-
posed motion case with UR = 3.0.

5.4. Grid/time refinement studies
The reference procedures found in [17] were used to per-
form the discretisation error estimation. It shall be out-
lined that the grid refinement ratio and time refinement
ratio were maintained from grid to grid, in order to pre-
serve the initial CFL condition tuned for the reference
grid. That is,

hi
hj

=
∆ti
∆tj

(7)

being the subscripts i and j used in the present case
to designate any subset of two grids i, j from the set of
four grids initially selected. The grid refinement studies
were carried out for the fixed and imposed motion cases
(with all three reduced velocities). However, the results
for UR = 10.0 are herein omitted as they approach the
ones obtained with the fixed setup.

5.4.1 2D Fixed cylinder

Figure 9 displays the grid refinement study performed for
the fixed case, with and without including the two finest
grids tested in this case (grids 80 and 96). The improve-
ment in the convergence behaviour is clear in both setups,

with the addition of the two finest grids. This trend dis-
plays the ideal situation that would be desirable in the im-
posed motion cases - that is, the use of two additional, finer
grids - if not for the shortcomings concerning the appear-
ance/resolution of unwanted frequencies with grid refine-
ment (as previously explained for the case of UR = 3.0).
Figure 9 shows both setups on the same plot.
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Figure 9: Convergence behaviour for both setups (FIXED-
BC-DEF and FIXED-BC-MVG), superimposed on the
same plot.

5.4.2 2D Moving cylinder: UR = 3.0

Grid number Number of timesteps per cycle ∆t [s]
40 100 0.03
48 120 0.025
56 140 0.0214(285714)
64 160 0.01875

Table 3: UR = 3.0: selected grids and corresponding ∆t
for the grid refinement study

Figure 10 displays the trend observed in the computed
CDavg when adding the information corresponding to
grids 80, 96 and 112 (for which the FFT of the time history
of the force coefficients revealed unwanted low frequency
oscillations, as previously mentioned). As it is clearly
seen, the data points corresponding to these grids are com-
pletely off-trend with respect to the remaining grids (and
there is even a clear difference between the RBF-BC-DEF
and RBF-BC-MVG setups for grid 80, outlined with black
circles), which is a good indication that, in this case, the
mean flow properties are not correctly captured anymore,
leading to a mathematical model that depends on the grid
size, which is not the goal of RANS.

5.4.3 2D Moving cylinder: UR = 5.0

Figure 11 displays the curve fit for the four selected grids
in this case (identified in table 4), along with the data
points corresponding to the simulations using grid 80, for
the IDW-BC-DEF setup, and grids 80, 96, and 112 for
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Figure 10: Grid refinement study for CDavg, for UR = 3.0,
using the four selected grids, with the addition of grid
80 (for the RBF-BC-MVG setup) and grids 80, 96 and
112 (for the RBF-BC-DEF setup).

Grid number Number of timesteps per cycle ∆t [s]
40 125 0.04
48 150 0.0(3)
56 175 0.0(285714)
64 200 0.025

Table 4: UR = 5.0: selected grids and corresponding ∆t
for the grid refinement study
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Figure 11: Grid refinement study for CDavg, for UR = 5.0,
using the four selected grids, with the addition of grid
80 for the IDW-BC-DEF setup and grids 80, 96 and
112 for the RBF-BC-DEF setup.

the RBF-BC-DEF setup. In this case, it was observed
that the appearance of undesired frequency content in the
time traces of the force coefficients did not significantly
affect the convergence behavioural trend (the data points
corresponding to grid 80 for the IDW-BC-DEF and RBF-
BC-DEF setups are even superimposed, due to a very neg-
ligible difference in the CDavg value), possibly due to the
fact that in the lock-in region, in which the vortex shed-

ding frequency and the external excitation frequency col-
lapse onto one, the expected frequency content is still well
separated from the low frequency oscillations appearing
with grid refinement. However, no error estimation was
performed for the three finest grids, since it was still not
entirely clear if the mean flow properties were accurately
being captured.

5.5. 3D Analysis

The analysed 3D test cases used the RBF-BC-DEF setup,
and three different cylinder aspect ratios were evaluated:
L/D = 3.0; 6.0; 12.0. Figure 12 shows the influence of the
cylinder aspect ratio in the frequency spectrum of the lift
coefficient signal. Reducing the length from L/D = 12.0
to 6.0 (and even further to 3.0) leads to the appear-
ance/growth of the low frequency energy peaks in the
response, which confirms the decrease of the dissipation
provided by the turbulence model as the cylinder aspect
ratio (length) is decreased. Finally, figures 13 and 14 dis-
play the data points obtained for the two variables of in-
terest (CDavg and CLrms), for grids 40, 48, and 56. In
the 3D cases, the unwanted frequency content is even more
significant than in the 2D simulations; therefore, the sys-
tematic procedure to compute statistical variables of in-
terest employed in the 2D study is no longer applicable in
the present case (which is revealed by the differences in the
calculated variables when using the last 40 or 100 cycles of
the time history of the forces, as shown in figures 13 and 14
for L/D = 3.0) and the obtained force coefficients should
be evaluated under a conservative point of view. All in
all, the results obtained display the clear shortcomings of
a RANS formulation (already identified in the 2D cases) in
the studied 3D cases: the appearance of well distributed
low frequency content questions the correct attainment of
mean flow properties, due to a lack of diffusion provided by
the employed turbulence model to filter these frequencies.
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Figure 12: FFT analysis for the lift coefficient signal, using
the RBF-BC-DEF setup, UR = 3.0, grid 56, for L/D =
3.0, 6.0, and L/D = 12.0.

7



h
i
/h

1

C
D

a
v

g

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
1.3

1.35

1.4

1.45

1.5

1.55

1.6

RBF_BC_DEF, L/D=3.0 (40 cycles)

RBF_BC_DEF, L/D=3.0 (100 cycles)

RBF_BC_DEF, L/D=6.0 (grid 56)

RBF_BC_DEF, L/D=12.0 (grid 56)

Figure 13: Data points for CDavg, for UR = 3.0 and
L/D = 3.0, RBF-BC-DEF setup (grids 56, 48, 40).
Additional points for L/D = 6.0 and L/D = 12.0
displayed for grid 56.
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Figure 14: Data points for CLrms, for UR = 3.0 and
L/D = 3.0, RBF-BC-DEF setup (grids 56, 48, 40).
Additional points for L/D = 6.0 and L/D = 12.0
displayed for grid 56.

6. Comparison with experimental data and flow
analysis

6.1. Validation exercise: 2D and 3D cases

Figure 15 presents the collection of 2D imposed motion
results (with an additional data point at UR = 3.2), the
reference experimental data from Gopalkrishnan [9] and
the 3D imposed motion results obtained. The information
displayed concerns the average drag coefficient (CDavg),
a representative parameter for this analysis. The proxim-
ity of the 2D numerical results to the experimental data
is clear for UR = 3.0; however, this matching between
results appears to be progressively lost as the reduced ve-
locity is increased (that is, the experimental data is still
comprised within the numerical error bars for UR = 5.0, in
spite of some difference in the results, and for UR = 10.0
the numerical and experimental data are clearly different).
Additionally, the proximity of the 2D results and experi-
mental data for the lowest reduced velocity, UR = 3.0 (that
is, the greatest frequency of excitation) suggests that the
three-dimensional effects become less and less relevant for

U
R

C
D

a
v

g

2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2
IDW_BC_DEF (2D; grid 64)

IDW_BC_MVG (2D; grid 64)

MVG_BC_MVG (2D; grid 64)

RBF_BC_DEF (2D; grid 64)

RBF_BC_MVG (2D; grid 64)

RBF_BC_DEF (3D; L/D=3.0; grid 40)

RBF_BC_DEF (3D; L/D=6.0; grid 56)

RBF_BC_DEF (3D; L/D=12.0; grid 56)

Gopalkrishnan 1993 (3D)

Figure 15: Comparison of the obtained 2D and 3D numer-
ical results (for all setups) with the available experimental
data (3D) for the selected range of reduced velocities (UR),
adding the point corresponding to UR = 3.2.

situations in which the cylinder is moving with a greater
externally imposed frequency (situations in which the in-
ertial terms are preponderant in the overall momentum
balance, in comparison to the diffusive terms). On the
other hand, as UR is increased (that is, as the frequency
of excitation is decreased and the cylinder approaches a
fixed condition, which would correspond to UR =∞), the
differences between the 2D and 3D cases become extremely
clear. The proximity of the data point corresponding to
UR = 3.2 to the points corresponding to UR = 3.0 rein-
forces the confidence in the matching with the experimen-
tal data, in this range of reduced velocities. Furthermore,
the 3D numerical results comply with the previously pre-
sented hypothesis: in fact, it is clear that there is a small
difference between the 2D/3D cases for the lowest reduced
velocity (UR = 3.0), whereas this difference becomes more
apparent as the reduced velocity increases. Thus, in spite
of the identified problems for UR = 3.0 with respect to
capturing the mean flow, this case is also the one in which
the 2D/3D/experimental have a better match, which con-
firms that, as the reduced velocity is decreased, the role of
diffusion/turbulence modelling also decreases with respect
to the overall momentum balance.

6.2. Vortex synchronization regions along the reduced ve-
locity spectrum (2D cases)

The main characteristics of the cylinder near-wake were
compared for all three reduced velocities (UR = 3.0, 5.0
and 10.0), taking as a reference the work of Williamson [7],
in which the vortex synchronization regions in the cylinder
near wake were characterized. Furthermore, a comparison
was also established for the different combinations deform-
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ing/moving grid methods + set of BC used in the present
work. Only the results obtained for UR = 3.0 are herein
presented.

6.2.1 Near wake for UR = 3.0

Figure 16: Instantaneous
x velocity plot for the
RBF-BC-DEF setup, at
point of minimum lift co-
efficient, for UR = 3.0.

Figure 17: Instantaneous
x velocity plot for the
MVG-BC-MVG setup,
at point of minimum lift
coefficient, for UR = 3.0.

Figures 16 and 17 display the coalescence pattern iden-
tified by Williamson in [7] (C mode), in which the small
structures coalesce in the cylinder’s nearest wake. Fur-
thermore, in spite of the selected set of BC and mov-
ing/deforming grid setup chosen, the well known near
wake structures are correctly captured in both cases, and
match the vortex synchronization patterns identified by
Williamson in his work [7].

6.3. Modelling limitations of a RANS formulation in sta-
tistically unsteady flows

As stated by Pereira in [18], the success of using a RANS
formulation will naturally depend on the ”ability of the
closure strategy to represent the flow field”. That is, the
RANS approach will essentially be appropriate when the
largest, energy containing scales of turbulence are accu-
rately modelled. For the practical case of this study - a
statistically unsteady flow - this would imply a good sep-
aration (in terms of the frequency spectrum) between the
mean flow and the turbulent structures. However, as it has
been shown along this analysis, the presence of coherent
structures (such as the vortex shedding phenomenon) es-
sentially poses a possible interaction with turbulent struc-
tures, then making the ”analysis of flow-fields non-trivial”,
as observed by Pereira in [18]. All in all, the aforemen-
tioned aspects support the narrow range of application of
a RANS formulation in statistically unsteady flows - con-
firmed by the numerical simulations run in the course of
the present work - and pose the need to accurately define
this range with precise indicators.

6.4. Indicators to evaluate the suitability of the RANS
approach

The effective Reynolds number (defined as follows),
and previously proposed by Pereira [18] is a relevant indi-
cator to evaluate this suitability:

Reeff =
U∞D

ν + νt
= Re

1

1 + νt
ν

(8)

As stated by Pereira in [18], ”an effect of modelling a
fraction of the turbulence field is the reduction of the ef-
fective Reynolds number at which the computations are
performed”. Hence, a qualitative indicator of how appro-
priate the mathematical modelling is (meaning that only
the mean flow is captured and turbulence is entirely mod-
eled) will be the extension of regions in which a low effec-
tive Reynolds number is observed (specifically, lower than
1000, which corresponds to the onset of the shear layer
transition regime identified by Williamson in [6]) in the
cylinder near wake. The analysis of the effective Reynolds
number plots displayed (expectable) differences in the on-
set of the shear layer transition regime found for all three
imposed motion cases (UR = 3.0, 5.0, 10.0). The figures
are herein omitted for the sake of brevity. Naturally, due
to a difference in the external excitation frequency, the re-
gion corresponding to an effective Reynolds number lower
than 1000 will be different in each of the three cases. How-
ever, after identifying this region in all cases (say, for ref-
erence grid 64), it is possible to evaluate how the effective
Reynolds number changes in the near wake when the grid
is refined.

Figure 18: Effective
Reynolds number in the
cylinder near wake, at
the point of minimum
lift coefficient, for grid
64, using the RBF-BC-
DEF setup at a reduced
velocity UR = 3.0.

Figure 19: Effective
Reynolds number in the
cylinder near wake, at
the point of minimum
lift coefficient, for grid
80, using the RBF-BC-
DEF setup at a reduced
velocity UR = 3.0.

Figures 18 and 19 display this comparison. It is visible
that the extension of the region with Reeff < 1000 clearly
decreases when refining the grid (from grid 64 to grid 80),
which reinforces the thesis that the turbulence model used
for closure is not efficiently damping out turbulent fluctu-
ations, leading to an undesired resolution (instead of mod-
elling) of turbulent scales. The use of this indicator reveals
a viable strategy to qualitatively assess the suitability of
the chosen modelling approach. Moreover, the monitor-
ing of local variables (velocity, pressure) that was carried
out at given points on the cylinder near wake showed the
appearance of unwanted frequency content with grid re-
finement, which strengthens the analysis carried out so far
and sheds additional light on RANS modelling properties
in statistically unsteady flows.

7. Conclusions

An extensive comparison of the results obtained with
both sets of boundary conditions (BC-DEF and BC-MVG)
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and with the deforming/moving grid techniques was per-
formed, both for the fixed and imposed motion scenarios.
Overall, it was found that the influence of the chosen BC
and moving/deforming grid technique on the computed
solution was negligible. Additionally, comparable results
were registered for the near wake vortex synchronization
patterns, as seen in chapter 6).

One the most important findings yielded by this analysis
concerns the behaviour of the frequency content in both
fixed and imposed motion scenarios with respect to grid
refinement. The appearance of unwanted low frequencies
was predominant for the lowest reduced velocities (namely,
UR = 3.0), becoming less relevant for the fixed and highest
reduced velocity cases. This behaviour was attributed to
a particularly strong lack of diffusion in the former cases,
which essentially caused an undesired resolution of turbu-
lent scales by the model, preventing an appropriate cap-
turing of the mean flow properties and ultimately ques-
tioning the validity of a RANS formulation complemented
with a k − ωSST turbulence model in these cases. The
effective Reynolds number, along with the FFT from the
force coefficients’ signals, proved to be valuable tools to
identify the test cases in which the mean flow properties
were successfully captured.

7.1. Future Work
As for the identification/development of relevant sensors
to provide a stronger assessment of the RANS formulation
modelling properties, the work of Pereira [18] has already
presented successful contributions concerning this aspect.
In order to extend the already developed analysis, the use
of the effective Reynolds number (computed with local ve-
locity, instead of the reference velocity, U∞), could yield
additional information to provide a better distinction be-
tween the cases with different reduced velocities. Addi-
tionally, a technique to identify the relative importance of
convective/diffusive terms in the overall momentum bal-
ance could be developed, thus quantifying the contribution
of diffusion from the turbulence model in each test case.
And finally, assessing the behaviour of a different turbu-
lence model (instead of the herein used k − ω SST) could
be a useful pathway for additional insight on this specific
topic.
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