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Resumo

Apés um grande progresso tedrico e experimental, é agora sabido que os neutrinos s@o massivos. Contudo,
nao ha explicagao tedrica para a sua massa quase nula e outras questoes em aberto. O mecanismo Seesaw
(Balancé) responde a algumas destas, trazendo, ao mesmo tempo, nova fenomenologia que pode explicar
outros problemas da Fisica de Particulas, como a assimetria entre matéria e anti-matéria. Nesta tese
desenvolve-se uma extensao minima do Modelo Padrdo, com trés neutrinos de direita. A notacao é
fixa e uma nova parametrizagdo é explorada. Esta parametrizacdo permite controlar todos os devios
de unitariedade através de uma tnica matriz 3 x 3, denominada X, que também relaciona a mistura
dos neutrinos leves e pesados no contexto de seesaw tipo I. Esta parametrizacao é adequada para um
tratamento geral e exato independente da escala do termo de massa dos neutrinos de direita. Os modelos
com correcoes as massas a um loop controladas sao classificados de acordo com as hierarquias de massa
que os neutrinos pesados devem ter - casos A, B e C. Os casos B e C podem ter desvios de unitariedade
consideraveis. Isto quer dizer que, se um neutrino quase estéril for descoberto num futuro proximo, é
expectavel que as hierarquias de massas dos neutrinos pesados sejam como as do caso B - pelo menos 2
neutrinos pesados quase degenerados ou como as do caso C - pelo menos 2 neutrinos pesados com massas

na escala do eV ou do KeV'.

Palavras-chave: Modelo Padrao, Neutrinos, Seesaw, Desvios de Unitariedade, One-Loop
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Abstract

After a great theoretical and experimental progress, it is now known that neutrinos have mass. However,
there is no theoretical explanation for their almost vanishing mass and other issues. The Seesaw mech-
anism answers some of these and creates new phenomenology that can help answer several other open
problems in Particle Physics, like the matter-antimatter asymmetry. In this thesis, a minimal extension
to the Standard Model with three positive chirality neutrinos is devised, under the Seesaw Type I frame-
work. Notation is fixed and a novel parametrization is exploited. This parametrization enables to control
all deviations from unitarity through a single 3 x 3 matrix, which is denoted by X, that also connects
the mixing of the light and heavy neutrinos in the context of type I seesaw. This parametrization is
adequate for a general and exact treatment, independent of the scale of the right handed neutrino mass
term. The models with controlled one-loop mass corrections are classified according to the heavy neutrino
mass hierarchies they must possess - cases A, B and C. Cases B and C can have sizable deviations from
unitarity. This means that if an almost sterile neutrino is discovered in the near future, heavy neutrinos
mass hierarchies might be like the ones of case B - at least two almost degenerate neutrinos, or like the

ones of case C - at least two eV or KeV neutrinos.

KGYWOI'dSZ Standard Model, Neutrinos, Seesaw, Deviations from Unitarity, One-Loop
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Chapter 1

Introduction and Motivation

Quantum Mechanics and Relativity dramatically changed the way how we understand and explain phys-
ical phenomena. Combining both theories became, arguably, the main goal of Physics. From the effort of
combining Special Relativity and Quantum Mechanics resulted Quantum Field Theory (QFT). Our best
description of the behaviour of fundamental particles is a special case of a QFT - the Standard Model

(SM).

1.1 Thesis Outline and Motivation

With the experimental evidence of neutrino masses and flavor oscillations, it has become very relevant
to create models which explain the neutrino spectrum and its properties.

This work is organized as follows: in the rest of this section one will dwell on the history of particle
physics, as it is fundamental to understand the role and importance of neutrinos in it. Then, a brief
review of the SM will be made, in order to understand its flaws and limitations in the Leptonic Sector. In
chapter 2, minimal extensions to the SM which include neutrino masses are presented - ¥SM and SIvSM
(Seesaw Type I), with a review on the state of the art of Neutrino Physics: Oscillations, CP Violation
and Neutrinoless Double Beta Decay. In chapter 3, the main results of this work are presented. These
are models developed under the Seesaw type I framework, that can be detected experimentally very soon
due to the sizable deviations from unitarity. The development of these models was possible due to the
exploitation of a hidden degree of freedom in the Seesaw equations, thanks to a novel parametrization.
Additionally, the fact that these models must have controlled one-loop mass corrections, constrained
the heavy neutrino mass hierarchies to be of a given type. To conclude, a final chapter with the main
conclusions of the work and their future prospects. Establishing the importance of these models to probe
Seesaw models and favour/disfavour Majorana Neutrinos. The research work on which part of this thesis

is based on can be found at [1].



1.2 Historical Introduction

Studying neutrinos plays an important role on the study of the leptonic sector. First of all, Neutrinos
are special because they are the only fundamental fermion without electric charge. While other fermions
are constrained to be usual Dirac particles, neutrinos are not. Moreover, their masses are so many orders
of magnitude below the masses of other fundamental particles that for many years they were thought to
be massless.

As of now, most physicists believe these two facts are connected. Many models have been made,
which relate both aspects, and this work has been done in the framework of one of them.! However, 83
years have passed from the proposal of the existence of the Neutrino to the establishment of their massive
nature as truth. I believe it’s instructive to cover the highlights of this story [2], because it is illustrative
of how ideas in Science transform from hypotheses to reality.

The History of the Neutrino began in 1930 with the proposal of their existence by Nobel prize laureate,
Austrian physicist, W. Pauli. In 1930, nuclei were considered to be bound states of protons and electrons.
Thus, in this model, the § decay of a nucleus - (4;7) — (A;Z + 1) + e~ - should have a discrete
spectrum. This should happen because the emitted electron would have a fixed energy, which, assuming
the conservation of energy, should be equal to the release energy of the reaction, different for each nuclei.
However, in the early 19th century, Lise Meitner and O. Hahn measured a continuous (3 spectra, confirmed
later by C. D. Ellis and W. A. Wooster [3]. Also, there was another problem, some nuclei had a measured
spin different from the predicted one. These two issues cast some doubt on the principle of conservation
of energy and the spin-statistics theorem (known at the time as the exchange theorem of statistics). In
a famous letter [4] to a conference in Tiibingen that he could not attend, Pauli wrote:

“Dear radioactive ladies and gentlemen, (...)

I have hit upon a desperate remedy to save the exchange theorem of statistics and the law of conser-
vation of energy. Namely, the possibility that in the nuclei there could exist electrically neutral particles,
which T will call neutrons, that have spin 1/2 and obey the exclusion principle and that further differ
from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should
be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton
mass. - The continuous beta spectrum would then make sense with the assumption that in beta decay, in
addition to the electron, a neutron is emitted such that the sum of the energies of neutron and electron
is constant.”

Pauli turned out to be almost right. There was indeed a neutral particle in the nuclei - the neutron
(discovered by Nobel prize laureate J. Chadwick [5] some years later). This solved the spin-statistics
crisis. However, its mass was of the order of the proton mass. Only a possibly massless extra neutral
fermion could solve the conservation of energy. Since we needed a «neutron» with a much smaller mass,
pragmatic, Nobel prize laureate, Italian physicist E. Fermi named this particle Neutrino.

After all of these advances, it was believed that the nuclei was a bound state of protons and neutrons

n the seesaw mechanism, neutrinos are Majorana particles, which they can be because they’re uncharged and due to
this there are more neutrinos than the three currently known, with heavier masses, which explain the small masses of the
light ones.



[6] and that electrons would bind electromagnetically to the nuclei, forming a neutral atom. The stability
of this neutral atom was still a mystery 2. Under these assumptions, Fermi formulated its theory of
decay [7] - where an electron/anti-neutrino pair would be produced in the transition of a neutron into a
proton: n — p+ e~ + U,. This was one of the first examples of an explanation in terms of fundamental
particles of a known nuclear physics phenomenon. This realization lead to the creation of an effective
Lagrangian a la Quantum Electrodynamics (QED) - the theory that was being built by R. Feynman, S.
Tomonaga and J. Schwinger to explain all interactions between electrons and photons [8, 9, 10]. The
theory built around this effective Lagrangian is now known as as the Fermi Model of weak interactions and
contains only vector-like 3 interactions. Comparing the predictions of this model with experimental data
from B decays, lead to two very important conclusions. First, the coupling constant of such interaction
would be very small comparing to QED - the name Weak interaction is born. Second, a Lagrangian
with vector and axial-vector ¢ interactions provided predictions consistent with experimental data. This
more general model is known as Fermi-Gamow-Teller model [11], and it includes an axial vector current
U, y°¥, in such a way that parity was still conserved. The assumption that parity was conserved was
not backed by anything, it was just something that the community felt right. Nevertheless, T.D. Lee and
C.N. Yang received the 1957 Nobel Prize for predicting Parity Violation [12, 13], motivated by the § — 7
puzzle [14] - a belief, motivated by wrongly assumed conservation of parity, that two different particles
with the same quantum numbers existed just because there were two possible decays with opposite parity.
Chien-Shiung Wu received eternal gratitude for conducting the experiment [15] and study of S-decay of
polarized Cogg nuclei which declared for once and for all that Parity was not conserved in Weak Processes.

Explicit parity violation would translate into a non left-right symmetric weak interaction. As devised

by Feynman and Gell-Mann [16], the correct Lagrangian for 8 decay would have to be of the form:

Lyv_a = (7" (9v — 9475)¥n) - (Wevu(gv — 9avs)¥y) + hec. (1.1)

where h.c. means hermitian conjugate - the hermitian conjugate of the written term should be included.

Defining Chirality projectors Pr, j, = HE% with the usual projector properties (PI%,/’L =Prr,PrrPrLr=

0, Prr+ PrLr=1) one can define Pg %) = ¢ 1 and rewrite ¢ = ¢y, + g and Ly _ 4:

LV—A = (%L’Y”(QV - gA75)wnL) ' (%LVU(QV - gA’YS)lpVL + h.c. ; (1'2)

where the "RR” term is zero because it was experimentally observed that gy = g4 = 1, which translates
into that term being proportional to Pr,-Pr = 0. The crossed terms "RL” and LR” are zero, independently

of g4 and gy, for the same reason. This implies that neutrinos with positive chirality are impossible to

2In classical electrodynamics, a moving charge necessarily emits energy. Thus, if the atom was a nucleus with electrons
orbiting around it, it would never be stable. Thankfully, Quantum Mechanics and atomic orbitals would solve this some
years later. Now, it is understood that an electron on an atomic orbital doesn’t emit energy because an atomic orbital
is a stationary wave - an eigenmode solution to a Schrodinger’s equation. Energy is quantized and can only be emitted
or absorbed if it corresponds to the energy difference between two atomic orbitals. These are labeled by three quantum
numbers, depicting energy (n) and angular momentum (l,m).

3Here, the noun vector is used in the context of tensor calculus. A vector is an object with only one Lorentz index, i.e.,
a (1,0) or (0,1) tensor. A (2,0) or (0,2) tensor can be represented as a n X n matrix.

4 An axial-vector is a vector in the context of tensor calculus, which transforms usually under rotations but gains an extra
sign under parity transformations.



detect via weak interaction.

A few kilometers and years away, F. Reines and C.L. Cowan, motivated by the belief that some kind
of inverse 3 decay with a neutrino in the initial state should exist 7z +p — n+e™, devised an experiment
to detect this initial state (anti)-neutrino. They succeeded [17] and F. Reines won the 1995 Nobel Prize
thanks to it. This was the first experimental detection of a neutrino. The idea that lead to this discovered
was propelled by an apparently conserved quantity named Lepton Number (L)°.. Experiments that would
reveal a non-conservation of this quantity yeld negative results [18]. Thus it became accepted as the only
distinction between neutrino and anti-neutrino. Lepton Number came upon thanks to the realization
that in S~ -decay (n — p+e~ +7;) one could define L = 0 in the initial state and L,- =1 and Ly~ = —1
in the final state. Assuming its conservation, a 3%-decay ( p — n + et + 1) should theoretically exist
with L+ = —1 and L,, = 1, with a similar decay with an e~ instead of a e™ being impossible. This
decay of an isolated proton is not possible due to m,, > m, but the idea turned out to be correct and the
free anti-neutrino in the initially mentioned kind of Bt-decay was indeed detected. As of 2018, we know
only total Lepton Number is conserved at tree level (but violated by Chiral Anomalies).

Progress until here was very experiment driven, with theory derived in an ad hoc fashion. For instance,
the Lagrangian in [eq. 1.2] unsurprisingly has some issues. Cross sections of given processes calculated
with it grow with energy, this violates the unitarity of the theory - cross sections need to decrease with
energy. The solution to this was to postulate an Intermediate massive Vector Boson, that prediction
turned out to be correct and the boson that mediates this interaction is now known as W¥* boson.
Furthermore, performing calculations with this, beyond Oth order (tree level), in perturbation theory
leads to infinite results. The solution for this was a technique developed for many years by H. Bethe, R.
Feynman, J. Schwinger, S. Tomonaga and F. Dyson, now known as Renormalization [19, 20] .

The discovery of the muon () in 1937 by by E.C. Stevenson and J.C. Street [21] and C.D. Anderson
and S.H. Neddermeyer [22] extended the list of known particles. In 1947, a fundamental person to
the development of Neutrino Physics, Italian physicist B. Pontecorvo, suggested Lepton Universality
[23] - the weak interactions of p and e would have the same cross sections, or in modern terms, the
coupling of leptons to gauge bosons would be flavor independent. Taking charged leptons’ different masses
into account, experiments and predictions were consistent. Things changed when recent tests of lepton
universality in B meson decays, performed by the LHCb, BaBar and Belle experiments, shown deviations
from the Standard Model predictions [24], although yet without high enough statistical significance to
claim discovery.

Moreover, these two very similar particles were naturally classified accordingly, leading to the origin of
what is now known as generation or family. This triggered the question ”If there are more than one charged
leptons which can interact weakly, is there more than one neutrino?”. To test this, B. Pontecorvo suggested
the first accelerator neutrino experiment. The experiment [25] consisted of bombarding Beryllium (Be)
targets with protons, this produced predominantly muon neutrinos due to helicity suppression (77 —
ut 4+ v, vs 7™ — et +1v,). The produced neutrino would later interact with nucleons, if one detected

the same amount of muons and electrons in the decay products, then only one neutrino would exist

5¢.f. the end of section 2.1 for a proper explanation on this.



(ve = v, = v). However, much more muons were detected, proving the existence of at least two neutrinos,
one for each (known) charged lepton. L. Lederman, M. Schwartz and J. Steinberger won the 1988 Nobel
Prize in Physics for this. This lead to the definition of a new apparently conserved quantity - lepton
flavor number, a generalization of Total lepton number. (Total) Lepton number was just a setting of 41
to leptons and -1 to anti-leptons, lepton flavor number does that for each generation®. Nonetheless, it is
now known that lepton flavor number is explicitly violated by Neutrino Oscillations, also, several hints
point towards lepton flavor violation in rare processes [26].

Based on what was discovered until that time, at the end of the fifties it was believed that the neutrino
was a massless spin 1/2 particle with only left-handed helicity, which is the same as negative chirality
for massless particles. This explained parity violation in weak interactions, the V' — A interaction type
and the experiments that only detected left-handed neutrinos. Furthermore, a Dirac particle with only
one chirality is necessarily massless. In 1937, E. Majorana [27] derived a result, valid only for neutral
particles, which implied that the neutrino could have mass without having another chirality state. This
would also imply that the neutrino would be its own anti-particle.

Currently, we understand that neutrinos have a tiny mass so we cannot guarantee it doesn’t exist a
positive chirality counterpart for the neutrino - if it is a Dirac particle it must have it, if it is a Majorana
it doesn’t, but extra particles would be needed to make everything consistent. The fundamental question
is to find out which type of particle the neutrino is.

As we entered the 60s, the effort to create a theory guided by some principles that explained all
the known facts was finally converging to a solution. In 1968, S. Glashow, S. Weinberg and A. Salam
[28, 29, 30] formulated the Glashow-Salam-Weinberg (GSW) model of weak-interactions, a model that
would be an important part of the future Standard Model (SM). It was based on a SU(2) x U(1)
gauge group and predicted the existence of weak neutral currents mediated by a new neutral boson -
Z. Developments in the study of the Strong force, lead by M. Gell-Mann [31, 32], derived what is now
known as Quantum Chromo Dynamics (QCD), based on a SU(3) gauge group. A full formulation of the
SM was finally done, with the gauge group being SU(3) x SU(2) x U(1). After the prediction of the Z

boson an impressive number of successive successes was achieved:

1973 | Neutral currents are discovered in the bubble chamber "Gargamelle” [33]

1974 | J/¥ meson discovered by groups headed by B. Richter and S. Ting, proving the existence of the charm quark (c). [34, 35]
1975 | The 7 charged lepton is discovered by M. Perl’s group. [36] M. Perl was awarded the 1995 Nobel Prize in Physics for this.
1977 | Tmeson discovered at Fermilab, proving the existence of the bottom quark (b). [37]

1979 | The QCD gauge boson - the gluon (G) - is indirectly observed in three-jet events at DESY. [38]

1983 | Discovery at LEP, of the mediators of eletroweak interactions - W= and Z. [39, 40, 41, 42]

1989 | Measurement of the Z invisible width or the number of non-sterile light neutrinos: 3.27 £ 0.30. [43]

1995 | Top quark (¢) is discovered at Fermilab. [44, 45]

2000 | First direct observation of the v, at Fermilab. [46]

Table 1.1: Experimental Achievements in Particle Physics from 1973 to 2000

Due to some underlying principles, all the discovered particles needed to be theoretically massless.
That contradicted experiments, and an extra particle, with very special properties was needed - the Higgs
(H) particle. What is now known as simply the Higgs Mechanism was devised by Anderson, Brout and
Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooft [47, 48]. It provided masses to the gauge bosons,

6¢.f. the end of section 2.1 for a proper explanation on this.



and in general to all fermions, without explicitly breaking the symmetries of the model. This turned
out to be a fundamental principle, since, some years later, Nobel laureates G.t Hooft and M. Veltman
[49] proved only gauge theories with spontaneous symmetry breaking were consistent at higher orders of
perturbation theory.

In 2012, the observation of a Higgs-like boson was finally announced by the ATLAS and CMS collab-
orations [50, 51]. All the SM particles were now experimentally detected. Everything seemed consistent
with the SM besides some experiments involving neutrinos. Precision measurements of 5 decay spectrum
end-point would be sensitive to neutrino masses, but at the time the only possible conclusion was that
neutrinos were much lighter than electrons, with the bound consistent with massless neutrinos. With no
irrefutable evidence for massive neutrinos, one could not conclude anything, and this remained an open
problem for several years. Now, neutrinos are known to be massive and there is a dedicated experience
in Karlsruhe, Germany, named KATRIN [52] (Karlsruhe Tritium Neutrino Experiment) with the goal of

measuring the “mass of the electron antineutrino” 7

with high precision by examining the spectrum of
electrons emitted from the beta decay of tritium.

The idea that neutrinos could be massive was proposed in 1957 by B. Pontecorvo [53]. He pinpointed
that there was no symmetry preventing that (like gauge invariance prevents the photon from acquiring a
mass), thus being possible that they had a very small mass. B. Pontecorvo was also the first to consider
neutrino oscillations. In a seminal paper [54], he showed that if neutrinos had mass, lepton flavor number
is not conserved and that neutrino states produced in weak decays are a superposition of states with
definite mass. Years later, in 1962, when the existence of v, was already proved, Z. Maki, M. Nakagawa
and S. Sakata proposed a better model of neutrino oscillations [55]. They proposed that v, and v, were
linear combinations of two mass eigenstates, and that oscillations between one another were possible. As
an answer to the lack of evidence of this oscillation phenomenon in some experiences [18], B. Pontecorvo
coined the term "sterile neutrino”, claiming that a massive neutrino (antineutrino) could transform into
its positive chirality counterpart and become totally invisible to our experiments, since it would not
interact via weak interaction [56].

The first experiment to provide an hint for oscillations, and thus, massive neutrinos was R. Davis
group’s experiment to detect solar neutrinos [57] trough v, + Cls; — e~ + Ars;. The measured solar
neutrino flux was way below the theoretical predictions - the solar neutrino problem is born. At first, it was
thought that the problem was inherent to the used solar model. However, many other measured quantities
proved its consistency and only a few years later was the neutrino oscillation hypotheses accepted as the
best answer [58, 59, 60]. In order for this to happen, the experiments Super Kamiokande (SK) [61]
and Sudbury Neutrino Observatory (SNO) [62] played a crucial role. SK and SNO are Cherenkov effect
based experiments, which detect high energy solar neutrinos from the proton proton chain due to elastic
scattering of these neutrinos with electrons from the atoms in the detector. The results from these two
experiments revealed, in a model independent way, an evidence of v, disappearance. This deficit was then
understood to be due to oscillations of v, into v,, inside the sun, due to the Mikheev-Smirnov-Wolfenstein

(MSW) effect [63, 64, 65], and in the path from the sun’s surface to the Earth. The 2015 Nobel Prize

7Clarified on chapter 2, in the state of the art section.



in Physics was awarded to A. McDonald and T. Kajita, heads of the SNO and SK group, respectively,
“for the discovery of neutrino oscillations, which shows that neutrinos have mass”. After the success of
detection of solar neutrinos, several experiments were built with the goal of detecting more energetic
neutrinos - atmospheric neutrinos - like NUSEX [66] and SK in a later stage, and less energetic neutrinos
- reactor neutrinos - like KamLAND [67] and MINOS [68]. These experiments helped gather data to
determine, under some assumptions, the neutrino mixing angles 613, 63, 612. These mixing angles are
known by reactor mixing angle, atmospheric mixing angle and solar mixing angle, respectively.

Adding to the previously mentioned deviations from the SM on lepton flavor universality measure-
ments, the most recent measurements from MiniBooNE hint towards the existence of a sterile neutrino
with a mass in the KeV scale [69], although cosmological data had already excluded a neutrino with a
mass on that energy scale. However, none of these experiments has enough significance to claim discov-
ery. Nevertheless, the community is convinced in a short period of time, conclusions regarding important
properties of the neutrino and its spectrum (ordering, mass scale, nature) & will be taken, thanks to the
data from GERDA [70], KamLAND-ZeN [71], CUORE [72] and KATRIN [52]. Adding to these, the data
from a great variety of long baseline (like NOvA [73] and DUNE [74]) and short baseline experiments (like
MiniBooNE [75]), with very different constraints, will be fundamental to give answers to some problems
like the existence of more than 3 neutrinos, CP phases and unitarity of the mixing matrix. °

Theoretically, interest in neutrinos has surged when J. Pati, A. Salam and S. Glashow and H. Georgi
started working on Grand Unified Theories (GUT). These models grouped leptons and quarks in the
same group multiplets, and mass generation mechanism naturally lead to non-zero neutrino masses. A
critical landmark of theoretical Neutrino Physics (and of this work) was the formulation of the Seesaw
Mechanism by P. Minkowski, M. Gell-Mann, P. Ramond and R. Slansky, T. Yanagida and R. Mohapatra
[76, 77, 78, 79] in the context of specific GUT models. The seesaw mechanism gathered interest because
it provided a natural explanation to the smallness of neutrino masses comparing to the masses of charged
fermions. Furthermore, it related that with the fact that the neutrino is the only known neutral fermion
and thus can have special never before seen properties. With the experimental evidence of neutrino
masses and flavor oscillations, the door to physics beyond the SM was opened and the seesaw mechanism
looks like a promising framework to understand it. Modern reviews on the Seesaw Mechanism can be

found in references [80, 81, 82, 83].

1.3 Brief Summary of the Standard Model of Particle Physics

This will be a short review, thus, some aspects of the SM will not be discussed. For a more complete
treatment of the subject refer to [84, 85, 86].

The SM introduces fundamental interactions (strong, weak and electromagnetic) as a way to guarantee
that the Lagrangian is locally invariant under Gauge Symmetries - where every field is in a representation

of the Symmetry Group. In Quantum Field Theory !0, particles are seen as excitations (quanta) of a field.

8More on that on chapter 2, state of the art section
9More on this subject on chapter 2.
10Tp QFT it is important to state the metric one is using. From now on, everything will be written according to a (+5--5-)



The passage from a Classical Field Theory to a QFT does not involve a modification of the Lagrangian or
of the field equations, but rather a reinterpretation of the field variables. To make this clear, the [Table

1.2] contains quantized fields in terms of classical solutions to their free massless dynamical equation:

Table 1.2: The three equations that rule the free dynamics of SM particles.

Spin | Equation Name Field Expansion

0 0,0"¢ =0 Klein-Gordon eq. | ¢ = fp(a(p)e*i“” + b (p)ePee")

1/2 | iy, 0% =0 Dirac eq. U= fp Zs(a;%(l))e—i”w“ + b;fvs(p)ei”“““)

1 0, (0" AY — 9V A*) = 0 | Proca eq. AV = fp Zr(a;EZ(p)ei”W" + b;fe:"(p)e*ip”“)

The creation ( bf(p) ) and annihilation operators ( a(p) ), as the name indicates, create and annihilate
an excitation (quanta) of the field , i.e, a particle '*. One could dwell on more intrinsic aspects of QFT
like partition functions, a proper Derivation of Feynman rules and propagators, how one can go from a
free theory to an interacting theory (LSZ formula) or what is the meaning of the bare parameters one
writes in a classical field theory Lagrangian and its relation to the measured values (Renormalization).
Nevertheless, since these are not fundamental to the presented work, they will not be discussed. For
more, one can refer to any Introductory QFT book [86, 87, 88].

Masses cannot be introduced in the free theory because they would explicitly spoil the required local
gauge invariance. Thus, masses are introduced via Spontaneous Symmetry Breaking (SSB) of the SM
Group into a smaller one. One can define the construction of the SM into two parts: Before SSB, where
every field is massless and every interaction is diagonal (interaction basis) and after SSB, where the
fields are massive and mixing occurs (mass basis). The Lorentz-Poincare symmetry group also plays a
crucial role, the different quantum states of every fundamental particle should give rise to a irreducible
representation of it, and the free dynamical equations can be deduced based on this. The SM particles
currently known can be divided into Bosons and Fermions. In the Bosons category there is a scalar boson
- H - the Higgs particle, responsible for the mass generation mechanism, and 4 kinds of gauge bosons:
W, Z, v and G. Fermions can be divided into Quarks and Leptons. There are three families of Quarks
and other three of Leptons. Each family of Quarks has an up and down type quark, while for Leptons
each family has a charged lepton and the correspondent neutrino.

Observing [Fig. 1.1] 2, the only characteristic that distinguishes particles with the same quantum
numbers and from different families is their mass. However, if one considers its chirality state, positive
and negative chirality states could be considered different particles, since they have different interactions.
In a massless SM, this would be the case, as one wouldn’t have other choice but to identify particles
based on their interactions. One wouldn’t have 3 families of Quarks and Leptons, but just one, with the
double amount of fields - 1 Dirac field can be decomposed into two Weyl fields (chiral massless fields):

This happens because the SM is a chiral theory - it treats differently particles with different chirality.
For instance, in a model with positive chirality neutrinos, the vz would be a sterile particle, as it doesn’t

interact with anything in the SM, while the v;, would interact only via weak interaction. Since the SM is

Minkowski metric

1 The particles created by bf (p) and annihilated by a(p) could be the same or the anti-particle of each other, depending
on whether the field is real or not.

2Image not made by me. Licensed under Creative Commons Attribution 3.0 Unported license, one is free to to copy,
distribute, transmit and adapt the work. Numerical values taken from Particle Data Group Booklet 2016 [89]
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Figure 1.1: List of SM particles. Until 2012, all of them but the Higgs (H) were experimentally discovered.
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Table 1.3: The two particle/anti-particle states of a massless SM

a theory of massive particles, a particle is considered as a state with definite mass which is a superposition
of the negative with the positive chirality state - a Dirac mass term in the SM Lagrangian can be seen
as a interaction term between the positive chirality state and the negative chirality state. Thus, SSB
bounds the two chirality states into, what we define as a particle state.

The SM of unification of the electroweak and strong interactions is based on the gauge group:

GSM = SU(?))C X SU(2)L X U(l)y . (13)

The massless Lagrangian for this theory is locally invariant under transformations of this group. To
achieve this, the introduction of gauge fields is necessary and to every one of them should correspond a
generator of the group. This group has 12 generators - 8 SU(3) bosons (G%), 3 SU(2) bosons (W?) and
1 U(1) boson (B).

Gauge bosons are in the adjoint representation of their corresponding gauge group (octet for SU(3),
and triplet for SU(2).) and in the vector representation of the Lorentz-Poincare group, quarks and
leptons are in the fundamental or anti-fundamental representation of the Lorentz-Poincare Group, while

the negative chirality ones are in in the fundamental representation of SU(2)z (doublet):

a B

a vy ur,
=" TS = 5 (1.4)
L dr,



The positive chirality ones are in the singlet representation of SU(2)y:
1%, ub, dy (1.5)

Regarding SU(3)., Leptons are in the singlet representation - don’t take part in colored interactions -

while quarks are in the triplet representation:

q;

@

where v = 1,2, ..,6 is the quark flavor index - one can define that to the up quark (u) corresponds the
triplet Q! with entries qil, to the down quark (d) corresponds the triplet Q% with entries qzz7 to the charm
quark (c) corresponds the triplet Q3 with entries ¢, and so on. The order is irrelevant.

The quantum numbers of the particle spectrum of the SM in the interaction basis are given in [Table

1.4].

Table 1.4: Quantum Numbers and Representations of every SM Particle

Field 1 3 v uf ulpy a7 dy ot ¢° G B w2 w3
T3 -1/2 0 1/2 1/2 0 -1/2 0 1/2 | -1/2 0 0 +1 0
Y BY) 1 B2 1/6 2/3 1/6 a3 | 12 | 12 0 0 0 0
Q 1 1 0 2/3 2/3 73 13 i 0 0 0 Il 0
SU(3). Rep. 1 1 1 3 3 3 3 1 1 8 1 1 1
Lorentz-Poincare Rep. | (1/2,0) | (0,1/2) | (1/2,0) | (1/2,0) | (0,1/2) | (1/2,0) | (0,1/2) | (0,0) | (0,0) | (1/2,1/2) | (1/2,1/2) | (1/2,1/2) | (1/2,1/2)

Where a = 1,2, 3 is the leptonic generation index and g = 1,2, 3 is the quark generation index- one
can define that to the top quark (¢g 1) corresponds u?’z ;, and to the muon (ug, 1) corresponds l%y 1, and

so on. Y is defined by the relation @ =Y + T3, which will be explained later.

The quantum numbers of the particle spectrum of the SM are chosen so that they are in the correct
representation of the gauge group and that the conserved quantum number (after SSB) - electric charge
- has the correct value for each one. Y is named Weak Hypercharge and is the Quantum Number
corresponding to U(1)y, T3 is named Weak Isospin and is the quantum number corresponding to SU(2) ..
The Quantum Number corresponding to SU(3), is color. Quarks can have three colors (red, green and
blue) and anti-quarks can have three anti-colors (anti-red, anti-green and anti-blue). They are in the
triplet representation of SU(3).. Gluons can have the 8 independent combinations of these 6 (3+3)
colors and anti-colors. However, every object observed in nature is colorless (or a singlet of SU(3).
like an electron), which means quarks and gluons aren’t asymptotic states and don’t have a spectral
representation, only hadrons (combinations of these) do. This happens due to a special property of
QCD: Asymptotic freedom [90, 91].

The gauge fields are necessarily bosons because to ensure the local gauge invariance of the Lagrangian
it is necessary to add fields that transform like the derivative - creating what is known as the Covariant

Derivative. For a field that interacts with every boson (like the quark field), the covariant derivative is:
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ob
=0, —|—zgsZG —Q—zgz — —|—ig'YB# , (1.7)

where the g’s are the couplings of each interaction, 2~ are the 8 generators of SU(3) (Gell-Mann matrices)
and T? = %b are the 3 generators of SU(2) (Pauli matrlces). The used sign notation is consistent with
[92], taking all 7; = 1.

It’s useful to define:
8 A\ 3 ob
DY =9, + ig, Zc;j? , Dl =0, +ig) W};5 +ig'YB, , DF =0, +igdYB, . (1.8)
= =1

Since the derivative transforms like a vector under the Lorentz-Poincare group, gauge fields must have
the same behaviour, and thus, be vector fields, with integer non-zero spin (vector bosons). This covariant

derivative generates the interactions between the gauge bosons and the other fields:

LFermion = Q Z'YMDqQ’Y + Z \IJOC’L’YMDL\I’O[ + ZRZ’YMDIJEZ%)
Y

+ Z (T[Zi"y“DﬁT[Z + ugi'y“Df‘ +d Vy“DRdﬁ) ,
B
where the indices a, 8 and ~ have the same meaning as in [Table 1.4] and in [eq. 1.6] .
The gauge boson interactions with themselves come from their kinetic terms, which are of the form:

1 1 1
Liin = jGWGaW — ZWb“”WbW - ZB’“’BW , (1.10)

where

= 0,Ge—0,G%—gs f*“CepGar , W), = O.W) =0, W) —gf* " We,Wa, , By = 0,B,—08,B,,, (1.11)

;w nv

and a = 1, ..., 8 is summed implicitly and runs over the number of gauge bosons of SU(3) and b = 1,2, 3
is summed implicitly and runs over the number of gauge bosons of SU(2). f%*¢ are the structure constants
for the gauge group - for SU(2) fo¢ = ¢2*¢. For abelian gauge groups - like U(1) - these are zero. These
terms generate self-interactions (in the gluon case) but also interactions between different gauge bosons.
After electroweak unification the physical states Z, v, W™, W™ are revealed to be linear combinations of
the gauge fields B, W', W2 W3 looking at [eq. 1.10] one can understand that this generates triple and
quartic interactions between Z, v, W+ and W~—.

Electroweak unification is what happens when the mass of fundamental particles is generated, and
here the Higgs is the leading actor. Adding to the fact that a mass term would explicitly break the gauge
symmetry, without the Higgs particle the unitarity of the SM would be spoiled [93, 94]. SSB means that
the vacuum of the theory at a certain point in time - spontaneously - (it’s postulated that it was in the
early Universe) stops having the same symmetry as the Lagrangian. The Higgs mechanism spontaneously

breaks Ggar into SU(3)c x U(1)g, in order for this to happen, a scalar doublet of SU(2), - ¢ - is added

11



to the theory:

;
¢= ZO L V(9) = —1*(670) + M679)* | Liriggs = (D)" - (D*F9) =V (9) (1.12)

where V(¢) is the most general renormalizable potential that can be added to the Lagrangian. For u? > 0

0
13 and A > 0, the potential has an absolute minimum ' for < ¢ ># . From the minimization

0
equation one gets < ¢fp >= % This is fine since ¢ is a scalar field, and it doesn’t violate Lorentz
invariance having a constant non-zero value that minimizes the potential. This is what is known as a
vacuum expectation value (vev). All other SM fields with spin different from zero are compelled to have

a zero vacuum expectation value. This vev can be parametrized in the following way:

<¢>>—L 0 (1.13)
vl )

getting the relation:

2 2 2
H v H
< ¢lp>= =5~ v? = 5 (1.14)

To get a proper spectrum it’s useful to write the ¢ field as a perturbation around its vev, taking into
account all its degrees of freedom:
ot
p=<¢>+ . (1.15)

H+tigz
V2

One can parametrize three degrees of freedom in the form of a global SU(2), transformation:

iwab 0 1

= 2

o=z | (1.16)
V2

and then use the freedom to apply a global SU(2);, transformation to absorb them. This is known as

going to the unitary gauge:

. 0 0
—15Wp — _
e o= vir | =S 9>+ " | (1.17)
V2 V2

In this gauge, the H field parametrizes the deviations from the value of ¢ that minimizes the potential.
It will correspond to the Higgs field. Note that the vacuum < ¢ > is the kind of vacuum we need for

SSB because it’s not invariant under SU(2), transformations anymore:

131t’s postulated that in the early universe u? was negative. In that case, < ¢ >= (8) This translates into u? being a

function of the temperature of the Universe.
< ¢ > is the value of ¢ for which V(¢) is minimal.
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oy ot 0
T hp>E< PS> = — <P >F# : (1.18)
0

2
However, it’s invariant under the combination given by Q = T3 + Y [95] 15, where Y is a diagonal

matrix in flavor space:

o3 1/2+4Y 0 1
Q< p>=(=+4Y L) <¢p>= C— = =0, (1.19)
2 0 -1/2+v) V2 \v 0

which is zero if Y = %qﬁ.

Thus, this vacuum spontaneously breaks part of the electroweak gauge symmetry, after which only
one neutral Higgs scalar, H, remains in the physical particle spectrum. It’s important to note that this
is not a fact. The number of scalars in the theory is not constrained and there can be more than one
Higgs-like particle if one introduces more than one Higgs-like doublet. This itself is another topic of
theoretical and experimental research. The Covariant derivative acting on ¢ (kinetic term on Lgggs)
generates the masses of the gauge bosons. This generates electroweak mixing. After a basis rotation, the

physical states are identified and a relation for their couplings is given :

1
ﬁ

Z, = cosOw WS —sinfw B, , A, = cosby B, +sinfyw W , W =—W, FiW}2), (1.20)

/2

sin®(Oy) = P mw = mygcosby , e = gsinfy = g’ cos by , (1.21)
1 1
miy = Jv°g*, my = 0% (g" +¢%) , mi =2” . (1.22)

The initial vacuum was identically zero and was left invariant under the 4 generators of SU(2) x
U(1)y. Now, it is left invariant under one combination of two of these generators. From the Goldstone
Theorem we should have 3 (4-1) Nambu-Goldstone bosons (massless scalar bosons), but we have 3
massive gauge bosons instead. In a pictoric language it is said the gauge bosons "eat” the Nambu-
Goldstone bosons. If the broken symmetry was global (and not gauge/local) we would have 3 massless
scalars [96, 97] 16.

Goldstone’s theorem can be applied in theories without fundamental scalar fields. One can illustrate
this with QCD. The pions are the pseudo-Goldstone bosons that result from the spontaneous breakdown
of the chiral-flavor symmetries of QCD due to the QCD vacuum - the quark condensate < QQ >.
It does not have a zero vev, induced by nonperturbative strong interactions (confirmed in Lattice QCD
calculations). Considering a low energy version of QCD, with only u and d quarks, its massless Lagrangian
exhibits a SU(2)y x SU(2)4 = SU(2), x SU(2)r symmetry that is spontaneously broken by the quark
condensate < % + dd >. These symmetries are further explicitly broken by the masses of the quarks, so

that the pions are not massless, but their mass is significantly smaller than typical hadron masses. After

15This is known as the Gell-Mann-Nishijima relation.
16These three degrees of freedom correspond to ¢1 (2, real and imaginary part) and ¢z (1).
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some calculations ** one gets the Gell-Mann-Oakes-Renner formula:

m,%fﬁ:fw <Tu+dd>, (1.23)

where f; ~ 92MeV is the pion decay constant, m, = 140MeV is the mass of the pion. Lattice QCD
calculations yield < wu+dd >~ —(300MeV ). With massless quarks, the pions '® would be massless but
heavier baryons (combinations of three valence quarks) and mesons (combinations of two valence quarks)
would have a mass, dynamically generated by the quark condensate. Actually, 99% of the proton’s mass
arises out QCD binding energy, consequence of QCD chiral symmetry breaking. Conventional wisdom
that the Higgs field generated all the mass of the Universe is wrong [98].

The Covariant Derivative given in term of the physical bosons is:

D, =4d, +ZZG“— +z—(W+T+ +W,To) + 059W (T3 — Qsin®Ow)Z, +ieQA, ,  (1.24)
where Ty =Ty +iTy = G 1% = 0.
It’s useful to redefine'®
=0, + z\[(W+T+ + W, T.)+ p—— (T3 — Qsin® 0w ) Z, + ieQA,, , (1.25)
= 0 +i(Q — Ts)—L—(sin Oy cos Oy A, —sin? Oy Z,,) . (1.26)
cos Oy

To generate Dirac fermion masses one needs to create a SU(2)r, x U(1)y invariant term, using ¢ and
the fermion fields, that after SSB generates their mass terms. Using [Table 1.4] one can see that a term

like the one in [eq. 1.27] is invariant because it has Y =1/2+4+1/2 —1 =0 and is a SU(2), singlet,

Y(;la (ﬁ @> (blU:Y(;la (ﬁ @) G* la SSB

o 22YE \[15 1% . (1.27)

After SSB this generates a mass term proportional to v. The proportionality constant is Y5 fM‘*“

where M!_ is the (§,0)th entry of the Dirac mass matrix for the charged leptons. Y} are known as the
Yukawa couplings, and they parametrize the couplings between the Higgs field and fermions before SSB.
Their origin and exact mathematical formula is an object of study [99, 100, 101]. The same method

applies for quarks. However, for up quarks (the ones with T = 2) one needs to define the adjoint doublet
(0F3

¢ = which has Y = —
-G~

1. After SSB, one has < ¢ >= % .

17¢f. section 7.1 on Kallen-Lehmann spectral representations and section 19.3 about Goldstone Bosons and Chiral Sym-
metries in QCD of [86] for details.

181f one considers the strange quark and applies the same reasoning, the eight light pseudoscalar mesons would be massless.
For the three heavy quarks: the charm quark, bottom quark, and top quark, their masses, and hence the explicit breaking
these amount to, are much larger than the QCD spontaneous chiral symmetry breaking scale ~ (300MeV)3. Thus, they
cannot be treated as a small perturbation around the explicit symmetry limit.

19D stays the same after electroweak unification. SU(3). is not broken.
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Thus, after SSB one gets a Dirac mass matrix for up quarks, down quarks and for charged leptons:
Ly ukawa = WYL 0l% — TIYE 6d% — TS Vit dufy + hec. . (1.28)

To go from the interaction basis to the mass basis one needs to diagonalize these mass matrices. The
rotated states will be the physical states. This generates mixing - particles or mass states being linear
combinations of interaction states, and the interaction Lagrangian 1.9 is no longer diagonal on the fields
- in the quark sector (neutrinos are massless in the SM and in that scenario it’s possible to remove the
mixing in the leptonic sector). In the next chapter, this procedure will be done for neutrinos in what is
known as vSM, the SM with positive chirality neutrinos. The steps are the same for the quark sector in
the SM, so they won’t be done here.
There’s only two pieces left to have the SM Lagrangian completely defined:

LSM = LFermion + LKML + LHiggs + LYukawa + LGF + LGhosts . (129)

The result in [eq. 1.17] is gauge dependent. A gauge independent formulation of the SM should use
leq. 1.15]. However, with this definition, Lp;g9s will generate mixed quadratic terms in fields, with
the three Goldstone bosons ¢z and ¢*, that complicate the definition of the gauge boson propagators.
Using gauge independent [eq. 1.15] in Lpermion also introduces interactions between fermions and the
unphysical Goldstone bosons. These should be taken into account when performing calculations in a
general gauge. To cancel the mixed quadratic terms that arise from Lp;ggs, it’s necessary to add a new
term to the SM Lagrangian:

1 4 1, 1

F

1
Lop = ——F&%Fg, — —F% — —F2 — —
o GRGeT e AT 2, 7

F F., 1.30
%G + (1.30)

where Fg = 0MG%, Fa = 0" A, , Fy = 0" Z, + Egmydz, Fr = "WiE £ilwmwo®. Lar are, actually,
the gauge breaking terms in Lgp,.

The last piece is the Ghost Lagrangian. Faddeev—Popov Ghosts are unphysical particles that violate
the Spin-Statistics Theorem. In theories like the SM they are bosonic (spin 0) with anti-comutation
relations (fermionic). Every gauge boson correspondent to a non-Abelian Gauge Group will have a Ghost
20

. These ghost fields are necessary to achieve a linear gauge fixing condition like in Lgp, generating

gauge field propagators with transverse and longitudinal component, thus, invertible.

4 8
(6F) _ O(6F- O(SF O(6F O(SF
Lahost = Z[+ 3a+ ¢ (aa')—i-éz (8a?)+6A (aa%)}ci—k > e OFE) p (131)

i=1 a,b=1

where @ = 1,2,3,4 and 8 = 1,...,8 are parameters of the correspondent gauge transformations. One
can check the definitions from Appendix A of [92] taking 7, = 1 and sections 16.2 and 21.1 of [86], to
understand what Lgpes¢ translates into. Since ghosts don’t couple to matter fields, their contribution

to one-loop corrections of physical processes involving fermions in external lines is zero, thus explaining

208 for SU(3) , 4 for SU(2) x U(1)
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ghosts further than this goes beyond the scope of this work ([88] here one can find a proper treatment of
ghosts). After adding the final two terms, one can check that the Unitary gauge corresponds to £z w — 00
and £4,¢ — 1. The Goldstone bosons correspondent to massive gauge bosons - ¢z and ¢4 - acquire gauge
dependent masses. The unitary gauge - see [eq. 1.17] - only contains physical particles because having
infinite masses means a decoupling from the theory. The formulation of the SM in a general gauge will
be needed in further parts of this work.

To conclude, one final note regarding the SM. The electroweak sector of the SM has 17 free parameters:
9 fermion masses, 3 quark mixing angles, 1 CP violating phase in the quark sector, 1 Higgs mass, 1 Higgs
vaccum expectation value (v), 1 Weinberg angle (fy) and 1 SU(2); gauge coupling (g). This means
that these parameters need to be fitted with experimental data. Thus, the SM doesn’t predict fermion
masses nor gives an explanation to the number of generations of these.?!

Furthermore, the SM doesn’t include gravity nor particles that can be dark matter candidates. Also,
it doesn’t explain dark energy. Another concerns are related to CP Violation. There hasn’t been detected
CP violation?? in the strong sector (QCD) while there’s nothing that inhibits it, and the CP Violation
detected in the electroweak sector is not big enough to explain the Matter—antimatter asymmetry we
observe in our universe.

Other, more theoretical, shortcomings of the SM are the hierarchy problem, related to the fine-tuning
that needs to happen in higher order calculations to achieve a Higgs mass near the electroweak scale (v)
and the fact that the gauge couplings don’t unify at high-energy, unlike what happens in some GUT
models. All these drawbacks lead to the belief that the SM is not the final theory of everything (TOE)
but just a low-energy effective theory of it. The SM can be summarized in its Feynman Rules, which can

be found at [92]. In this work, these were used setting all n; = 1.

21However, one knows that the number of generations of leptons and quarks must be equal in order to cancel gauge
anomalies that appear at one-loop corrections - c.f. Chapter 19 section 19.4 and chapter 20 section ”Anomaly Cancellation”
of [86]

22CP Violation will be discussed in the next chapter.
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Chapter 2

The Leptonic Sector Beyond the Standard
Model

In the literature, there are many models [102] which assume that neutrinos are Dirac Particles' while
adding more particles and symmetries, giving reasonable explanations to the smallness of neutrino masses.
If one releases the restriction of neutrinos being Dirac particles?, many models are possible, with Majorana
Neutrinos. Some contain extra particles - charged scalars and fermions - and naturally small neutrino
masses due to these being radiatively generated [103, 104, 105, 106, 107].

In this chapter, one will present minimal extensions to the SM, as depicted in chapter 1, which include

neutrino masses, dwell on neutrino oscillations and discuss the state of the art of neutrino physics.

2.1 vSM

On this extension, the only assumption is that neutrinos are Dirac particles. No explanation to the
smallness of neutrino masses is given but unnaturally small Yukawa couplings. No extra fields are added
to the SM but v, necessary to generate Dirac mass terms, which translates into adding an extra column

into [Table 1.4]: This changes the SM Lagrangian in the following way:

Table 2.1: Quantum Numbers and Representations of vy

Field Vg
T3 0
Y 0
Q 0
SU(3). Rep. 1
Lorentz-Poincare Rep. | (0,1/2)

IParticles which obey the massive Dirac eq. and are not its own anti-particles. A Dirac particle is equivalent to two
Weyl particles - massless particles which obey the Weyl eq. - c.f. [Table 1.3].

2Neutrinos are Dirac if one creates a symmetry such that the Majorana mass term is forbidden. Without this one is
obliged to write the most general gauge invariant Lagrangian, which should include it.
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Lg’ujgawa = \II%YJJd)l‘IT% - \P%Y(;ZTQZ)V% - T%Y&ng)d(}j% - T%Ygﬁ)‘qﬁu% + h.c. (2 2)
= LYukawa - \I/i}/(;;(ﬁy?:a - gqﬂy&’j\p% .
One important point is that the changes in L permion don’t introduce any new interaction because Yvg = 0
as it is stated in [Table 2.1]. This implies that Dfuj’é = 0,v5%. This addition introduces their mass terms,
and new interactions in the Yukawa sector - between neutrinos and the Higgs and Goldstone Bosons.
After SSB one can separate Ly ,rawe iNto two terms, one with the mass matrices and another with the
interactions between fermions and Higgs and Goldstone Bosons:
SM SM SM
Lg’ukawa = L?ntYukawa + LIJ/\/IYuk:awa . (23)
To simplify notation, from now on, the flavor indices will be omitted and the superscript 0 will be added

to interaction states. In other words, /9 is a column vector N ¢ x 1 in flavor space. The terms from [eq.

2.3] can be written as:

- 1 R
L?Stj\{l/ukawa = V2¢+Yll% - TZ%HYllR - TZO d)ZYllO
1 o (2.4)
_ \/5 HY” V9 + \/§VL¢ZYVV + 0 ¢~ YV + h.c+ quark terms
and
Llj/‘ls%kawa = 7EMII% - EMVV% - @Mdd(})i - EMUU(I)% + h.c. . (25)

Thus, a general Dirac mass matrix is a Ny x Ny matrix and may have N]% non-zero entries. 3 As one
can observe, there is a mass matrix for up and down quarks as well as for charged leptons and neutrinos.
After one diagonalizes the mass matrix one finds new states - mass states that correspond to the physical
particles.

The diagonalization of a mass matrix cannot be performed in the usual way - with just one diago-
nalizing matrix. One needs a unitary bi-diagonalization (or as mathematicians call it - Singular Value
Decomposition), because one needs to diagonalize a matrix while rotating two different fields 4, thus the

matrices acting on them are, in general, different. Then, one has:
Ut MYUY, = m,, , UL MUY =my | (2.6)

where m, and m; are diagonal 3 x 3 matrices with positive real entries, which contain the masses of the

3In the SM and in this extension Ny = 3
40ne with positive and another with negative chirality - c.f. leq. 2.5]
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neutrinos and charged leptons, respectively, in the diagonal®. From [eq. 2.5] one notes that we need to

transform the fields in this special way:

V?%?L = (Ué,L)ékVI%,L ) Z(IS%O,L = (Ug%,L)ékl];%,L ) (2.7)

where the left hand side corresponds to interaction states (6=e, p, 7) and the right hand side corresponds
to mass states (k = 1,2,3). From now on, latin alphabet indices will be used when one is referring to
mass states.

Notice that vy, vo and v are the real particles, not v., v, and v,, which are interaction states.

6. Thus, an updated version of [fig. 1.1] should contain vy, vy

Referring to the mass of v, is nonsense
and v3 and not v, v, and v,, but I kept it that way because listing v., v, and v, in these tables is
the most common practice. For many years the neutrino was thought to be massless, so I would say the
community is still in a transitory stage. After this detour, one proceeds in writing the Lagrangian that

defines the leptonic electroweak currents - the terms that are summed in e in [eq. 2.1] - in terms of the

mass states:

L, = —% (WA ULt + W U] (2.8)
02
g - ; T i gsm 0 ) o ; e i
Lf4,Z = —m [ZM(VLaijV“V]L - lL(Sz'j’}/'uli)} - |:(COSQUZH + eAu)(lL(sij’Y#l]L + ZR(Sij’Y'ul%) s (29)

where U = Upyns = U iTUZ7 is the leptonic mixing matrix and it’s unitary by construction. This
implies that the otherwise diagonal charged interactions become non-diagonal, giving origin to what is
known as mixing. In the quark sector, the mixing matrix is known as Vogps. Neutral currents remain
diagonal, which means that there are no flavor Changing Neutral Currents (FCNC) at tree level in the
SM (in any sector) and in this extension. Beyond tree level they are highly suppressed - c.f. K — utpu~
[108]. This is known as the GIM mechanism. The Yukawa Lagrangian [eq. 2.2] can also be written in
terms of mass states, which, in this case, is possible to transform into functions of the fields, physical

masses and the mixing matrices of the leptonic sector®:

LM =— 9 mrUutetmiln — LT Hmilp — L T ézmil
IntYukawa \/imw VL ¢> mitRr QmW LIAMLR 2mW L¢Zml R
- vLHmyvg + Y9 ULozmyVR + J ¢~ Umyvg + h.c + quark terms ,
2mw 2my V2my
(2.10)
and
LY ukawa = —lLmulr — Vpmyvr — dpmadr — Upmyug + hec. . (2.11)

Usually one defines a basis - a Weak Basis (WB) - that best fits its needs. A WB is a choice of Ug 1,

(c.f. [eq. 2.7]) in the quark and leptonic sector which leaves the charged current Lagrangian invariant.

50ne obtains UE,,L through the equation mg = UEJ‘M”M”TUE = UI”%TM”TM”UE. The same applies for the charged
leptons matrices.

6 Although it has a meaning in the context of 8 decay, more on that on section 2.4.

"Named after Pontecorvo, Maki, Nakagawa and Sakata.

8Using Yi% = M* and mwy = £ - [eq. 1.22] .
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These bases need to respect some rules, in order to not spoil Gauge Invariance. This translates into the
existence of invariant quantities, named Weak Basis Invariants [109, 110, 111, 112]. An example of a WB

in the leptonic sector is:
vy =Wpvp, Vg =Wk-vr, Iy =Wp -1, Il =Wk-Ig, (2.12)

where the flavor indices are omitted. Note that one needs to rotate in the same way the negative chiral
fields, with W', because they are part of the same doublet of SU(2) . Positive chiral fields are singlets of
SU(2)r, and, thus, can be rotated independently. For illustration purposes we will choose a basis where
the charged lepton matrix is diagonal, real and positive and Uppsng is the matrix that diagonalizes M?”.
For that one chooses Wy, = U}, Wh = Ul and W4 = I3x3. By looking at [eq. 2.5] one notes that the

mass matrices change in this way:

M =Wt MW = U MU = m) (2.13)
and using [eq. 2.6]:
MY =Wt MWy = Ul v = v uvm, oyt (2.14)

where m; is diagonal. One can make another WB transformation such that m; becomes m; - diagonal with
real positive entries while turning M’ into a hermitian matrix. This is performed by doing W, = Kt ,
Wh =KL WY =UsU ‘L’*UIL where Kl and K! are diagonal matrices with only complex phases. Also,

UL =Upk- Kl and UL = U}l - K} The mass matrices change in this way:
MM = KM = K gL = UL MU = my | (2.15)
and
M = KU M RY, = UL Urm, Ut uurtul = UL U m, U UL = UpyinsmuUbyyws » (2.16)

achieving what was intended - a positive-definite real diagonal m; and an hermitian M*. When one is in
this basis, the hermitian matrix M" is diagonalized by the unitary matrix Upasns. In a general basis,
Upnns diagonalizes MY MVT.

The quark sector behaves in the same way, one can define a WB where the up quark matrix is diagonal,
real and positive and M, is hermitian, meaning that, in this basis, Vory = Ui”LUg is the matrix that
diagonalizes My - the down quark mass matrix.

Thus, the following discussion is valid for the quark and leptonic sector, in this extension of the SM.
For this reason, until the end of this section one will use the notation V to refer to Upyns or Verar,
as it serves both purposes. The mixing matrix V is complex but some of its phases have no physical

meaning, due to the fact that one has the freedom to rephase mass eigenstates, u} = e'®iu;, I} = /%,
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d} = e'% d; and I/j/- = €% v, transforming the entries of the mixing matrix:
Vi =€y, (2.17)
Thus, it’s useful to look for rephasing invariants® such as the quartets:
Qijrt = VijViu Vi Vi (2.18)

because it can be proved that invariants of higher order can always be written as combinations of quartets
and the moduli.

An important thing to note is that a global rephasing of all the quark and lepton fields,

uh = euy, 1 = ei”li,d;» = e'd; V= e“v; (2.19)
leaves the total Lagrangian invariant, particularly, the Yukawa Lagrangian [eq. 2.2] and the charged
interactions Lagrangian [eq. 2.1]. This is a global U(1), x U(1),, symmetry of the Lagrangian. Thanks
to Emmy Noether’s Theorem [113] 1) one knows that this leads to two conserved charges, one for the
leptons - Lepton Number L = n; — n; and one for the quarks - Baryon number B = %(nq —ng) .

In the SM there is an extra symmetry. With massless neutrinos one can rephase neutrinos fields freely.
Thus it is possible to perform a transformation:

I} = el v = e™iv; (2.20)
which leaves the charged interactions part of the Lagrangian of the SM [eq. 1.9] invariant and translates
into an extra SU(1) x SU(1) x SU(1) symmetry, comparing to the ¥SM one. Again, thanks to Emmy
Noether’s Theorem [113], this results in three conserved charges: L; = n; —n;, the flavor lepton numbers.
The existence of neutrino masses proves that this is not an exact symmetry of nature. The SU(3).xU(1)q
local gauge invariance of the SM Lagrangian is also responsible for the conservation of electrical charge
(@ and color.

The fact that V is complex, in general, means that CP Violation can exist. Performing a CP trans-
formation is performing a Charge transformation - transforming a particle in its anti-particle'? - followed
by a Parity transformation - flipping the sign of the spatial coordinate!®. One can check section 13.2 of
[109] to see how SM fields transform under CP transformations. In this model, neutrinos transform like
the down quarks and charged leptons transform like the up quarks'. Performing a CP transformation to

the SM Lagrangian after SSB, one obtains the condition for CP invariance of the SM (considering only

90f course the moduli of each entry, |Vijl, is also a rephasing invariant.

10For me, the most important theorem in the history of physics.

HDefined in this way to accommodate the fact that quarks are not asymptotic states. A proton as baryon number 1.

I2Note that this changes the sign of all the charges of the field. However, it doesn’t change the chirality. A neutrino with
negative chirality is transformed into a anti-neutrino with negative chirality [114].

13Which translates into changing the chirality of a field, since axial vectors get an extra sign under parity transformations.

14T mean, with the same index, like T implicitly did before [eq. 2.17], such that [eq. 2.21] is valid for both sectors
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Vo) and of the vSM (considering also Uppyrng):
Vi = et =8y, (2.21)

where &, are spurious CP phases that arise from the transformation. One can make [eq. 2.21] always
true for a single entry of V', however, if one considers all of the entries, one concludes that this forces all
quartets to be real and, thus, all other rephasing invariants to be real. Direct CP violation stems from the
non-removable phases of Vogas. Another possible approach is considering the Lagrangian before SSB.
Applying the CP transformations in section 14.2 of [109] (which are the same ones as in section 13.2 with

an extra weak basis transformation), one obtains the following conditions for CP invariance:
Wiyrwy =y Wiviwh =v? | (2.22)

and equivalent ones for the quarks. The existence of matrices W7y, Wll% and W, (and the quark equivalents)
that satisfy the above conditions is a necessary and sufficient condition for CP invariance in the vSM.
Thus, one can conclude that Direct CP violation stems from the clash between the Yukawa sector and
the charged currents sector.

Back to the mass basis, it’s important to determine how many physical CP violating phases might exist
in V. Due to the rephasing invariance, for Ny generations (V' is Ny x Ny unitary matrix parametrized
by NJ% parameters) one can remove 2Ny — 1 phases, making the total number of parameters (N — 1)%.
N¢(Ny —1)/2 of these parameters will be angles, while (Ny — 1)(Ny — 2)/2 will be phases. If one takes
Ny = 3, one obtains that there is only one phase. This is a CP violating phase, Kobayashi and Maskawa
[115] arrived to the above conclusion, proving that only for Ny > 3 one has CP Violating phases in the
quark sector. The same statement is true for the leptonic sector, in this model. For Ny = 3 the imaginary

part of all quartets are equal, up to a sign [116]. This is known as the Jarlskog rephasing invariant:
J = [Im[Q]| (2.23)

From the unitarity constraints on the entries of V one can define what is known as unitarity triangles -
c.f. section 13.5 and 13.6 of [109]. From these one gets a remarkable geometrical interpretation to J - it
is twice the area of any of the six possible unitarity triangles.

For an extensive treatment of CP Violation one recommends [109, 117]. The standard parametrization

[89] of the mixing matrix is the following:

C12€13 $12C13 s1ze”"
V=1 —si2c23 — c12823813€" C12C23 — S12523513€"°  523C13 ) (2.24)
is is
512523 — €12€23513€" —C12823 — 512€23513€" €23C13

where ¢;; = cos0;j, s;; = sinf;;, and ¢ is a Dirac-type CP violating phase. This translates into J =
2 ind
C12€23C13512523513 SINO.

However, it’s important to note that, for instance, d is not a rephasing invariant and is only meaningful
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under this parametrization. It is possible to parametrize the mixing matrix using a non optimal number
of parameters but with everyone of them being a rephasing invariant [89]. The current best-fit values for

the quark sector [89] are:

0.97446 +0.00010  0.22452 +0.00044  0.00365 4 0.00012
Vorm = | 0.22438 £0.00044  0.97359 0090 0.04214 + 0.00076 ; (2.25)
0.00896¢ Soisst  0.04133 +£0.00074  0.999105 + 0.000032

and a Jarlskog invariant of J = (3.18 4 0.15) x 10~°. The current best-fit values for the leptonic sector
are stated in section 2.4.

In spite of the theoretical similarities between Quarks and Dirac neutrinos, there are some major
differences. The unitarity of Vo is heavily constrained [118], contrarily to the leptonic sector where
sizable deviations from unitarity of the mixing matrix are not ruled out [119].

This difference stems from the fact that there are many hadron decay processes which enable the direct
measurement of individual Vg s entries. However, in the leptonic sector this is not possible. There is
not enough precision to detect neutrino mass states (their mass scale is too small) in leptonic weak decays,
so in each process one can only know the produced interaction state with certainty. Currently, one of the
most reliable ways to get information regarding the mixing matrix are oscillation experiments and, even
in those, one only has access to the first row and the last column of the 3 x 3 mixing matrix. Furthermore,
what is measured in those cases are combinations of the entries of the mixing matrix, and not individual
entries like in the quark case [119].

To summarize the vSM, the list of of the new Feynman Rules added to the SM is presented at
Appendix A.

2.2 Seesaw Mechanism and Majorana fields

In this section one will add an extra assumption, comparing to the vSM, - neutrinos are Majorana
particles.

Majorana fields are real solutions of the Dirac Equation. The Dirac Equation can be made real by
going to the Majorana Basis, where all nonzero elements of the v matrices are purely imaginary. Fields

and matrices on the Majorana basis are indicated by the presence of the tilde:
("9, —m)r =0, (2.26)
with this, one can get solutions that satisfy:
v=r*. (2.27)

To transform from the Majorana Basis to other Basis (Dirac or Weyl) one performs a unitary transfor-
mation:

Y =UFUT, v=Uv (2.28)
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The reality condition [eq. 2.27] in another basis becomes:

Uy =UTv «v=U0U0"v*
(2.29)

s v=Crl =v°, v=21C=7°,
where UUT = CAl is a unitary matrix since U is also unitary, and C is also a unitary matrix with
properties:

YuC = —C"yg , (2.30)

derived using properties of 7o, 7, and [eq. 2.28]
C=C"=-C1'=-Cl=-0", (2.31)
derived using the fact that UU” is unitary, the previous property, and properties of 7o,
7C =Cv3 (2.32)

derived using the definition of 5 and the first property.
V¢ is a spinor, in the same Lorentz group representation as v, since it transforms in the same way:

ey = O (en(— b)) vle)” = (eon(— o) ) vie)”. (2.33)

v° also transforms as 7'°, which proves that the reality condition in a general basis [eq. 2.29] is Lorentz
invariant. Because of this, and to distinguish it from the C transformation, this transformation is some-
times named Lorentz-covariant conjugate [114]. This ¢ satisfies the same Dirac equation with minimal
coupling that v satisfies, with the term proportional to the electric charge gaining an extra sign. The C
transformation only changes the sign of all additive quantum numbers and commutes with the chirality
projectors. For a Weyl field, helicity and chirality is the same, and helicity involves spin and momentum -
neither of these changes under a C transformation. However, the Lorentz-covariant conjugate of positive
chiral field is a negative chiral field and vice-versa. CP transformations transform fields in the same
way as the Lorentz-covariant conjugation - apart from some possible complex phases. All of this can be

summarized in the important formula:
(Np,1)° = P gRN°=€“"Np p , (2.34)

where the last equality only applies if N is a Majorana field.
Since neutrinos don’t have charge one can write in the Lagrangian new Lorentz-invariant quantities!'®
that are also gauge invariant: v¢v, Tv°. If v was a bosonic field quantities like Zv¢ would automatically

vanish: 7v¢ = vOv! = (WCTv)T = vOTvT = —pCVT = —vr°. The anti-commutation of the fields

15To prove this one needs the equation Cygozu = —UHDC'yg that can be derived from the previously stated properties
of C and the definition of o, = %[yu,'y,,].
161t can be easily seen that he quantity vv¢ is just another form of writing Tv

24



(fermion fields are Grassmann variables) is needed so that after transposing an extra minus sign is
gained.!”

Because Weyl fermions are irreducible representations of the Lorentz-Poincare Group, they can be
used as building blocks of any kind of fermion field. A Dirac field in terms of Weyl fields can be written
as v = vp + vg, where v, and vg are independent. While a Majorana field in terms of Weyl fields, can
be decomposed as:

vy =vp+ (L), vra=vr+ (vr)°, (2.35)

where it’s obvious that 14 and v2 obey the reality condition [eq. 2.27]. From this one concludes that
if a field has a Majorana character one obtains the double amount of physical fields. However, the two
components of each field are related by conjugation, meaning that the degrees of freedom are the same.

Using chirality projectors, one can define the Weyl fields vr, ; = Pgr v such that:
DV =ULvR + VRvy , v° + V% = Upvf + vy + Upvg + Vevg - (2.36)

These new Lorentz-invariant quantities introduce the possibility of having terms like EM LVL —l—gM RVRY+
h.c. in the Lagrangian. As long as they are gauge invariant under the chosen gauge group for our model.
In a minimal extension of the SM with 3 Majorana neutrinos, v$ My, is not gauge invariant under the
SM gauge group, thus, only the other term remains. Now that notation and definitions are settled, one

is ready to define another extension of the SM - the Seesaw type I SM (SIvSM).

221  SIvSM

As it was done for ¥SM, one will study the Lagrangian before SSB, after SSB - in the interaction basis
- and finally after SSB - in the mass basis. The assumption that neutrinos are Majorana brings nothing

new to Lpermion i the interaction basis:
SIvSM __ . a;unR,, 0 _ TvSM
LFermion - LFermzon + E :I/Rlpy D/,L VR = LFermian ’ (237)
[0

However, the Yukawa sector suffers a dramatic change - an extra term - a gauge invariant Majorana mass

term 18:

_ 1
V%MRVR—ing;V% .

(2.38)

L 1 1_
Ly, = LYukawa—‘I"z%ZW%—V%WYéj‘I’éL—§V%MRVR—§VRMEVE = Ll}l/i]l\c/[awa_i

17Note that one writes + h.c. to remove redundant information. When writing this part explicitly one doesn’t have to
actually perform the operation and take into account the Grassmann nature of fermion fields. It’s literally the hermitian
conjugate of the part that is written.

18 The introduction of this term in the Lagrangian imposes the Majorana nature on the fields v as proved in pages 295-297
of [109].
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: ; : e SIvSM _ 7 SIvSM SIvSM .
Which, after SSB and using again the definitions Ly 20, = Lintvukawa T LAy ahawa:

1 — p
LN v == 706" Y n — —=IHY 'l — —Tp67Y'In
V2 V2
1 i _ (2.39)
_EWHYVVR + ﬁﬁcﬁZYVVR +1.¢"Y"vg + h.c + quark terms = LYSM
and
_ o 1
L akewa = = lLM'lg —vp M vg — dM%dp —up M " up — SVRMRvR + hec.
SM 1— 1 i (2.40)
= LY ukawa = il/jc'gMRVR - iﬁMRuf% ,

where Mg is a N x N matrix in flavor space (N is the number of neutrinos with positive chirality added to
the SM, the most natural case would be N = N; and this choice was already made in the previous section
when defining the ¥SM). The origin of Mg is not fixed. In the literature there are several explanations,
such as the one which claims that this term results from the interaction of a new Goldstone boson related
with lepton number symmetry breaking [120] with neutrinos. The most famous take on this has this term
in its initial Lagrangian, and assumes it has a scale much bigger than the electroweak scale. The heavy
fields v are integrated out resulting in an effective theory with higher dimensional operators that result
in naturally small mass terms of the type v¢ Myvy [83]. This approach will not be taken here, because
one intends to obtain results independently of the scale of Mpg. The origin of Mg, for itself, is a very
interesting topic but is out of the scope of this work. Nevertheless, the results of this work may provide
hints for the origin of such term. From now on, one will assume that this term is not controlled by the
Higgs Mechanism, and thus, can be of a order of magnitude bigger than the vev - v, but not as big as
it is assumed in other works [121, 83] and will perform an exact approach to the study of the physical
repercussions of such term. Before advancing to the identification of the mass states, let us write the

above terms in a Weak Basis where M is diagonal - W, = UlL, Wt = Ull% and Wg = I3y3:

v g  __ 9 g
L ohawa = — N vt milp — ST— lpHmlg — ST lgpzmilr
. (2.41)
__9 L HM  vp + *9 VLMV vg + g 1o~ M vg + h.c + quark terms |
2mW 2mW \/ﬁmW
and
_ 1
Lo e = — lumulp — LM vg — il/lcv{MRVR + h.c. + quark terms

1 ,
= —vrM" v, — 5@M£V§ + h.c 4+ charged — leptons terms + quark terms (2.42)

= LveM 4+ charged — leptons terms + quark terms |

where M"Y = UZLTM ¥ and the prime will be dropped from now on. To ease the the process of finding the

mass states, one will rewrite the mass terms regarding neutrinos in a way that reveals a generalized mass
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matrix. Using [eq. 2.34] , one can identify:
VR =VLR (2.43)
which after inversion lead to:
vy =CV, 5 VRL = —Vn C ' (2.44)
This means that the terms referring to neutrinos in [eq. 2.42 | can be rewritten as:

1
Lt whawa =viE C™ M vy + S CT ML) + hec
2 (2.45)

1 1
= 5[V}TC'_lMl’TVL + V%C_lM”*V'L] + i[l/LTC'_lMIT%z/L] + h.c,

where the anti-commutation of v, and v} (Grassmann fields) was used. Thus meaning that the neutrino

mass Lagrangian is:

1 0 Mv* v
LsivsM 2 (VT ,/T) o 11+ he (2.46)
vYukawa 2 L L v + ,
MYt M v
R L
O Ml/*
where MT = M* = : e and M is the generalized mass matrix. In a basis where the mass
MYt M

matrix of the charged leptons is already real, diagonal and positive, the matrix V that diagonalizes M

has physical meaning - it’s the generalized leptonic mixing matrix. The diagonalization can be performed

via the unitary transformation'® :

d 0
VIM*V = = Diag(my, my, msg, My, My, M3) =D — VM = DVT . (2.47)
0 dgr
Parameterizing:
K R
V= , (2.48)
S Z
one identifies the new mass states n and NV:
v n , ) . ,
r =V L - VI({:K(;JTLLJ‘—FR(;JNL]' ,VZ;:SMTLLJ*—I—Z(;]NLJ‘ . (249)
VIL NL

From here one understands that K is the 3 x 3 mixing matrix, responsible for mixing between the light
mass states. In the previous section, this matrix was unitary, Upysng, because neutrinos were Dirac
fermions and this corresponded to the full mixing matrix. However, in this case, V is a unitary 6 x 6

matrix which means that K is not necessarily unitary. As previously stated, results from oscillation

19The general mathematical way would be to perform a bi-unitary diagonalization VI MW = D. However, using the fact
that M is symmetric leads to W = V* and one obtains the diagonalization formula obtained in [eq. 2.47] that one could
obtain simply from physical intuition from [eq. 2.46].
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experiments are consistent with an almost unitary K [119]. By unitarity of V this implies Z is also almost
unitary and that both R and S need to be suppressed and of the same order. Coming back to [eq. 2.46],

after diagonalization one has:

1— 1—
Lsﬂgggi%awa = _inidnl/ - iNEdRNL + h.c 5 (250)

using the definition of Majorana fields, one identifies 6 Majorana neutrinos:
n=mng+nf, N=Ni+ Nj . (2.51)

A brief treatment of the effective theory one can extract from here will be given in the next section. After

that one proceeds with a general treatment of the SIvSM.

2.2.2 FEffective Treatment

The previously stated effective theory [83] can be obtained from here, in a straightforward way. The key
assumptions are:

Mp ~dg >> M" ~d, (2.52)

where in most cases M" has entries of the order of the vev, at most, and Mg is assumed to take values of
the order of the GUT scale - 1016 GeV. One can extract several relevant formulas from [eq. 2.47], such

as:
STMYT = dKT | KTM" + STMp = dST ,ZTM"T = drRT |RTM" + ZTMp = drZ™ (2.53)

From the third equation one gets R = M"Z *d;l, which implies that R is highly suppressed (as it should
be), since M” << dg. From unitarity one concludes that S also needs to be highly suppressed. Under

these approximations, from the second equation on [eq. 2.53] one obtains:
-1
St = -KTM"Mz", (2.54)

where one set dST to zero because this term is small (d is suppressed while S is also suppressed) comparing

to the other two. Furthermore, in approximation, [eq. 2.49] turns into:
vy~ Kny, , v, =v§~ ZNp — vg~ Z*N§ (2.55)

So, it can be said there is a decoupling between light and heavy neutrinos, and the heavy neutrinos
are essentially sterile while the reactive neutrinos correspond to the light states. Coming back to [eq.
2.50] and using the definition of Majorana fields, one identifies 3 light Majorana neutrinos, and 3 Heavy

Majorana neutrinos:

n=np+nS ~Klvy + KTv¢  N=Nf+ N~ ZTvp+ 2005 , (2.56)
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where it can be seen that the degrees of freedom corresponding to negative chirality were used in the
three light neutrinos and the degrees of freedom corresponding to positive chirality were used in the three
heavy ones. The only missing piece of this effective approach is the promised mass term of the type
v$ My, [83], which emerges from the deocoupling of the heavy states. Well, using [eq. 2.54] on the first

equation of [eq. 2.53] one obtains:
d=—-K'M"Mz*M*T(KT)™!, (2.57)

where one can identify an effective mass matrix Meyr = —M" My LMT that is naturally small due to the
suppression given by My 1. This is a feature of the Seesaw mechanism, since it explains the small masses
of the neutrinos comparing to the other fermions of the SM. Under this approximation it is safe to take
K and Z as unitary since their deviations from unitarity are proportional to RRt ~ SST ~ (MVMgl)z.
Thus, [eq. 2.57] turns into:

d=K'M K =K"M!, K (2.58)

which is just a bi-diagonalization equation of a symmetric matrix like in [eq. 2.47]. The fact that d is
a diagonal matrix with positive entries was used in the second equality. Using this on [eq. 2.50] while
using [eq. 2.55] one obtains the expected mass term in the low energy effective part of the Lagrangian,

if one recognizes My = Mgff:

1 1
LTeM aefs = —§ngKTM§ffKnL + he = —auzMgffyL + he, (2.59)

which is naturally small according to 't Hooft naturalness criterion [122] - if one sets M, to zero one
recovers lepton number conservation and active neutrinos are massless.

It is also interesting to discuss CP Violation in this effective theory due to its similarities with the vSM
case and its difference due to the fact that one is now assuming that neutrinos are Majorana particles.
Since, under this approximation, K is unitary, one would naively conclude that K would correspond to
Upnmns. However, due to the effective mass term on [eq. 2.59], neutrino rephasings are not allowed
because the effective Lagrangian is not invariant to such transformations. Thus, one can only remove Ny

phases, due to charged leptons rephasing, which results in:
K= UPMNS - F 5 (260)

where Up s is defined on [eq. 2.24] and F = Diag(1,e'*,e'*2). Of course that this Upprys is not
the same as in [eq. 2.16. From now on, one uses a more general definition for Upysng, as the unitary
part of the light neutrino mixing matrix, with only one phase. This way both mathematical definitions

[eq. 2.16] and [eq. 2.58] are consistent with this definition and can be compared with oscillations data.

f(Ng—=1) _ Ny(Ny—1)
2 2

The total number of phases is now 3 because N, = NJ% — Ny — al . These two extra

phases are known as Majorana Phases.
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The novelty of this model, concerning rephasing invariants, are the new ones, comparing to the ¥vSM:
DY = Ki, K} (2.61)

which stem from the fact that neutrino rephasings are not allowed. One can also construct new unitarity
triangles from these rephasing invariants - Majorana Unitarity triangles, which share the same property
as Dirac-type ones - their area is equal to half of the Jarlskog invariant [eq. 2.23]. Note that Majorana
phases always cancel in the quartets, and thus CP violation can be divided in two types: Dirac type and

Majorana type. The equivalent of the Jarlskog rephasing invariant for Majorana type CP Violation is:

where it can be proved that only two are independent and are proportional to oy and as. Majorana type
CP Violation would occur if J = 0 and one of the S, was different from zero. The conditions for CP
invariance translate into:

K;j = Kijpj 5 (263)

where p; = —incp(v;) = £1 and nep(vj) = +i is the CP parity of the neutrino v; 2°. Differently from
the case of Dirac fermions, here CP is conserved not only if K is real but also if the entries of K are either

real or purely imaginary. For a general review on CP Violation in the Leptonic sector one recommends
[123, 124].

2.2.3 Exact Treatment

Returning to the Exact treatment, one proceeds where one left off, after the identification of the mass
states on [eq. 2.50]. From [eq. 2.49]] one obtains a useful equation:

vp = 5"ng + Z*Ni . (2.64)

First, it’s important to confirm the consistency in terms of degrees of freedom. The equivalent of [eq.

2.56] in the exact treatment is:
n=mnp+nf = Ky +RTV%+KTVZ +RTvp, N = Ni+Np = STZ/Z +ZTvr+ STy —&—ZTUIC% , (2.65)

where [eq. 2.49] was used. Differently from the effective approach, both neutrino mass states have
contributions from the degrees of freedom corresponding to negative chirality and positive chirality.
However, since one knows from experiment and unitarity constraints that K and Z are almost unitary,

one concludes that light neutrino states are essentially composed of the negative chiral fields in the

20CP parities are quantities defined in the case of CP invariance. In that case M.y is real and is diagonalized by a real
orthogonal matrix O (§ = 0 by this). However, all the eingenvalues m; might not be real, but one can choose a basis where
m is always real and positive and only mg and ms can be negative. In that case, the diagonalizing matrix is K = OU,
where U is a diagonal matrix with i’s on the lines that correspond to a negative eigenvalues m; (i # 1) and 1’s on the
rest. U contains the Majorana phases. After this all mass eigenvalues are real and positive and CP is conserved since the
Majorana phases can only be 0 or 7.
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interaction basis while the heavy states are essentially composed of positive chiral fields in interaction

basis. Rewriting the whole Lagrangian in terms of the mass states [eq. 2.50], [eq. 2.41] transforms into:

LSIVSM — g 7KT Ni o+ I — g Z—H 1o — Zg l— !

IntYukawa \/ﬁmw (nL + LR )d) milRr 2mW LiImilr QmW L¢Zml R
5 (AL KT + N ROYHM" (S*(ny)¢ + Z*(N)°)

mw (2.66)
(K" + NLRN oMY (S*(nL)° + Z*(NL)°)

+
2mW
9

V2my

+ I~ MY (S*(np) + Z*(N1)¢) + h.c + quark terms ,

where [Egs. 2.50], 2.64] were used and M" is the neutrino Dirac mass matrix in the basis where the
charged lepton Dirac mass matrix is diagonal (same meaning as in [eq. 2.41]). The neutrino diagonal

mass terms are given in [eq. 2.50] and the leptonic part of [eq. 2.37] transforms into:

Ly = =2 (W Gkl + N RL1E + W T (ignd, + RigND)] (267)
and
LYy, = *ﬁ [Zu ((EK% + Ni R} )" (Kijnd, + RijNi) — E(siﬂ“li)] -
. 2.68
[(gCS:SIQGiDZM + eAM) (E(Sij’y”li + l}ééij'y“l%)] , | )

which should be compared with [Es. 2.8, 2.9]. It’s important to note that the terms from LY, can be
rewritten as:
W At Kygmd, = Wi Tyt P Kygnd = Wi FK " PO = —Wo Ky (1F)°T €= 1y#PLCni -
=W, I Kp;C(v*P)TC71 (1% = =W, KijnJ (PLy*)(1%)° 209
where the commutation relations between +, and 75, the properties of the C matrix, [eq. 2.29] for n
, [eq. B.1] and the anti-commutation of fermion fields were used - a transposition in spinor space was
performed. A term like this explicitly violates lepton number and is useful when dealing with Dirac
fermion number violating processes like W+ + W+ — et + e¢t. When dealing with processes that
conserve Dirac fermion number one does not need to care about such term. Note that for Dirac neutrinos
this term is impossible - the second equality is false in that case. When discussing the Feynman rules
of this model a clarification about this will be given. Note that the same transformation can be made
to the Yukawa terms that concern charged leptons, neutrinos and charged Goldstone bosons and to
neutrino-neutrino terms. Naturally, neutrino-neutrino terms yield a trivial equality do to their Majorana
Character?'. However, for charged Yukawa terms, the Dirac space part of the vertex is proportional to
C(Pp.r)TC~! = Pp g, thus, no minus sign.
Along with this, a large number of new interactions appears in this model, and one of the most notice-

able are the flavor Changing Neutral Currents (FCNC) of the light states, that are naturally suppressed,

21This proves that processes only involving Majorana, particles are not a test of lepton number conservation.
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as they should be, because they’re proportional to the deviations of unitarity of K. Furthermore, there are
new interactions between the light and heavy states, and also between heavy states and charged leptons.
This generates new exotic decays (like N — W), possible at high energy. It’s possible that these decays
are not CP invariant 22, this would be a source of CP Violation known as indirect CP Violation. In the
leptonic sector, CP Violation in the decay is usually understood to be CP Violation at High Energies
because only heavy states can decay?3.

If this kind of CP violation happened in the early universe, an interesting thing could have happened.
To achieve this, one should consider the symmetric phase, before SSB, where all particles are massless
but the neutrino states with positive chirality, with Yukawa Lagrangian given in [eq. 2.38]. In this epoch
one identifies the heavy neutrino mass states N; = WTvg, where dp = WT MW = Diag(M;, Ms, M3)
and W is a unitary matrix, since My is complex symmetric?4.
[eq. 2.39] making the changes ¢* — G, % — GY%and YV — UlLJr -Y” . W =Y. One works on a
weak basis where besides a diagonal Mz one would have a diagonal M' (if it existed), such that there is

The relevant interactions are given in

a connection between this Yukawa matrix and the one in the generalized mass matrix of the SI¥vSM. In
this phase, when the temperature of the universe reaches the order the mass of these positive chirality
neutrinos (assumed to be very heavy), these can decay and produce a CP asymmetry €;. The asymmetry
is not washed out because their decay happens out-of-equilibrium?® [125], yielding a CP asymmetry that
generates Leptogenesis that can be converted in Baryogenesis with the B + L violation contained in
the SM, and generate the observed asymmetry between matter and anti-matter [126]. This is known as

thermal Leptogenesis [124]. The CP asymmetry is defined as [126]:

_ T(N; = ¢¥) —T(N; — ¢'0)

€ = o = s (270)
[(N; = ¢0) + D(N; — ¢t W)
where D(N; — ¢¥) = 3, [[(N; — G°F; + T(N; — G~ 1)]
and T'(N; — ¢"¥) = 32, [T(N; — G%v;) + T(N; — G*1)].
At tree level, T'(N; — ¢¥) and T'(N; — ¢'¥) have the same value:
— YvYy/!v* Yy, (Yryvh),;
. — Jr v L — 13 L — JJ .
T(N; = ¢0) = > oM M, o M; (2.71)

i

because there is only one possible diagram for each case. Note that YY" = UZLTY”WWTY”TUé =

U Y'Y "U} = Y*Y¥1? since W is unitary. Thus, € = 0. To achieve a non-zero value one has

to go to at least one-loop order, where the interference of the tree level contribution and the one-loop

220ne decay is more likely than its CP conjugate. This is only possible when there is more than one diagram for the
decay, since the CP violation stems from the interference between them.

23Light states, due to their mass scale, are kinematically forbidden to decay to other SM particles.

24C.f. Takagi Factorization.

25For a reaction to be considered out-of equilibrium, its rate in one direction (N — IG) must be bigger than the other
IG — N). When the temperature of the universe drops below a certain value, N decays much more than it is produced via
the inverse reaction, and the produced asymmetry is not washed out.

2611 the last equality we made the redefinition UILTY” — Y'¥, since this quantity coincides with the Y'¥ in [eq. 2.41], and
the prime was dropped from that point on: no prime in [eq. 2.66 although it is the same quantity.] but with the prime
dropped.
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corrections in the decay width can generate it [127]. At one-loop level:

1 M, M? vE: 2- s
G= (1420} Log | —2 |+ N myryh2)| o, (@272)
T 8m(YrY)y; ; M; ( M}") 1+ - !

2
as stated in [127]. Considering highly hierarchical positive chirality neutrinos - %1 >> 1 - yields the

famous result of the produced asymmetry in the decay of the lightest heavy neutrino:

3 M Im[(Y YR
l6m & M, (YY"

€ ~ (2.73)

as in refs [126, 124]. To achieve the observed baryon asymmetry, Yp ~ 107!!, the CP asymmetry
must be around ¢; ~ 107%, for thermal Leptogenesis. However, thermal Leptogenesis is based on the
assumption that heavy neutrinos are efficiently generated by thermal scatterings during the reheating
stage after inflation. In the scenario in which the heavy neutrinos are hierarchical in mass, successful
Leptogenesis requires a specific range of mass for the lightest heavy neutrino [124, 128]. In the resonant
Leptogenesis scenario [129] this tension may be avoided: if the heavy neutrinos are nearly degenerate in
mass, self-energy contributions to the CP asymmetries may be resonantly enhanced, thus making thermal
Leptogenesis viable at temperatures as low as the TeV.

Furthermore, one can observe that this CP asymmetry is not necessarily related to the CP violating
phases of the mixing matrix, since one can obtain a non-zero ¢; if only Y*Y"¥! has non-real entries, i.e,
non-removable phases, in a weak basis where Mg is diagonal. For more on Leptogenesis, one recommends
[121, 124, 130, 131, 132].

The other kind of CP violation, related with the phases of the mixing matrix, is known as direct
CP violation or low energy CP violation, since the CP violating phases reveal themselves in low energy
processes. In the exact treatment of Seesaw type I models, K assumes a different form and has new CP

violating sources:

K =Upyns - F-Hg, (2.74)

using the polar decomposition theorem?”, Upysng - F parametrizes the unitary part while H is hermitian
and parametrizes the deviations of unitary of K. In this scenario, K has a total of 18 parameters (9
from the unitary part and 9 from the hermitian part), however due to charged lepton rephasings one can
remove 3 phases from K, that can be chosen to be removed from the unitary part, getting K as in [eq.
2.74] with a total of 15 parameters. The rephasing invariants are the same as in the effective treatment,
but their actual values are not the same and they might be a function of the phases of H, which are also

CP violating phases [133]. For instance, in the effective treatment S22 is given by:

ST = Im|cizs12513¢'OF91792)| = |ci3810813 5in (6 + ¢1 — )| (2.75)

27 Any general invertible matrix M can be decomposed in M = U - H, where U is unitary and H is hermitian
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but if one parametrizes H as:
hy ae®t petf:
Hp = ae~ 1 ho cetfs , (2.76)

be~ W2 ce—ifs hs

where a, b, c, h1, ho, h3, 01,05, 03 are reals, one gets:

St3 =Im|(a - crac13€™ + ¢ 513" 27970 4 c15- hoe™s15) (b croe” P ey + o e O ) 515005 + hy - 0T2) 5p5)|
_ 2 2 2 .
=la-b-ciycizsin(0y —02) —a-c- c1acigsizsin (g — 01 + 63)
. . 2 .
+ a - c12¢13h3813 sin ((5 — Qg + 91) —b-c-crac138138in (5 — g + 0y + 03) +b- C12C13 * hg - 812 8in (011 — 92)
—c? - 13512513810 (§ 4+ 0 — g +203) — ¢~ C34 - ho - 8355in (03) — ¢ - h3sissin (63)
4+ c13 - ho - hs - s12813 sin ((5 + a1 — a2)| s

(2.77)

which is pretty different from [eq. 2.75] and reveals 61,604,605 as possible CP violating phases. These
phases may alter the value of the Dirac phase é one obtains when fitting oscillations experimental data
to the effective model [134].

To summarize this model, the extra Feynman Rules one needs to add to the SM are given at Appendix

2.3 Neutrino Oscillations in Vacuum and Matter

In this section one will cover neutrino oscillations in vacuum and in matter. The framework used will
be the effective treatment of Seesaw type I, which gives the same results as using the ¥SM, since the
Majorana phases cancel in all observables. In the end, the consequences of using the exact treatment
instead of the aforementioned one will be discussed.

Neutrino Oscillations are a quantum mechanical phenomenon that happens due to non-zero neutrino
masses and mixing and the small mass difference between mass states. Our current experiments don’t have
the sensitivity to distinguish between mass states. We can only know with certainty, which interaction
state (linear combination of mass states) they were in when its charged lepton counterpart is detected.

If one defines the "neutrino state of flavor a” as the neutrino that is created or detected together with
a charged lepton [, in a leptonic W+ 28 decay, one can use [eq. 2.8] with the change U — K to express

it as a coherent sum of mass states:
Vo >=> Kl |lvi>=Y Kilvi>, (2.78)
i i

where K is defined in [eq. 2.60]. If immediately after this, the v, interacts, the probability of producing

BWt = o + va
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a lg is proportional to:
<vplva >=D D <yl KgiKilvi >=> > <0 KaiKlvi >= Y KgiKl, =00, (2.79)
i i i

where the orthonormality of mass states and the unitarity of K were used. However, if before interacting,
they propagate during a time t and a distance L, this probability changes dramatically. One can invert
[eq. 2.78], obtaining:
i >=Y " Kailva >, (2.80)
o

Since the massive neutrino states [eq. 2.80] have definite mass and energy, they evolve in time as plane
waves, solutions of the time-independent Schrodinger equation.
0 —iE;t
za—|z/i(t) >= H|v;(t) >= E;|vi(t) >—= |vi(t) >=e |y >, (2.81)
t
where H is the Hamiltonian operator and |v; >= |v;(t = 0) >. Using this and [Eqs. 2.78, 2.80] one

obtains the time evolution of the flavor state a:

Va(t) >=> Kie ity >=Y" (Z K;ie_iEitK5i> lvg > (2.82)
i B i

which shows that if the mixing matrix K is not the identity matrix, for ¢ > 0 v, is a superposition of
different flavors. The quantity in parentheses in [eq. 2.82) is the amplitude of the transition v, — vg
at time t after the production of v,, whose squared absolute value gives the probability of the transition

Vo — Vgt

Py (D) = | <vplva(t) > P = | D Koo P Kp? = 3 0 KoiKpilaKye P50 (2.83)

i i
where one can note that this is independent of the Majorana phases, as previously stated, since this is
proportional to the quartet Qq;jp:- One can see that P, _,,,(t) depends on the energy differences F; — E;
. In the standard approach to neutrino oscillations it is assumed that all massive neutrinos have the same

momentum p, i.e. detectable neutrinos are ultra-relativistic:

BieJpamiap s g = AT (2.84)
i = ms = —_— i ;= 5 .
e 2F Yo

where E = |p| is the energy of a massless neutrino, and Amfj =m? — m?. Under the ultra-relativistic

neutrino approximation, it is safe to assume that the time of propagation T is given by the distance
propagated:
T~1L, (2.85)
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in natural units. This way one can rewrite P, _,,,(t) only in terms of known or measurable quantities:

Am2.
P (L) =D KoiBpiKa;K e ( ” >L =0ap —4 ) Re (K3 KpiKoKj;) sin® (%)
7 i>j

o (AmZ L
+2) Im (K3 KpiKa i) sin (2;5) '
i>7

(2.86)

[eq. 2.86] is valid for any unitary m x n mixing matrix, with n neutrino species. For n = 3 using
the parametrization given in [eq. 2.24] for K, and ignoring the Majorana phases, one can rewrite it
only in terms of the Euler angles 6;; and the Dirac CP Violating phase . Note that the term oc
Im (K oK BiKajKEj) is proportional to the Jarlskog rephasing invariant J which is a function of Dirac
CP Violating phase 4. This term explicitly violates CP, and this statement becomes obvious when one

analyzes the probability P _,z;:

2
Am,i,

) 2,
Prziz (L) :Z ZKaiKEiK;jKﬁje_l<T>L = 0ap — 4236 (K5 KpiKa Kj;) sin® (Am”L>
g

— 4F
1>7

Am?2 - L
— 23 I (K3 KK K5 sin (ﬂ;é) '

i>j

(2.87)

On the determination of these formulas, three main assumptions were used:
1. Neutrinos produced or detected in charged-current weak interaction processes are described by the
flavor states in [eq. 2.78].

mi
2F

2. Massive neutrino states |v; > have the same momentum E; = F +

3. The propagation time is equal to the distance L traveled by the neutrino between production and

detection (in natural units).

The validity of these assumptions and how they yield the correct result independently of that is discussed
in refs [135, 136].

These formulas were derived assuming the medium of propagation was the vacuum. However, we know
that the neutrinos we detect could have crossed several km of the Earth, of the universe, and in the case
of solar neutrinos, several km inside the sun. The probability that a neutrino of energy F ~ MeV gets
scattered while crossing the earth is very low. Still, the presence of matter can significantly affect neutrino
propagation [65, 64, 63]. Effects due to propagation in a medium are not unheard of in Physics. The most
popular one must be the propagation of light in a medium, which reduces its phase speed significantly
vp = &, where n is the index of refraction of the medium. These effects can be very important in the
designing of experiments - the refraction of light in a medium introduced a new way of detecting highly

energetic particles, using the Cherenkov effect, used, for instance, in the Super-Kamiokande neutrino

experiment.
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To derive the matter-effects one needs to understand the effective matter Hamiltonian. First, one

should derive the vacuum one, Hy. From [eq. 2.81] and using [eq. 2.80], one obtains:
1
Hiop = K& BidiKp; = 52 K5, Diag(my)o; Kgj, (2.88)

where [eq. 2.84] was used, dropping the linear term on E since it gives rise to an overall phase factor,
common to all the flavor states and thus irrelevant for oscillations. For anti-neutrinos one has:

v * L
Hiop = KaiEidij Kg; = 35

KMDiag(m?)éinEj. (289)
In the case there are 3 + p light neutrino states, K, and consequently, H, is a (3 + p) x (3 + p) flavor
matrix, with K having deviations from unitary. The interaction that generates the matter effects is the
electron - electron neutrino scattering, since normal matter is essentially composed of nuclei and non-
relativistic and non-polarized electrons and no positrons. For low energies - below the W boson mass -

this interaction is described, in an effective way, as a Fermi Interaction, by the Hamiltonian density:

4Gr _ _
H'lr/n = \/5 Ve’)/oePLeeﬁ)/aPLVe = _’HZ@ s (290)
where G = % Tg; . From this, one understands that the the total effective Hamiltonian has a matrix
w

representation in flavor space with previously known and new CP violating terms due to the differences
between H ,p and HY o5, and HY;; and HY;p, respectively. Scattering of v on electrons and quarks
mediated by the Z boson is flavor blind, and therefore does not affect flavor transitions between active
neutrinos.

The total effective Hamiltonian is given by:

9

where 2

H}yop =< Hip, >=V2GpNe(2)801015 = —H}pap (2.92)

where to achieve this result one has to integrate over the space coordinates, to go from Hamiltonian density
to Hamiltonian, and to calculate the matrix element of that for an initial and final state described by
a single electron neutrino, localized around xy = x , and a large number of electrons almost at rest,
localized in the neighbouring positions - this is a realistic description of a neutrino propagating in the
matter of the Sun or of the Earth. These two operations are what is meant by < HY, >. The result
is naturally dependent on the number density N.(z,t) = efe, since for a non-relativistic scenario only
the time component of ey* Ppe is not negligible, as the other terms are proportional to the current, or
polarization, and those are suppressed 8 = ¢ << 1. Note that the existence of more than 3 light neutrino

states does not alter the matter effects.

29Tt’s necessary to use a Fierz identity to transform [eq. 2.90] into a more useful representation: HY, =
4G p — —
\/iFVe'\/aPLVee'yD‘PLe
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To obtain the propagation states one has to diagonalize [eq. 2.91]. For the vacuum case, the diago-
nalizing matrix is the leptonic mixing matrix K, as it is clear on [eq. 2.88]. For the matter dependent
case, the diagonalizing matrix will contain effective oscillation parameters that depend on the neutrino
energy, and of course on the matter density. The effect is thus controlled by the parameter N, (x). It can
be considered constant (Earth’s mantle) and it can vary with position (Sun’s interior). Both scenarios
have an analytical solution, under certain assumptions.

An interesting matter effect is resonance and can happen in the first case - constant N (z). For solar
neutrinos (neutrinos that are produced as electron neutrinos) considering only two flavors is enough 3,
since v, = cos 612 cos O1311 + sin 015 cos B135 + sin B13e w5 but cos by ~ 1.

Assuming a unitary mixing matrix, one has:

1 2 2 (1 0 Am?2 [ —cos20 sin260 1 0
e T +V2GEN, , (2.93)
2E 2 0 1 2 sin20  cos26 0 0

where Am?2 = m% — m% and @ is the mixing angle since K = (cos@ sin@ —sinf cos 0). This Hamil-

tonian can be transformed into a much simpler version, using the fact that adding a constant will add

a global factor that will be the same for all flavors. Thus, not contributing to oscillations. Subtracting
TT(Hfo)

5 on [eq. 2.93], one gets:

V2GFp N, Am? ; Am?
1 MEZESe — cos 205 sin 260 572
Hlp = Hlp— STr(HYyy) = 2 1 " (2.94)
1 72 " sin 29%1—752 cos 29%1—%‘2 — %
From here one obtains the equivalence equations for the new effective parameters:
Am? 2G N, Am? Am? Am?
cos 20 472 V2 2F = cos QQm% , sin 26 472 =sin QHm% , (2.95)
with solutions:
in 20 20BGrN.E
tan 260,, = S , Am? = Am? . sin26 + | cos29 — X7 T (2.96)
cos 20 — 2Y2GeN.E Am?2
Am?
The resonance happens when 6, = 7 or, in other terms, when:
2V2GpN.E
20 = ———— 2.97
os LY (297)

which can always be satisfied for any N, and Am?2, provided that cos 20 has the same sign as Am? , since

E is a continuous parameter. The 2 flavor equivalent of [eq. 2.86] is:

2

m
4F 7

P, v,(L) = sin® 20 sin®

a#p (2.98)

30Tt’s much simpler than considering 3 and it’s illustrative of the effect.
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Making the transformation § — 6, and Am? — Am?2, one obtains the probability for the matter case.
It’s maximum occurs for 0, = 7, which is the meaning of resonance. The resonance occurs for a certain
value of energy:

ST Am? ct

E>f = ——— cos 20 ,
Y 2V2GEN, (he)?

where to obtain a numerical value one is advised to use the useful relations (fic) = 197 MeV - fm and

(2.99)

3N, = O'i%, with m, ~ 938 MeV/c?, the mass of the proton. As for Am? and 6, for solar neutrinos
one should use the 712" subscript data given in [Table 2.2]. Under the approximation that the whole
sun has a constant density and that it has its core value (p ~ 100 g cm™3), the resonance energy is
E, ~ 1MeV. This is a crude approximation for the density, however it allows to take some conclusions
about the general behaviour of matter effects for solar neutrinos. For low energy neutrinos 6,,, ~ 6, there
is no matter effect. For neutrinos with energy given by [eq. 2.99], the probability of transition between
flavors is maximal. For energies above that, 6,, comes closer and closer to 7/2, which means that highly

energetic electron neutrinos are essentially in the 15, mass state since:
Ve = €08 0, V1 + Sin 0,19, (2.100)

and that transitions from v, to v, are now impossible - c.f. [eq. 2.98] with 6,, = 7/2. However, if the
neutrinos are detected at night this means that they crossed the Earth, and a new study of propagation
would have to be made, taking this v, state essentially composed of v9,, as the initial state.

This approximation of constant matter density is decent only for the Earth’s mantle, and thus useful
for atmospheric neutrinos and solar neutrinos detected at night. Of course that for atmospheric neutrinos
(mostly produced as muon neutrinos) the two flavor approximation would be wrong, unless one defines
one of the states as a combination of the other two.

To consider solar neutrinos in a realistic way, one would have to consider the spatial variation of
N, inside the sun. This would also translate into a time dependence, since neutrinos are propagating,
and that Schrodinger’s equation would have to be solved instantaneously - allowing transitions between
the mass states. However one can remove this time dependence if one claims that the density changes
slow enough such that the system has time to adjust to the change. This is the case since the energy
splitting between mass states is very small. Thus, the system is adiabatic. Thus, highly energetic electron
neutrinos, produced above the energy given by [eq. 2.99] with 6,, ~ 7/2, will remains in that eigenstate
(Jvam >) during all the adiabatic evolution. As the density drops to nearly zero when the neutrino leaves
the sun, the state |va, > becomes the vacuum state |vo > and the probability of detecting a highly

energetic v, on Earth is:

Poe = | < ve|v(t) > P x| < velvam(t) > |2 = | < velvo > |> ~sin? 6, (2.101)

31Gince the neutron has approximately the same mass as the proton and the mass of the electron is negligible comparing
to it, mi gives one the number of nucleons per unit volume. It’s necessary to divide by 2 to obtain the number of electrons
p

per unit volume, as most stable matter has the same number of protons, neutrons and electrons.
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which should be compared with the vacuum value, after averaging over the oscillation factor oc Am?:
vac 1 : 2
P =1-— 5 sin 20 . (2.102)

This is known as the MSW (Mikheyev—Smirnov-Wolfenstein) effect and solved the solar neutrino problem.
For a more detailed treatment one should read, besides the seminal papers [65, 64, 63], modern reviews
such as [137, 138, 139].

Now that the importance of matter effects on oscillations is clarified, it is also interesting to describe
the effects of a non-unitary mixing matrix on the probability of flavor oscillations. For a non-unitary K
the generalization of equation [eq. 2.86] is [140, 133, 141]:

i

(o,
Prass (L) = (KKT), KKT ZZ KﬁiKajKEjg( ~ >L

L Am?2. - L
— t 2 * ) 7 oo [ 2 m L
T (KKT)aa(KKT) 55 [(KKT) ol 423@ (KniKpiKajKp;) sin ( 5 ) (2.103)
1>7
* (KKT)QQ(KKT)BB QZITR (KaiKﬁiKajKﬁj) Sin <2E>
i>j

Confronting this with the unitary case, the two differences are noticeable. d,5 turns into |(K KT),z|? and

there’s a overall factor of i . The first one would obviously exist, but the reasoning for the

1
KKT)aa(KKT)gg

second difference is not so trivial. It is a normalization factor and stems from the following relation:

PW —=lo+va) =Y PW —1lg+v)=1=N>> |K,[>=N>> KuKl, =N (KK")aa

. (2.104)

S+ N=—.
(KKT)oa

This means that, when the mixing matrix is not unitary, [eq. 2.83] should take into account this normal-

ization factor:

K;l-e_iEi’tK i K KﬁzKozjK i(E;—E;)t
Prusy (1) = | < v3lva(t) > [ = |3 - KR (KR

T KK Do /TEET) 55

(2.105)
and this leads to [eq. 2.103]. For oscillations in matter with deviations from unitarity the same procedure
should be followed - taking into account the normalization factor. Doing this one obtains a similar set of
equations for the probability of oscillation between flavors, with the difference that K is now the matrix
that diagonalizes the effective matter Hamiltonian [140].

Although the effects of deviations from unitarity are very small, they are detectable. A fundamental

quantity for these tests is the zero-distance term:

1

ooy (L =0) = (KKT)aa(KKT)gs

(KK Nasl?] sa# 8. (2.106)
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Note that if there are deviations from unitary the probability is non-zero, contrarily to what happens
when the mixing matrix is unitary. This translates into a physical effect: a flavor transition already at

the source before oscillations can take place. This can be tested in nuclear neutrinos near detectors.

2.4 State of the Art of Neutrino Physics

Although deviations from unitarity of the leptonic mixing matrix might be a reality, the current paradigm
on the interpretation of neutrino oscillation data is to assume that neutrinos are Majorana, the heavy
states have a much bigger mass and, thus, the deviations from unitarity are negligible. Theoretical work
has been performed in order to constrain the possible deviations from unitarity, using data from weak
decays and from the search of Lepton flavor Violating (LFV) decays [142, 143, 144]. The most recent

bounds are [142]:
25x 1073 24x107° 27x1073

I—|KKT|<| 24%x107° 40x10~%* 1.2x1073 |, (2.107)
27x107% 1.2x1072% 56x1073

which reveals that the claim that deviations from unitarity are negligible is arguable. More on this on
the next chapters. Thus, oscillation data is fitted to the effective model, with the mixing matrix, K,
defined as in [eq. 2.60]. Several groups are currently performing global phenomenological fits on 62,
023, 013 and 4, as well as on neutrino mass differences [145, 146]. The specific bounds vary slightly from
group to group. For definiteness, in [Table 2.2], is present the current bounds on neutrino masses and

parameters of the mixing matrix K defined as in [eq. 2.60] from [146]. The quantities Am7; are defined

by (m7 —m3).

Parameter Best fit 1o range 3o range
Am3, [107%eV?] 7.55 7.39 - 7.75 7.05 - 8.14
|Am3,] [1073eV?](NO) | 2.50 2.47 — 2.53 2.41 — 2.60
|Am3,] [1073eVZ](10) 2.42 2.38 — 2.45 2.31 - 2.51

sin” 0o 0.320 0.304 — 0.340 0.273 — 0.379

sin” 623(NO) 0.547 0.517 — 0.567 0.445 — 0.599

sin” 63(10) 0.551 0.521 — 0.569 0.453 — 0.598

sin 0;3(NO) 0.02160 | 0.02091 —0.02243 | 0.0196 —0.0241

sin® 013(10) 0.02220 | 0.02144 -0.02294 | 0.0199 -0.0244
§/m(NO) 1.32 1.17 -1.53 0.87 —1.94
§/m(10) 1.56 1.41 -1.69 1.12 -1.94

Table 2.2: Neutrino oscillation parameter summary from [146]. For Am3,, sin? 093 , sin? 613, and & the
upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.
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As one can observe, two distinct cases are considered - Normal ordering (NO) and Inverted Ordering
(IO). This happens because the existing data does not allow one to determine the sign of Am32,. Thus,

both possibilities are considered:
e Normal Ordering: my < my < mg
e Inverted Ordering: m3 < mi < mo

This is known as the neutrino mass ordering problem. Below there is a summary of the biggest open

problems, concerning the three known neutrinos:
1. Is the mass ordering Inverted or Normal?
2. Is there CP Violation in the Leptonic Sector?
3. Are the masses hierarchical or quasi-degenerate?

4. What is the mass scale of neutrinos? (From oscillation experiments we can only get their mass

differences squared.)
5. Are Neutrinos Majorana or Dirac?

One could say the first problem is solved, since the most recent global fits favour the normal mass ordering
over the inverted one at more than 3o [145, 146]. Concerning the second question, one cannot declare
that CP exists in the leptonic sector because the CP conserving § = 7 is not yet ruled out, however, it
is disfavoured and every data points towards & ~ 37” However, such claims must be taken with a grain
of salt, since the performed global fits uses a unitary matrix by construction ([eq. 2.60]) [119]32.
Questions number 3 and 4 are related, since answering 4 might answer 3. Neutrinos can be quasi-
degenerate if their mass is much bigger than their mass differences : m; > 0.1 eV. Nevertheless, cosmo-

logical studies have several bounds for their mass scale:

m.s.: Yy m; <012 eV mm.: Y m; <0.72 €V, (2.108)

at the 95% CL [89], where m.s. stands for most strict and m.m. stands for most moderate. The difference
between the bounds stems from the distinct data sets and assumptions used [89]. To understand how
these discrepancies are possible, it’s instructive to understand how these bounds are determined. General
relativity gives one a relation between the scale factor of the Friedmann-Robertson-Walker metric®3, a(t),
and the matter and energy in the Universe, through the time-time component of Einstein’s equations for
a flat universe:

a(t) 87Gp(t) p(t)

<a(t)> =HO = = HSW = HyQ(t) = HF (2 (1) + Qam (1) + 2 () + 2 () + Q) , (2:109)

32Interpretations could change if, for instance, sizable (close to the bound) deviations from unitarity or a KeV "heavy”
neutrino were discovered.
33 A metric that can describe an expanding flat universe like ours.
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2
where p0 = 3y 1774 % 10-29R2 g cm ™334 is the critical density and Hy is the Hubble parameter, both

= &R
at an epoch tg that can be set to the current time. {2; are the energy densities normalized to the critical
density at t5. They correspond to: ¢ = v — photons, ¢ = dm — ”dark matter”, ¢ = b — barionic matter,
i = v — neutrinos and ¢ = A — ”dark energy” (the energy density that comes from the introduction of
the cosmological constant A in Einstein’s equations). Note that for a flat universe, if p is measured at

time to, © should be equal to one3®

. Using thermal models of the evolution of the universe, €2; values
can be inferred from the observations of astronomical objects or from the Cosmic Microwave Background
(CMB) . Nevertheless, different methods and data sets yield different results®®. Of these parameters,
only Q. = 2.47 x 1075h? is accurately measured directly, from the CMB observations. Fortunately, {2,
is inferred from that. Through thermal models of the evolution of the universe it’s possible to predict
Z—: = g—: and Z—:, inferring €, and n, from that, since one obtains 2, and n, from the CMB. Assuming
that the neutrino number densities have all the same value n; ~ n, and p, = ), nym; =~ n, y . m;, one
obtains:

YLD VLIS VLl (2.110)

pY  nptpd  93.14h2eV

where the value n, = 339.5cm ™3 [89] was used. As one can conclude several approximations and model-
dependent assumptions where taken. The bound is highly dependent on the parameters of the thermal
model used to determine €2, and n, and on the measured values Hy, €2, and n.,. The thermal model also
predicts an effective number of neutrinos. Again there are several model/assumption-dependent bounds.

The highest and the lowest are presented:
Nejr=308+£0.31,Nepp=341+0.22, (2.111)

at the 68% CL [89]. N,y is the number of neutrinos that are non-relativistic®” at the present time and
that decoupled from the thermal plasma at temperatures T; ~ 2 MeV. This means that neutrinos with
masses below TOK =~ 1.7 x 10~* eV [89] and above T,; ~ 2 MeV [89] don’t contribute to this parameter3S.

Thus, a cosmological bound is not the most trustworthy to convince oneself about the possible quasi-
degeneracy of neutrino masses, although it provides an hint on their mass scale. Both questions can be
answered if KATRIN yields a positive result. As discussed in the first chapter, KATRIN is an experiment
that has the goal of measuring the quantity mg, from 8 decay : n — p+ e~ 4+ V. The experiment is
projected to be sensitive to mg > 0.2 eV, and started acquiring data on June 2018. But what is mg? To

study S decay is convenient to consider the Kurie function:

KQ(Ee) =(Q—E.) Z |Kei‘2 (Q—E.)?— mf x 0(Q —T. —m;)
@ (2.112)

~ (Q — E.) (Q—EE)Q—m%><G)(Q—E'e—m5)7

34h = Hy /(100 kms~1Mpc™1)

35Using this one can estimate the ”dark energy” energy density Q5 and the "dark matter” energy density Qg,,. Surpris-
ingly, the values consistent with observations are ~ 0.70 and ~ 0.25, respectively.

36For instance, The Hubble Space Telescope Project measured Hg = 73.2 £ 1.7km s~ ! Mpc~!, while the Planck Collab-
oration found a lower value, Hy = 67.8  0.9km s~ ' Mpc~1.

37With masses much bigger than T? =~ 1.9K =~ 1.7 x 10~% eV

38From oscillation data one concludes that the lightest neutrino can have a mass below T ~ 1.7 x 10~4 eV
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where F, is the electron energy, @ is the amount of energy released by the reaction and © is the Heaviside
step function. The approximation is valid for an experiment in which the energy resolution is such that
my << Q — E.. mg is the “electron neutrino mass” and the Kurie function depends on it thanks to
the phase space factor. It is determined as a real average over all mass eigenstates contributing to the

electron neutrino:

my =3 |Kel>m? (2.113)

where K is defined in [eq. 2.60]. Note that this is not sensitive to Majorana phases nor the Dirac phase 4,
as they cancel. Ideally, with enough resolution, one could determine exactly the mass of i** neutrino m;.
However, one only detects the final electron and does not know which neutrino mass state was produced,
since it is not possible to resolve between them, due to their very small mass splittings. If KATRIN has
a positive result, i.e, mg > 0.2 eV, due to the mass differences one knows from oscillation experiments
this would mean that neutrinos are quasi-degenerate.

In the exact treatment one should use [eq. 2.113] with K given by [eq. 2.74]. In this scenario, not
only m% is sensitive to the CP Violating phases 61,05, 63 phases that come from the hermitian part of K
[Egs. 2.74, 2.76] but it’s also sensitive to the Majorana phases a1, as and to the Dirac phase §.

)

Another scenario is possible, if k of the three "heavy” states have a mass of the order of the light
neutrinos (or higher, given that it is kinematically allowed). In that case, the electron energy spectrum
would be a superposition of the light neutrino spectrum and the "heavy” neutrino spectrum, implying

that [eq. 2.112] would transform into:

KQ(EE)%(QfEe) (QiEe)Qfm% X@(Q*Eeme)

(2.114)

+(Q_Ee)Z‘Kek|2 (Q_Ee)z_mi X@(Q_Ee_mk) )
k

The above expression shows that a "heavy” neutrino mass, my can be measured by observing a kink of
the kinetic energy spectrum at E. = Qmy, the point where the "heavy” neutrino spectrum ends. [147]
As for question 5, its answer can not only discern if neutrinos are Majorana particles but also, combined
with the answer to question 4 (mass scale), answer question 1 (ordering)! This could be achieved by
measuring Neutrinoless double § decay (0vSf) : (A, Z) — (A, Z+2)+e~ + e, a Dirac fermion number

violating process like the one given in [eq. B.7]. The decay rate for this process is given by:
FOVﬁﬂ = G(Q7 Z)|M3uc|2| = G(Q’ Z)|Mnu0|2 : |m5/3|2 ) (2115)

where G(Q, Z) is a phase-space factor that depends on the nucleus and M2, is the total nuclear matrix

uc

0
element. M,),.

contains the leptonic amplitude (W, )*(ps) + (W, )*(ps) = e~ (p1) + e~ (p2) *, which as
two diagrams (channel t and u) because of the anti-symmetrization of the final state:
MO

nuc

o (My — M) . (2.116)

39Wu_)* means an off-shell W~ boson. It’s an intermediate state that is taken into account in the hadronic part of the
amplitude.
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Below is the part that is sandwiched between the spinors, for the t-channel amplitude. A lepton number

violating vertex was used, thus, making the process only possible if neutrinos are Majorana.

— (=i i(Yops +m; —i
i, =Y [um) (Trution ) ) (=, pi i) v<p2>] .

J

where p = p; — p3 = ps — p2, and e (p2) = (et (p2))° has the role of Conjugated Dirac fermion, which
means that the vertex connecting the momenta ps and p4 is the lepton number violating one. When
calculating |M?, |?, taking the traces of the leptonic part one notes that the terms o v°ps vanish 4°.
Thus, the only surviving terms are the ones oc m;. Then, neglecting the neutrino mass in the denominator,

it’s possible to factor out an interesting quantity:

|]\47('2uc|2 = ‘Mnuc‘Q : ‘ Z(Klj)Qij ) (2118)

J

which looking at [eq. 2.115] defines:
mgs =Y _(K1;)*m; (2.119)

J
where K is defined in [eq. 2.60]. Note that this is sensitive to Majorana phases and to the Dirac phase &
41 Again, there are two possible extra scenarios. In the exact treatment one should use [eq. 2.119] with
K given by [eq. 2.74]. In this scenario, m% 5 is also sensitive to the CP Violating phases 61,05, 03 phases
that come from the hermitian part of K [Egs. 2.74, 2.76].

The other scenario is if p of the three "heavy” states have a mass of the order of the light neutrinos

(such that it is kinematically allowed). In that case:

3 P
mgs =Y _(Kei)’mi+ > _(Rej)* M, (2.120)
i J

The current experimental bound on mgg, considering only 3 light neutrinos, is depicted graphically
on [fig. 2.1]:

Thus, concluding, if Ov3f is detected, neutrinos are Majorana. To clarify the connections between
the various results, a quick analysis of the figure will be done. The picture shows that if 0v35 is detected
in the next round of experiments and KATRIN gives a positive sign working in the reported sensitivity
(mg > 0.2 €V), one cannot conclude if the ordering is normal or inverted. Nevertheless, if only KATRIN
gives a positive signal in this region, one can conclude that neutrinos are Dirac. However, if mgg is
detected below 1072 eV, one can conclude that the ordering is normal. If mgp is detected between
0.05 eV and 0.01 eV and KATRIN yields a negative result, then for sure the ordering is inverted. If the
myg signal is detected below 1072 eV, the conclusion about ordering depends on the value of the detected
mgg. If there’s no positive signal from 3 decay and Ov3f in the next round of experiments, then inverted

ordering would eventually become ruled out and the only possibility would be Majorana neutrinos with

40Trace of odd number of gamma matrices.
A (K13)? = s%3eZi<¢2’5). Although when studying Ov3f it’s useful to redefine ¢2 = ¢/, + & such that mgg only depends
on ¢1 and ¢}.
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Figure 2.1: mgg as given in [eq. 2.119] as a function of the lightest neutrino mass and its experimental
bounds from [148].

normal ordering or Dirac neutrinos with inverted ordering if the sign of Am$, was determined, in an
independent experiment, to be negative.

The interplay between the possible results of 5 decay and Ov3(5 decay experiments and the sign
of Am?2; will give us answers about neutrino mass scale, hierarchy, ordering and character. Better
measurements of oscillation parameters will yield a conclusion about CP Violation in the Leptonic sector.
The possibility of the existence of Heavy neutrino states and sizable deviations from unitarity is still open.

An extra question that one might dwell on is what is the allowed mass scale for these heavy neutrino
states? If one neglects cosmological bounds, for the aforesaid reasons, the answer is any - from the sub-eV
region to the GUT scale. An important test to the number of active neutrino species with masses below
the Z boson mass was the measurement of the Z invisible width at LEP [43] : N, = 2.984 4 0.008.
However, this measurement doesn’t exclude sub-electroweak scale “heavy” neutrino states [147]. The SM
predicts N, = 3 and the vSM predicts N, =}, ; |(KTK);;|? = 3, since K is unitary. The SIvSM
predicts N, =}, ; |(KTK);;|? < 3, if there are no "heavy” states with masses below the Z boson. The
prediction is below three because of the deviations from unitarity. If there are p "heavy” states with

masses below the Z boson the prediction is:

N, =Y IETK)y? + Y K R + Y I(RTK) [ + Y |(RTR)wf* <3, (2.121)

i,j ik k,j k,l
where 4,5 =1,2,3 and k,l =1, ..., p, [Tab. B.4] was used and the prediction for N, is 3 if p = 3, otherwise
is below 3. Thus, there can be more than three neutrino mass states with masses below the Z boson
mass, since N, is always < 3, even in the STvSM, because of the unitarity of the full mixing matrix V
and the fact that K is a contraction [149]. Summarizing, only states which interact weakly contribute to
this quantity, IV,, these states are given by [eq. 2.49], and are only three, the maximum value N, can

have.
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Chapter 3

Appealing Models within the Seesaw Type I

Framework

From section 2.2, namely [Egs. 2.66, 2.67, 2.68], one understands that heavy neutrino states (N) interact
with SM particles, via mixing. For negative chiral states, this mixing is controlled by the matrix R [eq.
2.49], defined in [eq. 2.48]. Thus, their entries are the relevant coeflicients for electroweak processes
involving heavy neutrinos. This matrix is, naturally, as big as the deviations from unitary of K allow
(this statement will be proved in a few lines), since V is unitary and K is almost unitary.

The production of these heavy neutrino states in electroweak processes is possible in machines like
the LHC!, and its production rates are controlled by the matrix R and their mass M;. Knowing present
unitary bounds [eq. 2.107], heavy neutrino masses around 100 GeV are not ruled out [150]. Nor are
heavy neutrino masses in the eV and KeV scale [147, 151], since the smallness of the R matrix highly
suppresses their interaction with SM neutrinos, making them invisible to measurements performed at
LEP or at the present LHC.

Thus, an important question is: Is it possible to have heavy neutrinos with masses around the elec-
troweak scale? or lower, while satisfying all present phenomenological bounds, especially deviations from
unitarity?

This preoccupation with deviations from unitarity stems from the fact that, as stated above [eq.
2.58], in the usual seesaw®, the deviations from unitarity of K are proportional to (M”My"')2. With Mg
assuming values of the order 10'6 GeV, being below the experimental bound is not a problem. However,
one could naively conclude that by taking the masses of the heavy states to be around the electroweak
scale or lower, one would decrease the scale of Mg in such a way that deviations from unitarity would
become well above the experimental bounds.

In other words, the question this work tries to answer is: Can one have a seesaw, consistent with

experimental data, with all the benefits stated in Chapter 2, when the scale of Mg is close to the

LIf they have a kinematically allowed mass, i.e., not above the LHC’s maximum collision energy which at the moment
lies around 13 TeV.

2Let’s define this as the range from from m; ~ 170 GeV to 10 x mt ~ 1700 GeV'.

3Under the effective treatment, with My assuming values of the order 1016 GeV’
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electroweak scale or lower? Sizable deviations from unitarity along with masses in this scale would mean

that the detection of heavy neutrinos might be just around the corner.

3.1 Seesaw Formulas Adequate to an Exact Treatment

Before proceeding, it is important to explore all the degrees of freedom in the Seesaw formulas [eq. 2.47].

This means finding suitable parametrizations for the sub-matrices of [eq. 2.48], as done in [1]:

K R K 0 Iy ) .
V= - : ~X=277'S, Y=K 'R, (3.1)
S z 0 z) \-x I

which is a completely general parametrization, valid for K and Z non-singular. I is the 3 x 3 identity

matrix. The equations that stem from non-diagonal terms of VVT = I, imply that:

Y =XT. (3.2)
[eq. 3.1] can then be written as:
K KXf
V= . (3.3)
—ZX zZ

The equations that stem from the diagonal terms of the unitarity relations of V yield:
VVI=Iewe = K(KT+ XTXKY)Y =T, Z(ZI + XX1Z") =T, (3.4)

VIV =Iewe = (KT + X' XKNWK =T, (Z' + XXTZV)Z =T, (3.5)

which, at first sight, one might argue that they have redundant information: The right and left inverse
of K are equal and given by KT+ XTX K", or equivalent for Z. However, these are 4 different equations
and will be useful later. From them it is also clear that the matrix X parametrizes the deviations from
unitarity of K (and Z) and, as stated before, the matrix R = KX T that controls the rate of electroweak
processes involving heavy neutrinos, is as big as X allows - if X is zero there are no deviations from
unitarity and R is zero.

With the importance of X established, it is useful to write it in terms of other known matrices, with

physical meaning. To try that, it is mandatory to write [eq. 2.47], using V given by [eq. 3.3]:

—X'Z2TM¥T = dKT | (3.6)

KiMY - XTZTMp = —dXT 27, (3.7)
ZTMYT = dpX*KT | (3.8)

XK'MY + ZTMp = dr 2™ . (3.9)
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Replacing ZT M¥7T from [eq. 3.8] into [eq. 3.6] yields
d=-X"dr X . (3.10)
The only X that satisfies this equation is given by:
X:iz‘\/dT;lOc\/E, (3.11)
where O, is a complex orthogonal matrix, i.e., OTO. = I, or explicitly:

(3.12)

This, by itself, proves that the deviations from unitarity are not only controlled by the mass scales
involved, but also by this matrix O.. Thanks to this degree of freedom, in principle, it is possible to
generate deviations from unitarity of any order of magnitude, independently of the mass scales one is
working with.

With X defined, and R and S written in terms of K, Z and X, it is also relevant to parametrize K
and Z in terms of other matrices, using the Polar Decomposition theorem, and compare this result with

the definitions given in [Eqgs. 2.74, 2.76]. Using the Singular Value Decomposition of X one obtains:
X=Wdx U, XXT=Wdi Wi, XIXx=Ud% U, (3.13)

where U and W are unitary matrices, and dx is a real diagonal matrix. Using this, one can write the

hermitian matrices (I —|—XTX) and (I—l— X XT) as,

I+X'X=U (I+d%) U',

(3.14)
I+X XTI =W (I+d%) WT.
Inserting [eq. 3.14] into [eq. 3.4], one obtains:
KU (I+d%) U Kt=KU \/U+d%) -/I+d%)U" Kt =1, (3.15)
ZW (I+d%) Wizt=zw JU+d%) -JU+d&)WH 2zt =1. '
Therefore, one concludes that
KU\(I4d4)=Ux, ZW\J(I+d%)=Wz, (3.16)
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are unitary matrices, with:

1 0 0
B 1/1+dxf
1
<\/1+d%<> = 0 i 0 , (3.17)
0 0 L
1/1+dx§

where the labels i = 1,2, 3 are given in ascending order, such that, for instance, dx3 > dx?. Which leads

to *

1

K =Ug ( (I+d§())1UT:UKUT<U( (I+d§())1UT>=UKUT(\/m) ,

Z:Wz( (I+d?x))_1WT:WZWT<W( (I+d§())_1W*>:WZWT(\/m)_1

(3.18)
Putting everything together:
-1 -1
K R UgUT ( I+XTX ) UrUT (\/1 + XTX ) Xt (3.19)
= = 1 1 .
S z “WWH (VIFXXT) X wewt (VI+X XT)
One can now analyze [Eqs. 2.74, 2.76] and identify:
1 -1
UPJVINS'F:UKUT7HR:<\/I+XTX) =U< (I—l—d%()) Ut (3.20)

In the literature, one usually finds the following definition for a K with deviations from unitarity [143,
144, 152, 153):
K=I-nV, (3.21)

where (I — 1) is a hermitian matrix and V' a unitary matrix, usually associated with Uppsns. Using the

unitarity of U and Uk together with the first equation of [eq. 3.18], one finds:

K= (UK (\/I—i—id?x)_l U,Q) (Ux.UT) = (UK Ut (m)%@ (UxUT) . (322)

where

—1 _
Hp =Ug <./I+d§() Ul =Ug U (\/I+XTX ) ‘U Ul , (3.23)

is an hermitian matrix and UxU" is unitary and equal to Upasns - F by [eq. 3.20]. This is consistent

with the polar decomposition theorem, which states that if K is non-singular then:

K=H;, (UxU") = (Ux U') Hg, (3.24)

4To obtain these relations, one needs to use [eq. 3.14] and /I +d% = UT (/I + XTX) U
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the unitary part on both decompositions is the same and the hermitian parts are related by the equation:
Hp = (Ux U") H (UxUNT (3.25)

To be in line with the literature, from now onward Hy = I — 7, using 1 to describe the deviations from

unitarity. Using [eq. 3.24] and the unitarity of Ux U':
KK =H}=(T-n)?=1-2n+17, (3.26)

where )
n=1I—-H,=1-Ug <\/1+d§(> Ul . (3.27)

Since U is unitary, n is highly dependent on the eigenvalues of X, as it should be. Thus, to explain
the deviations from unitarity of K, it is important to understand what range of values one can find for

dx;.

3.2 On the Size of Deviations from Unitarity

Using [eq. 3.11], it is straightforward to conclude that the eigenvalues of XX, d%;, will be related to the
eigenvalues of OIOC. However, there’s no general analytical expression that relates both. Nevertheless,
one can find special cases where this relation exists, thus providing important insights. Since O, is an

orthogonal complex matrix, its eigenvalues are constrained by the usual equations:
OT 0. =1, Det(O,) = x1 x3 x3 = 1, Det(010,) = |x1|? |xa|? |z3]* =1 . (3.28)
From the previous equation:
010.070: =T - 0}0. = (0T07) ™", (3.29)
5

and, taking the trace on both sides of the last equation, gives

212 + w2 |* + |23 = |21 |72 + |22 72 + ||, (3.30)

5Note that OIOc = (OZO:)T. This yields that O;';OC and OT O} have the same eigenvalues. Finally, the eigenvalues of
(0roy) ! are just the inverses of the eigenvalues of OT O
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where |x;|? is the i*" eigenvalue® of OIO,. Using the last equation of [eq. 3.28] , |z3|? = |z1]|7%|22| 72,

and the previous equations:

|21 + |2 |* + |21 2|72 = |21 72 A+ [22] 72 + |21 )] 32)?
& |1 P|m2l? = |z1]® — |m2)? = |z1] 2 |w2] 72 — |z |72 — |22 7
(3.31)
& la1Plal® = |21 * = |zol* + 1 = |21 | 2faa| 2 — |27 = o[ 2+ 1

& (1= |aa)(X —Jz2*) = (1 = a1 |72 (A = fa2|7%) .

This last equation proves that the eigenvalues of OfO, are: 1, 72, #=2. This can be seen by nothing that,
in the final equation of [eq. 3.31], if |z1|> = 1, the above conclusion is trivial given r? = |z3|%. The same

applies if one exchanges indices 1 and 2. If |z;]? # 1, with i = 1,2, then:

(1= |21 ) (1 = Ja2l*) = (1 = |21 | 7)1 = |22 ™)
& o1 Plaa* (217 = D(lz2 72 = 1) = (1 = || 7)1 = [a2|7?) (3.32)

& |z P|ee? =1 & |21]? = |aa| 72,

which gives that |x3]* =1 by [eq. 3.28] and r? = |z;|?, with j = 1,2.
In conclusion, one can write:

Tr(0j0.) =1+ % +r72. (3.33)

Plugging [eq. 3.11] into the above equation leads to:
Tr(010.) = Tr(Vd—1XT\/dp\/dpXVd=1) =1+ 1> + 172, (3.34)

Taking the degenerate limit, where the diagonal mass matrices are given by d = m I, dg = M I, where
m and M are real numbers” and I is the 3 x 3 identity matrix, one can generate an upper bound on
Tr(XTX):

M M
—Tr(XTX) = —(dx? +dx3+dx3) <1+ +r72. (3.35)
m m

One can now estimate the size of the eigenvalues of XTX, as a function of r, by going to the equality
limit. In this limit:

M -2

M
*dx? ~T 2
m

, —dx2~1, —dx2~ 3.36
sz me r ( )

Taking m ~ 1 x 10711 GeV and M ~ 1 x 10? GeV yields % = 10*3. For instance, for > = 10'° one
obtains:

dx3~107%  dx3~1071%  dx3~107° . (3.37)

The term by term identification of [eq. 3.35] in the equality limit, presented in [eq. 3.36], may seem like
a crude approximation but, in fact, it isn’t, due to the difference in orders of magnitude of the terms.

To support this, the next section will contain a toy model, with degenerate light neutrinos with mass

6Real, since the matrix is hermitian.)
"m is the heaviest light neutrino mass and M is the lightest heavy neutrino mass, such that the inequality is satisfied.
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m, and degenerate heavy neutrinos with mass M, which can be analytically solved.
Another model, with a simple O, will provide plots where the evolution of the dx? is given as a
function of the masses and z2.
The behaviour presented in [eq. 3.37], and in the results of the next section, a sizable eigenvalue, one
nearly zero but tractable eigenvalue, and another practically zero eigenvalue, will turn out to be true not
M;

L >> 1.

my

only for the degenerate limit, m; = ms = mg = m and My = My = M3 = M, but as long as

3.3 Toy Models

In this section, two toy models are presented to illustrate how the deviations from unitarity behave in
terms of the neutrino masses.

For the first model, one sets O, to one of the simplest possibilities:

0 2+ 1 iz
O.=|o0 iz V@11 |, (3.38)
1 0 0

where the parameter 22, when large, corresponds to 72 in [eq. 3.35] but when 2% << 1, then r? = r=2 = 1.

Plugging this into [eq. 3.11], choosing the minus sign:

0 —i,/%\/ﬂ—&—l e
X = 0 \/ AT i/ va?+1 , (3.39)
0

—z}/]’\% 0

which gives:

1+ % 0 0
2 mo (z? . xy/maomsz(z?
I+ XTX _ 0 1+ m]\;;[j + 2(Ml+1) Z(]VflJer)M\l/Mz 5(z2+1) ) (3.40)
. p 2
0 _Z'(M1+M2)91L\/I\/1$zm3(£2+1) 1+ mJ\ZTQ + m3(1\3i12+1)

The eigenvalues of [eq. 3.40] can be calculated analytically, yielding:

g(x7M17M2am27m3) - \/f(.T,Ml,MQ,mg,mg)

1+dx2=
+ X1 2‘2\4—1]\4—2 ’
my
l+dx2a=1+— .
Fxd =14 (3.41)
l4de?— g(z, My, My, ma,m3) + \/f(x, My, Ma, m2, m3)
X3 = oM, M, ’

53



where

gz, My, My, mg, m3) = x2(Mymg + Myms + mg My + Mymsg) + 2M; My + Myms + ma Mo |

f(z, My, My, ma,mg) = [Ml(m2x2 + 2My + max® 4+ mg3) + My(mg(x? +1) + m3x2)]2

— MM, [w2(4M1m2 + 4Mymg 4+ dmo My + 4Mamg) + 4M; My + 4AMymg + dma Mo + 4m2m3] .
(3.42)

To understand how the dx? evolve with the masses, it’s instructive to plot the functions given in [egs.
3.41]. In the following plots, the light neutrino masses were all set to m, for simplicity. The heavy

neutrino masses are in units of m. x was set to = 10° in all of them but the last.

3.0

2.5

2.0

1.5

1.0

1+ dx2?
—,—,———
PR R R RN N S S TR T [N TN TN SN SN N SO SO TR T [ S SO S

0.5

20 40 60 80 100
M3(m)

(=]

Figure 3.1: 1+ dx3 as given in [eq. 3.41] as a function of Mz. Mj is in units of the light neutrino mass
m1 = m. The behaviour is maintained for m — oo
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2
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4 4
O o PP O e G e
M1(%) M1(10°2 m)
((a)) M; are in units of the light neutrino mass mo = ((b)) M; are in units of the light neutrino mass mo =
ms = m divided by 10. In this plot, M; ranges from 0 m3 = m multiplied by 10'2. In this plot, M; ranges
to 10m. from 10™2m to 10™m.

Figure 3.2: Order of magnitude of the eigenvalue dx?, using a density plot of Logio(Log(1 + dx?)) =~
Logio(dx?) as given in [eq. 3.41] as a function of M; and Ms. Colder colors indicate smaller values.
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((a)) This is done for z = 103. In this plot, M; ranges ((b)) This is done for £ = 5.In this plot, M; ranges
from 10'2m to 1014m. from 10m to 10%m.

Figure 3.3: Eigenvalue dx3, using a contour plot of 1 + dx% as given in [eq. 3.41] as a function of M;
and Ms. M; are in units of the light neutrino mass mo = m3 = m. Colder colors indicate smaller values.

Starting by discussing the simplest, 1 + dx3, [Fig. 3.1], one notes that for Mz >> m it is essentially
1 - for instance, dx3 has the value ~ 10713 for M3 = 10™®m. For M3 < m dx3 can have arbitrarily large
values. For M3 = m dx3 is 2. As for dx?, [Fig. 3.2], one notes that for My, My >> m it is essentially 0 -
for instance, it has the value ~ 10723 for My, My = 10"®m. For M;, My < m it can have arbitrarily large
values. For My = My = m it is ~ 10710, Finally, for 1+dx3, [Fig. 3.3], one notes that for My, My >>m
it tends to 1, but much slower than the other two - for instance, it has the value ~ 1 + 1 x 1073 for
My, My = 10"3m. For My, My < m it can have arbitrarily large values. It’s important to note that all of
these numerical values are dependent on the value of x. For instance, in [Fig. 3.3(b)] there is the same
contour plot as [Fig. 3.3(a)] done for x = 5, where one can see that it is possible to achieve the same size
of deviations from unitarity for much lower heavy neutrino masses.

The unitary matrix, U, that diagonalizes [eq. 3.40], can also be obtained analytically. However, its
entries are too complicated and too long to give any insight on the eigenvectors. To obtain such thing,
one needs to go to a parameter region where all expressions simplify.

This is done in the second model, where one considers the degenerate limit, where all light neutrinos
have mass m, and all heavy neutrinos have mass M. Furthermore, one also needs to go to the region
where z >> 1 — V22 + 1 ~ z, which turns out to be a very reasonable approximation for the case of

heavy neutrino masses around the electroweak scale with sizable deviations from unitarity. Thus, in this

model:
0 = iz
O.~| 0 iz —-=x , (3.43)
1 0 0
and, in approximation, one finds for X:
0 —i\/ 31T T
—i\/f 0 0
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leading to:

1+ 37 0 0
I+XTX = 0 14 2met  j2ma (3.45)
: 2ma? 2ma?
0 —i557 1+ =5
The matrix that diagonalizes the matrix in [eq. 3.45] is given by:
0 10
U=| -Z5 0 i (3.46)
L o L
V2 V2
Furthermore, the eigenvalues of XTX are:
0 O 0
=10 2 o ; (3.47)
4dmax
0 0 -

where making the substitutions z = 10° and = 1013 gives values very close to the ones estimated
in [eq. 3.37]. It’s interesting to note that, in this parameter region, the functions \/f and g defined in

[eq. 3.42] have the same value: /f = g =2 m M 2% Let’s now proceed and try to find an analytical

formula for the matrix 7, defined in [eq. 3.27]. One should be now convinced that, for % >> 1,

1+dx? ~1+dx3~ 1. Furthermore, in a good approximation:

L 1 0 0

1 1 B
ml—d2:><\/f+d2> ~|o0 1 0 ; 3.48
m 2 X3 X ( )

0 0 1-—ldy?
Using this in [eq. 3.27], one obtains:
. | U132 Uk13 - Uggs Ugki3-Ugkss
n=5dx3 | Ukes Uy Uk Ukes - Ujess | - (3.49)
Uk3sz Uk Uksz - Ugosg |Urcas|?

With this one sees that when dx3% approaches 0, all entries of  will approach zero. Furthermore, if the
entries of Ug are of same order of magnitude, such that every product of Ug;; yields ~ 1, n is a democratic
matrix, dominated by dx2. The experimental bounds, [eq. 2.107], constrain much more the entries that
are proportional to Ugos than the rest. Looking at [eq. 3.26], one concludes that KKt — I~ —2n, for a

small 7. Therefore:
1.25 x 1073 1.20x 1075 1.35 x 103

Inf < | 1.20x 107° 2.00 x 107* 6.00 x 107* | . (3.50)
1.35x 1073 6.00 x 107* 2.8 x 1073

Thus, to achieve such non-democratic deviations from unitarity like in [eq. 3.50], one will need a non-

democratic Ux matrix. This suggests that, if one wants a model that has deviations from unitarity
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matching the experimental bounds, one will need to find a Ux with the 23 entry small enough such that
the entries proportional to it are controlled by it and the rest is controlled by dx3.

One defines Upyys - F = Ug.UT, as in [eq. 3.20], where F' contains the Majorana phases, a;, and
Upnns is a unitary matrix with one Dirac phase like Vogas. Therefore, to achieve a small Ugo3 one

needs to control the quantity:
Lines[Upnrns - F] x Columns[U] = Uphyng - U + UByng - € - U + U ng - €2 - U . (3.51)

Thus, one can choose the «; such that there is a cancellation and the above quantity is small.

For an O, of the form:

0 2 +1 iz
Oc=10 ix —Vz2+1] , (3.52)
1 0 0

one gets U3 = 0. This puts too much strain on the process of controlling Ugo3. Thus, the following O,

can be used:

0 Va2+1 ix cosf 0 sinf
0.=0.0=|0 iz ~VzZ+1|-| 0o 1 0 (3.53)
1 0 0 —sinf 0 cosf

This angle 6 will generate a controllable non-zero U3 without changing the eigenvalues of X. This

procedure proves that that the Majorana phases may have a crucial role on the size of a given entry of 7.
M;

J

The main conclusion of the last two sections is that, for >> 1, the only eigenvalue of XX that
contributes to the deviations from unitarity is dx3. For a fixed light and heavy mass scale, this variable
depends on the parameter x, which is totally free. Thus, the conclusion seems to be that one can generate
any size of deviations from unitarity, independently of the masses involved. However, there is a catch.
In this general approach to the seesaw mechanism, the Dirac mass matrix, M, is proportional to the

matrix X, and, thus, also depends on the parameter x. In conclusion, the desirable size of the Yukawa

couplings constrains the parameter space.

3.4 Constraining the Deviations from Unitarity using the entries of the

Dirac Mass Matrix

In this section, it will become clear that the entries of the Dirac mass matrix constrain the possible
deviations from unitarity for a given value of the lightest heavy neutrino mass. In other words, it is

shown that there is a correlation among;:
e The size of deviations from 3 x 3 unitarity of the leptonic mixing matrix K

e The mass of the lightest heavy neutrino, M;.
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From [eq. 3.8] one obtains:
MY = KXtdp(Z2*)7" . (3.54)

As said before, the experimental fact that K is almost unitary implies that Z is also almost unitary.
Therefore the Dirac mass matrix MY is of the same order as X times dr. Notice that the scale of dg
may be of the order of the top quark mass, so that indeed the Yukawa couplings need not be extremely
small.

The elements of the neutrino Dirac mass matrix, M, are connected to the deviations from unitarity

of the leptonic mixing matrix, K, in the following way:

1
M”—UK< (I+d§)> dx WTdRW*( (I+d§()>WZT, (3.55)

where [Eqgs. 3.16, 3.18, 3.13] were used. An interesting quantity that gives an insight on the order of the

entries of MY is:

Tr [M”M”T] =Tr

( (I+d%) ) 1dx Wt dgp W* (I+d§() WT dgr W dx ( (I+d%) ) 1]
(3.56)

As previously emphasized, deviations from 3 x 3 unitarity in the leptonic mixing matrix, K, are controlled

by the matrix X. For X = 0, there are no deviations from unitarity. Small deviations from unitarity

correspond to dx small and, in that case, one has, in a very good approximation:
Tr [M"M"T| &~ Tr [dx WdRW dx] = Tr [dx WdRW] , (3.57)
where the terms with powers higher than 2 of dx were neglected. This can be written as:

Tr [MYMT] = &, (M3 (Wil + M3 [War [ + M3 W ) +
d%, (M12 [Wia|? + M3 [Was|* + M3 |W32|2) + (3.58)
%, (M12 (Was|® + M3 [Was|* + M3 |W33|2) :

Using the conclusion from the previous sections - that only one of the dx,, corresponding to dx,, can have

a significant value (e.g. dx, ~ 1073), while the other two are negligible - one finds in good approximation:
Tr MM ~ d%, (Mf [Wis|® + M3 [Was|* + M2 \W33\2) : (3.59)
Using the unitary of W:

vaAsvt 2 2 M22 2 MZ’? 2
Tr [MYMYT] ~ d5, M7 {1+ W_l [Was|™ + W_l Wis|™ ) (3.60)
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which, with the choice M3 > Ms > M, leads to:

A3, M} < Tr [MYM"T] =" |MY|*. (3.61)
.

From [eq. 3.61], it is clear that for significant values of dx,, M; cannot be too large in order to avoid a
too large value of T'r [MVM”T], which in turn would imply that at least one of the |Mi’3}2 is too large.
This can be seen in [Fig. 3.4(a)], where the plot of %dg(g versus M is presented. This is done for a large

2 corresponds to 72 in [eq. 3.35]. For the case when

22, the parameter of the matrix O,. In this case,
2?2 << 1, then 2 = r=2 = 1, and the deviations from unitarity are totally controlled by the heavy mass
scale. Both cases yield similar plots. Significant values of d§(3 can only be obtained for M; <1 TeV, in
the large = region. Of course that for a very small Mj, to obtain deviations from unitarity of this order
(~1073), Tr [M”M"T] would yield a very small result and this is also not wanted.

Thus, the quantity T'r [M YM ”w constrains the lightest heavy neutrino mass by giving a lower and an
upper bound, for a given quantity of dg{s' In the following plots, it is required that T'r [M M ”T] < m?.
To create them, the case of normal ordering was considered, and the values of light neutrinos masses m;,
were varied up to mg = 0.5 €V. Concerning the heavy Majorana masses M;, M3 was allowed to reach
values of the order of 10*m; and the O, were randomly generated with a large . In [Fig. 3.4], the

condition |91 < 2 x 107° is imposed. In [Fig. 3.4(b)], the absolute value of the 11 entry of the matrix
7 is plotted.

0.005

0.0014

.
0.004 0.0012
3, !°
v. 0.0010
.
0.003 .
o &; . ~ 0.0008
-l = L0
i

0.0006] §’,

0.0004, k. ~
0.001

0.0002

2 o
0 2000 4000 6000

My InGeV

8000

((a)) Maximum deviations from unitarity as a func-
tion of M;p, generated under the condition that

Tr(MYM¥1) < m? and |n12| < 2 x 1075.

0.00000 2000 4000 6000 8000

((®)) |m11] deviations from unitarity as a function of
M, generated under the condition that Tr(M”M”T) <
m? and |n12| <2 x 1075,

Figure 3.4: Evolution of the deviations from unitarity as a function of Mj.

3.5 The Importance of Loop Corrections

Loop corrections can be of two kinds: renormalizable and intrinsically finite. The renormalizable pieces
consist of corrections to the tree level parameters already present in the Lagrangian. In the case of
corrections to the masses, these are suppressed with respect to the tree level ones by the loop factor
ﬁ and by being proportional to leptonic Yukawa couplings [154]. The intrinsically finite corrections
are terms which need to be finite since there are no counterterms that could be used to absorb possible

divergences arising from them. They are only suppressed by the loop factor, and, thus, can be potentially
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large. At one-loop level, the generalized mass matrix, M from [eq. 2.46] turns into:

M = Mtree 4 pploor | pptree — 0 M | Moo — oMy oM (3.62)
MYT Mg (M) Mg .
By observation of the previous equation one can conclude that d M will be the potentially dangerous
correction, since it is the one without a tree level counterpart. The renormalizable and suppressed
corrections are given by § M¥. Discussing 6 Mg is cumbersome since Mg and M; are free parameters of
the theory.
The corrections stem from the two point function known as neutrino self energy, ¥(p), where p is the
neutrino momentum. This is calculated in the mass basis, then [eq. 2.47] is used to transform it to the
interaction basis:

Mor = vx(p)vT . (3.63)

The diagrams one should consider in order to calculate ¥(p) at one-loop are:

Xi >;?ks> X

J

Figure 3.5: Loop Diagrams used to calculate the neutrino self energy.

Where if A= Z, H, ¢ then B = g or else if A= ¢, W=, then B =T and

n
X = MR v, = (K R)PLx , v, = (S Z)Prx , (3.64)

as in [eq. 2.49]. ¥(p) can be decomposed as:
%(p) = AL(p*)pPr + Ar(p*)pPr + BL(p*) P + Br(p”) Pr (3.65)
Writing the new term explicitly, using [Eqgs. 2.46, 3.62]:
vECc=sM;v, = xT(K R)TPFC~6M; PrL(K R)x = xTC~Y (K R)YTPL6M; PL(K R)x , (3.66)
and using [Eqgs. 3.63, 3.65] one can conclude:
(K R)YTPL6M; PL(K R) = P X(p)Pr = P.Br(p*)P, = 6M1 = (K R)B; (p*)(K R)T . (3.67)

This reduces significantly the complexity of the expressions to calculate®, as only the ones with A =

8The argument is general for any piece §M;. M'°P only depends on By, (p?) and it can be proven that diagrams with
W never contribute to B (p?).
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Z,H, ¢z contribute to §My, [154]. The calculation of My, is done in Appendix C, and was performed
using the Higgs, gauge and Goldstone boson Feynman Rules for an arbitrary gauge, &;, given at [92], the
textbook [155] and closely following [154, 156].

The result is finite (the infinities cancel), depends only on parameters of the theory and is gauge
invariant®, as expected:

My, = SMF +sMf (3.68)

with

3¢> L1 -1 1
Z __ 3 2 2 T
OM{ = o5 (K R)D (2 D —1> log (D*— | (K R)

Z (3.69)
M g s( L 1) e (2L ) (k R)
sMF =Y (K R\D*( —-D*— —
L 647T2m%,[,( R) (m%[ ) ©8 < m%) ( )’

where the expressions resemble the finite part of Passarino-Veltman functions By [155]1°. D is the diagonal
mass matrix defined in [eq. 2.47].

As predicted, the corrections can be dangerously large due to the direct dependence on the heavy
neutrino masses M;.

It’s interesting to note that even if the light neutrinos are massless at tree level the loop corrections
are non-zero [157]. This happens due to the non-zero heavy neutrino masses M; along with the fact that

-1
L(mp) = D3 (W%D2 - I) log (D2%> is a diagonal matrix:
B B

m

L"L m O
Lom) = [0 , (3.70)
0 LM (mB)
where .
mi o) 0 0
1 B 5 5
L™ (mp) = 0 mg% 0 , (3.71)
3 log(m3 /m%)
0 0 Mk
and o
1 M
MR 0
LM(mp) = 0 M3 agma) 0 : (3.72)
0 0 MS log(Mg/mQB)

3 M3Z/m%L—-1

with mp = mz, my and the entries vanish when m;, M; — 0, =1,2,3.

3.6 Omne-Loop Seesaw equations in Exact Formalism

A relevant question is if the new M}, term introduces any constraint in the matrix X defined in [eq.

3.11], since the existence of the zero block was fundamental in its derivation. With M given by [eq. 3.62],

9The term that stems from ¢z makes the gauge dependent terms cancel out.
10The logarithm of a diagonal matrix is a matrix with the logarithm of its entries in the diagonal.
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neglecting 6 Mg and §MY, but considering every other quantity as its one-loop version!!, [Egs. 3.6, 3.8]

change to:

K'6M, — X1 ZTM*T = dK™ | (3.73)

XKYVoMp + ZtM*T = dpX*KT | (3.74)

and [Egs. 3.7, 3.9] stay the same. Substituting KT6My on [eq. 3.74] using [eq. 3.73] and recognizing
Z~1 from [eq. 3.4] one obtains:

MY =K (X'dr —dxT) 2" , (3.75)

which is the new form of [eq. 3.54]. One could transform from one to another using [eq. 3.10], however
one cannot assume that [eq. 3.10] still applies at one-loop. Now taking ZT Mg from [eq. 3.9]] onto [eq.
3.7] and using the new definition for M" [eq. 3.75] yields:

(KK + XTXK'K - I) (X'dgz" —dX"Z") =0, (3.76)

which is the one-loop equivalent of [eq. 3.10]. The difference is that the above equation is always true,
due to [eq. 3.5]. Thus, X has no extra constraints at one-loop, and is still defined by [eq. 3.11], with
O, and d their one-loop versions. Since it’s not possible to obtain an analytical formula for the one-loop

corrections of O, a better definition for X at one-loop is given by:
loop __ —1 T
X =(K'R)" . (3.77)

From [eq. 3.77] it is clear that if the one-loop corrections to the light neutrino masses are small, then
the one-loop version of matrices K and R won’t be much different from their tree level counterparts,

implying the same fate for X and the deviations from unitarity.

3.7 How To Control Light Neutrino Loop Mass Corrections

Controlling light neutrino loop mass corrections, [eq. 3.68], reduces to control the quantity:
K (L™(mg)) K" + R (LM (mp)) RT ~ R (L™ (mp)) R" , (3.78)

where [Egs. 3.70, 3.71, 3.72] were used on [eq. 3.68]. The approximation is valid since, as said before,
the entries of L™(mpg) vanish when m; — 0 and K is an almost unitary matrix. Thus, in very good

approximation, [eq. 3.68] becomes:

g2

5ML N
64m2m3,

R [3LM(mz) + LM (my)] RT . (3.79)

Since L™ (mp) are, in general, large there are only three possibilities in order to generate a small M :

1 Assuming that M, was calculated using tree level quantities and M was diagonalized under the aforesaid assumptions,
d, X, K, S, R and Z are now different from their tree level versions.
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A Having a very small R, such that R (LM(mB)) RT is suppressed.

B Having a R with entries of arbitrary order of magnitude but with a given structure such that combined

with a proper choice of LM (mp) it yields a small R (L™ (mp)) RT due to cancellations.

C Having two small heavy neutrino masses (of the order of the eV or KeV, for example), such that two
of the columns of L™ (mp) are small while the remaining heavy neutrino has a large mass. Along with
the choice of a special type of O, such that one of the rows of X has small entries, leading to a column
with small entries in R. This column should match the one column of L (mp) that is not small,
i.e., the one that corresponds to the heavy neutrino with large mass. This way, R (LM (m B)) RT is

suppressed. 12

For case A, a small R means a small X, since R = KX given [Eqs. 3.1, 3.3], and K is almost unitary,
agreeing with experimental data. This implies that, in this case, small deviations from unitarity suppress
the loop corrections.

As for models of case B, the cancellation is trivial to achieve when all the heavy neutrinos are degen-
erate M; = M, = M3, which implies L™ (mp) = M x I, where M = Mf’% is a real number.
In this parameter region, a small §M}, only requires RRT = KXTX*K"T << 1. For the same reason
as before, this translates into XTX* << 1. Using [eq. 3.11] in the parameter region where the heavy

neutrinos are degenerate, dg = My x I, gives:

XTX* = —VdO!\/dp'\JdR'O:Vd = —M[ ' xd << 1. (3.80)

Thus, in this parameter region, the matrix X already satisfies the necessary condition to achieve a
cancellation and obtain a small §My. Nevertheless, one can slightly break the degeneracy, while still
having XTX* << 1, resulting in a still small M. This corresponds to having an almost conserved
lepton-number-like charge [158, 159].

Finally, for case C models, the cancellation happens due to the matching of big entries of R with small
entries of LM (mp) and vice-versa. For this, it is fundamental to have sizable deviations from unitarity,
such that one of the rows of X is very small and the other two are sizable.

It is relevant to cover the special case where the light neutrino masses are generated only at loop level.

This is done in Appendix D.

3.8 Numerical Examples and the Effect of Deviations from Unitarity on
Loop Corrections

This section is organized as follows. First, examples for the three types of models in which light neutrino
loop mass corrections are controlled are presented: For case A - small R, and, thus, small deviations from
unitarity, case B - sizable deviations from unitarity with quasi-degenerate heavy neutrinos and case C -

sizable deviations from unitarity with two light heavy neutrinos.

12 A scenario with 3 light heavy neutrino would also work but it is disfavoured due to always leading to unnaturally small
neutrino Yukawa couplings, independently of the chosen deviations from unitarity.
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The case A example is given for normal ordering and includes an analysis of the effect of the deviations
from unitarity on the variation of the heaviest light neutrino mass after loop corrections.

The case B examples are given for normal and inverted ordering, each for two different patterns of
deviations from unitarity. For the normal ordering scenario, an analysis of the effect of the deviations
from unitarity on the variation of the heaviest light neutrino mass after loop corrections is also given.

A final case C example is given for normal ordering with M; of the order of the eV, My of the order
of the KeV and a large M3, with sizable deviations from unitarity.

The numerical examples are given in the following tables, where the deviations from unitarity are
expressed by the hermitian matrix 7, defined in [eq. 3.27]. The first row contains quantities that are the
same at tree and loop level - heavy neutrino masses, Dirac mass matrix, M* and Heavy neutrino mass
matrix, M. The second row contains relevant quantities - the light neutrino masses, the matrix X and
the mixing matrix that connects light and heavy neutrinos through electroweak processes, R - at tree
level. The third row contains the same quantities as the second row, but at one-loop level. The mixing

matrix K has entries in the Upj;ns 1o allowed range, both for tree and one loop level. The differences of

the squared light neutrino masses, Am?j, at one loop level are in the 1o range of the values given in [Tab.
2.2]. All quantities with units of mass, except the light neutrino masses which are in eV, are expressed

in terms of the top quark mass m;. The matrix Wy, defined in [eq. 3.16], was chosen to be

1 0 0
Wz=110 0 1 , (3.81)
0 1 0

since there are no experimental bounds for the Z matrix.

3.8.1 Case A: Small Deviations from Unitarity

The used O, is of the type given in [eq. 3.53] with § = ¥ and 2 = 4.8. The Majorana phases were taken

to be a; = a9 = 0.

Table 3.1: Example for case A, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mgg| = 5.97 x 1073 eV, defined in [eq. 2.119],
mg = 9.67 x 1073 eV, defined in [eq. 2.113] and N, = 2.999, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (m;) M) (my) T AT (md) [ Mg] (my)
W=% 1021077 608107 110X 10 3BT 40X 0" 677
My=60 L19x 107 352x 1077 341x10°0 341107 40x 100 TEXI07T 938
M =100 TOTX10°0 372X 107 41070 67T 9% 990 10"
Tree Level Light Neutrino Masses (¢V') ol xre R
my =0.0062 280107 340 %107 229 %10 SL6X 0T (2000 230x 207 LHA0T= [ 0T)i 100X 107+ {037 1070 69% 1077 - (197 x 1077)i
my = 0.00902 340X 107 406104 2‘72xm’“) (<106 107T)i 14Dl (166x107)i LT A0 = (LI 107T) i 8241078 - (143X 07T)i 668200 - (285 % 107Y)i
my = 00542 229x107H 27210 19x 10 (885107 0 (~400x 207 SLOLX 074 (LI9x 1077} =899 107 = (73220 769107 - (404 x 10°3)i
One Loop Light Neutrino Masses (¢V) [ Xl R
my = 0.0054 20X 07T 340 2 x 107 13X 10T+ (656070 L8x 1077 =216 x107)i 22107 + {15410 LT =[x 07 L0107+ (0371076 69x 107 - (497107
my = 00102 S IH 409x 10 amx 0t 460 %107 = (100X 107) i =130 1077~ (14x 107) i 290x 1070+ (162 10°7) i LT A0 = (LI 10°7T) i 8241078 - (143X 107T)i 668100 - (285 x 107Y)i
ms = 00505 20107 27200 180t 29010710+ (815 % 100)i 407X 107"+ (482 10™) i 500 1071 4 (895 x 107¥)i SLOD 0T+ (L19x 10°T) i 899107 - (13210 %)i 76920 - (404 x 107%)i
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Figure 3.6: mg after loop corrections as a function of d%, generated in the example given in [Tab. 3.1],
varying the value of the parameter z, while Tr[M"M"] < m? and with everything else kept constant.

The loop corrections become controlled near the minimum possible value for the deviations from
unitarity d%; ~ 47> as for small z one has X ~ —i,/ %. Higher level loop corrections on the example

given in [Tab. 3.1] are not expected to be very big due to the smallness of the entries of the R matrix.

3.8.2 Case B: Sizable Deviations from Unitarity with two Quasi-degenerate Heavy Neu-

trinos

The used O, is of the type given in [eq. 3.53] with § = Z and & = 2.36 x 10°. The used Majorana phases
were v = %’/T, Qo = %’/T.
Table 3.2: Example for case B, with Normal Ordering of light neutrino masses. This example gives

the following phenomenological important quantities: |mgg| = 6.58 x 1073 eV, defined in [eq. 2.119],
mg = 1.01 x 1072 eV, defined in [eq. 2.113], and N, = 2.989, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (m;) [M] (my) Tr[M NPT (md) |Mg] (my)
M=3 010 112x 105 649% 107 THx0® 200 Li6xI0"
My=3+1x1070 0000876 2.06x 1072 232 x 107 0.0488 299 24x107 385107
My =50 0171 1841072 317x10°° L76x107 385x107° 500 10!
Tree Level Light Neutrino Masses (eV') [ X Rire
my = 0.00507 109x107 682x107° 133x10°7° -00206  -0.0328i 0.0351 ~00262-00201  -00201+00262 478 x 107"+ (453 x 107
my = 0.0100 682x 1070 427x 107 834x10°° ~0.0206i 0.0328 0.0351i 0000137+ 0.000154i - 0.000154 - 0000137 446 x 10~ - (128 x 10°F)
m = 00522 133107 834x10°° 163x 107 (FL3xI0%i 0 (=685 x107)i -0.0066+0.0398  0.0398+0.0066i  -5.12x 107 - (492 10)i
One Loop Light Neutrino Masses (¢) [y X R
my = 0081 0107 682X 107 1Bx10° OWB A0 6B X 0RO 0080+ b8 x 107 )i 006000 0010062 47X 10+ (L33 x 10
my = 0.0100 682x 1070 427x 107 833 %1070 =927 x 107 - 0.0203i ~0.0330 4 (6.29x 107°) i =533 x 1077 - 0.0350i 0000137+ 0.000154i - 0.000154 - 0000137 446 x 10 - (128 x 10%)
mg = 0.0504 133107 833x10°° 163x 107 277X 107 = (LI 107%)i 927207 + (211X 10°%) i 268x 104 (685 x 107 00066 -+0.0398i  0.0398-+0.0066i 512 10~ - (492x 10°%)i
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Figure 3.7: mg after loop corrections as a function of d§(3, generated in the example given in [Tab. 3.2,
varying the value of the parameter x, while Tr[M"M"T] < m? and with everything else kept constant.

The loop corrections are essentially constant, independently of the size of the deviations from unitarity
d§(3. This happens due to the cancelling structure of R and because of the quasi-degeneracy of M; and
M. Higher level loop corrections on the example given in [Tab. 3.2] are not expected to be very big due
to the persistence of structure of R after loop corrections.

For a different heavy neutrino mass hierarchy, the used O, is of the type given in [eq. 3.53] multiplied

on the left by a matrix:

00 1
1 00 (3.82)
010

35 — 97
55T, Q2 = 1577

with 6 = % and z = 3.60 x 10°. The used Majorana phases were a; =
Table 3.3: Example for case B, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mgg| = 1.78 x 1072 eV, defined in [eq. 2.119)],
mg = 1.00 x 1072 eV, defined in [eq. 2.113], and N, = 2.992, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (m) 2] (my) Tr [M”M”] (my) [Mg| (my)
M=3 000956 T 107" 164107 109 %107 8.98 242107
=9 0162 219x107% 589107 0318 898 254x 107 L05x10°
My=9+1x1070 050 203x1072 744x 107 2% 1070 105X 1070 300
Tree Level Light Neutrino Masses (eV') e Xree R
my = 00500 56107 955X 10770 319107 M0 0 28«07 L1510+ (335 10 0000636+ 000I0Li0.00040T — 0.000636:
my =0.0100 955x10°° 162x 107 540 %107 ~0.0184 ~0.0289i 0.0283 5.62x107 (193 10’7)1' 0.00709 + 00105 0.0105 - 0.00709;
m = 0.0302 319107 540x 107 180x 107 ~0.0184i 0.0289 0.0283i ~648x 107~ (L8 x 10’7)1' =0.0424+0.00194  0.00194 +0.0424i
One Loop Light Neutrino Masses (¢V) U X R
'y = 000481 56T 950X 1070 319107\ | [ —200x 104 (LT I0) 7 302104 (L0 1027 328 x 10— (283 107)7 | | [ ~415x 10— (355 1077 0000636 + .000I0L —C.000401 + 0.0006361
my = 0.00992 954x10°° 161x107 539x10° 001834 (227 x 10°9) 170 x10°° +0.0290i 00282+ (548 x 107) i 5621075+ (1931077} i 0.00709+ 001050 ~0.0105 +0.00709%
mg = 00503 319107 530x 10 1801078 227107 + 001831 00290 (170 1079)i 548 1077 + 02820 648105+ (185 10°T) i 00424+ 000104 ~000194 - 004241

For the same heavy neutrino mass hierarchy as the first example of this subsection, [Tab. 3.2] but for

inverted ordering, the used O, is of the type given in [eq. 3.53] with = T and z = 8.14 x 10, The used

Majorana phases were oy = %ﬂ, Qg =

23
ﬁﬂ-‘
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Table 3.4: Example for case B, with Inverted Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mgg| = 1.78 x 1072 eV, defined in [eq. 2.119],
mg = 5.00 x 1072 eV, defined in [eq. 2.113],and N, = 2.996, defined in [eq. 2.121] with p = 0.

my =0.0516
my = 00517
my =0.009

|

618x 1077 126x 107 )

126107 416x 107" 849x 10

-0.0185
~0.0185i

0.00782
0.00742i
(-534x10%i 0

(-232x107%)i

Heavy Neutrino Masses (m;) (M7 (mq) Tr [M”M”] (my) |Mg] (m;)
M=3 000181 5871077 22710 195%™ 300 08 x10T
My=3+1x1070 00605 188x 107 298 %100 0.0189 300 409% 107" 861x107
My =50 0124 142x1072 201x 10 983x 107 861x10° 00 x 10"
Tree Level Light Neutrino Masses (eV') e Xiree R
187 %107 ~0.02561
618x107° 204x 107 416x107* 0.0256 00143+ 00002500 0000259 - 00143 ~2.36x 107" - (359 x 107)i

( ~0.00039 +0.000176:  0.000176 4 0.000395¢

—0.0291-0.00207 000207+ 0.0291i

3T X 0T+ (AT X 1) )

190107 4 (065 1071

One Loop Light Neutrino Masses (eV')

g

X

o

my = 00503
my =0.0510
mg = 0.00875,

|

187X 107
617x10°
126x 107

2043107 416x 107

6171077 126 %107
416107 848107

|

570X 107~ 0025T;
00257~ (3701079

1008 - (970 107);
970 1077+ 001851

000731+ (L43 x 107)i
~443 %1070+ 0.00731i

122107 = (533 % 1075) i ~7.85x 10711+ (242 1071) i -232 %107 + (236 x 10 i

|

~0.000176 - 0.000395¢
~0.000259 +0.0143i
0.00208 - 0.0291i

~0.0143 - 0.000259i
0.029 +0.00207i

( 0.000395 - 0.000176i

236X 10 - (359 x 10°%)i
-L94x 107"+ (965 x 10°)i

32 X0+ (14T 107)i )

For the same heavy neutrino mass hierarchy as the second example of this subsection, [Tab. 3.3], but

for inverted ordering, the used O, is of the type

0 0 1 vVrz+1 0 i cos sinf 0
O.=11 0 0 i 0 —vaz2+1 —sinf cosf 0] ,
010 0 1 0 0 0 1
with 0 = 75 and = = 2.44 x 10°. The used Majorana phases were q; = %TF, Q= %7‘(’.

(3.83)

Table 3.5: Example for case B, with Inverted Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mgg| = 1.76 x 1072 eV, defined in [eq. 2.119],
mp = 4.97 x 1072 eV, defined in [eq. 2.113] and N, = 2.991, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (m,) M) (my) Tr AT (mf) [Mg] (mg)
M =3 045 323x107% 556107 Lax107™ 8% 1a8x107T
My=9 000434 149x 1072 531x 1077 0367 898 53x 107 5elx 107
My=9+1x107" 0432 193x 1072 547x 107 LBx 1077 561x10° 300
Tree Level Light Neutrino Masses (eV) [ X Rire
= 00509 L0 LUx107 L3 X107 [0.66x 1077 (-299x107)i 0 L6077 (T8 100 000532+0.0330 00330 - 0.00332i
my = 00516 LUX107 L1607 116x107 ~0.0420i 00137 0.0181 1691077+ (318 x 108) i 0000225 - 0.000256i ~0.000256+ 0.000225i
g = 0.00852 Lx107 116107 115x 107 0.0420 00137 00181 180X 1077 - (280X 10-*)i -0.01484 0.0305i 00305+ 0.0148i
One Loop Light Neutrino Masses (eV') [y X R
my = 00501 LIX107 LU 107 113x107 LI0X 107+ (713 x 0°%) i 278x 1070+ 305 x 10°7T)i 194x 107 = [L74x 107 )i -000332-0.03%  0.033 - 0.00532i
my = 00308 LIX107° 1161077 116 %107 ~0.0000874+ 0.0428i 0000154~ 0.0110i 00180~ (3,06 x 100) 75} 0000225+ 0.000256 ~0.000256 + 0.0002251
(m;:U.UOSZ&) (Llsxm* L6107 115x107 ( 00428+ 000003741 ~0.0110 - 0.000154i 5,06 x 107° - 0.0180i ) SI8X 10T (2810 i 0014800305 0.0305+0.0148i )
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3.8.3 Case C: Sizable Deviations from Unitarity with two Light Heavy Neutrinos

The used O, is of the type given in [eq. 3.53] with § = % and x = 0.78. The used Majorana phases were
a1 = 1572571', Qo = %TF.
Table 3.6: Example for case C, with Normal Ordering of light neutrino masses. This example gives

the following phenomenological important quantities: |mgg| = 1.13 x 1073 €V, defined in [eq. 2.119)],
mg = 1.03 x 1072 eV, defined in [eq. 2.113], and N, = 2.999, defined in [eq. 2.121] with p = 2.

Heavy Neutrino Masses (m) 2] (my) Tr [;1[“:\1”][1!1?\ [Mg] (mj)
My =288 %107 0226 362x10°7 324x 10T ST6x107 00T 43X 17
My=144x107% 0749 225x 2072 869 %107 166 000 Lax 107 143X 107
My =5.76x 10" 102 13x107% 12x10710 4193x10° 143x10°° 5.66x 10
Tree Level Light Neutrino Masses (eV) o™ X R
my = 0.00500 130x107 186x 107 132107 00U 006 00407 00488 +0011 0000635 + 000218 —321x 1077+ 226 x 107
my = 000987 18610 138x 100 188x 107 000158 000154 000297 ~0.000699 +0.000381i ~0.000271 - 0.00156i 222 107+ (18 x 10°) i
mg = 00627 132x10° 188x10° 135x10° (33007 M)i 0 (-220x1070)i 00486 - 00179 -0000815-0.00230i 255 x 10+ (L6 107}
One Loop Light Neutrino Masses (¢V/) o g g
my = 000467 13x107 691x10° 12x107 0.0202 - 0.0000320i 00000754+ 00539 —~0.0418 - 0.000156i 0.0488 - 0.0141i ~0.000655 - 0.00218i 3.2 x 10+ (226 x 107
my = 0.00986 691X 1070 135% 1070 6921070 9.71x 107740001473 000153+ (286 x 109)i 5,67 1070 - 0.00305i 0.000305 - 0000151 0.000282 + 0001581 220 10+ (138 x 1072} i
my = 0.0504 132107 69210 134x 107 L7510 - (422 % 207)i 5.20% 1078 - (355 x109)i 382 %1077 - (220 x 107} ~0.048540.0179  0.00081540.0028i 255 x 107 + (176 x 10°) i

This situation is possible because of the interplay of three things. The order of magnitude of the
masses M7 and Ms, the big deviations from unitarity and the O, chosen to be like in [eq. 3.53]. As the
deviations from unitarity are sizable, and X is of this type, its third row is very small, thus cancelling the
effect of a very large M3 on [eq. 3.79]. Furthermore, because of the smallness of M; and Ma, the first
two entries of [eq. 3.72] are small, thus controlling the loop generated mass matrix dM7,.

Studying the effect of the variation of the parameter z in these type of models, as done in [Figs.
3.6, 3.7], is cumbersome, since 2 doesn’t control the deviations from unitarity for these type of models.
This happens because these models achieve sizable deviations from unitarity for x ~ 1. Thus, reducing
x doesn’t reduce the deviations from unitarity, because, as explained below [eq. 3.38], one enters the
regime where r = 1, with r defined on [eq. 3.35]. The only way to decrease the deviations from unitarity
is increasing the heavy neutrino masses, as one can infer from analyzing [eq. 3.36] with » = 1, and this,
of course, has a big effect on the loop corrections. Summarizing, it’s not possible to isolate the effect of

the deviations of unitarity on the loop corrections for these type of models.
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Chapter 4

Conclusions

In this work, a novel parametrization, adequate for the exact treatment of Seesaw Type I models inde-
pendent of the scale of M was exploited. This revealed a matrix, X, defined in [eq. 3.11], responsible
for the deviations from unitarity of the leptonic mixing matrix K. This parametrization clarifies the
relation between heavy neutrino masses and deviations from unitarity which is explained in subsections
3.2, 3.3 and 3.4 and can be summarized in [eq. 3.61], which means that to achieve natural values for the
Yukawa couplings one needs to take both the size of the deviations from unitarity and the scale of the
heavy neutrino masses into account. The possibly dangerously large one-loop corrections were studied,
and from that, three types of models with controlled loop corrections were suggested.

Case A models, with small deviations from unitarity, without constraints on the heavy neutrinos
masses and with possibly small Yukawa couplings.! These are very complicated to prove experimentally.

Case B models, with two quasi-degenerate heavy neutrino masses of the order of the top mass, sizable
deviations from unitarity and without unnaturally small Yukawa couplings. These are appealing because
they can be observed in the next round of experiments at the LHC. Moreover, it would be interesting to
study if the existence of at least two quasi-degenerate heavy neutrinos enables the possibility of resonant
Leptogenesis, providing an explanation to the observed matter-anti matter asymmetry [124, 128, 129].

Case C models, with two light heavy neutrinos, sizable deviations from unitarity and without unnatu-
rally small Yukawa couplings. These are appealing because KATRIN will be able to explore the existence
of at least one heavy (mostly sterile) neutrino in the mass range of 1 — 18.5 KeV, with a mixing to the
active neutrino v, as |Rq1|? > 1076 [160, 161]. Furthermore, they can explain the MiniBooNE excess [69]
and other anomalies [147] and can give explanations to other Physics puzzles like dark matter (when My
has a mass on the KeV scale like in the example given in [Tab. 3.6]) as pointed out in [151].

The question of the possibility of Thermal Leptogenesis for case A and case C is highly relevant, and
requires further study. All models explain the smallness of light neutrino masses and case C models have
a dark matter candidate.

Experimental input from KATRIN, the LHC and neutrino oscillation experiments will be fundamental

to discern which, if any, of these models might match with Nature.

! Unnaturally small for heavy neutrino masses close to the electroweak scale like in the example in [Tab. 3.1]. For heavy
neutrino masses near the GUT scale one retrieves the standard seesaw, which can have order 1 Yukawa couplings.
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Appendix A

vSM extra Feynman Rules

All momenta point towards the vertex, arrows mean fermion flow (flow of —e charge), for outgoing
states flip the vertex while maintaining all the momenta and fermion flow arrows but the momenta of
the outgoing states, which one should also flip. A Dirac fermion is a particle if its momenta points in
the same direction as the fermion flow, otherwise it’s an anti-particle. If one flips the momenta of a

charged boson then one is considering the vertex with the charge conjugate of it, i.e., diagrammatically

B~ (p) = B*(—p).

Vertex Rule
vj
wHt —
w g *
ﬁ%e PLU;;
l;
l;
W —ig
: W’Y}L PrLU;;
vy

Table A.1: vSM Charged Currents
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Vertex Rule
Vi
Z, ]
Pré;;
>~ 2 cos gw ’YN LOij
Vj
Table A.2: vSM Neutral Currents
Vertex Rule
v;
H —ig
,,,,,,,, 1, 0
> s B
Vj
Vi
¢z -
———————— v 04
> om V5My;; 044
Vj
Vj

Table A.3: vSM Lepton-Higgs and Lepton-Goldstone Bosons Interactions
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Appendix B

STvSM extra Feynman Rules

Taking the reality condition on [eq. 2.29] and applies it to the 1/2 spin field expansion on [Tab. 1.2],

while using the standard transformation of fields under charge conjugation:
c __ =T _ T x _ T *
U =CU = ,05(p) = Oy ug(p) » us(p) = Cyg v5(p) (B.1)

one gets the following relation:

a, = by . (B.2)

This means that a Majorana fermion is its own anti-particle, and that there are more combinations of

field operators that can create and annihilate a particle than the usual YW. Using [eq. 2.29] one gets:

i "
Sy (vars) = Sy(vam ) Cly = — (WWC) |
ab

p2_m2

_ _ _ 4t * 4+ m
Sp(Talp) = Cadlsp(yd’/b) = (C 1(%21)2)) ) (B.3)
pT—m ab

S, (@avs) = C1 S, (vave) Ol = — <0‘1WC> K
However, it is possible to write the Lagrangian of every chiral theory with Majorana fermions in a form
independent of C - using [eq. 2.34]. If one is consistent and extracts the theory’s Feynman Rules from
that C independent Lagrangian, one only needs to use the usual Dirac propagator [162, 163]. If one sticks
with a C dependent Lagrangian, it is always possible to cancel every C using a C dependent propagator
and [Egs. B.2] , leading to a C independent result. As for the external lines, if one has 2 Majorana fields
in the incoming and/or outgoing, the result is independent of the labeling of particle or anti-particle to
them in the vertex. The standard procedure is to consider that one is a particle and the other is an
anti-particle, choosing the spinors accordingly [163]. If there’s only one Majorana field in the incoming
and/or outgoing lines of a vertex, two interesting cases are possible. There is a lepton number conserving
vertex, given in [eq. 2.67] and lepton number violating vertex, given by transforming [eq. 2.67] like in [eq.
2.69]. For the lepton number conserving case, the label of particle or anti-particle given to the Majorana

particle is fixed by the labeling of the Dirac particle [162]. Nevertheless, if one is dealing with a Dirac
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fermion number violating process involving Dirac fermions one should use the lepton number violating
vertex and take special care on using the adequate spinor for the conjugated charged particle - if one uses
the vertex factor on [Tables B.3, B.8] one should use the spinor given in [Table B.1] under ”Conjugated
Dirac Fermion” and ”Anti-Conjugated Dirac fermion”!. Furthermore, a factor of %1 must be associated
with each closed Majorana fermion loop [162]. This can be summarized in the following Feynman rules

for external lines:

Type of Particle Incoming Outgoing
Scalar 1 1

Dirac Fermion/Anti - Conjugated Dirac Fermion | us(p) s (p)

Dirac Anti-Fermion/Conjugated Dirac Fermion | T,(p) vs(p)
Majorana Fermion us(p) ,Us(p) | us(p) ,vs(p)
Vector Boson e (p) exH(p)

Table B.1: Feynman Rules for external lines

For Majorana neutrinos, the direction of the arrow (fermion flow) is meaningless - the same vertex

with a reverted direction of the arrow exists. It might be useful to use, in some cases:

u(+q) =v(Fq) - (B.4)

In the cases where the arrow doesn’t matter (vertices involving two Majorana particles) all the direction
possibilities are drawn. Note that, including the lepton number violating cases, these amount to four
(the four non-repeating combinations of the arrow’s direction). However it can be proven that the lepton
number violating cases are actually the same vertices as the lepton number conserving ones [114] (for
Majorana particles). To avoid overcounting, one should only consider one fermion flow and use or a
lepton number conserving vertex or a lepton number violating vertex, with the proper choice of spinors
for each case choice. In this work, one uses the former - see first equality of example given in [eq.
B.5]. Choosing the other flow gives an extra minus sign for vector-like vertices, scalar-like vertices don’t
change. Thus, when dealing with multiple diagrams it’s fundamental to stick with the choice of fermion
flow (label of particle/anti-particle) for all diagrams, such that the one gets the relative signs correctly.

To aid the interpretation of the following Feynman rules, one presents the amplitude of the process

Z,(p1) +vi(p2) — v(p3):

it = () (oo P ) )| eutin) = = 507 (oo P ) o) o)
(B.5)

of the process e™ (p1) + v;(p2) = ¢~ (p3):

iM = [U(m) (\/giw (PLS MY — PRKfjmzu)> u(pﬁ}
_ [v(m) (\/;iw (PS8 MY — PRKfjmzu)> U(pz)} :

(B.6)

and of the t-channel amplitude of the Dirac fermion number violating process e* (py)+e (p2) — W5 (p3)+

INote that Conjugated Dirac Fermion and Dirac Fermion have opposite charges.
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Wt (p4), with only the three light neutrinos in the intermediate state:

I 7 S 1Lm —1
=y lapl) (Terution, ) 5 (=, Py u<p2>] () ps) , (BT)

J

where p = p3 — p1 = p2 — pa, and eT(p2) = (e~ (p2))” has the role of Anti Conjugated Dirac fermion
, which means that the vertex connecting the momenta ps and p4 is the lepton number violating one.
Furthermore, M" presented in these tables is the the neutrino Dirac mass matrix in the basis where
the charged lepton Dirac mass matrix is diagonal (same meaning as in [eq. 2.41]). The following tables
should be compared with [Tables A.1, A.2, A.3 ]. All momenta point towards the vertex, arrows mean
fermion flow (flow of -e charge), for outgoing states flip the vertex while maintaining all the momenta
and fermion flow arrows but the momenta of the outgoing states, which one should also flip. A Dirac
fermion is a particle if its momenta points in the same direction as the fermion flow, otherwise it’s an
anti-particle. If one flips the momenta of a charged boson then one is considering the vertex with the
charge conjugate of it, i.e., diagrammatically B~ (p) = B*(—p).

The equation [Eq. C.3] is needed to write the Higgs and Goldstone Boson Feynman Rules in the way
they are presented in tables [Tabs. B.5, B.6 , B.7, B.§]
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Vertex Rule
vj
wir —i
12 g *
W'YMPLKM
l;
N;j
Wk —ig
13 *
>/\A WFY/IPLRU
Li
l;
W, —ig
: %%LPLKM
vj
Li
W, —i
w g
>M/ W’YMPLRU‘
N;

Table B.2: SIvSM Charged Currents
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Vertex Rule
vy
W —q
1% g *
>/\/\ —W’}/’uPLK”
li
N;j
w+ —ig
I *
*%’Y;LPLR”'
i
li
N —ig
/ —ﬁ’yﬂPLKij
Vj
g
W= —ig
H —WW#PLRZ']'
N;j

Table B.3: SITvSM Lepton Number Violating Charged Currents
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Vertex Rule
Vi
Z, —1ig
—— 4, PL(KTK);;
>~ 2 cos 9w Yy L( )]
vj
N;
Z, —ig
—~  ~ PL(R'R);;
>/W 2 cos 9w Yy L( )z]
Nj
N;
Z, —1ig
PL(RTK);;
>M 2 cos 9w Y1 L( ) J
vj
Vi
2y —ig
PL(K'R);;
>«/\ 200591”7,1' L( )j
Nj

Table B.4: SIvSM Neutral Currents
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9 ((K'R dg)i;Pr + (dr K'R);;PL)
2mW

Vertex Rule
v;
H —ig
,,,,,,,, -((K'K d);;Pr + (d KTK);; P
> 2mw (( e+ . L)
Vj
N;
o .
> ,,,,,,,, ‘g . ((RTR dR)ijPR + (dR RTR)ijPL)
2mwy
N;
N;
I iy
> ******** 9 (B P+ @R,
2mw
Vj
Vj
> H

Table B.5: STvSM Neutral Lepton-Higgs Interactions
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Vertex

Rule

v;

bz -
> ******* T (KK @) P~ (@ KTK)y )
vj
N;
oz —g " T
,,,,,,,, pT. ((R R dR)ijPr — (dr R R)ijPL)

¢z -9
> ,,,,,,,, T ((R'K d)ijPr + (d R'K);; PL)
vj
vj
¢z -
> 77777777 L (KR dr)iPr+ (dn K'R);;Py)
2myy

Table B.6: SIvSM Lepton-Neutral Goldstone Boson Interactions
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Vertex Rule

¢+ ’Lg *
> 77777777 Vemy (P = Pr) K

oF tg "
> 77777777 V2my (i = mu Pr) B

Uy
li

>¢ f;%:w‘(dijR—"lliiPL)Kij
v
Li

>¢ \/ilijzw - (drjj Pr — my,, Pr) Rij
N;j

Table B.7: SIvSM Lepton-Charged Goldstone Boson Interactions
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Vertex Rule

¢r ig .
> 77777777 N (g P =1 Pr) Ky
+ )
- i
>¢ 7\@71 “(dj;Pr —my,, Pr) Kij
w

Vj
Ii
- )
>¢ \@glw ‘(dejPRfmlw‘,PL)Rij
N;j

Table B.8: STvSM Lepton Number Violating Lepton-Charged Goldstone Boson Interactions
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Appendix C

One-Loop Calculation of 0 M7,

It is useful to treat all 6 neutrinos all at once, using ¥, defined in [Eq. 3.64]. To ease this, one needs to
extract flavour equations in terms of the 3 x 6 mixing matrices (KX R) and (S Z). From the diagonalization

equation [Eq. 2.47] one gets the following equations:
(K R)D(K R)T = 03x3, (K R)D(S 2)T = M" , (S Z)D(S Z)T = Mg , (C.1)
and from the unitarity equations [Eqs. 3.4, 3.5] one obtains:

(K R)(K R)' = Isxs , (S 2)(S 2)' = Isxs , (K R)(S 2)' = 0353, (K RB)'(K R)+(S 2)'(S Z) = Isxs -

(C.2)
From using the transpose of the second equation of [Eq. C.1] on (S Z)TM¥T, the last equation of [Eq.
C.2] and the first equation of [Eq. C.1] one obtains:

(S 2)ImM*T = D(K R)T . (C.3)
The following equation, which is derived using the first equation of [Eq. C.1], will also be useful:

(K R)(K*D)(K* - Ioxs — D*) 7' (K R)T = (K R) [D* + D(k* - Ioxs — D*)] (K - Ioxs — D*) "' (K R)”
= (K R)(D*)(k* - Isxs — D*) (K R)T .
(C.4)

One will also need to rewrite the vertices given in [Tabs. B.4, B.5, B.6] such that the terms have a Pj, and

Pr, part and Br g = BE R needed to fulfill the Majorana consistency condition [154] for the self-energy:
S(p) = CB(-p)C, (C.5)

where the decomposition that was used for the self-energy is defined in [Eq. 3.65]. In order to achieve
this, one needs to rewrite the Lagrangian parts which correspond to the vertices given in [Tabs. B.4, B.5,

B.6], in terms of , using x = CX” to get them in the correct form. These are the parts of the Lagrangian
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which correspond to neutrino neutral currents and to the interaction of ¢z and H with the neutrinos.
This is because, as correctly stated in [154], the diagrams in [Fig. 3.5] with W* only contribute to Ag
and Ay, and the ones with ¢* which contribute to By, and which would contribute to §M}, give zero due
to the first equation of [Eq. C.1].

After using properties of the C matrix and of Majorana neutrinos, given in the beginning of section

2.2 of chapter 2, one obtains:

g - T
Ly=————7 M(PLF — PrF .
Z 4COSHW uXY ( L R >X7 (C 6)
where F = [(K R)'(K R)], and

L = — Hx[(A+ AT)Pg + (B+ BT)P]x | (C.7)
4mW

Ly, = —2—zx[(A+ AT)Pp — (B + BT Py , (C.8)
4mw

where A = (K R)!MY(S Z)* = (K R)Y(K R) D and B = (S Z2)TM"1(K R) = D (K R)'(K R) and
[Eq. C.3] was used.
For the diagram of [Fig. 3.5] with the Z boson, one defines the momenta in a clockwise direction,

being k the neutrino momentum and p — k£ the boson momentum. Using the Feynman Rules:

. 2
Yy, =4x (Zg> AH(PLF — PRET)

4 cos Oy ©9)
dk ik + ) —i o =@ =B\ i o oy
/ (2m)* l L2 — le <(p — k)2 mQZ (g;w (1-¢&2) (p—k)2 — §Zm22>> v (PLF — PgF*) |

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some Dirac
algebra, it is possible to conclude that only m;y*y”(—FT F) contributes to B}. Then, one needs to go to
d = 4— e dimensions, contract this with the Z propagator and use v,v* = d and (p—k)(p—¥) = (p—k)>.

Finally, after simplifying the denominators?:

2
. 4 g ;
Brz(p)" = ~5ia7 % (4cos9w> F'D

(S5 o 7 gty = ) -

(C.10)

For the diagram of [Fig. 3.5] with the H boson, one defines the momenta in a clockwise direction, being

k the neutrino momentum and p — k£ the boson momentum. Using the Feynman Rules, the contribution

LBy, is conjugated to be consistent with [Eqs. 2.47, 3.67] and the definition of the mixing matrix as V, such that the
Feynman Rules given above are correct.
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to the self-energy is:

7

2
— Xy =4 x <4;ng) (Pr(A+ A")+ P (B+ B™))

d'k i(f 4 my) —i
/ (@m)t &= %2 —m? (p— K)? —m}y (Pr(A+ A") + PL(B+B")) ,

(C.11)

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some simplifica-
tions it is possible to conclude that only (B + BT)m;(B + BT) contributes to Bi. Going to d = 4 — ¢

dimensions:

(C.12)

For the diagram of [Fig. 3.5] with the ¢z Goldstone boson, one defines the momenta in a clockwise
direction, being k the neutrino momentum and p—k the Goldstone boson momentum. Using the Feynman

Rules, the contribution to the self-energy is:

2
— %y, =4 X (4;19W> (Pr(A+ AT) — PL(B+ BT))
(C.13)

d'k i(f +my) —1 . .
t/@ﬂ42:kg—m%@—kv—am@(H“A+A)—PMB+B>),

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some simplifica-

tions it is possible to conclude that only (B + BT)m;(B + B™) contributes to Bj. Going to d = 4 — ¢

dimensions:
4 g \’ (2mp)* ~1 1
B *= B*+ BNYD |-~ [ d%k (k*Igxe — D? B*+ BT .
bor 00" = g < (i) (874 80D | B [tk (1o~ %) | | 7 B
(C.14)
Using the fact that By, can be evaluated at p = 0 [154] and [Eq. 3.67]:
4 g 2
Zin _ _ t
SM? S <4cos0W) (K R)F'D
(27 ) / d 2 2\ 1 d 1 k? k? * T
[ —5— [ A"k (KIsxs — D?) Epmpen S en S oy eren Sl /5y o F*(K R)" .
(C.15)
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Using the first equation of [Eq. C.2] and [Eq. C.4]

. 4 g 2
MEm = — K R)D
oMj 9dmd—2 <4cost9w) (K R)
2m ) dp (2 o\ —1 d 1 D? D? T
d*k k Isxe — D s+ — — KR
[ im2 / 6x6 ) k2 —m% + m% \ k%> —&zm% k%2 —&zm ( )

(C.16)
and the definition of Passarino-Veltman function By from [155]

4 g 2 132
n[Zzn o K 2 2 2
Y - _2d7rd—2 X <40089 ) ( R)E |:dBO(O7m27 D ) + — [B()(O meZ,

) D?)
Z

- Bo<o,m2Z,D2>}}

(K R)T
(C.17)
For H and ¢z:

6n[gzin 4

(C.18)
(Y (K R)(B*+ BHD 27”‘ A% (KIgxe — D?) "
T 2dgd=2 "\ 4my, 6x6

5MHzn:_ 4 <

gdgd—2

)

1

———— || (B*+ BN)(K R)"

e | @ R
(C.19)

Using the first equation of [Eq. C.1] and the definition of Passarino-Veltman function By from [155]

m 4 g ’
oM™ = - dpd—2 % <4mw) (K R)D” [BO(Ovm%f’D2)] D(K R)

(C.20)
g

2
4mw> (K R)D?[By(0,&,m7, D*)] D(K R)

. (C.21)
Putting all together, since éMy, = (5Mfzm + SME™ 4 §MP7™ and using m%, = cos Oy >m%, it is clear

gdpd—2 *

; 4
SMPZ" = (

2 2 9 ..
that the ¢z contribution cancels the gauge dependent Z contribution, turning the result gauge invariant
M (%Y (k myp [aBo(0,m2, D2 - 2
- m?
L 2dgd—2 4 cos Oy 0 z

2 [Bol0,m, D) | (K BT~
Z
2
2d:d—2 x (4721}[/) (K R)D2 [BO(Ovm%hD2)] (K R)

= — 92

9d+2d—2
2
_ g
2d+27.rd—2

5~ (K R)[d Dm%By(0,m%, D?)
myy

D?By(0,m%, D*) + D*By(0,m7;, D*)| (K R)
(K R) [T?' +T72 + T"] (K R)
myy

Using the definition from [154, 155]

(C.22)
2 ar2 ,  los nﬂf%z
Bo(0,mp, M*) = — [ Ac +log M~ + <5 , (C.23)
mh o
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where A, is the term that is divergent for e = 0, yields:

—(K R)T?Y(K R)T = (K R)dDm%

_ b
2 10 m72z (K R)T
A, +log D° +
g DT
zZ
- b
2 2 m% T
= (K R)dDm |log D* + 5 (K R)
m% -
D3 D2\ [ D? -1
D? -t
=d(K R) |(D*log D> — m%}Dlogm3) <m? - I)
Z
D? D?
=d(K R) (D3 log mQ) <

(K R)"

Z

-1
S |
)

where the first equation of [Eq. C.1] was used to eliminate the divergent term? and it is again used in a

(K R)T,

different form, in the final equality:

(C.24)

2 -1
— (K R) (m%Dlogm3) (ﬂlz% - I) (K R)T
=— (K R) {(DS logm%) — (m%Dlogm?%) <D

2 D? -
— Iﬂ <2 I) (K R)T
my my
3 2 D? - T
As for the other terms:

Z

(C.25)
[ Dby g 2
—(K R) [T +TH"] (K R)" = (K R) |-D* [ Ac +log D* + —; ZI +D* [ Ac+logD? + " | | (K R)T
my my
[ [lesz 8w
= (K R) -D? D2 z | +D? D2 = (K R)T )
m% my
(C.26)
where it is clear that the divergent terms, and also the log(D?) ones, cancel among them.
Retrieving the factors from [Eq. C.22] and taking d = 4, one can now split the result into two, the
Z boson mass dependent terms, combining [Eq. C.24] with part of [Eq. C.26] and the Higgs boson mass
dependent terms, part of [Eq. C.26]:
3 2
SME = 29

1

K R\D? | —

64w2m%/v( ) ( 2
2

Y —

-1
1
D% — I) log (D22) (K R)T,
mz my
1
K R)D? [ —-
647r2m%,[,( ) ( 2

D? — 1) log <D2
My
2This proves that if M, existed at tree level, the loop corrections would be infinite.

(C.27)
2) (K R)",
my
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as given in the text in [Eq. 3.69]. Finally, M, is given by :

SMyp = SMF +oME . (C.28)
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Appendix D

Light Neutrino Masses generated at Loop

Level in Exact Formalism

For massless light neutrinos at tree level, one cannot use [Eq. 3.11] for X, as this would give the trivial
case with MY = X = R =5 = 0. Not even at loop level the neutrino masses would be generated as

0M;, = 0 in this case. One has to find a new solution for [Eq. 3.10] with d = 0. This solution is given by:

X0 = i\ /di! 0. Q VI, (D.1)

where Q7 @Q = 0 and J is any matrix with units of mass, that can be chosen to be J = dr. One can
easily check that this solves the equation 0 = —X7 dr X. The combination Oc @ only has one non-zero
eigenvalue, that will be responsible for the deviations from unitarity. Q is a matrix of complex entries.

A possible type of Q is:

a b ¢
Q=|ia b ic| (D.2)
0 0 0

All the other previously derived equations are valid for this scenario, as long as one takes d = 0. As
for the loop corrections, in this case [Eq. 3.79] is exact since L™(mp) = 0. All the previous discussion
remains unchanged but the fact that, in the parameter region where the heavy neutrinos are degenerate,

dR = M1 X I,Z
(X0 (x4=0) = _ @t fazt /d}—%lQ* — Mt (QTQ)* —0. (D.3)

Which proves that the loop corrections are identically zero for degenerate heavy neutrinos. Thus, in
this case, the light neutrino masses arise from breaking the degeneracy of heavy neutrinos, yielding light
neutrino masses related to their mass difference. However, this effect is non-trivial as Q is singular which
makes X and R also singular, and in turn 6 My, singular as well. Combining the loop generated eigenvalue,
proportional to the heavy neutrino mass differences with the possible eigenvalues of M" to generate the

singular values of M that yield the light neutrino masses requires further investigation.
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