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Abstract

The cost of wind energy can be reduced by using SCADA data to detect faults in wind turbine
components. Normal behavior models are one of the main fault detection approaches, but there is a
lack of consensus in how different input features affect the results. Also, most works use ANNs, which
are known to be black-box models with high computational costs. In this work, a new taxonomy based
on the causal relations between the input features and the target is presented. Based on this taxonomy,
the impact of different input feature configurations on the modelling and fault detection performance is
evaluated. To this end, a framework that formulates the detection of faults as a classification problem
is also presented. Finally, GBMs will be tested as an alternative to ANNs.
Keywords: causal, NBM, turbine, fault, SCADA

1. Introduction
In 2018, global energy-related CO2 emissions
reached a historic high of 33.1 gigatonnes. These
emissions are caused by the burning of fossil fuels,
mainly natural gas, coal and oil, which accounted
for 64% of global electricity production in this same
year [1]. Greenhouse gases like CO2 are responsible
for climate change which threatens to change the
way we have come to know Earth and human life.
For the previous reasons, there has been a global
effort to shift from a fossil fuel based energy system
towards a renewable energy one. In fact, it is ex-
pected that by 2050 wind energy will represent 14%
of the world’s total primary energy supply [2].

The operation and maintenance costs of Wind
Turbines (WTs) can account for up to 30% of the
cost of wind energy [3]. This happens because while
generators in fossil fuel power plants operate in a
constant, narrow range of speeds, WTs are designed
to operate under a wide range of wind speeds and
weather conditions. This means that stresses on
components are significantly higher, which increases
the number of failures and consequently the main-
tenance costs [4].

There have been recent efforts to monitor and de-
tect incipient faults in WTs by harvesting the high
amounts of data already generated by their Super-
visory control and data acquisition (SCADA) sys-
tems, which, in turn, enables the wind farm own-
ers to employ a predictive maintenance strategy.
In fact, it is expected that by 2025 new predic-

tive maintenance strategies can reduce the cost of
wind energy by as much as 25% [5]. One of the
main methods for monitoring the condition of WTs
is building Normal Behaviour Models (NBMs) of
the component temperatures. The fundamental as-
sumption behind the use of NBMs is that a fault
condition is normally characterized by a loss of effi-
ciency, which results in increased temperatures. By
using SCADA data to build a model of the temper-
atures of the WT components, one can calculate the
residuals, which are the difference between the real
values measured by the sensors and the predicted
values by the model. These residuals can be used
to detect abnormally high temperatures that may
be indicative of an incipient fault.

Firstly, it’s important to clarify that NBMs can
be evaluated in terms of how well they model the
target temperature and in terms of how well they
detect faults. The first corresponds to evaluat-
ing how low are the residuals during healthy pe-
riods of time, while the second corresponds to eval-
uating if there is an increase in the residuals be-
fore a failure. Regarding the literature, multiple
works [6–8] have reported good results using NBMs,
being able to predict failures in WT components
months in advance. In these works, the authors
used as features active power, nacelle temperature
and lagged values of the target temperature, thus
including autoregressive properties into the model.
In [9] and [10] the authors noted that although
the use of autoregressive features resulted in bet-
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ter temperature modelling performance it also re-
sulted in worse fault detection performance. But
there have been works that obtained the oppo-
site result, where including autoregressive features
improved both the temperature modelling perfor-
mance of the model and the fault detection per-
formance, such as [11, 12]. Another important re-
sult was obtained in [13] and [14], which indicated
that using features that are highly correlated with
the target also increased the modelling performance
but decreased the fault detection performance of the
model. Nonetheless, these type of features are still
used in a variety of works today, such as [10, 15–17].

Summarizing, there is a lack of consensus regard-
ing which input features should be used, existing
significant variation between works. The main rea-
son behind this is the lack of consistent case stud-
ies that evaluate the impact of different features on
both the temperature modelling and fault detection
performances. It should also be noted that in NBMs
it’s not trivial that the more features the model has
the better its fault detection performance will be.
This happens because the model is being trained
to minimize the temperature modelling error and
not the fault detection one. Having this in mind,
this work will present a new feature taxonomy to
distinguish different input feature types. Then, the
impact of these input feature types on the temper-
ature modelling and fault detection performances
will be evaluated.

It’s also important to note that all mentioned
works have used Artificial Neural Networks (ANNs)
or ANN-based algorithms to build the NBMs. This
may be due to the existing domain knowledge of
the non-linear relationships between the input fea-
tures and the target. Since ANNs are known for
their highly non-linear modelling capabilities, they
are good candidates. Nonetheless, these works have
also criticized their high computational costs, time-
consuming optimization and low interpretability.
The latter is specially important in this type of in-
dustrial application, where there is skepticism to-
wards black-box models. This raises the need for
other solutions. A good candidate are Gradient
Boosting Machines (GBMs), known for their highly
non-linear modelling capabilities, while having con-
siderably lower computational costs and being more
robust to hyperparameter optimization [18]. GBMs
also have higher interpretability due to being tree-
based models. Also, GBMs have obtained excellent
results in time series modelling, as shown in works
[19] and [20]. For these reasons, this work will assess
the use of GBMs for building NBMs.

Finally, evaluating the fault detection perfor-
mance of different models is not as trivial as evalu-
ating their temperature modelling performance. In
fact, there is no standard in the literature regard-

ing how to evaluate fault detection performance.
This happens because of the inherent nature of the
fault detection problem, in which there is rarely
groundtruth. Indeed, there is data of when the fail-
ure happened, but there is no information regarding
when the fault state started, making it not trivial
to formulate as a classification problem. Hence why
the majority of the literature evaluates the fault de-
tection results by visual inspection, observing the
increase in the residuals before the failure. This is
problematic, because comparisons between differ-
ent models will be highly subjective. Having this in
mind, this work will also present a formulation of
the detection of faults as a classification problem.

2. Methods
The data used in this work comes from a wind farm
composed of 16 turbines, from the beginning of 2008
to the end of 2013. During the years of 2012 and
2013 there were a total of nine failures related with
the gearbox bearing of the WTs. Hence, this will
be the component for which a NBM will be trained.
It should also be noted that all the work was devel-
oped in Python 3, using Pandas [21] for data pro-
cessing and Plotly [22] for data visualization.

2.1. Gradient Boosting Machines and Training
The NBMs in this work will be based in GBMs,
which are a machine learning technique that uses a
prediction model in the form of an ensemble. This
means that it combines multiple simple models into
a single composite model. In boosting terminology,
the simple models are called weak learners. In this
work, as is standard for most problems, the weak
learners will be decision trees.

Given the input features vector x, the ensemble
FM (x) will be composed of M weak learners of the
form fm(x), which will have the predictions ŷ for
the target y. This is formalized in equation 1. To
understand the process of building the ensemble we
can imagine that the starting weak learner simply
predicts the mean of the observations, such that
f0(x) = y . That means the residuals for that it-
eration will be given by Equation 2. Now, another
weak learner, f1(x), will be added to the composite
model, and ideally it would make F1(x) able to pre-
dict y as Equation 3 shows. For this to happen, the
new weak learner must be equal to the residuals, as
demonstrated in Equation 4. Note that in practice
the model would need more weak learners, and it
would never equal the target values. Nonetheless,
the main idea is that in GBMs the added models are
trained on the residuals of the previous model. For
the general case it can be summarized as in Equa-
tion 5, in which it’s also been added the learning
rate η, which is a hyperparameter used to prevent
overfitting, so that each added weak learner has less
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of an effect on the composite model.

FM (x) =

M∑
m=0

fm(x) = ŷ (1)

r0 = y − f0(x) = y − y (2)

F1(x) = f0(x) + f1(x) = y (3)

f1(x) = y − f0(x) = r0 (4)

ŷm = ŷm−1 + ηrm−1 (5)

Regarding the dataset division, the models were
trained with data from the beginning of 2008 to
the end of 2011 and tested on data from 2012 and
2013. Periods with faults will be removed from the
training data so the model does not learn abnormal
behaviour. In terms of implementation, LightGBM
[23] will be used due to its high computational per-
formance. In terms of optimization, the year of 2011
will be used as a validation set when choosing the
number of trees for each model by early stopping.
Note that no exhaustive hyperparameter optimiza-
tion was performed, so all models will use the same
hyperparameters besides the number of trees.

2.2. Feature Taxonomy
As mentioned in the Introduction, there have been
works which indicated that using features that are
highly correlated with the target increases temper-
ature modelling performance but may decrease the
fault detection performance of the model [13, 14].
For example, if the gearbox bearing temperature is
being modelled, it’s expected that when it gets hot-
ter the gearbox oil temperature will also get hotter,
due to heat transfer. Indeed, it is intuitive that the
gearbox oil temperature is highly correlated with
the gearbox bearing temperature and thus will be
important for modelling. But the problem is that
a state of fault is characterized by overheating in
the gearbox bearing temperature, and again, due
to heat transfer, the gearbox oil temperature will
also be hotter than expected. This means that if
the gearbox oil temperature is being used to model
the gearbox bearing temperature, the model may
model abnormal behavior and thus not be able to
detect the incipient fault. Having this in mind, the
present work hypothesizes that the decrease in fault
detection performance is not due to the fact that the
features are highly correlated with the target tem-
perature, which is subjective since there is signifi-
cant correlation between rotor speed and the gear-
box bearing temperature. In fact, we suggest that
what decreases the fault detection performance is
using features that have an interdependence with

the target, so not only is the target dependent on
them, they are also dependent on the target. This
happens for all temperatures in the drivetrain, since
there is heat transfer between all of them.

Although the ideas behind the previous hypoth-
esis are intuitive, it’s important to make it more
objective by using a clearer nomenclature. For this
reason, we will present a new taxonomy based on
Econometric Causality [24] and Causal Inference
[25], which distinguishes features based on their
causal relations with the target. Basically, if the
target is causally dependent of the features, they
are considered causal features. On the other hand,
if there is a causal interdependence between the fea-
ture and the target, as in they are dependent on
each other, they are considered simultaneity fea-
tures.

As was shown in the previous example, these
causal relations can be assumed since we have do-
main knowledge of the physical system. The present
work suggests the causal diagram presented in Fig-
ure 1, where the arrows represent causal relations.
If the arrow is double-pointed, it means that there
is interdependence between the variables. It should
also be clarified that mediators are also causal fea-
tures. The only difference is that they are not the
original cause, in fact they mediate the causal ef-
fect from other causal features. For example, the
gearbox bearing temperature depends on the rotor
speed, but the rotor speed depends on the wind
speed. This means that the origin of the causal ef-
fect is the wind speed, thus meaning that this is a
causal feature, while the rotor speed is a mediator
of this causal relation. For the purpose of the work,
mediators will be considered causal features, but
there is interest in further exploring how this intri-
cacies can affect the NBM both in terms of temper-
ature modelling and fault detection performances.

The introduced taxonomy clarifies some details
from previous works. For example, usually the
nacelle temperature was not considered a feature
highly correlated with the target, and the works
that criticized the use of highly correlated features
actually used the nacelle temperature [13]. Accord-
ing to this taxonomy, both the nacelle temperature
and the gearbox oil temperature are simultaneity
features, which means that if the gearbox oil tem-
perature does negatively affect fault detection per-
formance, then it’s expected that nacelle tempera-
ture also does.

Regarding the use of autoregressive features,
these are clearly causal features, since there is a
temporal relation that prevents the future values
from affecting past values. Nonetheless, as noted
in the literature, the impact of these features in
model performance is not consensual. For exam-
ple, if there is a developing fault and the gearbox
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Figure 1: Causal diagram for the gearbox bearing
temperature.

bearing is overheating, then the use of previous val-
ues that were already hotter than they should be
to model the present temperature may result in the
NBM modelling abnormal behavior. In fact, us-
ing autoregressive features in an NBM can also be
seen as what is being modelled is not the actual
gearbox bearing temperature, but the temperature
rate of change. Since the model has knowledge of
the previous timestamps, it is expected to learn the
normal rate of change of temperature. Thus, the
model should be mostly insensitive to changes in
the mean value of the target temperature. This is
problematic if the fault is characterized by a change
in the mean temperature for the given conditions,
but if the fault is also characterized by an abnormal
rate of change in the temperature then the autore-
gressive model should be able to detect it. This
indicates that the impact of autoregressive features
may depend on the type of fault, which may also
explain the non-consensual results obtained in the
literature.

2.3. Feature Configurations
Based on the previous taxonomy, different models
will be defined based on their input feature con-
figuration. The simplest model that will be tested
is the Causal Normal Behaviour Model (CNBM),
which only uses causal features. These are deter-
mined based on domain knowledge and will be: ro-
tor speed, active power, pitch angle, wind speed
and ambient temperature. All these features char-
acterize the operation regimes of the WT. Another
input feature configuration, the Simultaneous Nor-
mal Behaviour Model (SNBM), will consist of us-
ing both causal features and simultaneity features.
Regarding the simultaneity features, since the ones
most used in the literature are nacelle tempera-

ture and gearbox oil temperature, these will be the
ones tested in this work on models SNBM1 and
SNBM2 respectively. Another model will be the au-
toregressive version of the CNBM, the Autoregres-
sive Causal Normal Behaviour Model (ACNBM).
Then, the autoregressive versions of the SNBMs,
the Autoregressive Simultaneous Normal Behaviour
Model (ASNBM), will be tested in both variants:
ASNBM1 and ASNBM2. A summary of the input
features used in each model is presented in Table 1

Table 1: The defined models and the corresponding
input features.

Model Causal
Features

Nacelle
Temp.

Gearbox
Oil Temp. AR

CNBM X
SNBM1 X X
SNBM2 X X
ACNBM X X
ASNBM1 X X X
ASNBM2 X X X

2.4. Fault Evaluation Framework
Before the actual evaluation framework one must
obtain alarms from the residuals. Indeed, this can
be done by simply using thresholds, in which all the
values above the threshold are alarms. But in the
context of predictive maintenance it’s not necessary
to know if there is an alarm at every sample of the
signal. In fact, for this work knowing if there is
an alarm each day is sufficient. For this reason,
the alarms that will be used in the framework will
be generated from a daily mean resample of the
residuals. These will be compared with the labels,
by making use of the evaluation framework that will
be described.

To develop an evaluation framework for fault de-
tection, one must first formulate it as a binary clas-
sification problem where there are two labels: fault
and no-fault. Since there is no information regard-
ing the fault state of the component, only the date
of failure, it was defined with the wind farm owners
that for the failures studied in this work it can be as-
sumed that a fault state would be present at most 90
days before the failure. It was also defined that for
the alarms to be useful they should be triggered at
least 15 days before the failure. This means that to
be considered a True Positive (TP) the alarm must
be triggered between 90 and 15 days before the fail-
ure. Figure 2 presents a schematic example of the
previously described problem formulation. Taking
this example, it is important to note that the num-
ber of alarms triggered in the prediction window is
not relevant, they are all aggregated as 1 TP. The
main reason for this, is that if the aggregation is
not done, then 4 alarms for the same failure would
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count as much as 4 detected failures with 1 alarm
each. This clearly is not what is intended of the
framework, since 1 alarm should be enough to mo-
tivate an inspection, and detecting 4 failures with 1
alarm outweighs detecting 1 failure with 4 alarms.
Finally, it is also important to note that alarms trig-
gered less than 15 days before the failure are not
considered False Positives (FPs), since there is in-
deed a fault state, it simply is not relevant, so they
are considered True Negatives (TNs).

0
 Days before

failure -90 -Δt

Alarms

1 TP 1 TN1 FP

Labels

2 FP

Figure 2: Schematic example of the fault detection
classification problem formulation.

It should be noted that for the implementation
of the framework with the total 16 turbines, the
thresholds values ranged from -2 to 4, with incre-
mental steps of 0.1. The minimum prediction win-
dows were 1, 10, 20, 30, 40, 50, 60, 70 and 80 days.
Also, this process will be done for each of the six
models. This results in a total of 51840 combina-
tions, which can be considerably time-consuming
to compute. Having this in mind, the evaluation
framework was implemented making use of Dask
[26], which provides parallel and distributed func-
tionalities to Pandas. To take full advantage of
Dask’s distributed capabilities, the results were cal-
culated using a cluster computing framework in the
cloud, with a total of 30 workers with eight cores
each, thus allowing 240 tasks to be performed in
parallel and obtaining considerably better compu-
tational time performance.

2.5. Classifier Evaluation
Although the confusion matrix provides all the in-
formation related with the fault detection perfor-
mance of the model, the objective is to summarize
this into a single classification metric. Here it’s im-
portant to remember that although the majority
of the literature only does visual residual analysis,
there have been some works that have evaluated the
results as a classification problem. For example, in
[15] the author used the Receiver operating charac-
teristic (ROC) curve to evaluate the performance of
each model. But it’s also important to remind that
this problem is clearly an unbalanced one, since the
number of no-faults labels is notably higher than
the number of fault labels. From this results that
the use of the ROC curve and other more common
metrics such as accuracy are not adequate, since

they are not robust to unbalanced data. On the
other hand, metrics such as precision and recall are
significantly more robust to unbalanced data [27].
The definition of precision and recall is presented
in Equations 6 and 7, and it should be noted that
they have an interpretable meaning. Precision cor-
responds to how many of the triggered alarms were
true, and recall corresponds to how many of the fail-
ures were detected. For each threshold corresponds
a precision and a recall, so for varying thresholds
one can construct a precision and recall curve. Each
precision and recall curve can be summarized into
a metric, the Area Under the Curve (AUC), which
corresponds to the area under the curve. Given that
the precision and recall curve is a discrete function,
the AUC can be calculated by Equation 8, where k
corresponds to the different thresholds of the frame-
work. This will be the metric used to evaluate fault
detection performance.

P =
tp

tp+ fp
(6)

R =
tp

tp+ fn
(7)

AUC =

N∑
k=1

P (k)∆R(k) (8)

3. Temperature Modelling Results
In Figure 3 is presented a period of time where
an healthy turbine worked under different regimes,
such as high and low power production, as can be
seen by the active power signal, and also during
braking, as can be seen by the pitch angle signal.
Regarding the predictions of the models, in this case
study the CNBM and the ACNBM are being eval-
uated, and as can be seen both models are able to
follow the true signal during the majority of time,
even for different turbine loads. But it’s important
to note that the predictions of the CNBM are signif-
icantly worse when the blades pitch to around 95◦to
stop the turbine. For example, during the morning
of July 31st there are two periods of time where the
WT stopped by using the pitch angle brake system,
and the CNBM predicts that the temperature of the
gearbox bearing would be lower than what it really
is. This is problematic, since it would lead to false
positives during the fault detection, because the real
temperature is below the predicted one, not due to
the existence of a fault but due to the model not
learning the braking regime.The reason behind this
may be due to the fact that the WT being stopped
by the pitch brake system is not a common event,
which means it is under represented in the dataset.
This hypothesis is supported by the fact that in
the training dataset only 1% of data corresponds to
when the pitch angle is above 90◦. This means that
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Table 2: Regression evaluation metrics for the different models on the train and test sets.

Model Train Results (◦C) Test Results (◦C)
MAE RMSE SD MAE RMSE SD

CNBM 1.05 1.63 1.25 1.36 1.75 1.11
SNBM1 1.03 1.61 1.23 1.31 1.74 1.15
SNBM2 0.39 0.56 0.40 0.52 0.73 0.51
ACNBM 0.55 0.85 0.65 0.63 0.94 0.69
ASNBM1 0.51 0.80 0.62 0.60 0.91 0.68
ASNBM2 0.33 0.48 0.35 0.41 0.59 0.42

Table 3: Algorithm and features used in the NBMs and corresponding results for works in the literature.

Work Input Features Test Results (◦C)

Causal Nacelle
Temp.

Gearbox
Oil Temp. AR MAE RMSE SD

[28] X 2.15 2.93 2.88
[29] X - - - 0.663 - -
[15] X X X - 1.22 -
[30] X X X - - 1.3
[6] X X X - 1.23 -
[13] X X X X 0.44 0.77 -
[10] X X X X - 0.31 -

the models wouldn’t be able to learn this behavior
as well as the most represented ones. On the other
hand, the ACNBM is able to predict the tempera-
ture with much less error in this regime. This may
be due to the fact that the ACNBM has autore-
gressive features, which considerably simplify the
prediction task, thus explaining the notably bet-
ter results during this regime, independently of it
being under-represented. Another possible expla-
nation is that the braking of the turbine is exactly
the time when it is harder to predict the tempera-
ture behavior from causal features, since it results
in the stopping of the rotating components, making
it the regime in which these causal features provide
the least predictive power to the model. From this,
results that in this regime the target temperature
mostly depends on its previous values, hence why
the autoregressive models performs better.

The results for all the healthy periods of the to-
tal WTs are presented in Table 2 for the train and
test sets, in terms of Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and Standard
Deviation (SD). As expected, the ASNBM2 obtains
the best performance on all for metrics for both the
training and test sets, since it is the model with
more features. The results also indicate that the
gearbox oil temperature provides more predictive
power to the model than the autoregressive fea-
tures, hence why the SNBM2 has a better perfor-
mance than the ACNBM. Also, the nacelle temper-
ature doesn’t seem to provide significant predictive
power to the model, since the CNBM obtains sim-
ilar results to the SNBM1. This may be due to
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Figure 3: Target temperature predictions for the
CNBM and ACNBM against the true values.

the fact that all the relevant information that the
nacelle temperature contains is already explained
by the ambient temperature. Finally, these results
also confirm the point previously raised, that au-
toregressive features and highly target correlated
simultaneity features such as the gearbox cooling
oil temperature increase the temperature modelling
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Figure 4: Residuals during a fault state for the CNBM, SNBM2 and ACNBM.

performance of the model. This is due to them mod-
elling better specific regimes, as was seen in Figure
3, but also due to modelling better the overall be-
havior of the component.

It’s also important to compare these results with
the ones reported in the literature. To this end, in
Table 3 are presented the results from works in the
literature, with the corresponding input features of
the NBMs. Due to the inexistence of a standard
dataset in this area, comparisons between works are
always susceptible to some degree of subjectivity.
But since the datasets are all from the SCADA sys-
tem, the major part of the difference in the results
should originate from the input features and the al-
gorithm used. Having this in mind, it’s interesting
to note that [28] is the only model to only use causal
features and the results obtained are significantly
worse than the ones obtained by the CNBM in this
work, which also only uses causal features. Regard-
ing SNBMs, the results from [15] and [30] are also
worse than the ones obtained in this work with the
SNBM2. Finally, in terms of autoregressive mod-
els, the ASNBM2 obtained better results than [13]
but worse results than [10]. In general, these re-
sults indicate that GBMs can obtain similar results
to ANNs, thus being a potential alternative for sig-
nificantly lower computational costs. Furthermore,
tree-based methods such as GBMs have increased

model interpretability, which is important for indus-
try related applications, such as predictive mainte-
nance, since there is skepticism regarding black-box
models.

4. Fault Detection Results
The results presented in Figure 4a show the residu-
als of each model during a state of fault. The mod-
els CNBM and ACNBM clearly show an increase in
the residuals previously to the failure and a decrease
after the corresponding maintenance. Indeed, these
models detect a fault state previously to the failure.
On the other hand, the SNBM2 doesn’t detect the
fault state, showing no increase nor decrease of the
residuals. This indicates that this fault resulted in
an overheating of the gearbox bearing and in conse-
quence the gearbox oil temperature also increased.
Hence why using the gearbox oil temperature as an
input feature to the model resulted in a leak of infor-
mation regarding the fault state of the component,
thus making the model predict abnormal behavior
and not detect the fault.

Regarding the CNBM and the ACNBM, both
show an increase in the residuals at least 70 days
before the failure. What is interesting is that the
residuals seem to indicate that the CNBM could
have actually predicted the failure even earlier, hav-
ing spikes up to 140 days before the failure. This
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Figure 5: Evolution of the AUC over the prediction windows for the different models.

motivated a more careful inspection of the residuals
which resulted that, in fact, these residual spikes
are related with the regimes that the CNBM did
not learn, as previously noted in Figure 3. This
was expected, since the maximum predictive win-
dow should be 90 days, according to the estab-
lished groundtruth. This also confirms the previ-
ous assumption that the regimes not learned by the
CNBM may lead to false positives.

Regarding the regimes not learned by the CNBM,
it should be reminded that they happen mostly
when the turbine is shutting down. This makes
them the least relevant for fault detection since
it’s when the rotating components are stopped, and
thus the temperature variations are not necessarily
related with efficiency changes, which are the basis
of using NBMs for fault detection. Thus, a sim-
ple approach to improve the results, as was already
proposed in [15], is to apply an active power filter.
The majority of these regimes happened when the
WT had active power below 200kW, so this was the
value used, below which the residuals are filtered
out. In Figure 4b are presented the results with the
active power filter. It’s interesting to note that the
residual spikes of the CNBM at 140 days and 120
days before the failure disappeared, indicating they
were indeed false positives related with the turbine
shutting down.

4.1. Evaluation Framework Results
The visual residual analysis provided intuition in
how well each model predicts failures. But as moti-
vated in the Introduction, this analysis is both sub-

jective and time-consuming. Having this in mind,
the results of the developed automated evaluation
framework will now be analysed. Before that, it
should be noted that a baseline was defined that
consists of setting different thresholds on the distri-
bution of the target temperature and obtaining the
corresponding precision and recall.

In Figure 5 is presented the evolution of the AUC
for the different models over the various prediction
windows, with and without the active power fil-
ter. Regarding 5a, the results indicate that the AC-
NBM obtains the best performance for all predic-
tive windows. Indeed, its non-autoregressive coun-
terpart, the CNBM, obtains considerably worse re-
sults. This may be due to the FPs that the CNBM
has, as was seen in the visual residual analysis. This
leads to a lower precision and consequently a lower
AUC. It’s also interesting to note that the mod-
els with the nacelle temperature obtain worse re-
sults, indicating that although this feature doesn’t
impact temperature modelling performance it does
decrease fault detection performance. Finally, the
models with the gearbox oil temperature clearly ob-
tain the worse results. This is aligned with the re-
sults from the visual residual analysis, where the
SNBM2 did not detect the fault state. The results
with the active power filter are presented in Figure
5b. These results confirm the results from the vi-
sual inspection. The CNBM clearly improves the
performance with the filter, being close to the au-
toregressive models. This also confirms the assump-
tions that the low AUC was due to the model not
capturing certain regimes.
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5. Conclusions
The majority of the literature uses ANNs for build-
ing NBMs. In this work, it was shown that GBMs
obtain competitive temperature modelling results.
This is relevant because GBMs are known to have
lower computational costs and also higher model in-
terpretability. It was also developed a taxonomy to
categorize input features into different types based
on their causal relation with the target tempera-
ture. This allowed to evaluate how different input
feature affect the performance of the model. Re-
garding temperature modelling performance, causal
models are able to follow the target temperature
during the majority of the time, but have signif-
icant error during certain regimes. The addition
of the autoregressive features makes the previous
model able to capture those regimes, leading to a
considerably better temperature modelling perfor-
mance. Furthermore, the addition of the nacelle
temperature doesn’t have a significant impact in the
temperature modelling performance of the model,
while the gearbox oil temperature notably increases
it, even more than the autoregressive features.

Then, detection of faults was formulated as a
classification problem and an evaluation framework
was developed using classification metrics for un-
balanced datasets. The results from this framework
confirmed those obtained by visual inspection, indi-
cating that this is a good alternative which is more
objective and involves less manual work. Regard-
ing the fault detection performance of the models,
the results indicated that the causal model obtains
better AUC than the baseline, but it has significant
false positives due to the regimes it did not learn
as well. The addition of autoregressive features re-
duces these false positives thus increasing fault de-
tection performance. Indeed, the model with the
autoregressive features was able to predict all fail-
ures without false positives up to 20 days before the
failure. As previously motivated, the effect of using
autoregressive features may depend on the type of
failure, but for the ones present in this work, their
use increased fault detection performance. Also, the
use of the gearbox oil temperature completely elim-
inated the fault detection capabilities of the model.
The nacelle temperature also seemed to decrease
the fault detection performance of the model. This
means that although simultaneity features can im-
prove the temperature modelling performance of
the model, they decrease the fault detection per-
formance.These results are aligned with the works
in the literature that showed that highly correlated
features, such as gearbox oil temperature, resulted
in lower fault detection performance. But this work
also showed that the origin of the problem is not the
features being highly correlated, but due to the si-
multaneity nature of their causal relation

Finally, this work also showed that besides using
autoregressive features to improve the fault detec-
tion performance of causal models, one can also use
post-processing techniques on the residuals. The
results showed that the active power filter consid-
erably increased the fault detection performance of
the model, due to filtering out the regimes that this
model didn’t learn as well. Indeed, this is an area
for further research. Namely, techniques to handle
imbalanced datasets, such as under-sampling, may
be investigated. Besides that, more post-processing
techniques based in other input features, such as
the pitch angle, may result in better filtering of the
regimes not learned by the causal model and thus
increase fault detection performance.
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