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Abstract 

The following document presents a case study analysis of SENSIBLE, a demonstration project implemented in Valverde, 

Portugal, led by EDP NEW R&D. The main goal is the integration of different storage technologies, photovoltaic energy 

and a Home Management System (HMS) into a total of 25 households, maximizing the economic benefits for the end 

customer. 

The performance of the project is assessed from August 2017 to July 2018. Then, the HMS is modelled with Matlab to 

test some demand response strategies, based on day ahead forecasts on the photovoltaic production and the expected 

electricity demand. 

From the analysis, the average Self-Consumption Ratio is 57.23%, and an average Self Sufficiency Ratio is 31.16%. The 

project generates on average 29 €/month of savings for each customer. From a financial perspective, the most feasible 

configuration is the installation of a photovoltaic panel with a smart water heater reaches the back in 12 years, with an 

IRR of 14%. 

The model has been tested with different strategies: the application of the new algorithm on the HMS showed potential 

in shifting the demand to night hours, but does not bring economic benefits. 

The carbon footprint of the end customers has been reduced of around 10.9 tonnes of CO2 equivalent, due to the 

renewable penetration. 

A final discussion on the potential development of such projects across Europe is then introduced, concerning the risk of 

an unfair redistribution of the grid costs. 
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Resumo 

O seguinte documento apresenta a análise de caso de estudo do SENSIBLE, um projeto de demonstração implementado 

em Valverde, Portugal, liderado pela EDP NEW R & D. O principal objetivo é a integração de diferentes tecnologias de 

armazenamento, energia fotovoltaica e um sistema de gestão residencial (em inglês, Home Management System, 

HMS) num total de 25 residências, maximizando os benefícios económicos para o cliente final. 

O desempenho do projeto é avaliado desde agosto de 2017 a julho de 2018. Em seguida, o HMS é modelado com Matlab 

de forma a testar algumas estratégias de resposta à procura, com base nas previsões do dia seguinte de produção 

fotovoltaica e a procura esperada de eletricidade. 

A partir da análise, o índice médio de autoconsumo é de 57,23%, e o índice médio de auto-suficiência é de 31,16%. O 

projeto poupa a cada cliente 29 € / mês em média. Do ponto de vista financeiro, a configuração mais viável é a instalação 

de um painel fotovoltaico com um aquecedor de água inteligente que tem retorno em 12 anos e uma TIR de 14%. 

O modelo foi testado com diferentes estratégias: a aplicação do novo algoritmo no HMS mostrou potencial em mudar a 

demanda para a noite, mas não traz benefícios econômicos. 

A pegada de carbono dos clientes finais foi reduzida cerca de 10,9 toneladas de CO2 equivalente, devido à penetração 

renovável. 

É então apresentada uma discussão final sobre o potencial desenvolvimento de tais projetos em toda a Europa, baseada 

no risco de uma redistribuição injusta dos custos da rede. 
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Nomenclature 

𝐴𝑝𝑣  Area of the photovoltaic panel  [m] 

𝐵𝑐   Battery Capacity  [Wh] 

𝐵𝑒𝑓𝑓   Usable energy of the battery  [Wh] 

𝐵𝑚𝑎𝑥  Battery maximum charge/discharge power [W] 

𝐸𝐵𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒  Electricity bill in SENSIBLE project  [€] 

𝐸𝐵𝑠𝑡𝑑  Electricity bill in the standard case [€] 

𝐸𝑏,𝑖𝑛 Battery electricity input [Wh] 

𝐸𝑏,𝑜𝑢𝑡  Battery electricity output [Wh] 

𝐸𝑑  Electricity demand of the appliances [Wh] 

𝐸𝑑𝑡𝑜𝑡  Total electricity demand [Wh] 

𝐸𝑔𝑒𝑛  Electricity generation [Wh] 

𝐸𝑖𝑛𝑗  Electricity injected in the grid [Wh] 

𝐸𝑝 Electricity purchased from the grid [Wh] 

𝐸𝑝𝑣 Electricity produced by the photovoltaic panel [Wh] 

𝐸𝑠𝑐  Electricity self-consumed [Wh] 

𝐸𝑤ℎ,𝑒𝑙  Energy consumed by the electric hot water heater [Wh] 

𝐸𝑤ℎ  Electricity consumption of the water heater [Wh] 

𝐺𝐻𝐺𝑒  Total greenhouse gases emissions [g CO2 eq] 

𝐺𝑇 Irradiance on the tilted surface [W] 

𝐼𝑇  Total irradiation on the tilted surface [Wh] 

𝐼𝑏  Beam Irradiation on the horizontal surface [Wh] 

𝐼𝑑,𝑇 Diffuse irradiation on the tilted surface [Wh] 

𝐼𝑑  Diffuse irradiation on the horizontal surface [Wh] 

𝐼𝑜  Extra-terrestrial irradiation on a horizontal surface [Wh] 

𝐼𝑜𝑛 Extra-terrestrial irradiation on a horizontal surface normal to the beam [Wh] 

𝑃𝑝𝑣 Rated power of the photovoltaic panel [W] 

𝑅𝑏 Ratio of beam radiation on a tilted surface  

𝑇𝑎𝑚𝑏  Ambient temperature [K] 

𝑇𝑐𝑒𝑙𝑙  Photovoltaic cell temperature [K] 

𝑇𝑖𝑛𝑙𝑒𝑡  Inlet temperature of the water coming from the pipeline [K] 

𝑇𝑚𝑎𝑥  Maximum temperature of the water heater [K] 

𝑉𝐻2𝑂 Volume of water [m3] 

𝑐𝐻2𝑂 Specific heat of water [J/(gK)] 

𝑐𝑤  Specific heat of water [J/(gK)] 

𝜃𝑍 Zenith angle [rad] 

𝜇𝑇 Efficiency of the photovoltaic panel due to temperature [%] 

𝜇𝑏 Roundtrip battery efficiency [%] 
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𝜇𝑑𝑖𝑟𝑡  Efficiency of the photovoltaic panel due to dirt [%] 

𝜇𝑖𝑛𝑣 Inverter Euro Efficiency [%] 

𝜇𝑚𝑜𝑑𝑢𝑙𝑒  Efficiency of the photovoltaic module [%] 

𝜌𝐻2𝑂  Density of water [kg/m3] 

CHP Combined Heat and Power  

DR Demand Response  

DSM Demand Side Management  

HMS Home Management System  

IEA International Energy Agency  

PV Photovoltaic  

SCR Self-Consumption Ratio [%] 

SSR Self Sufficiency Ratio [%] 

𝐶 Capacity factor [%] 

𝐶𝐹 Cash Flow [€/y] 

𝐶𝐼 Carbon Intensity [g CO2 eq] 

𝐶𝑃𝑃 Contracted power price  

𝐺 Irradiance [W] 

𝐺𝐻𝐼 Global Horizontal Irradiation [Wh] 

𝐼𝑅𝑅 Internal Rate of Return [%] 

𝐾 Clear Sky Index [%] 

𝑁𝑂𝐶𝑇 Normal Operating Cell Temperature [°C] 

𝑁𝑃𝑉 Net Present Value [€] 

𝑅𝑀𝑆𝐸 Root Mean Square Error  

𝑖 Interest rate  

𝑚 Air mass  
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1 Introduction 

In September 2015, 193 countries signed an agreement named 2030 Agenda for Sustainable Development. The 

objective of the agreement is to aggregate the efforts of developed and developing countries to achieve 

worldwide peace and prosperity, end poverty of any kind and, at the same time, protect the planet for the future 

generations. The success of the project will depend on 17 Sustainable Development Goals (SDGs), macro areas 

with specific targets to be achieved within 2030. [1] Some of the goals are directly interconnected to the 

sustainable energy sector, such as: universal access to modern energy by 2030 (SDG 7), urgent action to combat 

climate change, or dramatic reduction of the emissions of pollutants (SDG 13).  

The complete list is presented in Figure 1. 

 

Figure 1: Sustainable Development Goals of the United Nations, pillars of the 2030 Agenda for Sustainable 

Development. [1] 

The specific targets of SDG 7 include an increased share of renewables in the energy mix, a double rate of 

improvement in energy efficiency, the expansion and upgrade of the infrastructure and of the technologies to 

provide modern and sustainable energy services. 

Regarding the upgrade of the infrastructure, the concept of smart grid is considered one of the key factors [2]. 

Smart grids connect electricity generation to end users, employing advanced digital technologies to monitor and 

manage the power flows. The smart grids improve the capability of the system of meeting the various electricity 

demands and help the grid operators and the market stakeholders to work more integrated and easily. 

Furthermore, smart grids operate in a more efficient way, reducing the environmental impact and the cost of the 
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electricity supply chain. At the same time the system reliability, resilience and stability are maximized. Smart grids 

can be designed and built as new systems, but in most of the OECD countries their implementation needs to be 

integrated in the current networks, minimizing the impact on the current operation (shortages, power lines 

interruptions). 

1.1 Case study: Euro 2020 Horizon Project SENSIBLE 

The development of smart grids in the different countries and regions strongly needs a preliminary test of 

adequate business models, to fit technology into the local realities. In this context, both small and large-scale pilot 

projects are necessary. A very interesting case study is given by SENSIBLE, led by Siemens Corporate Technology 

A.G and NEWR&D/ Labelec, EDP.  

SENSIBLE is a demonstration project, with the main goal of integrating different storage technologies, micro-

generation and renewable energy into power networks, homes and buildings. The project investigates the 

possibility to generate value not only for the grid operator, but also for the end customers. SENSIBLE is running in 

parallel in the following locations: 

• Valverde, Évora (Portugal): the village is supplied by a rural grid considered weak, and potentially 

unreliable. The goal is to integrate thermal and electric storage in the distribution network and in the 

households, in order to stabilize the voltage at grid level, and to maximise the independence of the single 

houses from the network; 

• Nottingham (United Kingdom): the goal is to foster the environmental commitment of a neighbourhood. 

The grid doesn’t have reliability problems, the focus is more on the market participation of homes and 

communities to the energy market, integration of storage and energy management technologies; 

• Nuremberg (Germany): the implementation happens mainly in the laboratories of THN University. It will 

focus on the different storage possibilities in buildings, including thermal storage, combined heat and 

power, electricity and gas. 

The project horizon is from January 2015 to December 2018, the budget allocated is 15,4 M€. The participating 

partners are part of a European Consortium of 13 members, the list is available Annex I: SENSIBLE Project Partners 

 

1.2 SENSIBLE in Valverde, Évora 

The main goal of the installations in Évora is to demonstrate the technical and economic feasibility of distributed 

energy storage and energy management tools in the distribution network, both at grid and household level. 

Regarding the end customer, the project investigates the opportunity of finding an optimal mix of technologies, 

suitable for different locations. A good mix of energy generation, storage and management technologies should 

be able to: 

• Increase the distributed renewable penetration and energy independence of the houses; 

• Better match the distributed electricity generation and the demand through batteries and thermal 

storage; 

• Show the opportunity for innovative business models, that decrease the electricity bill for the end 

customer. 
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It is important to mention that Portugal lacks regulations in terms of participation of the end customers in a flexible 

electricity market. Hence, an additional goal is to understand the benefits and the impact that new policies, in line 

with other European countries, might have in smart grids projects in Portugal. Assessing the economic and 

environmental potential impact of policies is considered key at political level, in the promotion of new regulations. 

It is expected that a more efficient generation, consumption and retail of electricity, introducing automation and 

flexibility, can have an impact on the cost of electricity and on the emissions of a country. 

In Valverde, a total of 25 customers has been monitored over one year: most of them are residential customers, 

except for one manufacturing company and a restaurant.  

The main components installed in the households of Valverde are a photovoltaic system with related inverter, a 

smart water heater, a battery and a centralized home management system (HMS) that controls the power flows 

in the house. Some technical details are presented in Table 1. 
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Table 1: List of the devices installed in Valverde 

 

Model: GreenTriplex PM060P00 
Version: 260 W module 
Capacity installed: 1.5 kW 
Module efficiency: 16.1% 
NOCT: 46°C 
Power degradation coefficient: -0.39 % / K 
Module Area: 1639 x 983 
Area installed: 9.3 m2 
Degradation: linear to 80% in 25 years 
 

 

Model: Sunny Boy 1.5 
Rated power: 1.5 kW AC 
Max efficiency: 97.2% 
European Weighted Efficiency: 96.1 % 

 

Model: LG Chem RESU 3.3  
Total Energy: 3.3 kWh 
Usable Energy: 2.9 kWh 
Round trip efficiency: 95 % 

Picture not available 

Water Heater: EnerPlural 
Maximum power: 2kW (dimmable with PV) 
Minimum Temperature: 40°C 
Maximum Temperature: 60°C 
Capacity: 60 – 200 l 

The HMS is currently working with the following prioritization for the electricity produced by the photovoltaic 

panel: 

1. Direct consumption (electric load); 

2. Charge of the water heater; 

3. Charge of the battery; 

4. Injection to the grid. 

1.3 Scope of the thesis 



6 

 

The general scope of the thesis is to assess the performance of the equipment installed in SENSIBLE, using data 

analysis and physical modelling tools to model the households with the hardware and software installed, identify 

new control strategies, perform a simulation, test the new strategies and compare them with the original HMS 

algorithm. For more clarity, the scope is broken down in the two main tasks. 

1.3.1 Evaluation of the performance 

The first task is to assess the performance of the existing home management system in project SENSIBLE for the 

different households and with the different configurations. The time series of the household consumptions and 

generation/purchase of the electricity extracted from the data can be used to calculate technical performance 

indices, and the application of the current tariff schemes provided by EDP allows to analyse the economic and 

financial sustainability of the project. 

1.3.2 Forecast Based Control for Optimization of the HMS 

The second task aims to develop a Forecast Based Control of the HMS, based on day ahead forecasts of the solar 

irradiation and of the electric loads. The optimization tool will be tested on the past year, to allow a comparison 

with the current system. 

The development of the following tools is required: 

• Weather forecast algorithm; 

• Forecast of the electric load; 

• Radiation model and photovoltaic generation; 

• DHW consumption generator; 

• Model of the HMS. 

A literature review is performed to better understand the context and the best way to develop the tools. 

Several objective functions are possible, for instance: 

• Minimization of the daily expenditure for electricity, calculated on the 24h forecast; 

• Maximization of the PV electricity consumption; 

The work will focus mostly on the minimization of the electricity bill for the final customer.  
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2 Literature review 

2.1 Smart grids applications 

The centralized generation frameworks of the current energy systems are struggling to adapt to the new 

generation variability and to the demand peaks. The introduction of smart grids allows an easier integration of 

distributed renewable generation, such as photovoltaic and micro wind, and several other low carbon 

technologies, such as electric vehicles. Additionally, a more flexible demand would foster the electrification of 

heating, cooling and industry. 

Some of the main characteristics of a smart grid are listed in Table 2. 

Table 2: Characteristics of smart grids [2] 

Characteristic Description 

Customer information and 
participation 

Customers are informed about their consumption, and they can change their 
way of purchasing electricity under ad-hoc incentives and offers. In this way, 
they can contribute in the grid balance (eg. Demand Response). 

More generation and storage 
options 

Distributed generation and storage installed by the customers finds better 
integration in a smart grid. 

New products and services 
More business models are possible in the controlled environment of the smart 
grid, allowing for small scale investments for the end users with clear benefits 
in the medium run. 

Improve adequate power 
quality 

Not all the customers require the same power quality. Electricity and 
consequently price can be differentiated according to the specific need of the 
different customers. 

Equipment efficiency 
optimization 

Dynamic ratings, optimized capacity, maintenance efficiency are some 
examples of how the equipment can be better controlled if constantly 
monitored. 

More resiliency to problems 
The system better reacts to unexpected events isolating the problems while 
the rest of the network continues with normal operation 

Worldwide the interest and consequently the investment in smart grid technologies are growing. The investment 

growth between 2014 and 2016 accounts for 12% overall. In general, every year more than 10 billion of dollars 

are invested in the deployment of new technologies in the distribution networks as shown in Figure 2. 
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Figure 2: Investment in smart distribution networks by country  [3] 

The worldwide capillary installation of smart meters is uneven, as shown in Figure 3: China has almost reached full 

coverage of installation, followed by Japan, Spain and France, which are expected to complete installations in the 

next years. USA and European Union have reached more than half of the market. Regarding India and Southeast 

Asia, the development until now has been slower, but it is expected to grow due to a general reduction of the 

costs, and to the knowledge gained from already existing projects in other countries, that paved the way for 

profitable investments. 

 

Figure 3: Global cumulative trend of smart meter installations. [3] 

2.2  Demand Response 
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The electricity supply and demand must always be balanced. Historically the grid balance has been achieved mainly 

by matching the demand in the different hours of the day, adapting the generation. For most of the 20th century, 

fossil fuels were the main energy source, and their flexibility has been used to supply electricity in a reliable and 

cheap way. In the first two decades of the 2000, renewables started to be cost competitive, thanks to the 

incentives of the governments, and in the last years solar and wind generation started to play a major role in the 

modern energy systems. The cost of new photovoltaic panels has decreased by 70% since 2010, wind by 25% and 

batteries by 40%. [4]. According to the development scenarios analysed by the IEA (International Energy Agency), 

by 2040 India and China will have the largest installed capacity of low carbon electricity generation, where the 

share of renewables is expected to reach 40%. The European Union is going to experience a growth of the installed 

capacity, and 80% of the new generation will be renewable. In the EU wind is expected to be the main source of 

electricity after 2030, thanks to the development of both onshore and offshore technologies. The energy transition 

towards a low carbon future is accelerated by the contribution of households, energy communities, companies 

investing and benefitting of distributed generation, mainly photovoltaic. 

With the introduction of the variable and distributed generation of renewables, and with the rapid increase of 

their shares in the energy systems worldwide, some integration challenges need to be addressed to efficiently 

match the electricity supply and demand.  

Electricity from renewables is low cost and carbon-free1, but situations of overproduction happen when there is 

high availability of natural resources, like strong wind or high solar irradiance, and low demand. On the other hand, 

when renewable energy availability is low, demand still needs to be met with expensive and carbon-intensive fossil 

fuel-based generation, such as turbo-gas. These situations are environomically2 not desirable and show potential 

for improvements and optimization. 

Demand Side Response, or just Demand Response (DSR/DR) is defined as a set of measures where renewables, 

energy efficiency and electrification interact for the optimal operation of an energy system (refer Figure 4).  

                                                           

1 Not from a life cycle perspective, but rather from the day by day operation 

2 Environomical: optimal solution from the technical, economic and environmental point of view. 
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Figure 4: Synergies between Renewables, Energy Efficiency and Electrification [4] 

The innovation of DR is to exploit flexibility of the electricity demand to consume energy when naturally available. 

Consumers are contributing to the grid balance by offering the possibility to adapt part of their demand to the 

renewable generation. The implementation of DR is a win-win situation: the grid operator more likely avoids 

supply disruptions or curtailments of renewable generation; the consumers can be paid to change their 

consumption patterns by shifting or reducing loads, or by offering flexible loads as fast frequency response 

measure. 

The potential for DR applications worldwide is estimated to be around 4,000 TWh per year, which represents 

about 15% of the total electricity demand. An overview is presented in Figure 5. Flexible loads are mainly found in 

the commercial and industrial sector, where time dependency of the process can be sometimes relaxed: few 

examples are represented by large scale heating and cooling, water treatment plants and electric vehicles charge. 

Flexibility potential can be harnessed also in the residential sector, where a high level of technology for connection 

and automation is necessary, as well as a figure that can aggregate the customers and optimally manage their 

flexibility. 
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Figure 5: DSR potential and generation from variable renewables in the New Policies and Sustainable 

Development Scenarios [2] 

The application of Demand Side Response requires not only the deployment of technology, but also an adequate 

policy framework. DSR finds the incentives in the market, where flexibility is priced and remunerated.  

2.2.1 Policy Framework and DR Projects in Portugal 

There is an indicator that shows the potential application of DR in Portugal: Portuguese customers are very active 

in the retail electricity market. In fact, during the year 2016, 21% of the Portuguese households changed their 

electricity retailer, and this percentage is the highest in Europe. Despite this, Portugal is lagging in terms of 

regulations and market structure. In fact, aggregated demand-side flexibility is not accepted neither in the 

balancing market nor in the ancillary services. [5] Impeding deregulation on roles and responsibilities, access 

rights, baselining, measurement, pre-qualification, payment are some of the obstacles for DR spread. 

Furthermore, Portugal does not have a legal framework for a large-scale implementation of smart metering 

systems [6]. 

There is no regulatory framework to define the role of potential DR aggregators, roles and responsibilities and 

access rights. The Portuguese market presents a very large capacity availability and capped electricity prices, 

slowing down the DR market development. [7] 

One of the legislations available in Portugal that can support the diffusion of DR is represented by the 

Interruptibility Contracts, available for customers having a contracted power above 4 MW (mostly industrial 

customers). However, the system operators did not activate such contracts, so interruptible load programs are 

considered only in emergency cases. With the Ministerial Order N° 41/2017 a new regime of remuneration of the 

security reserve has been activated, establishing a capacity payment scheme. Electricity market players such as 

aggregators can guarantee power capacity in critical periods either by providing generation units or by DR 

programs. Nonetheless, in order to participate to this remuneration scheme, the minimum aggregation threshold 

is 10 MW. 

A first demonstration project is developed by Energy and Industrial Technology Development Organization (NEDO) 

and the Portuguese National Laboratory for Energy and Geology (LNEG). The project aims at the development of 
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Automated DR in the Lisbon City Hall and other facilities of the Lisbon Municipality, in particular the automatic 

control of the variable refrigerant volume of a multi-split air conditioner, with cold air storage. The control system 

is based on day-ahead weather forecasts and load patterns. The project started in 2016 and will and in December 

2019. Other partners are EDP Inovação, Everis and Daikin Industries. 

The first peer to peer electricity sharing project in Portugal is represented by NetEffiCity, started in 2016 by Virtual 

Power Solutions (VPS), with the support of GECAD, a research centre of the Institute of Engineering of the 

Polytechnic of Porto and of Simples Energia, a Portuguese energy supplier. Held in the three municipalities of 

Alfândega da Fé, Penela and Vila Real, the goal of the project is the optimization of the purchase of electricity from 

the market, by considering the distributed generation from photovoltaic panels and the load flexibility of HVAC 

systems in public buildings. 

The company VPS also implemented an Active Energy Management System, a platform called Kisense, in more 

than 100 banks across Portugal. The system provides energy flexibility services as part of the energy contracts by 

performing load shedding and load shifting in HVAC systems and optimized aggregated energy management. In 

2017 the project led to an average annual energy cost reduction of 17 %, with a potential of increasing this value 

even more if implemented in combination with Real-Time Pricing. 

To sum up, demand response shows potential in Portugal for consumers having considerable thermal flexibility, 

individual or aggregated. The implementation of pilot scale projects and the very active customers’ engagement 

are considered a key factor to pave the way to the deregulation of the electricity market that will enable DR 

applications, in particular the Portuguese regulator ERSE should perform a electricity regulatory review to open 

the market to aggregators in the ancillary services and balancing market. 

2.2.2 Finland as Benchmark in DR Application 

Finland is currently one of the European countries with the best framework to enable demand response 

applications [5]. Fingrid, the Transmission System Operator (TSO) allows aggregated loads to enter the reserve 

market. Fingrid is aware of the importance of DR applications to balance the inflexible generation, considering the 

high share of renewables in the electricity generation mix (47%) of which the intermittent sources are anyway a 

small part, with a wind share of 7% and solar less than 1%. [8] 

A summary of the markets where DR can be implemented in Finland is presented in Table 3. 

Table 3: Markets and DR participations possibilities in Fingrid framework [5] 
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The Finnish Electricity Market is open also for independent aggregators, and DR can be offered to the strategic 

reserves purchased by the Finnish Energy Authority. With the decree 66/2009, Finnish DSOs were required by law 

to implement a large-scale smart meter rollout, and currently over 99% of customers in different sectors are 

equipped with smart metering systems. DSOs are obliged to make hourly consumption data available for the end 

customers, and online services are available to offer tariffs with more sophisticated DR incentives, suitable for the 

end users. 

2.3 Demand response optimization tools 

In the literature, Demand Response optimization is implemented through several different algorithms: 

• Genetic Algorithms GA; [5] 

• Linear Programming LP; [5]; [6]; 

• Mixed-integer nonlinear programming; [7]; 

• Particle Swarm Optimization PSO [8]. 

There are some modelling tools already available on the market that can be used, two of them are presented in 

[9]. The study compares the integration of fixed and flexible loads in the dispatch optimization using HOMER®, 

EnergyPLAN® and a self-built Matlab® model in the case study of the energy system of Corvo Island, Azores. The 

proposed Matlab® algorithm is a daily economic dispatch model, described more in detail in [5]. The study analyses 

different strategies to minimize the cost function of the energy system, and in particular, by optimizing the 

electricity load using a DHW backup. The paper presents a comparison between linear programming and an 

optimization genetic algorithm.  

A genetic algorithm GA is a meta-heuristic optimization approach, that includes stochastic inputs. It is inspired to 

the natural evolution principles, and incorporates some concepts of genetics like natural selection, crossover, 

mutation, eletism. The range of application of GA is wide, in engineering, mathematics, biology, it is easy to 

implement, and it is particularly suitable for constrained optimizations. The algorithm generates a finite population 

of chromosomes, which are the possible solutions, and exposes them to a fitness function. The chromosomes that 

achieve the best fit are more likely to be selected as “parents” for the next generation: they are crossed over and 

mutated, so they generate a new population of “children”, that is expected to have better fit. Repeating this cycle 

for a certain number of generations, the outcome can be: 

• A maximum number of generations is achieved; 

• An end-criterion is met, for example, when the fitness of the “offspring” achieved a stable point and does 

not evolve significantly any more. 

The paper concludes that GA is a useful methodology to approach DR dispatch and scheduling with an adequate 

number of populations, also thanks to its versatility. The same authors have used GA in other case studies, for 

instance in [10], where a solar thermal system is coupled with demand response for domestic hot water DHW, in 

isolated microgrids where share of renewable electricity generation is more than 25%. The optimization shows 

positive impact on the final emissions compared to fossil fuel-based water heaters (up to 88%). 

2.3.1 HOMER® Pro 

HOMER® Pro, developed by HOMER Energy, is a recognized and well-known software for modelling the integration 

of renewables into grid-connected and off-grid energy systems. It performs an economic optimization, minimizing 

the Net Present Cost (NPC) of the system and consequently the levelized cost of electricity (LCOE). The 
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optimization engine has been originally developed by the National Renewable Energy Lab (NREL). Several 

academic studies are performed with this software: [11] presents a list of hybrid renewable energy systems 

analysis, where HOMER® is the most used tool. The software is also used in [12] and [13]. Furthermore, there are 

papers where HOMER® is used for DR modelling: in [14] HOMER® is combined with another tool in an isolated 

grid, [15] investigates DR in a water treatment plant, in [16] renewable penetration is fostered using DR on a 

Gasification plant. 

HOMER® allows to define a certain percentage of the total load that is deferrable, specifically the input parameters 

are the average daily deferrable load for each month and the maximum peak load. This option is not very flexible, 

and the way HOMER® elaborates DR presents some drawbacks, for instance: 

• Flexible loads have a lower priority, and they are met only in off-peak hours or in presence of RE 

generation excess; 

• It is not possible to input the hours at which the flexible loads would normally be met; 

• HOMER® considers only the electricity demand and does not include the thermal energy demand. 

For these reasons, HOMER® Pro is not the appropriate tool for the scope of this work. 

2.3.2 HOMER® Grid 

HOMER® Grid is a new software developed by HOMER Energy in 2018, and more specific it is suitable for behind-

the-meter applications. The software is particularly useful for distributed generation systems and it works with 

the same optimization engine of HOMER Pro. The interface of the two tools is very similar but, in this case,  it 

presents a more detailed tab for the photovoltaic panel, for the tariff modelling and introduces the input of 

thermal loads. The software seems particularly useful to simulate household energy dynamics and includes 

options for load shifting and peak shaving. However, is not considered useful for the proposed work for two main 

reasons: 

• It is not possible to include thermal loads met only by electric heaters, the natural gas boiler is always 

requested to start a simulation; 

• Even though there is an interface for the battery, the hot water tank is not implemented, and therefore 

there is no possibility to model a thermal storage. 

2.3.3 EnergyPLAN®  

EnergyPLAN® is a software to simulate large scale energy systems, for instance energy flows at national level. It 

includes electricity, heating, cooling, industry and transport sector. The simulations are performed on an hourly 

basis. The software is available for free and it has been developed by the Sustainable Energy Planning Research 

Group, from the Danish Aalborg University. 

EnergyPLAN® is not suitable for this specific phase of SENSIBLE, which requires the control of the single house’s 

system. Nevertheless, it might be useful to consider it EnergyPLAN® to understand the impact of SENSIBLE or 

similar projects at regional level in the future. For instance, it would be interesting to draw scenarios of the impact 

of increased solar energy share in Alentejo. 

2.4 Weather forecast methodologies 

Renewable generation potential is dependent on weather conditions. Forecasting solar irradiation or wind speed 

is extremely important when planning the dispatch of generators and storage in an energy system with 
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considerable penetration of renewables. Short-term forecasts at intra-hour level are necessary for a more 

effective operation, grid balancing and for real-time unit dispatching. Forecasts for a longer time horizon, for 

example day ahead, are useful to schedule storage and loads to shift, very important when controlling a microgrid 

with thermal or electric storage.  

Several methodologies are assessed and summarized in [17]. In [18] the impact of renewables’ forecasts is 

analysed in the optimization of demand response technologies of a microgrid system in Corvo Island in Azores, 

Portugal. In the paper, hot water tanks are studied as storage and as electric loads that can be shifted. Short-term 

forecasting methods are used to build a day-ahead schedule, and the Clear Sky Persistence Model is selected due 

to its simplicity. The model is described in detail in [19], and it is based on the knowledge of the clear sky irradiance, 

that is the solar irradiance with no clouds and with good sky conditions of radiation transmittance. The assumption 

of the model is that the clear sky index of a certain time step persists for the following one. 

Eq. 𝐾(𝑡 + ∆𝑡) = 𝐾(𝑡) =
𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)

𝐺𝑐𝑙𝑟(𝑡)
 (1) 

 

Eq. 𝐺𝐻𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + ∆𝑡) = 𝐾(𝑡)𝐺𝑐𝑙𝑟(𝑡 + ∆𝑡) (2) 

Where: 

• 𝐾(𝑡) is the clear sky index at the time step t; 

• 𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) is the GHI measured at ground level; 

• 𝐺𝐻𝐼𝑐𝑙𝑟(𝑡) is the GHI for clear sky conditions. 

The paper proposes a variation of the model using the clearness index instead of the clear sky one. The difference 

is the use of the extra-terrestrial Solar Irradiance GHIo, defined as the solar irradiance outside the atmosphere. 

The clearness index is hence defined as: 

Eq. 𝑘(𝑡 + ∆𝑡) = 𝑘(𝑡) =
𝐺𝐻𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)

𝐺𝐻𝐼𝑜(𝑡)
 (3) 

And consequently, the equation (2) can be written as: 

Eq. 𝐺𝐻𝐼𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + ∆𝑡) = 𝑘(𝑡)𝐺𝐻𝐼𝑜(𝑡 + ∆𝑡) (4) 

It must be noticed that the persistence model is more accurate for locations with typical stable weather conditions.  

A different forecast method is presented in [20], called the Solar Forecast Similarity Method. It predicts the 

following day irradiance and irradiation using a statistical method from the long-term study of HelioClim-3 
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database3. The solar irradiation dataset is available at the SoDa Solar Radiation Data website4, that offers several 

datasets and services related to solar irradiation worldwide, connected with MINES ParisTech University. 

The Similarity Method searches in the database the most similar days to the current one, and extracts for each of 

them the following day. These following days are then averaged hour by hour to obtain a forecast. To detect the 

similar days, the criteria is the minimum of the square distance for each day, given by the difference for each hour 

of the day. Considering the database value x, the reference day i and the corresponding value y:  

Eq. 𝑑𝑖
2 = ∑ (𝑥ℎ − 𝑦𝑖ℎ)2

ℎ
= ∑ (

ℎ
𝑥ℎ

2 − 2𝑥ℎ𝑦𝑖ℎ + 𝑦𝑖ℎ
2 ) (5) 

The quality of the forecast is determined by several parameters: 

• The length of the time horizon of the database y; 

• The number of similar days considered when analysing the current day; 

• The weight given to different years when looking for similar days 

Like the persistency method, the effectiveness of the similarity method depends on the climatic characteristics of 

the area analysed. Areas with very stable conditions are easier to forecast than fast-changing regions. 

2.5 Electric load modelling 

A model of the household electricity demand with high time resolution is challenging to develop and represent a 

critical factor for DSOs. In fact, having a reliable model for the electric load would allow to make forecasts, useful 

to guarantee the stability of the system and to efficiently dispatch generation and storage.  

The domestic load curve is specific for each house and differs in magnitude and shape according to a wide range 

of parameters, for instance: 

• Number of people living in the house; 

• Consumption habits; 

• Breakdown of the appliances. 

In the case study of SENSIBLE, due to data protection and privacy regulations most of these details are unknown 

and have to be considered implicit in the data. 

In the literature several models are proposed: electricity use can be investigated via bottom-up approach, starting 

from data or assumptions made on the activity of the household, appliances and their use, occupancy. Aggregating 

details on the consumption patterns allow the generation of a typical load curve for the household. The most cited 

                                                           

3 HelioClim-3 is a satellite-derived solar radiation database. It exploits the Heliosat-2 method to estimates a "cloud 

index", based on the analysis of the 15 minutes Meteosat Second Generation (MSG) satellite images in the visible 

band. More information available at http://www.soda-pro.com/soda-products/hc3-archives 

4 SoDa has been developed by O.I.E. (Observation, Impacts, Energy). This is a common laboratory (or structure) of 

MINES ParisTech and ARMINES. More information available at http://www.soda-pro.com/about-us/actors 
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examples of bottom-up approaches are analysed in [21] and in [22]: in general they need a relevant amount of 

data and assumptions and tend to be very complex.  

When it comes to making predictions, the most challenging factor to consider is represented by the consumption 

habits, behavioural variables that are very specific for the household. [23] proposes a high-resolution stochastic 

model of multiple electricity-dependent activities in households, based on a Markov-chain to describe the 

consumption habits. The model identifies a list of activities, for instance cooking or using specific appliances, and 

then generates a sequence of activity state transitions in every discrete time step. A transition probability pij(k) 

from state i to j is defined as: 

Eq. 𝑝𝑖𝑗(𝑘) =
𝑛𝑖𝑗(𝑘)

𝑛𝑖(𝑘)
 (6) 

Where: 

• 𝑛𝑖𝑗(𝑘) is the total number of transitions between state i and j; 

• 𝑛𝑖(𝑘) is the total number of transitions from state i. 

Another possible approach is the top-down, starting from the aggregate load curve directly without having detail 

on the specific information required by the household, but just the aggregate consumption. Both the bottom-up 

and top-down models can be either deterministic or stochastic: the second ones can be based on Markov chains 

or probability distribution functions. [24] presents a bottom-up electric load modelling methodology with 

probability distributions fit. The distributions are tuned using a high-resolution electricity use dataset from 

Swedish households. The paper makes a literature review of the best distributions to model electric loads and 

selects the Weibull and Log-Normal distributions, since they don’t consider negative values of power consumption, 

unlike the Normal distribution. The equations of the distributions used to code the model have been included in 

Annex III: Distributions for Electric Load Forecast  

The advantage of this model is that it allows to transform real use data into a stochastic model, that can create 

realistic time series using Monte Carlo simulations. However, a considerable amount of data is necessary, 

preferably with sub-hourly time resolution. Furthermore, two important assumptions are made: 

• For each timestep, the demand of the household is a random outcome and so completely independent; 

• The probabilities for all the possible load levels can be considered continuous functions. 

In the paper the data are clustered according to some relevance criteria to consider seasonal and type of day 

variabilities. The scheme proposed is to create separate distributions for: 

• Each hour of the day; 

• Each day of the week; 

• Each month of the year. 

2.6 Radiation models for photovoltaic generation 

The estimation of the photovoltaic electricity production requires technical information on the selected panel, 

and a physical model for the solar radiation. In fact, most databases present time series of measurement of the 

Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI). The electricity generated by the panel can 

be estimated from the following information: 
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• Technical details of the panel and inverter, available from the datasheet of the manufacturer: module 

efficiency, inverter efficiency and power losses due to temperature; 

• Solar radiation and temperature historical data; 

• A solar radiation model to calculate the radiation on the tilted surface; 

• Some additional correction factors, like a dirtiness coefficient. 

The main reference for the physical model is [25], so all the presented equations can be found in this book. The 

Perez Radiation model has been selected for this work, being one of the most accurate models available. The Perez 

Model coded in Matlab is validated through the following steps: 

• Simulation of the tilted radiation using the solar data of Valverde; 

• Estimation of the generation and of the efficiency of the panel due to temperature; 

• Comparison with the average photovoltaic generation from data. 

The Perez model represents the projection of the GHI into a tilted surface of slope 𝛽. In general, all the radiation 

models are approximations necessary to quantify the diffuse radiation that reaches a panel. This model is 

conservative, and it slightly underestimates the diffuse radiation. The model is more accurate in the central hours 

of the day then in the early morning or late afternoon, when the diffuse radiation plays a key role. A summary of 

the radiation components is graphically shown in Figure 6. 

 

Figure 6: Components of the radiation on a tilted surface [26] 

The Perez model is considered the best model available with regards to the way the diffuse radiation is considered, 

and its component of the circumsolar diffuse and horizon brightening. The complete model is defined in the 

equation: 

Eq. 
𝐼𝑇 = 𝐼𝑏𝑅𝑏 + 𝐼𝑑(1 − 𝐹1) (

1 + cos 𝛽

2
) + 𝐼𝑑𝐹1

𝑎

𝑏
+ 𝐼𝑑𝐹2 sin 𝛽 + 𝐼𝜌𝑔 (

1 − 𝑐𝑜𝑠𝛽

2
) 

 
(7) 
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The equation is composed of five terms: the beam, the isotropic diffuse, the circumsolar diffuse, the diffuse from 

the horizon, and the ground-reflected radiations. The projection of the direct component is given by the first term: 

the ratio of beam radiation on a tilted surface to that of a horizontal surface given the incidence angle 𝜃 is: 

Eq. 𝑅𝑏 =
cos 𝜃

cos 𝜃𝑍

 (8) 

The three diffuse components of the radiation are summarized in the equation of the total diffuse radiation on 

the tilted surface:  

Eq. 
𝐼𝑑,𝑇 = 𝐼𝑑 [(1 − 𝐹1) (

1 + cos 𝛽

2
) + 𝐹1

𝑎

𝑏
+ 𝐼𝑑𝐹2 sin 𝛽] 

 
(9) 

Where:  

• F1 and F2 are the circumsolar and horizon brightness coefficients; 

• Coefficients a and b depend on the angles of incidence of the cone of circumsolar radiation on the tilted 

and horizontal surface. 

The coefficients a and b can be calculated as: 

Eq. 𝑎 = max(0, cos 𝜃),    𝑏 = max (cos 85 , cos 𝜃𝑍) (10) 

The components of the diffuse radiation are treated in the following way: 

• The fraction of circumsolar diffuse radiation as it is coming from the beam direction; 

• The remaining part of the diffuse radiation as perfectly isotropic; 

• A term of horizon brightening radiation. 

 

Three parameters need to be defined. The clearness is function of the diffuse radiation and of 

the normal incidence beam radiation: 

Eq. 𝜀 =  

𝐼𝑑 + 𝐼𝑏,𝑛

𝐼𝑑
+ 5.535 ∙ 10−6𝜃𝑍

3

1 + 5.535 ∙ 10−6𝜃𝑍
3  (11) 

 

The brightness parameter is: 

Eq. ∆ = 𝑚 
𝐼𝑑

𝐼𝑜𝑛
 (12) 

Where m is the air mass, and 𝐼𝑜𝑛 is the extra-terrestrial irradiation on a horizontal surface normal to the beam. 

The extra-terrestrial irradiation estimated as: 

Eq. 𝐼𝑜𝑛 = 1367 (1,00011 + 0,034221 cos 𝐵 + 0,00128 sin 𝐵 + 0,000719 cos 2𝐵 + 0,000077 sin 2𝐵); (13) 

 

The air mass for zenith angles from 0° to 70° can be estimated with the equation: 

Eq. 𝑚 =
1

cos 𝜃𝑧
 (14) 
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For higher zenith angles, to take into account the effect of the Earth curvature the air mass 

can be calculated as: 

Eq. 𝑚 =  
exp(−0.0001184 ℎ)

cos(𝜃𝑧) + 0.
 (15) 

The result can be projected to obtain the extra-terrestrial irradiation on a horizontal surface, given the zenith angle 

𝜃𝑍: 

Eq. 𝐼𝑜 = 𝐼𝑜𝑛 cos 𝜃𝑍 (16) 

The brightness coefficients F1 and F2 are functions of statistically derived coefficients for ranges of values of ε: 

Eq. 𝐹1 = max [ 0, (𝑓11 + 𝑓12∆ +
𝜋𝜃𝑍

180
𝑓13 ) ]  (17) 

 

Eq. 𝐹2 = (𝑓21 + 𝑓22∆ +
𝜋𝜃𝑍

180
 𝑓23) 

 
(18) 

The brightness coefficients can be extracted from Table 4 

Table 4: Brightness coefficients for Perez Anisotropic Sky [26] 

 

More information on the calculation of the solar angles are available in Annex V: Solar angles 

. 

2.7 Domestic Hot Water 

Domestic Hot Water DHW heating for households can be centralized or individual. Centralized systems are typical 

of Nordic countries, where Combined Heat and Power CHP cycles use low-temperature heat for the district 

heating. Distributed DHW systems can be solar based, electric or fuel powered. 

Electric water heating in Portugal accounts for more than 5% of the annual residential electricity demand [27]. 

Like the electric load, DHW usage depends on behavioral factors (activities performed, amount of water used for 

each activity) and on the structure of the household, like the number of people living in the house. However, 

compared to electricity, thermal energy can be stored more easily and in a cheaper way, enabling a partial 

dissociation between the time when the water is heated up and the time when it is consumed. In a variable price 

tariff scheme for electricity, this dissociation gives room for demand response applications. 



21 

 

In [28], a good classification of the types of electric loads is presented, concerning the possibility of the application 

of DR strategies: 

Table 5: Load control types proposed by [28] 

Control type Description Appliances 

Uncontrollable loads 
Loads that can’t be controlled 

without decreasing the quality of 
the energy service 

Lighting, office and 

entertainment equipment, 

cooking appliances and others 

Re-parameterizable loads 
Loads that can be controlled 

thermostatically, with possibility of 
reset the parameters 

Cold appliances, air conditioning 
systems, electric water heaters 

Interruptible loads 
Loads that can be completely 
interrupted for short periods 

without affecting the end user 

Cold appliances, air conditioning 
systems, electric water heaters 

Shiftable loads 
Loads that can be delayed or 

anticipated with respect to the 
end user preference 

Washing machines, clothes 

dryers, dishwashers, electric 

water heaters 

According to the definitions proposed by Table 5, electric water heaters have a considerable flexibility in terms of 

control, because they can be re-parameterizable, interruptible and shiftable. The different control strategies can 

also be applied simultaneously. 

From [10] the equation that describes the electricity converted into thermal energy and stored in the water heater 

is: 

Eq. 𝐸𝑤ℎ,𝑒𝑙 =
𝑉𝐻2𝑂 ∙ 𝜌𝐻2𝑂 ∙ 𝑐𝐻2𝑂  (𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛𝑙𝑒𝑡)

3600
 [𝑊ℎ𝑒𝑙] 

 
(19) 

Where 𝑉𝐻20 is the DHW demand, in liters. 
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3 Data quality analysis and preliminary information 

The work is based on real data from the dataset provided by EDP. Before starting the performance analyses, the 

dataset has been checked and treated to improve the accuracy of the results, and consequently to derive 

meaningful models. 

3.1 Data description and availability 

The outcome of the work is strictly connected to the proper understanding and analysis of the dataset provided 

for the 25 customers of Valverde. The main objective of the data analysis in this work is to extract useful 

information to understand the dynamics and the performance of the equipment installed from August 2017 to 

July 2018. The timestep of data recording is 15 minutes, for a total of 96 measurements per day. The parameters 

available for each customer in each timestep are the following: 

• Battery input; 

• Battery output; 

• Grid purchase: electricity from the network; 

• Grid injection: electricity sold to the network; 

• Photovoltaic generation; 

• Water Heater input: electricity stored in the smart water heater; 

• Battery state of charge SOC; 

• Water heater temperature. 

The mentioned categories can be distinguished in off peak and peak period, according to the bi-hourly tariff 

scheme. A screenshot of the original dataset file is available in Figure 7. 

 

Figure 7: Screenshot of the original dataset [29] 

The customers can be divided in different categories, according to the type of equipment installed. All the 25 

customers have installed the photovoltaic panels, 10 customers only have the smart water heater, 9 of them only 

have the battery and 6 of them have both (refer Figure 8). 
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Figure 8: Configurations of the installed equipment 

Most of data are available since 27th July 2017. However, during the first week the dataset presents several issues, 

such as repeated numbers, long series of zeros and missing values, probably due to the initial set up of the data 

acquisition. The chosen reference day to start the analysis from is the 5th of August 2017. Some other data are 

available only from 9th of September. In general, not all the customers have been metered for the same number 

of days, due to different periods or missing days: a summary is available in Figure 9. 

 

Figure 9: Number of days of metering for each customer, overview 

The data already has been preliminary treated before the beginning of this work. Hence, some values are missing 

in the tables and the data result partially fragmented. To estimate the magnitude of this first intervention, the 

effective data availability has been estimated for each of the variables under analysis as: 

Eq. 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁° 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑑𝑎𝑡𝑎
=

𝑁° 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑑𝑎𝑦𝑠 ∙ 96
 (20) 
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A complete and accurate analysis cannot be performed for all the customers. For instance, customer 20 has a very 

limited availability of data regarding grid purchase and injection (< 50%), consequently the quality of its analysis is 

considered poor of significance. 

3.2 Problems of the dataset 

The dataset presents some frequent issues that might affect the quality of the work. For instance: 

• Not all the customers have the same starting and finishing date, as mentioned above; 

• The dataset sometimes misses entire days, or even longer periods 

• Sometimes the data are apparently available, but all the values are zero (mostly with data of batteries); 

• There are situations where the data acquisition system gets stuck and returns the same number for 

several days in a row. 

Regarding long periods of missing data, some of them are due to different starting point of measurements, while 

others are just due to errors in the acquisition. A summary is presented in Table 6. 

Table 6: Missing days from the dataset 

customer Missing from to days 

C7 09/08/2017 08/09/2017 30 

C16 09/08/2017 27/09/2017 49 

C10 6/03/2018 22/04/2018 47 

C16 05/03/2018 08/04/2018 34 

C18 24/05/2018 17/06/2018 24 

C22 09/08/2017 29/09/2017 51 

C22 29/03/2018 15/04/2018 17 

C24 09/02/2018 18/02/2018 9 

C25 27/06/2018 09/07/2018 13 

3.3 Data filters 

To improve the quality of the data used, some filters have been applied to eliminate inconsistencies or clear 

misfunctions in the data acquisitions. As previously mentioned, the acquisition system sometimes replicates the 

same value for several time slots, probably due to lag in the communication. This situation is very frequent, an 

example can be seen in Figure 10. 
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Figure 10: Abnormal photovoltaic signal, example from customer 2, 22 November 2017 

Furthermore, it has been noticed that the system sometimes returns in one single timeslot the sum of many 

previous ones. The result is a value that is inconsistent in the context, like shown in the example of Figure 11. In 

fact, the maximum discharge power of the battery is 3 kW, resulting in 750 Wh in a timeslot of 15 minutes, while 

here we have more than 3000 Wh in 15 minutes, totalling 12 kW. 

 

Figure 11: Abnormal value of the energy from battery discharge, shown in a context of 17 days. 15/11/2017 

19:15 

The main filters applied are expected to identify: 

• Photovoltaic generation higher than zero recorded during the night; 

• Repeated values; 

• Abnormally high values, not consistent with the timeslot. 
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The filtered values have been erased from the dataset and, when possible, replaced according to specific data 

repair criteria. In particular for the sake of this work, photovoltaic data are the only ones considered repairable, 

due to the fact that all the customers have installed the same panel with the same configuration (size, orientation 

and tilt). The remaining data have not been repaired. 

3.3.1 Errors in night data photovoltaic acquisition 

The data regarding photovoltaic electricity production are considered of primary importance: a first step in the 

quality screening is to check the consistency of the production during daytime. A filter has been specifically 

realized to check photovoltaic production recorded for mistake during night hours. 

 

Figure 12: Impact of the data filter used to check consistency of photovoltaic generation, screening night 

production 

In Figure 12 a summary of the most affected customers in the database is presented: for customer 20 for example, 

more than 23% of the data has been erased.  

3.3.2 Repeated values 

The filter looks for values repeated in long sequences and erases them. This filter applies to all the variables except 

the battery input and output. In fact, it must be noticed that the power delivered by the battery is very discretized, 

in particular in the initial months of aquisition, hence the values are repeated very often, and the filter might erase 

significant records. An overview of the impact of the first two filters can be seen in Figure 13. 
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Figure 13: Availability of data of the electricity purchased from the grid 

From this graph an important issue emerges for customer 20: the data availability for the electricity purchased 

from the grid is very low, this has a strong negative impact on the reliability of the results for this customer. 

Most of the data missing from the dataset can not be repaired, because they are dependent on the individual 

habits of the households. The only parameter that can be compared and hence fixed is the photovoltaic electricity 

production, due to the similar configuration of the photovoltaic installation. 

3.4 Photovoltaic data restore 

After the application of the filters, data poor of meaning have been erased. In some customers, the fragmentation 

can increase up to 40%. To increase the accuracy of the analysis, the dataset can be partially restored. 

The photovoltaic panels have all the same rated power of 1.5 kW, and they are all installed due south. It is 

reasonable to use data from complete datasets to fill the gaps in fragmented customers due to the following facts: 

• Same equipment is installed, with the same configuration; 

• The customers are in the same location and consequently same irradiance conditions; 

Still some differences appear among customers, probably due to shadowing and reflection conditions, and other 

random parameters that cannot be specifically identified. To maximise the accuracy, the monthly electricity 

generation from the panel has been compared among the customers using the Root Mean Square Error RMSE: 

Eq. 𝑅𝑀𝑆𝐸 = √
∑(𝐸𝑝𝑣,𝑥 − 𝐸𝑝𝑣,𝑟𝑒𝑓)2

12
  (21) 

 

Where: 

• 𝐸𝑝𝑣,𝑥 is the monthly electricity photovoltaic production of the customer object of the comparison; 

• 𝐸𝑝𝑣,𝑟𝑒𝑓 is the monthly electricity photovoltaic production of the reference customer, of which the dataset 

requires repair; 

A schematic example can be seen in Figure 14. 
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Figure 14: Example of filling missing data with customers with complete dataset 

Some data cannot be replaced because they are missing in all the customers. The goal of the repair of photovoltaic 

production data was set to reach at least 95% of the availability for each customer, and it has been successfully 

reached with the proposed method. The result obtained can be seen in Figure 15. 

 

Figure 15: Impact of photovoltaic data manipulation on the data availability 
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4 Methodology 

In this chapter the methodology used for the analysis is presented. The main equations used in the dataset are 

shown, as well as how the main variables, like the electric load, are derived from computations on the data. 

4.1 Main equations 

The main equation of the electric load derives from a combination of most of the parameters measured, and in 

particular three types of energy demand are identified: 

• Thermal demand, or electricity stored in the water heater 𝐸𝑤ℎ ; 

• Total Electricity Demand of the customers, including thermal consumption 𝐸𝑑𝑡𝑜𝑡;  

• Electricity Demand excluding the water heater 𝐸𝑑, that means electric load of the appliances; 

The equation that describes the total electricity demand is: 

Eq. 𝐸𝑑𝑡𝑜𝑡(𝑡) = 𝐵𝑜(𝑡) − 𝐵𝑖(𝑡) + 𝐸𝑝(𝑡) − 𝐸𝑖𝑛𝑗(𝑡) + 𝐸𝑝𝑣(𝑡) = ∆𝐵(𝑡) + ∆𝐸𝑔(𝑡) + 𝐸𝑝𝑣(𝑡) (22) 

Where:  

• ∆𝐵 is the balance of the battery, defined as Battery Output minus Battery Input 𝐵𝑜 − 𝐵𝑖 ; 

• ∆𝐸𝑔 is the balance of the grid, defined as Grid Purchase minus Injection 𝐸𝑝 − 𝐸𝑖𝑛𝑗; 

• 𝐸𝑝𝑣 is the electricity produced by the photovoltaic panel; 

The electricity demand excluding the domestic hot water takes into account all the other appliances, such as 

lighting, cooking, fridge, and it is obtained by subtracting to the previous equation the water heater demand: 

Eq. 𝐸𝑑(𝑡) = ∆𝐸𝑏(𝑡) + ∆𝐸𝑔(𝑡) + 𝐸𝑝𝑣(𝑡) − 𝐸𝑤ℎ(𝑡) (23) 

A scheme representing the previous balance is presented in Figure 16. The equation 22 and 23 generate secondary 

variables, after all the filters applied to the data and presented in paragraph 3.3.  
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Figure 16: Summary of the connections of the household 

4.2 Customers Analysis 

4.2.1 Photovoltaic generation 

As previously mentioned, all the customers have the same model of photovoltaic panel, installed facing south. A 

similar electricity generation for all the customers is expected from the analysis. After the repair process 

mentioned in section 3.4, some values are still missing, due to the different starting point of the data record. In 

fact, customer 7 is missing one month, while customer 16 and 22 are missing two months (refer 3.2). A summary 

is presented in Figure 17. 

 

Figure 17: Photovoltaic generation of the customers, including the months missing from the dataset 

The average photovoltaic production is 2.17 MWh/y, with a minimum of 1.84 MWh/y for customer 16 and a 

maximum of 2.38 MWh/year for customer 21. Considering the average photovoltaic production as reference, the 

minimum and the maximum value differ of 25%: differences of cleanliness of the panel, shading and reflection can 
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be responsible for this deviation. Also, the data availability and repair might have affected the quality of the 

information of the dataset. 

The capacity factor of each customer can be calculated as: 

Eq. 𝐶 =
𝐸𝑦[

𝑘𝑊ℎ
𝑦

]

𝑃𝑝𝑣 ∙ 8760
 (24) 

Where 𝑃𝑝𝑣 is the rated power, 𝐸𝑦 is the yearly electricity production and 8760 is the number of hours in a year. 

The results for all the customers are presented in Figure 18. 

 

Figure 18: Capacity factor of the photovoltaic electricity production in one year 

The average capacity factor is 16.51%, with a minimum of 14.04% for customer 16 and a maximum of 18.17% for 

customer 14.  

4.2.2 Electricity consumption 

The electricity consumption has been estimated according to equation 22. A summary of the yearly consumption 

can be seen in Figure 19, and the customers can be classified as follows:  

• 13 customers below 5 MWh/y of consumption; 

• 10 customers between 5 MWh/y and 10 MWh/y; 

• 2 customers above 10 MWh/year. 

The customers missing one or two months have been completed by using the average consumption, in orange in 

the Figure 19. This completion has been performed only for the sake of the cumulative consumption calculation 

and does not appear in the time series used to calculate secondary data. 

Customer 10 and 18 have a very high consumption profile compared to the other ones: customer 10 corresponds 

to the manufacturing company and customer 18 to the restaurant. Customer 10 totals 26.91 MWh/y being the 

largest electricity consumer. Customer 8 has the smallest electricity consumption, with 1.5 MWh/y. 
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Figure 19: Yearly electricity consumption of the customers of Valverde 

The average electricity consumption per capita in Portugal is 4.85 MWh/y [30], in Valverde the average is 5.06 

MWh/y if only the residential customers are considered, and 6.38 MWh/y if also the restaurant and the 

manufacturing company are included. It is important to remember that the values calculated include both the 

electricity consumed for the appliances and the thermal consumption of the water heater, when applicable. The 

two components are evaluated and shown separately only for the customers having significant availability of data 

(> 75% ) regarding the water heater electricity input. The values are presented in Figure 20. 

 

Figure 20: Portions of electricity consumption for the appliances and the domestic hot water 

4.2.3 Domestic Hot water consumption 

The smart water heater has been installed in 15 households. Each customer has a different capacity of the water 

heater, an overview is presented in Table 7. Due to the high data fragmentation, 5 customers can’t be analysed in 

terms of thermal consumption. 



33 

 

Table 7: Size of the water heater installed in each household 

customer Size [l] Data availability 

C1 200 Yes 

C3 160 No 

C4 160 Yes 

C5 200 Yes 

C6 200 No 

C9 120 No 

C10 200 No 

C11 160 Yes 

C14 90 Yes 

C15 120 Yes 

C17 120 Yes 

C19 120 Yes 

C21 120 No 

C22 60 Yes 

C24 120 Yes 

The average consumption is 1.46 MWh/y, with a maximum of 2.18 MWh/y for customer 15 and a minimum of 

0.94 MWh/y for customer 24. This difference is considered possible due to the different habits, number of people 

in the house and to some missing data. An overview is presented in Figure 21. 
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Figure 21: Electricity consumed for the domestic hot water heater in one year 

The average share of the electricity consumption related to the hot water heater is 34%. The results are shown in 

Figure 22.  

 

Figure 22: Share of the thermal load in the total electricity consumption 

The electricity consumption due to the domestic hot water is very variable with the period of the year. This trend 

can be seen in Figure 23, where all the customers have been represented. The customers that have a drop in one 

specific month are probably missing some data from that specific period. 
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Figure 23: Daily average electricity demand for the water heater 

4.3 Technical and Economic Performance Parameters 

4.3.1 Self-Consumption and Self-Sufficiency Ratio 

The literature suggests several parameters to describe the technical performance of photovoltaic distributed 

generation in matching the demand [31]. The way the electricity is consumed depends on the instantaneous 

availability of solar energy and the instantaneous electricity demand. For instance, there could be overproduction 

production when there is no demand and the opposite: both cases would lead to a poor performance of the 

system. 

The electricity self-consumed can be calculated as: 

Eq. 𝐸𝑠𝑐(𝑡) = 𝐸𝑝𝑣(𝑡) − 𝐸𝑖𝑛𝑗(𝑡) (25) 

 Where: 

• 𝐸𝑝𝑣(𝑡) is the electricity produced by the photovoltaic panel; 

• 𝐸𝑖𝑛𝑗(𝑡) is the electricity injected to the grid, in this case study coming only from the excess photovoltaic 

generation and never from the battery. 

Two parameters mainly can be identified: the first one is the Self-Consumption Ratio (SCR), defined as the ratio 

between the electricity self-consumed in every timeslot and the total photovoltaic production. It is a measure of 

how much the renewable electricity produced is effectively consumed within the system. In other words, it is a 

measure of how the system is efficient in not injecting into the grid: 

Eq. 𝑆𝐶𝑅 =  
∑ 𝐸𝑆𝐶,𝑗

𝑛
𝑗=1

∑ 𝐸𝑝𝑣
𝑛
𝑗=1

 (26) 

The second parameter is the Self-Sufficiency Ratio. This parameter has the same numerator, but it is referred to 

the total electricity demand of the household, so it is a measure of how much of the electricity need is met by the 

self-consumed energy. In other words, it is a measure of how the system is efficient in not purchasing from the 

grid: 
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Eq. 𝑆𝑆𝑅 =  
∑ 𝐸𝑆𝐶,𝑗

𝑛
𝑗=1

∑ 𝐸𝑑𝑡𝑜𝑡,𝑗
𝑛
𝑗=1

 (27) 

The two parameters are described in [32]. 

4.3.2 Savings on the Electricity Bill 

To calculate the savings on the electricity bill, the same tariff scheme has been applied to all the customers. Tariffs 

are available on the webpage of “EDP Tarifarios” [33] and a screenshot of one of the tariffs has been included in 

Figure 24. No feed-in tariff has been considered for the sake of this work. 

The tariffs applied by EDP can be of three types: 

• Simple (flat tariff); 

• Bi-hourly, with peak tariff applied from 9:00 AM – 10:00 PM and off peak the rest of the time; 

• Tri-hourly. 

The customers of Valverde have a Bi-hourly tariff scheme, with a contracted power of 6.9 kW peak. The tariff 

applies the following: 

• Price for the contracted power: 0.3835 €/day; 

• Off-peak price: 0.0969 €/kWh; 

• Peak price: 0.2028 €/kWh. 

 

Figure 24: EDP Bi-hour tariff scheme 

The cost of electricity can be calculated for the base case where SENSIBLE equipment is not installed, and for the 

case study of the project. To calculate the electricity bill for each customer in the base case (std), the following 

equation is applied: 

Eq. 𝐸𝐵𝑠𝑡𝑑 = 𝑛 ∙ 𝐶𝑃𝑃 + ∑ 0.0969 ∙ 𝐸𝑑𝑡𝑜𝑡,𝑖 + ∑ 0.2028

𝑦

𝑗=1

∙ 𝐸𝑑𝑡𝑜𝑡,𝑗

𝑥

𝑖=1

 (28) 

Where: 

• CPP is the contracted power price [€/d]; 

• 𝐸𝑡𝑜𝑡,𝑖  is the electricity demand in off-peak hours; 
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• 𝐸𝑑𝑡𝑜𝑡,𝑗  is the electricity demand in peak hours; 

The bill coming from the currently installed configuration can be calculated with a similar equation, that considers 

only the electricity purchased from the grid available from the timeseries: 

Eq. 𝐸𝐵𝑠𝑡𝑑 = 𝑛 ∙ 𝐶𝑃𝑃 + ∑ 0.0969 ∙ 𝐸𝑝,𝑖 + ∑ 0.2028

𝑦

𝑗=1

∙ 𝐸𝑝,𝑗

𝑥

𝑖=1

 (29) 

In absolute terms, the savings are referred to the standard bill the customers would pay without project SENSIBLE, 

so paying all the electricity needed for the demand. 

Eq. 𝐸𝐵𝑠 = 𝐸𝐵𝑠𝑡𝑑 − 𝐸𝐵𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒  (30) 

In relative terms, the savings can be expressed as: 

Eq. 𝐸𝐵𝑠,𝑟 =
𝐸𝐵𝑠𝑡𝑑 − 𝐸𝐵𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒

𝐸𝐵𝑠𝑡𝑑
 (31) 

Where: 

• 𝐸𝐵𝑠 are the savings on the electricity bill; 

• 𝐸𝐵𝑠𝑡𝑑  is the standard bill the customer would have without SENSIBLE; 

• 𝐸𝐵𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒  is the actual bill after SENSIBLE project. 

4.4 Matlab Simulation Model 

To implement a new energy management algorithm for the house, firstly it is necessary to reproduce the 

behaviour of the current HMS implemented in SENSIBLE. A model has been implemented in MATLAB©, using 

customer 5 as reference. Some parameters need to be shaped according to a specific household, but potentially 

they can be set specifically for each customer. The criterion of choice for this case is that customer 5 has both hot 

water heater and battery, the data availability is high, and the overall performance is good. 

The model replicates the current prioritization of the excess electricity, considering technical constraints and 

efficiencies of the various components, for instance the maximum power that the battery can deliver or absorb (3 

kW), or the maximum power of the electric resistance of the water heater (2 kW). 
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4.4.1 Global Horizontal Irradiation day-ahead forecast 

To forecast the photovoltaic potential for the day ahead, the Similarity Model described in section 2.4 can be 

applied to the time series of irradiance data for the year 2018. Satellite based data of the hourly irradiance of 

Valverde have been found in Copernicus Atmosphere Monitoring Service (CAMS)5. It must be noticed that usually 

satellite-based radiation data do not have a high level of accuracy, compared to ground measured ones. However, 

ground measured data were not available for this work.  

The Similarity Model has been implemented in MATLAB©, tested using a 15-minutes based database from 

01/01/2008 to 31/07/2017, and validated using the year of observation of the project, from 05/08/2017 to 

31/07/2018. For each day, considering a timestep of 15 minutes, the RMSE has been calculated as: 

Eq. 𝑅𝑀𝑆𝐸 = √
∑(𝐺𝐻𝐼𝑓 − 𝐺𝐻𝐼𝑒)2

96
  (32) 

The results obtained are shown in Figure 25: The average RMSE is 15.5 Wh/m2, which can be considered an overall 

satisfactory result. 

 

Figure 25: RMSE of the weather forecasts 

 

For completeness, the worst and the best forecasts are presented in Figure 26 and Figure 27.As expected, clear 

sky estimates are really good, while in cloudy days the estimate are poorer. In the figures, the label “real day” is 

referred to the satellite measurement coming from Copernico database. 

                                                           
5 http://www.soda-pro.com/web-services/radiation/cams-radiation-service 

http://www.soda-pro.com/web-services/radiation/cams-radiation-service
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Figure 26: Worst forecast of the Similarity Model 

 

Figure 27: Best forecast of the similarity model 

4.4.2 Photovoltaic generation 

To calculate the photovoltaic electricity production, some parameters can be extracted from the technical details 

of the manufacturers, others can be calculated from the literature. 

Eq. 𝐸𝑝𝑣 = 𝐼𝑇 ∙ 𝐴𝑝𝑣 ∙ 𝜇𝑚𝑜𝑑𝑢𝑙𝑒 ∙ 𝜇𝑇 ∙ 𝜇𝑑𝑖𝑟𝑡 ∙ 𝜇𝑖𝑛𝑣 (33) 

The parameters are presented in Table 8. 
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Table 8: Parameters for the calculation of the photovoltaic electricity 

symbol Name Value - Formula 

𝑰𝑻 Total radiation on the panel Perez model 

𝑨𝒑𝒗 Area of the panel 9.3 m2 

𝝁𝒎𝒐𝒅𝒖𝒍𝒆 Module efficiency 16.1 % 

NOCT 
Normal Operating Cell 

Temperature 
46 °C 

𝝁𝑻 Efficiency due to temperature -0.39% / K 

𝝁𝒅𝒊𝒓𝒕 Correction factor due to dirt 98% 

𝝁𝒊𝒏𝒗 Inverter Euro Efficiency 96.1% 

The cell temperature is necessary to estimate the temperature derating coefficient. The 

equation to estimate the cell temperature is: 

Eq. 𝑇𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 + (
𝑁𝑂𝐶𝑇 − 20

0.8
) 𝐺𝑇  (34) 

Where G is the irradiance on the tilted surface, that can be derived from the irradiation of 15 minutes as: 

Eq. 𝐺𝑇  =  
𝐼15𝑚

0.25
 (35) 

The ambient temperature has been taken from the MERRA-2 database from NASA6. [34] 

4.4.3 Domestic hot water model 

The hot water heater works with variable ranges of temperature, that can be set by the customers. In the model 

presented, the water heater operates between 45°C and 53°C. When the temperature goes below 45°C, the 

electric resistance heats up the water with a power of 2kW until the temperature reaches around 48°C. When 

charged with solar energy the power is dimmable, and the temperature can go up to 53°C. 

The energy balance of the water heater is determined by equation: 

Eq. 𝐸𝑤ℎ,𝑛𝑒𝑡 = 𝑉𝐻2𝑂 ∙ 𝜌𝐻2𝑂 ∙ 𝑐𝐻2𝑂 (𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛𝑙𝑒𝑡) [J] (36) 

Where: 

• 𝑉𝐻2𝑂 is the volume of water heated up; 

                                                           

6 https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ 
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• 𝜌𝐻2𝑂  is the water density, that can be assumed 1000 
𝑘𝑔

𝑚3  at ambient conditions of temperature and 

pressure; 

•  𝑐𝐻2𝑂 is the specific heat of water, 4186 
𝐽

𝑘𝑔 𝐾
 

• 𝑇𝑚𝑎𝑥  is the maximum temperature inside the water heater, assumed 60 °C; 

• 𝑇𝑖𝑛𝑙𝑒𝑡  is the temperature of the water coming from the pipelines. Generally, it is between 15-20°C, 

assumed 17.5°C. 

With the mentioned assumptions, the electric storage capacity of the water heaters can be calculated as: 

Eq. 
𝐸𝑤ℎ,𝑒𝑙 =

𝑉𝐻2𝑂 ∙ 𝜌𝐻2𝑂 ∙ 𝑐𝐻2𝑂 (𝑇𝑚𝑎𝑥 − 𝑇𝑖𝑛𝑙𝑒𝑡)

3600
 [𝑊ℎ𝑒𝑙] 

 
(37) 

The results for the customers under analysis are available in Table 9. The conversion efficiency through joule effect 

is considered 100%, the thermal losses of the water heater are calculated in a further moment. 

Table 9: Thermal and electrical capacities of the water heaters, considering a minimum temperature of 40 °C. 

customer capacity Maximum storable energy [Wh 

th] 

c1 200 8721 

c4 160 6977 

c5 200 8721 

c11 160 6977 

c14 90 3924 

c15 120 5233 

c17 120 5233 

c19 120 5233 

c22 60 2965.1 

c24 120 5930.2 

The hot water is consumed throughout the day, mostly during the hours where the occupants are awake. The 

reload of the water tank occur when the photovoltaic panel produces electricity or when the temperature of the 

water heater goes below 45°C.  

Even though the real capacity of the water heater of customer 5 is 200 litres, the amount of energy consumed by 

the water heater never corresponds to the equation of the energy balance. The reason is that many phenomena 

occur during the replacement of water and the temperature measurement: 

• The probe is placed close to the outlet pipeline, so it measures only one part of the tank; 
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• Stratification occurs in the water tank, so the temperature profile is distributed along the height of the 

tank. This temperature difference can be very significant; 

• When water is consumed, the reload of cold water leads to a water mixing, before the heating up process 

starts. 

For the water heater analysed to create the model, three situations have been observed: 

• Heat up process due to thermal losses, when temperature goes below 45°C; 

• Heat up process when the water is consumed due to a considerable water consumption (eg. a shower), 

and mixing occurs; 

• Temperature reduction after a shower is taken. 

To simplify the description, a significant water consumption will be mentioned as “shower”. For each of the 

mentioned processes, an equivalent capacity has been identified to match electricity input and temperature 

measurements. This equivalent capacity has been empirically identified by observing the temperature profile 

variations and the correspondent electricity consumption. Average values have been selected to create a simple 

model of the processes happening in the water heater. 

• Thermal Losses: 0.5°C/15 min, static warm up process from 44°C to 50 °C, 100 Wh, 12.5 kg of water 

involved; 

• Photovoltaic static warm up process, from 45°C to 53°C, 45 litres of water involved; 

• Thermal load: every shower involves 45 litres of water, with a temperature loss of the water heater of 28 

°C on average, 1.454 kWh of thermal energy 

• Charge after a shower: it involves the same energy of the thermal load, plus the energy needed to restore 

the temperature at 45°C. 

To model the hot water demand, two main aspects were considered: 

• The number of showers per day and the distribution in time of this event; 

• The amount of water used for each shower. 

To make the model more realistic in terms of the number of showers per day and when they occur, the 

temperature data of the water heater have been analysed and the event shower has been counted as the number 

of times the water heater temperature goes below 37°C, taken as reference since it is the average human body 

temperature. The temperature profile of the water heater taken from the data is presented in Figure 28. The 

temperature threshold values mentioned are visible from the graph, in particular the temperature goes above 

50°C only in presence of photovoltaic production. 
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Figure 28: Temperature profile of the water heater and pv production 

The total number of counted events is 879 showers in 361 days, corresponding to an average of 2.5 showers per 

day. Furthermore, the specific hours at which the event occurs have been collected and the resulting distribution 

is presented in Figure 29. 

 

Figure 29: Distribution of the showers during the day from data 

To recreate a thermal load curve, a random generator of load has been implemented. The first randomization 

concerns the number of showers per day: this value can be either 2 or 3 with the same probability, so on the long 

run the average will be 2.5 events per day. The second randomization concerns the hour at which the shower is 

taken. From the histogram of the frequencies, a cumulative distribution can be drawn, where the length of the 

segment is proportional to the probability of having the shower at that specific hour. The randomization will pick 

up a number between 0 and 1 and select the hour correspondent to the range of values. The cumulative function 

is presented in Figure 30. 
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Figure 30: Cumulative distribution function of the even shower 

The results of the model are here presented. The algorithm created a time series of 360 days, where the shower 

times follow the 893 showers, 2.47 per day on average. The distribution in the hours of the day has been re-

evaluated from the new time series and it is shown in Figure 31: 

 

Figure 31: Histogram of the showers from the thermal model 

The temperature profile produced by the algorithm is presented in Figure 32. 
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Figure 32: Temperature profile of the water heater produced by the algorithm 

The final validation of the thermal model comes from the cumulative results. The total electricity input of the 

water heater of the model is 1.69 MWhel, while the value from the time series is 1.66 MWhel (ratio: 101.9%). The 

total thermal losses produced by the model are restored with 0.16 MWhel, representing 9.7 % of the total water 

heater charge. This number is realistic and in line with the expected performance of the water heater. 

4.4.4 Electric load modelling 

The electric load modelling presented in paragraph 2.5 has been implemented and tested. However, the model 

did not produce satisfactory results to be validated. A very simple methodology has been applied to forecast the 

load, by simply using the average values for the month considered, keeping into account an average for the 

weekdays and an average for the weekends. Regarding the electric load used as input in the model, the timeseries 

have been imported as extracted from the dataset. More information on how the model has been implemented 

are available in Annex IV: Electric Load Modelling 

 

4.4.5 Model of the battery 

The roundtrip efficiency of the battery from the technical details of the manufacturer is 95%. The lifetime of the 

battery depends on the maximum number of cycles that the battery can withstand. One way to estimate the 

battery degradation can be to consider the warranty time (10 years), assuming 1 cycle per day and linear 

degradation, and finding a maximum number of cycles of 3650 [6]. In the model, having a 15-minutes based 

timestep, the technical constraint of the maximum power that the battery can deliver or absorb results in 750 Wh. 

The panoramic of the technical parameters of the battery is available in Table 10. 
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Table 10: Battery technical parameters and inputs 

symbol Name Value - Formula 

𝑩𝒄 Battery capacity 3.3 kWh 

𝑩𝒎𝒂𝒙 Maximum power 3 kW 

𝑩𝒆𝒇𝒇 Usable energy 3 kWh 

𝝁𝒃 Round trip battery efficiency 95 % 

𝑵𝒎𝒂𝒙 
Number of charge/discharge 

cycles 
3650 
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5 Results 

5.1 Technical Performance Results 

5.1.1 Analysis of the performance from time series 

The performance of the HMS can be estimated from the time series of the dataset by calculating some parameters 

for the different customers. The goal of the maximization of the self-consumption is achieved when the household 

consumes electricity mostly from the photovoltaic panel and the interaction with the grid is minimized, 

considering both purchase and injection. 

The photovoltaic electricity generation is managed by the HMS during the period August 2017 - August 2018. The 

system worked according to the algorithm presented in Figure 33. 

 

Figure 33: HMS prioritization of the electricity generated by the photovoltaic panel 

5.1.2 Self-Consumption Ratio 

The average SCR of the customers is 57.23 %. The value results particularly high for the customers that have the 

largest electricity consumption, or customers that consumes most of the electricity during the daytime. A very 

high Self-Consumption Ratio can be a sign that the photovoltaic system is undersized for the energy needs of the 

households. An overview for the customers of Valverde is presented in Figure 34. 
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Direct 
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charge
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Figure 34: Self-Consumption Ratio summary 

Customer 10 has the highest electricity consumption and manages to absorb almost all the electricity supplied by 

the photovoltaic panel.  

 

Figure 35: Boxplots of the Self-Consumption Ratios for the three different configurations 

The highest SCR is achieved by the complete configuration, but in general the three configurations are comparable 

in terms of SCR performance. 

5.1.3 Self-Sufficiency Ratio 

The average SSR of the customers is 31.16%, with a minimum of 5.46% for customer 22 and a maximum of 54.46% 

for customer 12. A summary is available in Figure 36. 
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Figure 36: Self-Sufficiency Ratio summary 

As expected, considering the three different configurations available, the best performance in terms of SSR is 

achieved by the consumers having the smallest electricity demand, and the worst performance by the customers 

with the highest consumption, due to the fact that the panel has always the same size. 

 

Figure 37: Boxplots of the Self-Sufficiency Ratios for the three different configurations 

Customer 10 has a very limited SSR and a strong influence on the distribution of SSR for the 

configuration with water heater and battery. For this reason, the performance of the complete 

configuration results worse than the case with the water heater only. It must be mentioned 

that the number of customers analysed has a strong influence in general on the statistical 

significance of the benchmark among the configurations.  

5.1.4 Combination of SCR and SSR to analyse the system 
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Observing the two parameters together, SCR and SSR some observations and comments on the effectiveness of 

the system installed are possible: 

• High SCR and low SSR: the customer absorbs most of the photovoltaic energy, but this is not enough to 

cover a considerable part of the demand. The system is undersized. Customers 10 and 18 are examples. 

• Low SCR and high SSR: the customer consumes a limited part of the electricity from the panel, but this is 

enough to satisfy a considerable share of the demand. The system is oversized. C8 is an example. 

• High SCR and SSR: the customer absorbs most of the photovoltaic energy and his demand is highly 

satisfied. The system has a very high performance and it’s properly sized. Customers 5, 14 and 24 are 

examples. 

• Low SCR and SSR: the customer is not able to properly use the electricity from the panel, this can be due 

to a consumption mainly shifted during night time. In this case, the battery could be undersized, installing 

a larger capacity could be an option.  

 

Figure 38: Cross-comparison of SCR and SSR 

For instance, customer 3 has almost 75% of the consumption concentrated between 7 PM and 8 AM, so we can 

consider it a night consumer. Even though a battery is installed, it is not enough to achieve a high performance of 

the system, the demand is too much shifted in the night hours. 

5.2 Economic performance results 

The savings on the electricity bill are strictly related to the Self-Sufficiency and Self-Consumption Ratio. The 

calculation of the savings is performed based on the methodology presented in 4.3.2. The savings are what actually 

makes the project interesting for the end customers. An overview is presented in Figure 39. 
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Figure 39: Total savings on the electricity bill 

In absolute terms, all the customers have a significant benefit out of the project. The average savings are estimated 

to be 352 €/ year for each customer, corresponding to an average monthly saving of 29 €/month. This value is 

very close to the estimation made by EDP, which is around 25 €/month. [29] A summary of the relative savings is 

presented in Figure 40. 

 

Figure 40: Percentage of savings on the electricity bill, calculated as the savings divided the original bill 

The customers with the smallest relative benefits are customer 10 and 18, the ones with the largest electricity 

demand. In general, the performance of the installation depends on three factors: 

• The size of the equipment compared to the electricity demand (under sizing - oversizing); 

• The configuration of the equipment installed; 

• The distribution of the electric load during the day and the night. 
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The correlation between relative savings and electricity demand is negative. This trend is clearly visible in Figure 

41. This is due to the fact that every customer has the same size of the photovoltaic panel, that is undersized for 

the largest consumers like customer 10. 

 

Figure 41: Correlation between electricity demand and savings on the bill 

The same trend is visible in the Scatter Plot presented in Figure 42. 

 

Figure 42: Scatter Plot of the relative savings, function of the yearly electricity demand 

For customers having a considerable amount of electricity consumed during the night, the benefits of the 

photovoltaic panel will be lower. The savings will be even less significant if the panel is undersized for the specific 

needs of the customer. 

Comparing the three configurations, adding the battery to the water heater only doesn’t bring significant changes: 

the average differs of 0.15%, slightly in advantage of the complete configuration. The configuration with battery 

only has a significantly lower value, 35.14%. The boxplots are presented in Figure 43. 
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Figure 43: Boxplots of the savings on the bill for the three configurations. 

It is important to mention that the savings for the configuration with battery only don’t include any calculation on 

the thermal consumption and expenditure. The customers having only the battery are probably using natural gas 

to heat the water up, and this cost is not considered in this calculation.  

5.3 Model results 

5.3.1 Validation of the working principle 

The objective of the simulation is to compare the performance of the current configuration of the Home 

Management System with new algorithms. The main inputs of the model are listed in Table 11. 
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Table 11: Main inputs of the model 

Main inputs 

Solar Radiation CAMS radiation service 

Photovoltaic generation Perez Model and Pv details 

Electric load Customer 5 timeseries 

Thermal load Randomization model 

Solar forecasts Similarity model 

Load forecasts Average monthly load 

Water Heater 

Average Water consumption load 45 litres 

Tmin 45°C 

Tmax (grid) 50°C 

Tmax (solar energy) 53 °C 

 

The model should replicate approximately the behaviour of customer 5. A first simulation has been performed to 

check the representativeness of the model, so the time series of the photovoltaic generation have been used. The 

main results are shown in Table 12 

Table 12: Model results compared with the data 

Parameter Values from the model Values from timeseries 

Total Electricity Purchase 2.82 MWh 3.11 MWh 

Total Electricity Injection 0.70 MWh  0.66 MWh 

Total WH charge 1.69 MWh 1.61 MWh 

SSR 35 % 52 % 

SCR 68 % 66 % 

The model presents a discrete level of accuracy, but some issues appear in the estimation of the electricity injected 

to the grid.  The validation of the thermal model with the water heater input data has already been presented in 

paragraph 0. 

The working principle of the algorithm appears correct and some graphs are presented to show that the main 

technical constraints of the HMS are respected. 

The temperature of the water heater goes above 50°C exploiting thermal flexibility only when excess electricity 

from the photovoltaic panel is available. The temperature profile in relation with the pv production is visible in 

Figure 44. 
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Figure 44: Water heater temperature and photovoltaic production from the model 

The HMS only charges the battery in presence of photovoltaic energy, and not with the grid, as shown in Figure 

45. 
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Figure 45: Photovoltaic production and battery charge from the model 

The excess electricity is injected only when the battery reaches 100% of the state of charge. This is visible in Figure 

46. 

 

Figure 46: Grid injection and battery SOC from the model 

5.3.2 Implementation of the new HMS 

The implementation of the new algorithm for the HMS follows the scheme presented in Figure 47. The general 

idea is to trigger some night charges of the battery, to take advantage of the cheaper electricity price. First the 

user decides a triggering criterion of activation, starting from the weather and load forecasts. Then a charging 

criterion for the battery is set, to decide how much of the capacity of the battery should be recharged for every 

activation. The algorithm verifies the triggering criterion every day at midnight: when the criterion is met, the 

battery is charged up to the desired capacity with the electricity coming from the grid. 

 

Figure 47: New algorithm for the HMS 

The new algorithm is expected to increase the number of cycles that the battery does every year, and to shift part 

of the demand from the day to the night, having a time-of-use tariff. For technical reasons, it is better to keep the 

number of cycles of the battery around one per day maximum. This should preserve the lifetime of the battery 

within the time boundaries mentioned. 

Since most of the inputs come from derived variables, and the photovoltaic data derive from the satellite radiation 

database, the results are realistic but will be analysed mostly in comparative terms among the model results of 

the base case and the new algorithm. 
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Several strategies of triggering and charge criteria have been tested. The main criterion consists in comparing the 

forecast of the photovoltaic electricity production with the load forecast. If the daily load forecast is higher than 

the daily photovoltaic generation forecast, the algorithm charges the battery during the night of a specific 

percentage, settable to different values. 

Eq. 𝐸𝑑𝑡𝑜𝑡,𝑑𝑎𝑦 > 𝐸𝑝𝑣,𝑑𝑎𝑦 ∙ 𝑁 (38) 

Where N is an additional multiplicator of the electricity production. The different tested strategies are shown in 

Table 13. Also, a battery bypass is implemented to prevent the discharge during off-peak hours: in this way, the 

battery only delivers electricity during the period when the tariff is higher. 

Table 13: Strategies tried to improve the results of the HMS 

Strategy Night Bypass PV multiplicator N Battery Charge 

S1 Yes x1 0% 

S2 Yes X1 50% 

S3 Yes x2 100% 

S4 Yes x2 50% 

S5 Yes x2.5 50% 

S6 No x1 100% 

S7 No x1 50% 

S8 No x1.5 50% 

For instance, for strategy S3 the algorithm verifies if the daily electric load is going to be at least twice the 

photovoltaic generation: in that case, during the night the HMS charges the battery up to the full capacity (100%) 

and it’s not going to discharge the battery during off peak hours. 

The final results are not bringing improvements to the original algorithm in terms of savings on the electricity bill. 

The results are shown in Figure 48, where the original algorithm shows a better performance than the other tested 

strategies. 
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Figure 48: Final results for the electricity bill after the application of the different strategies 

The reasons can be several: 

• Poor performance of the load forecast; 

• Poor performance of the weather forecast; 

• The choice of comparing the electric load and the pv production only is not enough, the thermal demand 

should also be included 

The model manages to shift part of the electric load during the night. However, the effect of this shift is negatively 

compensated by an increase of the electricity purchased from the grid. The overall result is that it’s not convenient 

to apply the proposed scheme.  

Additional strategies not investigated in this work could have a positive impact for the end customers. 
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6 Conclusions 

SENSIBLE project is successful relatively to the initial goals of creating a more independent group of customers, 

self-consuming a considerable amount of electricity and saving more than 100 euros per year on average. The 

work focused mainly on the perspective of the end customer and did not analyse the detail of the grid dynamics. 

For further studies many possibilities are open, both to improve what has been done in this report and to analyse 

a different perspective. Possibilities to explore are: 

• A more advanced thermal model for the water heater, for instance including a stratification model or 

changing the approach into a black-box model, for instance using a neural network to set the parameters; 

• A model that keeps into account the interactions among houses; 

• More advanced weather and load forecasts; 

• An analysis of how the battery of the end customer can be controlled by aggregators to provide balancing 

services. 

6.1 Suggestions  

According to the criteria mentioned in paragraph 5.1.4, some indications are given to understand if the equipment 

installed is suitable for the type of customer or not. It should be noticed that, even though most of the customers 

would benefit from a more photovoltaic panel capacity, the size of 1.5 kW was chosen to avoid the necessity for 

additional permissions for the installation. An overview is presented in Table 14. 



60 

 

Table 14: Suggested interventions for the customers 

Customer Intervention 

C1 Increase PV size 

C2 Increase PV size 

C3 Increase size battery 

C4 Increase PV size 

C5 Good sizing 

C6 Increase PV size 

C7 Increase PV size 

C8 System slightly oversized 

C9 Increase PV size 

C10 Increase PV size 

C11 Increase PV size 

C12 Good sizing 

C13 Increase PV size 

C14 Good sizing 

C15 Increase PV size 

C16 Good sizing 

C17 Increase PV size 

C18 Increase PV size 

C19 Increase PV size 

C20 Increase PV size 

C21 Good sizing 

C22 Increase size battery 

C23 Increase PV size 

C24 Good sizing 

C25 Increase PV size 
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6.2 Financial feasibility and perspectives 

The CAPEX of the installations in SENSIBLE has been paid by EDP, but the project wants to investigate the financial 

sustainability of the distributed generation and storage for residential customers in Portugal. A financial 

assessment can be performed starting from the investment costs of the devices installed, and considering the 

savings calculated for the current year as a starting point for the incoming years. The financial parameters used 

for the analysis are the Net Present Value NPV in equation 39 and the Internal Rate of Return IRR. 

Eq. 𝑁𝑃𝑉 =  ∑
(𝐶𝐹𝑗)

(1 + 𝑖)𝑗
 

𝑛

𝑗=1

 (39) 

It is reasonable to assume that the savings will decrease during the years, due to the degradation of the 

components. A good assumption is to decrease savings proportionally to the degradation of the photovoltaic panel 

cells. The GreenTriplex PM060P00 is a Multi-Chrystalline photovoltaic module, and the performance is guaranteed 

with linear degradation to 80% of the rated power for 25 years. Normally the initial degradation of the panel is 

higher, and then it stabilizes on a linear trend, so to have a more conservative result, the degradation will be 

assumed to be: 

• -5% for the first year; 

• -0.63% for the following years. 

The yearly savings due to the battery can be estimated as the electricity delivered by the battery as if it was 

delivered by the grid, with the correspondent time of use tariff.  

Eq. 𝐵𝑏𝑎𝑡𝑡 = ∑ 0.0969 ∙ 𝐸𝑏,𝑜𝑢𝑡,𝑖 + ∑ 0.2028

𝑦

𝑗=1

∙ 𝐸𝑏,𝑜𝑢𝑡,𝑗

𝑥

𝑖=1

 (40) 

Where: 

• 𝐸𝑏,𝑜𝑢𝑡,𝑖 is the battery output in off-peak hours; 

• 𝐸𝑏,𝑜𝑢𝑡,𝑗 is the battery output in peak hours.  

The average savings due to the battery are around 77 €/year. The results are presented in Figure 49.  
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Figure 49: Boxplot of the yearly savings thanks to the battery 

The financial inputs are presented in Table 15. The interest rate suggested by EDP for the calculations is 6%, and 

the lifetime considered for the project is assumed to be 20 years. 

The savings on the electricity bill are considered positive values in the cash flow calculation. 

Table 15: Financial inputs 

Device CAPEX [€] OPEX [€/y] Lifespan [y] 

Photovoltaic panel and 
inverter 

1500 20 20 

Smart Water Heater 800 - 20 

Battery 2550 10 10 

Battery inverter 500  20 

With the mentioned values, two cases can be analysed: the case with the battery and the case without the battery. 

The savings with the water heater have been assumed to be 350 €/year, value taken from the average of the 

savings of the customers with this configuration. 

The NPV is calculated on a lifetime of 20 years. The battery must be replaced after 10 years, so it will be accounted 

twice, while the PV and the Water Heater are accounted once. 

The cumulative actualized cash flows for a customer without the battery are presented in Figure 50.  From the 

figure the Payback time is in year 9.  The NPV is 1374 € in year 20, however the equipment is expected to last for 

longer, at least five more years. The IRR is 14.7% 
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Figure 50: Cumulative cash flow of the case without battery 

Considering the case with the battery included, a second inverter is necessary, so the investment cost is expected 

to grow. The cash flows are shown in Figure 51. A replacement of the battery is considered in year 10. The NPV 

and the IRR are negative, with a value of the latter of -0.85%. This means that the investment is not sustainable at 

the moment with the current prices of the battery. 

 

Figure 51: Cumulative actualized cash flow of the case with the battery 

The financial analysis suggests that the battery is not a convenient investment for the current values of CAPEX and 

interest rate. However, it is possible to identify the CAPEX that would make the investment neutral, which is 1125 

€ (340 €/kWh). 

It is interesting to notice that the price of the selected battery, 772 €/kWh is very high for the current market 

prices: The cost of a Tesla Powerwall 3 of 24 kWh is approximately 10000 $, corresponding to 435 USD/kWh. [35] 

The battery market in Portugal is still not developed, and for this reason mainly the cost per kWh installed is still 

not affordable for a domestic installation. 

According to a study of HIS Markit, the price of lithium ion batteries could fall below 200 $/kWh, 174 €/kWh. [36] 
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Another interesting aspect to be considered is that the general trend of the prices of electricity in Portugal is 

growing: even though in the three semesters between the end of 2016 – end of 2017 the price slightly decreased, 

from 2010 to the end of 2017 the prices increased of 41%, corresponding on average to a 6% increase per year. 

The graph presented in Figure 52: Electricity prices for households in Portugal from 2010 to 2017, semi-annually 

(in euro cents per kilowatt-hour) Figure 52 is taken from Statista [37] and shows the mentioned trend.  

 

Figure 52: Electricity prices for households in Portugal from 2010 to 2017, semi-annually (in euro cents per 

kilowatt-hour) 

The growth in the electricity cost might partially mitigate the savings reduction due to the degradation of the 

equipment and make the investment more convenient. Even though there is a probability that this will have a 

positive impact in the financial perspectives of the installation of such systems, an accurate evaluation at this stage 

would be merely speculative and it is not performed for reasons of conservativity.  



65 

 

6.3 Impact of the project  

6.3.1 Environmental impact: Carbon Footprint 

The carbon intensity of the electricity production can be defined as: 

Eq. 𝐶𝐼 =
𝐺𝐻𝐺𝑒

𝐸𝑔𝑒𝑛
 (41) 

Where: 

• 𝐺𝐻𝐺𝑒  is the total emission of greenhouse gasses, expressed in tons of CO2 equivalent; 

• 𝐸𝑔𝑒𝑛  is the total electricity generated 

The greenhouse gasses emissions of the electricity supplied by the grid are due generation, but also many other 

intermediate steps before the final energy consumption by the end customer. 

 

Figure 53: Evolution of the carbon intensity along the electricity supply chain [38] 

The carbon intensity of the national grid of Portugal can be assumed to be 400 g CO2, eq/kWh consumed by the 

end customer. [38] A similar value is found on the website of the Electricity Map, where live values of the carbon 

intensity of the grid are shown [39]. The electricity self-consumed by the customers of Valverde totals 27134.97 

kWh, corresponding to a reduction of the emissions of 10.85 tonnes of CO2 equivalent in the period August 2017 

– July 2018. It must be mentioned that in this calculation the emissions related to the installation and maintenance 

of the system and related to the manufacturing of the components are not accounted. A life-cycle assessment of 

the project SENSIBLE from Cradle-to-Grave would give a complete overview of the mentioned aspects, and it is an 

interesting hint for further studies on the performance of the project. 

6.3.2 Socioeconomic Impact 

Distributed generation in general gives positive impact to the management of the grid. For instance, a reduction 

of the losses, improved reliability of the grid by reducing power flows, more free capacity available on the power 

lines, an increased renewable penetration in the domestic energy consumption. [40] The electric systems 

worldwide are experiencing a very fast evolution first with the introduction of large renewable power plants, and 

now with distributed generation. SENSIBLE project is just one of the case studies where batteries are combined 
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with photovoltaic for domestic use. Some companies already commercialize domestic batteries in countries where 

the market is larger, such as the US. 

Having a high number of customers getting more and more independent from the grid is expected to lead to a 

reduction in the earnings of the DSO, because less electricity is purchased. Nevertheless, the grid will still be 

needed to supply the customers when renewables are not available, for instance during the night, or in cloudy 

days. The costs of maintenance of the grid will have to be recovered by the grid operators. Furthermore, the 

investments in the grid are usually very long term oriented, planned to be recovered in decades, while the peak 

load profile changes at an increasing speed.  

If the grid costs increase and the price of electricity grows consequently, some problems of disparity in the 

redistribution of the costs might appear. Usually grid costs are higher in rural areas, where there is space available 

for rooftop photovoltaic installation: Valverde is a good example. With more and more affordable batteries and 

photovoltaic panels, more customers are expected to become prosumers, increasing the renewable penetration 

in areas where the consumption is low. The combination of the two aspects is expected to considerably increase 

the grid costs and consequently the tariffs charged on the end customers. The most affected customers in this 

scenario would be the ones that cannot afford to install a solar system, generating an iniquitous trend in which 

the low-income households are disadvantaged. 

An evolution of the current business model is expected to happen to mitigate this phenomenon. In fact, in a tariff 

where the customers are charged mostly on volumetric basis [€/kWh], customers having photovoltaic systems or 

in general private electricity generation would pay less than the customers totally dependent from the grid. [41] 

If grid tariffs are applied mostly on contracted power basis [€/(kWh d)] then the costs would be redistributed in a 

more fair and balanced way.  
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Annex I: SENSIBLE Project Partners 

The list of partners of the consortium is: 

• Siemens AG 

• ARMINES/Paris tech 

• EDP NEW – Labelec/EDP Distribução 

• Empower 

• Green Power Technologies 

• INDRA 

• INESC Porto 

• Mozes 

• Nuremberg Institute of Technology 

• University of Nottingham 

• University of Seville 

• Siemens S.A. 

• K&S

 



 

Annex II: Data availability 

Table 16: Data availability customers 1-15 

 

Table 17: Data availability customers 16-25 

 

 



Annex III: Distributions for Electric Load Forecast  

The Weibull probability distribution function is defined as: 

 

Weibull 
PDF 

𝑓𝑊(𝑥; 𝜆, 𝑘) = {
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(42) 

Where 𝑘 > 0 is the shape parameter, and 𝜆 > 0 is the scale parameter. The Weibull cumulative distribution function is: 

Weibull 
CDF 

𝐹𝑊(𝑥; 𝜆, 𝑘) = {
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(43) 

When 𝑘 = 1, the Weibull distribution corresponds to the exponential distribution, while when 𝑘 = 2 it is equivalent to 

the Rayleigh distribution. The mean value is: 

Weibull mean 
𝜇 = 𝜆Γ (1 −

1

𝑘
) 

 
(44) 

The variance is: 

Weibull variance 𝜎2 = 𝜆2Γ (1 +
2

𝑘
) − 𝜇2 (45) 

Where Γ(x)is the Gamma function. The Log-Normal PDF of the random variable L is defined as: 

Log-Normal PDF 𝑓𝐿(𝑥; 𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒

−
(ln 𝑥−𝜇)2

2𝜎2       𝑥 > 0  (46) 

Where 𝜇 is the mean and 𝜎2 is the variance. The Log-Normal CDF is: 

Log-Normal CDF 𝐹𝐿(𝑥; 𝜇, 𝜎) =
1

2
[1 + erf (

ln(𝑥) − 𝜇

𝜎√2
)] (47) 

Where erf (𝑥) is the error-function defined as: 

Eq. erf(𝑥) =
2

√𝜋
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𝑥

0

𝑑𝑡 (48) 
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Annex IV: Electric Load Modelling 

Clustering by hour, weekday and month 

The first criteria have selected for clustering the electric load data aims to create distributions of probability for each 

timestep, based on the observations from the data, sorted: 

• By month: considers the seasonal variability; 

• By weekdays or weekends: considers the different habits of a family, if the working days are from Monday to 

Friday; 

• By hour: allows to generate a electric load profile for each day, with a fixed timestep. The load is considered 

constant within the timestep. 

A schematic overview is presented in Figure 54, where the unit of the model is identified. 

 

Figure 54: Data clustering by month, by weekday and by hour 

Having the data sorted according to this scheme, for each distribution it is possible to identify outliers with the equation 

xxx and to remove them from the dataset.  

The resulting model will be a concatenation of distributions, representative of each model unit, that can be used to: 

• Generate a load curve with a Montecarlo method, to make predictions for the electricity consumption; 

• Fill the gaps in the dataset using average values, an example is shown in Figure 55. 
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Figure 55: Filling data gaps 

Clustering by daily consumption, weekday and month 

This clustering strategy is similar to the previous one, divided by month and weekdays. The difference lies in the model 

unit, which is not the single hour but the daily consumption.  

 

Figure 56: Data clustering by month, by weekday and daily consumption 

It is possible to identify distributions of the daily consumptions for each period of the year, calculating mean and standard 

deviation. Then the model can be built by selecting for each period a “typical day”, the closest to the mean value: this 

day will be repeated for the whole period represented, returning a model with two typical days per month, 24 in a year. 

Additionally, day by day variability can be included taking into account the standard deviation of the period considered, 

starting from the model day selected. 
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Annex V: Solar angles 

𝐴𝑖  is the anisotropy index, function of the transmittance of beam radiation of the atmosphere. It determines the portion 

of the horizontal diffuse radiation that can be considered forward scattered, with the same incidence angle of beam 

radiation.  

𝐴𝑖 =
𝐺𝑏

𝐺0

 

When conditions are of clear sky, 𝐴𝑖  is high and most of the diffuse radiation is forward scattered. In overcast conditions, 

when there is no beam radiation, 𝐴𝑖 is zero and all the diffuse radiation is isotropic. 

Eq. 
𝐵 = (𝑛 − 1)

360

365
 

 
(49) 

Where n is the day of the year according to the Gregorian Calendar. 

 

 

 

The clearness index can be calculated using the measurement of the global horizontal irradiance of the pyranometer, and 

the extra-terrestrial irradiance on a horizontal surface: 

Eq. 𝑘𝑇 =
𝐺

𝐺0

 (50) 

 

Once the clearness index has been calculated as presented above, the next step is to correlate Gd/G, the fraction of the 

irradiance on a horizontal plane which is diffuse, with kT, the hourly clearness index. This is made based on correlations 

presented in the literature [42]. Figure 57 shows the correlations for the mean irradiation, valid also for the irradiance. 
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Figure 57: The ratio Id/I as function of hourly clearness index kT showing the Orgill and Hollands (1977), Erbs et al. 

(1982), and Reindl et al. (1990a) correlations. 

The equations used for the sake of the project were the following: 

Eq. 
𝐺𝑑

𝐺
= {

1 − 0.09𝑘𝑡 𝑓𝑜𝑟 𝑘𝑡 ≤ 0.22

0.9511 − 01604𝑘𝑡 + 4.388𝑘𝑡
2 − 16.638𝑘𝑡

3 + 12.336𝑘𝑡
4 𝑓𝑜𝑟0.22 < 𝑘𝑡 ≤ 0.8 

0.165 𝑓𝑜𝑟 𝑘𝑡 > 0.8

 (51) 

The beam fraction (Gb/G) is the complement of the diffuse fraction, so it is calculated as 1 - Gd/G. Most of the irradiance 

is diffuse during morning, but the beam raises quickly reaching the peak around noon. 


