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Resumo

Após um grande progresso teórico e experimental, é agora sabido que os neutrinos são massivos. Contudo,

não há explicação teórica para a sua massa quase nula e outras questões em aberto. O mecanismo Seesaw

(Balancé) responde a algumas destas, trazendo, ao mesmo tempo, nova fenomenologia que pode explicar

outros problemas da Física de Partículas, como a assimetria entre matéria e anti-matéria. Nesta tese

desenvolve-se uma extensão mínima do Modelo Padrão, com três neutrinos de direita. A notação é

fixa e uma nova parametrização é explorada. Esta parametrização permite controlar todos os devios

de unitariedade através de uma única matriz 3 × 3, denominada X, que também relaciona a mistura

dos neutrinos leves e pesados no contexto de seesaw tipo I. Esta parametrização é adequada para um

tratamento geral e exato independente da escala do termo de massa dos neutrinos de direita. Os modelos

com correções às massas a um loop controladas são classificados de acordo com as hierarquias de massa

que os neutrinos pesados devem ter - casos A, B e C. Os casos B e C podem ter desvios de unitariedade

consideráveis. Isto quer dizer que, se um neutrino quase estéril for descoberto num futuro próximo, é

expectável que as hierarquias de massas dos neutrinos pesados sejam como as do caso B - pelo menos 2

neutrinos pesados quase degenerados ou como as do caso C - pelo menos 2 neutrinos pesados com massas

na escala do eV ou do KeV .

Palavras-chave: Modelo Padrão, Neutrinos, Seesaw, Desvios de Unitariedade, One-Loop
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Abstract

After a great theoretical and experimental progress, it is now known that neutrinos have mass. However,

there is no theoretical explanation for their almost vanishing mass and other issues. The Seesaw mech-

anism answers some of these and creates new phenomenology that can help answer several other open

problems in Particle Physics, like the matter-antimatter asymmetry. In this thesis, a minimal extension

to the Standard Model with three positive chirality neutrinos is devised, under the Seesaw Type I frame-

work. Notation is fixed and a novel parametrization is exploited. This parametrization enables to control

all deviations from unitarity through a single 3 × 3 matrix, which is denoted by X, that also connects

the mixing of the light and heavy neutrinos in the context of type I seesaw. This parametrization is

adequate for a general and exact treatment, independent of the scale of the right handed neutrino mass

term. The models with controlled one-loop mass corrections are classified according to the heavy neutrino

mass hierarchies they must possess - cases A, B and C. Cases B and C can have sizable deviations from

unitarity. This means that if an almost sterile neutrino is discovered in the near future, heavy neutrinos

mass hierarchies might be like the ones of case B - at least two almost degenerate neutrinos, or like the

ones of case C - at least two eV or KeV neutrinos.

Keywords: Standard Model, Neutrinos, Seesaw, Deviations from Unitarity, One-Loop
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Chapter 1

Introduction and Motivation

Quantum Mechanics and Relativity dramatically changed the way how we understand and explain phys-

ical phenomena. Combining both theories became, arguably, the main goal of Physics. From the effort of

combining Special Relativity and Quantum Mechanics resulted Quantum Field Theory (QFT). Our best

description of the behaviour of fundamental particles is a special case of a QFT - the Standard Model

(SM).

1.1 Thesis Outline and Motivation

With the experimental evidence of neutrino masses and flavor oscillations, it has become very relevant

to create models which explain the neutrino spectrum and its properties.

This work is organized as follows: in the rest of this section one will dwell on the history of particle

physics, as it is fundamental to understand the role and importance of neutrinos in it. Then, a brief

review of the SM will be made, in order to understand its flaws and limitations in the Leptonic Sector. In

chapter 2, minimal extensions to the SM which include neutrino masses are presented - νSM and SIνSM

(Seesaw Type I), with a review on the state of the art of Neutrino Physics: Oscillations, CP Violation

and Neutrinoless Double Beta Decay. In chapter 3, the main results of this work are presented. These

are models developed under the Seesaw type I framework, that can be detected experimentally very soon

due to the sizable deviations from unitarity. The development of these models was possible due to the

exploitation of a hidden degree of freedom in the Seesaw equations, thanks to a novel parametrization.

Additionally, the fact that these models must have controlled one-loop mass corrections, constrained

the heavy neutrino mass hierarchies to be of a given type. To conclude, a final chapter with the main

conclusions of the work and their future prospects. Establishing the importance of these models to probe

Seesaw models and favour/disfavour Majorana Neutrinos. The research work on which part of this thesis

is based on can be found at [1].
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1.2 Historical Introduction

Studying neutrinos plays an important role on the study of the leptonic sector. First of all, Neutrinos

are special because they are the only fundamental fermion without electric charge. While other fermions

are constrained to be usual Dirac particles, neutrinos are not. Moreover, their masses are so many orders

of magnitude below the masses of other fundamental particles that for many years they were thought to

be massless.

As of now, most physicists believe these two facts are connected. Many models have been made,

which relate both aspects, and this work has been done in the framework of one of them.1 However, 83

years have passed from the proposal of the existence of the Neutrino to the establishment of their massive

nature as truth. I believe it’s instructive to cover the highlights of this story [2], because it is illustrative

of how ideas in Science transform from hypotheses to reality.

The History of the Neutrino began in 1930 with the proposal of their existence by Nobel prize laureate,

Austrian physicist, W. Pauli. In 1930, nuclei were considered to be bound states of protons and electrons.

Thus, in this model, the β decay of a nucleus - (A;Z) −→ (A;Z + 1) + e− - should have a discrete

spectrum. This should happen because the emitted electron would have a fixed energy, which, assuming

the conservation of energy, should be equal to the release energy of the reaction, different for each nuclei.

However, in the early 19th century, Lise Meitner and O. Hahn measured a continuous β spectra, confirmed

later by C. D. Ellis and W. A. Wooster [3]. Also, there was another problem, some nuclei had a measured

spin different from the predicted one. These two issues cast some doubt on the principle of conservation

of energy and the spin-statistics theorem (known at the time as the exchange theorem of statistics). In

a famous letter [4] to a conference in Tübingen that he could not attend, Pauli wrote:

“Dear radioactive ladies and gentlemen, (...)

I have hit upon a desperate remedy to save the exchange theorem of statistics and the law of conser-

vation of energy. Namely, the possibility that in the nuclei there could exist electrically neutral particles,

which I will call neutrons, that have spin 1/2 and obey the exclusion principle and that further differ

from light quanta in that they do not travel with the velocity of light. The mass of the neutrons should

be of the same order of magnitude as the electron mass and in any event not larger than 0.01 proton

mass. - The continuous beta spectrum would then make sense with the assumption that in beta decay, in

addition to the electron, a neutron is emitted such that the sum of the energies of neutron and electron

is constant.”

Pauli turned out to be almost right. There was indeed a neutral particle in the nuclei - the neutron

(discovered by Nobel prize laureate J. Chadwick [5] some years later). This solved the spin-statistics

crisis. However, its mass was of the order of the proton mass. Only a possibly massless extra neutral

fermion could solve the conservation of energy. Since we needed a «neutron» with a much smaller mass,

pragmatic, Nobel prize laureate, Italian physicist E. Fermi named this particle Neutrino.

After all of these advances, it was believed that the nuclei was a bound state of protons and neutrons
1In the seesaw mechanism, neutrinos are Majorana particles, which they can be because they’re uncharged and due to

this there are more neutrinos than the three currently known, with heavier masses, which explain the small masses of the
light ones.
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[6] and that electrons would bind electromagnetically to the nuclei, forming a neutral atom. The stability

of this neutral atom was still a mystery 2. Under these assumptions, Fermi formulated its theory of β

decay [7] - where an electron/anti-neutrino pair would be produced in the transition of a neutron into a

proton: n −→ p+ e− + νe. This was one of the first examples of an explanation in terms of fundamental

particles of a known nuclear physics phenomenon. This realization lead to the creation of an effective

Lagrangian a la Quantum Electrodynamics (QED) - the theory that was being built by R. Feynman, S.

Tomonaga and J. Schwinger to explain all interactions between electrons and photons [8, 9, 10]. The

theory built around this effective Lagrangian is now known as as the Fermi Model of weak interactions and

contains only vector-like 3 interactions. Comparing the predictions of this model with experimental data

from β decays, lead to two very important conclusions. First, the coupling constant of such interaction

would be very small comparing to QED - the name Weak interaction is born. Second, a Lagrangian

with vector and axial-vector 4 interactions provided predictions consistent with experimental data. This

more general model is known as Fermi-Gamow-Teller model [11], and it includes an axial vector current

Ψγµγ
5Ψ, in such a way that parity was still conserved. The assumption that parity was conserved was

not backed by anything, it was just something that the community felt right. Nevertheless, T.D. Lee and

C.N. Yang received the 1957 Nobel Prize for predicting Parity Violation [12, 13], motivated by the θ− τ

puzzle [14] - a belief, motivated by wrongly assumed conservation of parity, that two different particles

with the same quantum numbers existed just because there were two possible decays with opposite parity.

Chien-Shiung Wu received eternal gratitude for conducting the experiment [15] and study of β-decay of

polarized Co60 nuclei which declared for once and for all that Parity was not conserved in Weak Processes.

Explicit parity violation would translate into a non left-right symmetric weak interaction. As devised

by Feynman and Gell-Mann [16], the correct Lagrangian for β decay would have to be of the form:

LV−A = (ψpγ
µ(gV − gAγ5)ψn) · (ψeγµ(gV − gAγ5)ψν) + h.c. , (1.1)

where h.c. means hermitian conjugate - the hermitian conjugate of the written term should be included.

Defining Chirality projectors PR,L = 1±γ5

2 with the usual projector properties (P 2
R,L = PR,L , PR,LPL,R =

0 , PR,L + PL,R = 1 ) one can define PR,Lψ = ψR,L and rewrite ψ = ψL + ψR and LV−A:

LV−A = (ψpLγ
µ(gV − gAγ5)ψnL

) · (ψeLγµ(gV − gAγ5)ψνL
+ h.c. , (1.2)

where the ”RR” term is zero because it was experimentally observed that gV = gA = 1, which translates

into that term being proportional to PL·PR = 0. The crossed terms ”RL” and LR” are zero, independently

of gA and gV , for the same reason. This implies that neutrinos with positive chirality are impossible to
2In classical electrodynamics, a moving charge necessarily emits energy. Thus, if the atom was a nucleus with electrons

orbiting around it, it would never be stable. Thankfully, Quantum Mechanics and atomic orbitals would solve this some
years later. Now, it is understood that an electron on an atomic orbital doesn’t emit energy because an atomic orbital
is a stationary wave - an eigenmode solution to a Schrodinger’s equation. Energy is quantized and can only be emitted
or absorbed if it corresponds to the energy difference between two atomic orbitals. These are labeled by three quantum
numbers, depicting energy (n) and angular momentum (l,m).

3Here, the noun vector is used in the context of tensor calculus. A vector is an object with only one Lorentz index, i.e.,
a (1,0) or (0,1) tensor. A (2,0) or (0,2) tensor can be represented as a n× n matrix.

4An axial-vector is a vector in the context of tensor calculus, which transforms usually under rotations but gains an extra
sign under parity transformations.
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detect via weak interaction.

A few kilometers and years away, F. Reines and C.L. Cowan, motivated by the belief that some kind

of inverse β decay with a neutrino in the initial state should exist νe+p −→ n+e+, devised an experiment

to detect this initial state (anti)-neutrino. They succeeded [17] and F. Reines won the 1995 Nobel Prize

thanks to it. This was the first experimental detection of a neutrino. The idea that lead to this discovered

was propelled by an apparently conserved quantity named Lepton Number (L)5.. Experiments that would

reveal a non-conservation of this quantity yeld negative results [18]. Thus it became accepted as the only

distinction between neutrino and anti-neutrino. Lepton Number came upon thanks to the realization

that in β−-decay ( n −→ p+e−+νe) one could define L = 0 in the initial state and Le− = 1 and Lνe
= −1

in the final state. Assuming its conservation, a β+-decay ( p −→ n + e+ + νe) should theoretically exist

with Le+ = −1 and Lνe = 1, with a similar decay with an e− instead of a e+ being impossible. This

decay of an isolated proton is not possible due to mn > mp but the idea turned out to be correct and the

free anti-neutrino in the initially mentioned kind of β+-decay was indeed detected. As of 2018, we know

only total Lepton Number is conserved at tree level (but violated by Chiral Anomalies).

Progress until here was very experiment driven, with theory derived in an ad hoc fashion. For instance,

the Lagrangian in [eq. 1.2] unsurprisingly has some issues. Cross sections of given processes calculated

with it grow with energy, this violates the unitarity of the theory - cross sections need to decrease with

energy. The solution to this was to postulate an Intermediate massive Vector Boson, that prediction

turned out to be correct and the boson that mediates this interaction is now known as W± boson.

Furthermore, performing calculations with this, beyond 0th order (tree level), in perturbation theory

leads to infinite results. The solution for this was a technique developed for many years by H. Bethe, R.

Feynman, J. Schwinger, S. Tomonaga and F. Dyson, now known as Renormalization [19, 20] .

The discovery of the muon (µ−) in 1937 by by E.C. Stevenson and J.C. Street [21] and C.D. Anderson

and S.H. Neddermeyer [22] extended the list of known particles. In 1947, a fundamental person to

the development of Neutrino Physics, Italian physicist B. Pontecorvo, suggested Lepton Universality

[23] - the weak interactions of µ and e would have the same cross sections, or in modern terms, the

coupling of leptons to gauge bosons would be flavor independent. Taking charged leptons’ different masses

into account, experiments and predictions were consistent. Things changed when recent tests of lepton

universality in B meson decays, performed by the LHCb, BaBar and Belle experiments, shown deviations

from the Standard Model predictions [24], although yet without high enough statistical significance to

claim discovery.

Moreover, these two very similar particles were naturally classified accordingly, leading to the origin of

what is now known as generation or family. This triggered the question ”If there are more than one charged

leptons which can interact weakly, is there more than one neutrino?”. To test this, B. Pontecorvo suggested

the first accelerator neutrino experiment. The experiment [25] consisted of bombarding Beryllium (Be)

targets with protons, this produced predominantly muon neutrinos due to helicity suppression (π+ −→

µ+ + νµ vs π+ −→ e+ + νe). The produced neutrino would later interact with nucleons, if one detected

the same amount of muons and electrons in the decay products, then only one neutrino would exist
5c.f. the end of section 2.1 for a proper explanation on this.
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(νe = νµ = ν). However, much more muons were detected, proving the existence of at least two neutrinos,

one for each (known) charged lepton. L. Lederman, M. Schwartz and J. Steinberger won the 1988 Nobel

Prize in Physics for this. This lead to the definition of a new apparently conserved quantity - lepton

flavor number, a generalization of Total lepton number. (Total) Lepton number was just a setting of +1

to leptons and -1 to anti-leptons, lepton flavor number does that for each generation6. Nonetheless, it is

now known that lepton flavor number is explicitly violated by Neutrino Oscillations, also, several hints

point towards lepton flavor violation in rare processes [26].

Based on what was discovered until that time, at the end of the fifties it was believed that the neutrino

was a massless spin 1/2 particle with only left-handed helicity, which is the same as negative chirality

for massless particles. This explained parity violation in weak interactions, the V − A interaction type

and the experiments that only detected left-handed neutrinos. Furthermore, a Dirac particle with only

one chirality is necessarily massless. In 1937, E. Majorana [27] derived a result, valid only for neutral

particles, which implied that the neutrino could have mass without having another chirality state. This

would also imply that the neutrino would be its own anti-particle.

Currently, we understand that neutrinos have a tiny mass so we cannot guarantee it doesn’t exist a

positive chirality counterpart for the neutrino - if it is a Dirac particle it must have it, if it is a Majorana

it doesn’t, but extra particles would be needed to make everything consistent. The fundamental question

is to find out which type of particle the neutrino is.

As we entered the 60s, the effort to create a theory guided by some principles that explained all

the known facts was finally converging to a solution. In 1968, S. Glashow, S. Weinberg and A. Salam

[28, 29, 30] formulated the Glashow-Salam-Weinberg (GSW) model of weak-interactions, a model that

would be an important part of the future Standard Model (SM). It was based on a SU(2) × U(1)

gauge group and predicted the existence of weak neutral currents mediated by a new neutral boson -

Z. Developments in the study of the Strong force, lead by M. Gell-Mann [31, 32], derived what is now

known as Quantum Chromo Dynamics (QCD), based on a SU(3) gauge group. A full formulation of the

SM was finally done, with the gauge group being SU(3) × SU(2) × U(1). After the prediction of the Z

boson an impressive number of successive successes was achieved:

1973 Neutral currents are discovered in the bubble chamber ”Gargamelle” [33]
1974 J/Ψ meson discovered by groups headed by B. Richter and S. Ting, proving the existence of the charm quark (c). [34, 35]
1975 The τ charged lepton is discovered by M. Perl’s group. [36] M. Perl was awarded the 1995 Nobel Prize in Physics for this.
1977 Υmeson discovered at Fermilab, proving the existence of the bottom quark (b). [37]
1979 The QCD gauge boson - the gluon (G) - is indirectly observed in three-jet events at DESY. [38]
1983 Discovery at LEP, of the mediators of eletroweak interactions - W± and Z. [39, 40, 41, 42]
1989 Measurement of the Z invisible width or the number of non-sterile light neutrinos: 3.27± 0.30. [43]
1995 Top quark (t) is discovered at Fermilab. [44, 45]
2000 First direct observation of the ντ at Fermilab. [46]

Table 1.1: Experimental Achievements in Particle Physics from 1973 to 2000

Due to some underlying principles, all the discovered particles needed to be theoretically massless.

That contradicted experiments, and an extra particle, with very special properties was needed - the Higgs

(H) particle. What is now known as simply the Higgs Mechanism was devised by Anderson, Brout and

Englert, Guralnik, Hagen, Higgs, Kibble and ’t Hooft [47, 48]. It provided masses to the gauge bosons,
6c.f. the end of section 2.1 for a proper explanation on this.
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and in general to all fermions, without explicitly breaking the symmetries of the model. This turned

out to be a fundamental principle, since, some years later, Nobel laureates G.’t Hooft and M. Veltman

[49] proved only gauge theories with spontaneous symmetry breaking were consistent at higher orders of

perturbation theory.

In 2012, the observation of a Higgs-like boson was finally announced by the ATLAS and CMS collab-

orations [50, 51]. All the SM particles were now experimentally detected. Everything seemed consistent

with the SM besides some experiments involving neutrinos. Precision measurements of β decay spectrum

end-point would be sensitive to neutrino masses, but at the time the only possible conclusion was that

neutrinos were much lighter than electrons, with the bound consistent with massless neutrinos. With no

irrefutable evidence for massive neutrinos, one could not conclude anything, and this remained an open

problem for several years. Now, neutrinos are known to be massive and there is a dedicated experience

in Karlsruhe, Germany, named KATRIN [52] (Karlsruhe Tritium Neutrino Experiment) with the goal of

measuring the ”mass of the electron antineutrino” 7 with high precision by examining the spectrum of

electrons emitted from the beta decay of tritium.

The idea that neutrinos could be massive was proposed in 1957 by B. Pontecorvo [53]. He pinpointed

that there was no symmetry preventing that (like gauge invariance prevents the photon from acquiring a

mass), thus being possible that they had a very small mass. B. Pontecorvo was also the first to consider

neutrino oscillations. In a seminal paper [54], he showed that if neutrinos had mass, lepton flavor number

is not conserved and that neutrino states produced in weak decays are a superposition of states with

definite mass. Years later, in 1962, when the existence of νµ was already proved, Z. Maki, M. Nakagawa

and S. Sakata proposed a better model of neutrino oscillations [55]. They proposed that νµ and νe were

linear combinations of two mass eigenstates, and that oscillations between one another were possible. As

an answer to the lack of evidence of this oscillation phenomenon in some experiences [18], B. Pontecorvo

coined the term ”sterile neutrino”, claiming that a massive neutrino (antineutrino) could transform into

its positive chirality counterpart and become totally invisible to our experiments, since it would not

interact via weak interaction [56].

The first experiment to provide an hint for oscillations, and thus, massive neutrinos was R. Davis

group’s experiment to detect solar neutrinos [57] trough νe + Cl37 −→ e− + Ar37. The measured solar

neutrino flux was way below the theoretical predictions - the solar neutrino problem is born. At first, it was

thought that the problem was inherent to the used solar model. However, many other measured quantities

proved its consistency and only a few years later was the neutrino oscillation hypotheses accepted as the

best answer [58, 59, 60]. In order for this to happen, the experiments Super Kamiokande (SK) [61]

and Sudbury Neutrino Observatory (SNO) [62] played a crucial role. SK and SNO are Cherenkov effect

based experiments, which detect high energy solar neutrinos from the proton proton chain due to elastic

scattering of these neutrinos with electrons from the atoms in the detector. The results from these two

experiments revealed, in a model independent way, an evidence of νe disappearance. This deficit was then

understood to be due to oscillations of νe into νµ inside the sun, due to the Mikheev-Smirnov-Wolfenstein

(MSW) effect [63, 64, 65], and in the path from the sun’s surface to the Earth. The 2015 Nobel Prize
7Clarified on chapter 2, in the state of the art section.
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in Physics was awarded to A. McDonald and T. Kajita, heads of the SNO and SK group, respectively,

”for the discovery of neutrino oscillations, which shows that neutrinos have mass”. After the success of

detection of solar neutrinos, several experiments were built with the goal of detecting more energetic

neutrinos - atmospheric neutrinos - like NUSEX [66] and SK in a later stage, and less energetic neutrinos

- reactor neutrinos - like KamLAND [67] and MINOS [68]. These experiments helped gather data to

determine, under some assumptions, the neutrino mixing angles θ13, θ23, θ12. These mixing angles are

known by reactor mixing angle, atmospheric mixing angle and solar mixing angle, respectively.

Adding to the previously mentioned deviations from the SM on lepton flavor universality measure-

ments, the most recent measurements from MiniBooNE hint towards the existence of a sterile neutrino

with a mass in the KeV scale [69], although cosmological data had already excluded a neutrino with a

mass on that energy scale. However, none of these experiments has enough significance to claim discov-

ery. Nevertheless, the community is convinced in a short period of time, conclusions regarding important

properties of the neutrino and its spectrum (ordering, mass scale, nature) 8 will be taken, thanks to the

data from GERDA [70], KamLAND-ZeN [71], CUORE [72] and KATRIN [52]. Adding to these, the data

from a great variety of long baseline (like NOνA [73] and DUNE [74]) and short baseline experiments (like

MiniBooNE [75]), with very different constraints, will be fundamental to give answers to some problems

like the existence of more than 3 neutrinos, CP phases and unitarity of the mixing matrix. 9

Theoretically, interest in neutrinos has surged when J. Pati, A. Salam and S. Glashow and H. Georgi

started working on Grand Unified Theories (GUT). These models grouped leptons and quarks in the

same group multiplets, and mass generation mechanism naturally lead to non-zero neutrino masses. A

critical landmark of theoretical Neutrino Physics (and of this work) was the formulation of the Seesaw

Mechanism by P. Minkowski, M. Gell-Mann, P. Ramond and R. Slansky, T. Yanagida and R. Mohapatra

[76, 77, 78, 79] in the context of specific GUT models. The seesaw mechanism gathered interest because

it provided a natural explanation to the smallness of neutrino masses comparing to the masses of charged

fermions. Furthermore, it related that with the fact that the neutrino is the only known neutral fermion

and thus can have special never before seen properties. With the experimental evidence of neutrino

masses and flavor oscillations, the door to physics beyond the SM was opened and the seesaw mechanism

looks like a promising framework to understand it. Modern reviews on the Seesaw Mechanism can be

found in references [80, 81, 82, 83].

1.3 Brief Summary of the Standard Model of Particle Physics

This will be a short review, thus, some aspects of the SM will not be discussed. For a more complete

treatment of the subject refer to [84, 85, 86].

The SM introduces fundamental interactions (strong, weak and electromagnetic) as a way to guarantee

that the Lagrangian is locally invariant under Gauge Symmetries - where every field is in a representation

of the Symmetry Group. In Quantum Field Theory 10, particles are seen as excitations (quanta) of a field.
8More on that on chapter 2, state of the art section
9More on this subject on chapter 2.

10In QFT it is important to state the metric one is using. From now on, everything will be written according to a (+,-,-,-)
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The passage from a Classical Field Theory to a QFT does not involve a modification of the Lagrangian or

of the field equations, but rather a reinterpretation of the field variables. To make this clear, the [Table

1.2] contains quantized fields in terms of classical solutions to their free massless dynamical equation:

Table 1.2: The three equations that rule the free dynamics of SM particles.

Spin Equation Name Field Expansion
0 ∂µ∂

µφ = 0 Klein-Gordon eq. φ =
∫
p
(a(p)e−ipµx

µ

+ b†(p)eipµx
µ

)

1/2 iγµ∂
µΨ = 0 Dirac eq. Ψ =

∫
p

∑
s(a

s
pus(p)e

−ipµx
µ

+ bsp
†vs(p)e

ipµx
µ

)

1 ∂µ(∂
µAν − ∂νAµ) = 0 Proca eq. Aν =

∫
p

∑
r(a

r
pε

ν
r (p)e

ipµx
µ

+ brp
†ε∗νr (p)e−ipµx

µ

)

The creation ( b†(p) ) and annihilation operators ( a(p) ), as the name indicates, create and annihilate

an excitation (quanta) of the field , i.e, a particle 11. One could dwell on more intrinsic aspects of QFT

like partition functions, a proper Derivation of Feynman rules and propagators, how one can go from a

free theory to an interacting theory (LSZ formula) or what is the meaning of the bare parameters one

writes in a classical field theory Lagrangian and its relation to the measured values (Renormalization).

Nevertheless, since these are not fundamental to the presented work, they will not be discussed. For

more, one can refer to any Introductory QFT book [86, 87, 88].

Masses cannot be introduced in the free theory because they would explicitly spoil the required local

gauge invariance. Thus, masses are introduced via Spontaneous Symmetry Breaking (SSB) of the SM

Group into a smaller one. One can define the construction of the SM into two parts: Before SSB, where

every field is massless and every interaction is diagonal (interaction basis) and after SSB, where the

fields are massive and mixing occurs (mass basis). The Lorentz-Poincare symmetry group also plays a

crucial role, the different quantum states of every fundamental particle should give rise to a irreducible

representation of it, and the free dynamical equations can be deduced based on this. The SM particles

currently known can be divided into Bosons and Fermions. In the Bosons category there is a scalar boson

- H - the Higgs particle, responsible for the mass generation mechanism, and 4 kinds of gauge bosons:

W, Z, γ and G. Fermions can be divided into Quarks and Leptons. There are three families of Quarks

and other three of Leptons. Each family of Quarks has an up and down type quark, while for Leptons

each family has a charged lepton and the correspondent neutrino.

Observing [Fig. 1.1] 12, the only characteristic that distinguishes particles with the same quantum

numbers and from different families is their mass. However, if one considers its chirality state, positive

and negative chirality states could be considered different particles, since they have different interactions.

In a massless SM, this would be the case, as one wouldn’t have other choice but to identify particles

based on their interactions. One wouldn’t have 3 families of Quarks and Leptons, but just one, with the

double amount of fields - 1 Dirac field can be decomposed into two Weyl fields (chiral massless fields):

This happens because the SM is a chiral theory - it treats differently particles with different chirality.

For instance, in a model with positive chirality neutrinos, the νR would be a sterile particle, as it doesn’t

interact with anything in the SM, while the νL would interact only via weak interaction. Since the SM is

Minkowski metric
11The particles created by b†(p) and annihilated by a(p) could be the same or the anti-particle of each other, depending

on whether the field is real or not.
12Image not made by me. Licensed under Creative Commons Attribution 3.0 Unported license, one is free to to copy,

distribute, transmit and adapt the work. Numerical values taken from Particle Data Group Booklet 2016 [89]

8



Figure 1.1: List of SM particles. Until 2012, all of them but the Higgs (H) were experimentally discovered.

PL PR

ν νL νR
ν νR νL

Table 1.3: The two particle/anti-particle states of a massless SM

a theory of massive particles, a particle is considered as a state with definite mass which is a superposition

of the negative with the positive chirality state - a Dirac mass term in the SM Lagrangian can be seen

as a interaction term between the positive chirality state and the negative chirality state. Thus, SSB

bounds the two chirality states into, what we define as a particle state.

The SM of unification of the electroweak and strong interactions is based on the gauge group:

GSM = SU(3)c × SU(2)L × U(1)Y . (1.3)

The massless Lagrangian for this theory is locally invariant under transformations of this group. To

achieve this, the introduction of gauge fields is necessary and to every one of them should correspond a

generator of the group. This group has 12 generators - 8 SU(3) bosons (Ga), 3 SU(2) bosons (W b) and

1 U(1) boson (B).

Gauge bosons are in the adjoint representation of their corresponding gauge group (octet for SU(3)c

and triplet for SU(2)L) and in the vector representation of the Lorentz-Poincare group, quarks and

leptons are in the fundamental or anti-fundamental representation of the Lorentz-Poincare Group, while

the negative chirality ones are in in the fundamental representation of SU(2)L (doublet):

Ψα
L =

ναL
lαL

 , Υβ
L =

uβL
dβL

 . (1.4)
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The positive chirality ones are in the singlet representation of SU(2)L:

lαR , uβR , dβR . (1.5)

Regarding SU(3)c, Leptons are in the singlet representation - don’t take part in colored interactions -

while quarks are in the triplet representation:

Qγ =


qγr

qγg

qγb

 , (1.6)

where γ = 1, 2, .., 6 is the quark flavor index - one can define that to the up quark (u) corresponds the

triplet Q1 with entries q1i , to the down quark (d) corresponds the triplet Q2 with entries q2i , to the charm

quark (c) corresponds the triplet Q3 with entries q3i , and so on. The order is irrelevant.

The quantum numbers of the particle spectrum of the SM in the interaction basis are given in [Table

1.4].

Table 1.4: Quantum Numbers and Representations of every SM Particle

Field lαL lαR ναL uαL uβR dβL dβR φ+ φ0 G B W 1,2 W 3

T3 -1/2 0 1/2 1/2 0 -1/2 0 1/2 -1/2 0 0 ±1 0
Y -1/2 -1 -1/2 1/6 2/3 1/6 -1/3 1/2 1/2 0 0 0 0
Q -1 -1 0 2/3 2/3 -1/3 -1/3 1 0 0 0 ±1 0

SU(3)c Rep. 1 1 1 3 3 3 3 1 1 8 1 1 1
Lorentz-Poincare Rep. (1/2,0) (0,1/2) (1/2,0) (1/2,0) (0,1/2) (1/2,0) (0,1/2) (0,0) (0,0) (1/2,1/2) (1/2,1/2) (1/2,1/2) (1/2,1/2)

Where α = 1, 2, 3 is the leptonic generation index and β = 1, 2, 3 is the quark generation index- one

can define that to the top quark (tR,L) corresponds u3R,L and to the muon (µR,L) corresponds l2R,L, and

so on. Y is defined by the relation Q = Y + T3, which will be explained later.

The quantum numbers of the particle spectrum of the SM are chosen so that they are in the correct

representation of the gauge group and that the conserved quantum number (after SSB) - electric charge

- has the correct value for each one. Y is named Weak Hypercharge and is the Quantum Number

corresponding to U(1)Y , T3 is named Weak Isospin and is the quantum number corresponding to SU(2)L.

The Quantum Number corresponding to SU(3)c is color. Quarks can have three colors (red, green and

blue) and anti-quarks can have three anti-colors (anti-red, anti-green and anti-blue). They are in the

triplet representation of SU(3)c. Gluons can have the 8 independent combinations of these 6 (3+3)

colors and anti-colors. However, every object observed in nature is colorless (or a singlet of SU(3)c

like an electron), which means quarks and gluons aren’t asymptotic states and don’t have a spectral

representation, only hadrons (combinations of these) do. This happens due to a special property of

QCD: Asymptotic freedom [90, 91].

The gauge fields are necessarily bosons because to ensure the local gauge invariance of the Lagrangian

it is necessary to add fields that transform like the derivative - creating what is known as the Covariant

Derivative. For a field that interacts with every boson (like the quark field), the covariant derivative is:
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Dµ = ∂µ + igs

8∑
a=1

Ga
µ

λa

2
+ ig

3∑
b=1

W b
µ

σb

2
+ ig′Y Bµ , (1.7)

where the g’s are the couplings of each interaction,λ
a

2 are the 8 generators of SU(3) (Gell-Mann matrices)

and T b = σb

2 are the 3 generators of SU(2) (Pauli matrices). The used sign notation is consistent with

[92], taking all ηi = 1.

It’s useful to define:

Dq
µ = ∂µ + igs

8∑
a=1

Ga
µ

λa

2
, DL

µ = ∂µ + ig

3∑
b=1

W b
µ

σb

2
+ ig′Y Bµ , D

R
µ = ∂µ + ig′Y Bµ . (1.8)

Since the derivative transforms like a vector under the Lorentz-Poincare group, gauge fields must have

the same behaviour, and thus, be vector fields, with integer non-zero spin (vector bosons). This covariant

derivative generates the interactions between the gauge bosons and the other fields:

LFermion =
∑
γ

QγiγµDq
µQ

γ +
∑
α

(
Ψα

Liγ
µDL

µΨ
α
L + lαRiγ

µDR
µ l

α
R

)
+
∑
β

(
Υβ

Liγ
µDL

µΥ
β
L + uβRiγ

µDR
µ u

β
R + dβRiγ

µDR
µ d

β
R

)
,

(1.9)

where the indices α, β and γ have the same meaning as in [Table 1.4] and in [eq. 1.6] .

The gauge boson interactions with themselves come from their kinetic terms, which are of the form:

Lkin = −1

4
GaµνGaµν − 1

4
W bµνWbµν − 1

4
BµνBµν , (1.10)

where

Ga
µν = ∂µG

a
ν−∂νGa

µ−gsfacdGcµGdν ,W
b
µν = ∂µW

b
ν−∂νW b

µ−gf bcdWcµWdν , Bµν = ∂µBν−∂νBµ , (1.11)

and a = 1, ..., 8 is summed implicitly and runs over the number of gauge bosons of SU(3) and b = 1, 2, 3

is summed implicitly and runs over the number of gauge bosons of SU(2). fabc are the structure constants

for the gauge group - for SU(2) fabc = εabc. For abelian gauge groups - like U(1) - these are zero. These

terms generate self-interactions (in the gluon case) but also interactions between different gauge bosons.

After electroweak unification the physical states Z, γ, W+, W− are revealed to be linear combinations of

the gauge fields B, W 1, W 2, W 3, looking at [eq. 1.10] one can understand that this generates triple and

quartic interactions between Z, γ, W+ and W−.

Electroweak unification is what happens when the mass of fundamental particles is generated, and

here the Higgs is the leading actor. Adding to the fact that a mass term would explicitly break the gauge

symmetry, without the Higgs particle the unitarity of the SM would be spoiled [93, 94]. SSB means that

the vacuum of the theory at a certain point in time - spontaneously - (it’s postulated that it was in the

early Universe) stops having the same symmetry as the Lagrangian. The Higgs mechanism spontaneously

breaks GSM into SU(3)C ×U(1)Q, in order for this to happen, a scalar doublet of SU(2)L - φ - is added

11



to the theory:

φ =

G+

G0

 , V (φ) = −µ2(φ†φ) + λ(φ†φ)2 , LHiggs = (DL
µφ)

† · (DµLφ)− V (φ) , (1.12)

where V(φ) is the most general renormalizable potential that can be added to the Lagrangian. For µ2 > 0

13 and λ > 0, the potential has an absolute minimum 14 for < φ > 6=

0

0

. From the minimization

equation one gets < φ†φ >= µ2

2λ . This is fine since φ is a scalar field, and it doesn’t violate Lorentz

invariance having a constant non-zero value that minimizes the potential. This is what is known as a

vacuum expectation value (vev). All other SM fields with spin different from zero are compelled to have

a zero vacuum expectation value. This vev can be parametrized in the following way:

< φ >=
1√
2

0

v

 , (1.13)

getting the relation:

< φ†φ >=
µ2

2λ
=
v2

2
−→ v2 =

µ2

λ
. (1.14)

To get a proper spectrum it’s useful to write the φ field as a perturbation around its vev, taking into

account all its degrees of freedom:

φ =< φ > +

 φ+

H+iφZ√
2

 . (1.15)

One can parametrize three degrees of freedom in the form of a global SU(2)L transformation:

φ = ei
σb

2 ωb

 0

v+H√
2

 , (1.16)

and then use the freedom to apply a global SU(2)L transformation to absorb them. This is known as

going to the unitary gauge:

φ −→ e−iσb

2 ωbφ =

 0

v+H√
2

 =< φ > +

 0

H√
2

 . (1.17)

In this gauge, the H field parametrizes the deviations from the value of φ that minimizes the potential.

It will correspond to the Higgs field. Note that the vacuum < φ > is the kind of vacuum we need for

SSB because it’s not invariant under SU(2)L transformations anymore:

13It’s postulated that in the early universe µ2 was negative. In that case, < φ >=

(
0
0

)
. This translates into µ2 being a

function of the temperature of the Universe.
14< φ > is the value of φ for which V(φ) is minimal.
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ei
σb

2 θb · < φ > 6=< φ > =⇒ σb

2
· < φ > 6=

0

0

 . (1.18)

However, it’s invariant under the combination given by Q = T3 + Y [95] 15, where Y is a diagonal

matrix in flavor space:

Q < φ >= (
σ3

2
+ Y · I2×2)· < φ >=

1/2 + Y 0

0 −1/2 + Y

 · 1√
2

0

v

 =

0

0

 = 0 , (1.19)

which is zero if Y φ = 1
2φ.

Thus, this vacuum spontaneously breaks part of the electroweak gauge symmetry, after which only

one neutral Higgs scalar, H, remains in the physical particle spectrum. It’s important to note that this

is not a fact. The number of scalars in the theory is not constrained and there can be more than one

Higgs-like particle if one introduces more than one Higgs-like doublet. This itself is another topic of

theoretical and experimental research. The Covariant derivative acting on φ (kinetic term on LHiggs)

generates the masses of the gauge bosons. This generates electroweak mixing. After a basis rotation, the

physical states are identified and a relation for their couplings is given :

Zµ = cos θWW 3
µ − sin θWBµ , Aµ = cos θWBµ + sin θWW 3

µ , W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) , (1.20)

sin2(θW ) =
g′2

g2 + g′2
, mW = mZ cos θW , e = g sin θW = g′ cos θW , (1.21)

m2
W =

1

4
v2g2 , m2

Z =
1

4
v2(g2 + g′2) , m2

H = 2µ2 . (1.22)

The initial vacuum was identically zero and was left invariant under the 4 generators of SU(2)L ×

U(1)Y . Now, it is left invariant under one combination of two of these generators. From the Goldstone

Theorem we should have 3 (4-1) Nambu-Goldstone bosons (massless scalar bosons), but we have 3

massive gauge bosons instead. In a pictoric language it is said the gauge bosons ”eat” the Nambu-

Goldstone bosons. If the broken symmetry was global (and not gauge/local) we would have 3 massless

scalars [96, 97] 16.

Goldstone’s theorem can be applied in theories without fundamental scalar fields. One can illustrate

this with QCD. The pions are the pseudo-Goldstone bosons that result from the spontaneous breakdown

of the chiral-flavor symmetries of QCD due to the QCD vacuum - the quark condensate < QQ >.

It does not have a zero vev, induced by nonperturbative strong interactions (confirmed in Lattice QCD

calculations). Considering a low energy version of QCD, with only u and d quarks, its massless Lagrangian

exhibits a SU(2)V × SU(2)A = SU(2)L × SU(2)R symmetry that is spontaneously broken by the quark

condensate < uu+ dd >. These symmetries are further explicitly broken by the masses of the quarks, so

that the pions are not massless, but their mass is significantly smaller than typical hadron masses. After
15This is known as the Gell-Mann-Nishijima relation.
16These three degrees of freedom correspond to φ+ (2, real and imaginary part) and φZ (1).
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some calculations 17 one gets the Gell-Mann-Oakes-Renner formula:

m2
πf

2
π = − (mu +md)

2
< uu+ dd > , (1.23)

where fπ ≈ 92MeV is the pion decay constant, mπ = 140MeV is the mass of the pion. Lattice QCD

calculations yield < uu+dd >≈ −(300MeV )3. With massless quarks, the pions 18 would be massless but

heavier baryons (combinations of three valence quarks) and mesons (combinations of two valence quarks)

would have a mass, dynamically generated by the quark condensate. Actually, 99% of the proton’s mass

arises out QCD binding energy, consequence of QCD chiral symmetry breaking. Conventional wisdom

that the Higgs field generated all the mass of the Universe is wrong [98].

The Covariant Derivative given in term of the physical bosons is:

Dµ = ∂µ + i

8∑
a=1

Ga
µ

λa

2
+ i

g√
2
(W+

µ T+ +W−
µ T−) + i

g

cos θW
(T3 −Q sin2 θW )Zµ + ieQAµ , (1.24)

where T± = T1 ± iT2 = σ1

2 ± iσ2

2 = σ±.

It’s useful to redefine19:

DL
µ = ∂µ + i

g√
2
(W+

µ T+ +W−
µ T−) + i

g

cos θW
(T3 −Q sin2 θW )Zµ + ieQAµ , (1.25)

DR
µ = ∂µ + i(Q− T3)

g

cos θW
(sin θW cos θWAµ − sin2 θWZµ) . (1.26)

To generate Dirac fermion masses one needs to create a SU(2)L ×U(1)Y invariant term, using φ and

the fermion fields, that after SSB generates their mass terms. Using [Table 1.4] one can see that a term

like the one in [eq. 1.27] is invariant because it has Y = 1/2 + 1/2− 1 = 0 and is a SU(2)L singlet,

Y l
δσ

(
νδL lδL

)
φlσR = Y l

δσ

(
νδL lδL

)G+

G0

 lσR
SSB−−→ Y l

δσ

v√
2
lδLl

σ
R . (1.27)

After SSB this generates a mass term proportional to v. The proportionality constant is Y l
δσ =

√
2M l

δσ

v ,

where M l
δσ is the (δ, σ)th entry of the Dirac mass matrix for the charged leptons. Y l

δσ are known as the

Yukawa couplings, and they parametrize the couplings between the Higgs field and fermions before SSB.

Their origin and exact mathematical formula is an object of study [99, 100, 101]. The same method

applies for quarks. However, for up quarks (the ones with T3 = 1
2 ) one needs to define the adjoint doublet

φ̃ =

 G0∗

−G−

 which has Y = − 1
2 . After SSB, one has < φ̃ >= 1√

2

v
0

.

17cf. section 7.1 on Kallen-Lehmann spectral representations and section 19.3 about Goldstone Bosons and Chiral Sym-
metries in QCD of [86] for details.

18If one considers the strange quark and applies the same reasoning, the eight light pseudoscalar mesons would be massless.
For the three heavy quarks: the charm quark, bottom quark, and top quark, their masses, and hence the explicit breaking
these amount to, are much larger than the QCD spontaneous chiral symmetry breaking scale ∼ (300MeV )3. Thus, they
cannot be treated as a small perturbation around the explicit symmetry limit.

19Dq
µ stays the same after electroweak unification. SU(3)c is not broken.
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Thus, after SSB one gets a Dirac mass matrix for up quarks, down quarks and for charged leptons:

LY ukawa = −Ψδ
LY

l
δσφl

σ
R −Υδ

LY
d
δσφd

σ
R −Υδ

LY
u
δσφ̃u

σ
R + h.c. . (1.28)

To go from the interaction basis to the mass basis one needs to diagonalize these mass matrices. The

rotated states will be the physical states. This generates mixing - particles or mass states being linear

combinations of interaction states, and the interaction Lagrangian 1.9 is no longer diagonal on the fields

- in the quark sector (neutrinos are massless in the SM and in that scenario it’s possible to remove the

mixing in the leptonic sector). In the next chapter, this procedure will be done for neutrinos in what is

known as νSM , the SM with positive chirality neutrinos. The steps are the same for the quark sector in

the SM, so they won’t be done here.

There’s only two pieces left to have the SM Lagrangian completely defined:

LSM = LFermion + LKin + LHiggs + LY ukawa + LGF + LGhosts . (1.29)

The result in [eq. 1.17] is gauge dependent. A gauge independent formulation of the SM should use

[eq. 1.15]. However, with this definition, LHiggs will generate mixed quadratic terms in fields, with

the three Goldstone bosons φZ and φ±, that complicate the definition of the gauge boson propagators.

Using gauge independent [eq. 1.15] in LFermion also introduces interactions between fermions and the

unphysical Goldstone bosons. These should be taken into account when performing calculations in a

general gauge. To cancel the mixed quadratic terms that arise from LHiggs, it’s necessary to add a new

term to the SM Lagrangian:

LGF = − 1

2ξG
F a
GFGa −

1

2ξA
F 2
A − 1

2ξZ
F 2
Z − 1

ξW
F−F+, (1.30)

where F a
G = ∂µGa

µ, FA = ∂µAµ , FZ = ∂µZµ + ξZmZφZ , F± = ∂µW±
µ ± iξWmWφ±. LGF are, actually,

the gauge breaking terms in LSM .

The last piece is the Ghost Lagrangian. Faddeev–Popov Ghosts are unphysical particles that violate

the Spin-Statistics Theorem. In theories like the SM they are bosonic (spin 0) with anti-comutation

relations (fermionic). Every gauge boson correspondent to a non-Abelian Gauge Group will have a Ghost
20. These ghost fields are necessary to achieve a linear gauge fixing condition like in LGF , generating

gauge field propagators with transverse and longitudinal component, thus, invertible.

LGhost =

4∑
i=1

[
c+
∂(δF+)

∂αi
+ c−

∂(δF−)

∂αi
+ cZ

∂(δFZ)

∂αi
+ cA

∂(δFA)

∂αi

]
ci +

8∑
a,b=1

ωa ∂(δF
a
G)

∂βb
ωb, (1.31)

where α = 1, 2, 3, 4 and β = 1, ..., 8 are parameters of the correspondent gauge transformations. One

can check the definitions from Appendix A of [92] taking ηi = 1 and sections 16.2 and 21.1 of [86], to

understand what LGhost translates into. Since ghosts don’t couple to matter fields, their contribution

to one-loop corrections of physical processes involving fermions in external lines is zero, thus explaining
208 for SU(3) , 4 for SU(2)× U(1)
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ghosts further than this goes beyond the scope of this work ([88] here one can find a proper treatment of

ghosts). After adding the final two terms, one can check that the Unitary gauge corresponds to ξZ,W −→ ∞

and ξA,G −→ 1. The Goldstone bosons correspondent to massive gauge bosons - φZ and φ± - acquire gauge

dependent masses. The unitary gauge - see [eq. 1.17] - only contains physical particles because having

infinite masses means a decoupling from the theory. The formulation of the SM in a general gauge will

be needed in further parts of this work.

To conclude, one final note regarding the SM. The electroweak sector of the SM has 17 free parameters:

9 fermion masses, 3 quark mixing angles, 1 CP violating phase in the quark sector, 1 Higgs mass, 1 Higgs

vaccum expectation value (v), 1 Weinberg angle (θW ) and 1 SU(2)L gauge coupling (g). This means

that these parameters need to be fitted with experimental data. Thus, the SM doesn’t predict fermion

masses nor gives an explanation to the number of generations of these.21

Furthermore, the SM doesn’t include gravity nor particles that can be dark matter candidates. Also,

it doesn’t explain dark energy. Another concerns are related to CP Violation. There hasn’t been detected

CP violation22 in the strong sector (QCD) while there’s nothing that inhibits it, and the CP Violation

detected in the electroweak sector is not big enough to explain the Matter–antimatter asymmetry we

observe in our universe.

Other, more theoretical, shortcomings of the SM are the hierarchy problem, related to the fine-tuning

that needs to happen in higher order calculations to achieve a Higgs mass near the electroweak scale (v)

and the fact that the gauge couplings don’t unify at high-energy, unlike what happens in some GUT

models. All these drawbacks lead to the belief that the SM is not the final theory of everything (TOE)

but just a low-energy effective theory of it. The SM can be summarized in its Feynman Rules, which can

be found at [92]. In this work, these were used setting all ηi = 1.

21However, one knows that the number of generations of leptons and quarks must be equal in order to cancel gauge
anomalies that appear at one-loop corrections - c.f. Chapter 19 section 19.4 and chapter 20 section ”Anomaly Cancellation”
of [86]

22CP Violation will be discussed in the next chapter.
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Chapter 2

The Leptonic Sector Beyond the Standard

Model

In the literature, there are many models [102] which assume that neutrinos are Dirac Particles1 while

adding more particles and symmetries, giving reasonable explanations to the smallness of neutrino masses.

If one releases the restriction of neutrinos being Dirac particles2, many models are possible, with Majorana

Neutrinos. Some contain extra particles - charged scalars and fermions - and naturally small neutrino

masses due to these being radiatively generated [103, 104, 105, 106, 107].

In this chapter, one will present minimal extensions to the SM, as depicted in chapter 1, which include

neutrino masses, dwell on neutrino oscillations and discuss the state of the art of neutrino physics.

2.1 νSM

On this extension, the only assumption is that neutrinos are Dirac particles. No explanation to the

smallness of neutrino masses is given but unnaturally small Yukawa couplings. No extra fields are added

to the SM but ναR, necessary to generate Dirac mass terms, which translates into adding an extra column

into [Table 1.4]: This changes the SM Lagrangian in the following way:

Table 2.1: Quantum Numbers and Representations of νR

Field ναR
T3 0
Y 0
Q 0

SU(3)c Rep. 1
Lorentz-Poincare Rep. (0,1/2)

1Particles which obey the massive Dirac eq. and are not its own anti-particles. A Dirac particle is equivalent to two
Weyl particles - massless particles which obey the Weyl eq. - c.f. [Table 1.3].

2Neutrinos are Dirac if one creates a symmetry such that the Majorana mass term is forbidden. Without this one is
obliged to write the most general gauge invariant Lagrangian, which should include it.
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LνSM
Fermion =

∑
γ

QγiγµDq
µQ

γ +
∑
α

(
Ψα

Liγ
µDL

µΨ
α
L + lαRiγ

µDR
µ l

α
R + ναRiγ

µDR
µ ν

α
R

)
+
∑
β

(
Υβ

Liγ
µDL

µΥ
β
L + uβRiγ

µDR
µ u

β
R + dβRiγ

µDR
µ d

β
R

)
= LFermion +

∑
α

ναRiγ
µDR

µ ν
α
R ,

(2.1)

LνSM
Y ukawa =−Ψδ

LY
l
δσφl

σ
R −Ψδ

LY
ν
δσφ̃ν

σ
R −Υδ

LY
d
δσφd

σ
R −Υδ

LY
u
δσφ̃u

σ
R + h.c.

= LY ukawa −Ψδ
LY

ν
δσφ̃ν

σ
R − νσRφ̃

†Y ν†
δσ Ψ

δ
L .

(2.2)

One important point is that the changes in LFermion don’t introduce any new interaction because Y ναR = 0

as it is stated in [Table 2.1]. This implies that DR
µ ν

α
R = ∂µν

α
R. This addition introduces their mass terms,

and new interactions in the Yukawa sector - between neutrinos and the Higgs and Goldstone Bosons.

After SSB one can separate LY ukawa into two terms, one with the mass matrices and another with the

interactions between fermions and Higgs and Goldstone Bosons:

LνSM
Y ukawa = LνSM

IntY ukawa + LνSM
MY ukawa . (2.3)

To simplify notation, from now on, the flavor indices will be omitted and the superscript 0 will be added

to interaction states. In other words, ν0L is a column vector Nf × 1 in flavor space. The terms from [eq.

2.3] can be written as:

LνSM
IntY ukawa =− ν0Lφ

+Y ll0R − 1√
2
l0LHY

ll0R − i√
2
l0LφZY

ll0R

− 1√
2
ν0LHY

νν0R +
i√
2
ν0LφZY

νν0R + l0Lφ
−Y νν0R + h.c+ quark terms ,

(2.4)

and

LνSM
MY ukawa = −l0LM

ll0R − ν0LM
νν0R − d0LM

dd0R − u0LM
uu0R + h.c. . (2.5)

Thus, a general Dirac mass matrix is a Nf × Nf matrix and may have N2
f non-zero entries. 3 As one

can observe, there is a mass matrix for up and down quarks as well as for charged leptons and neutrinos.

After one diagonalizes the mass matrix one finds new states - mass states that correspond to the physical

particles.

The diagonalization of a mass matrix cannot be performed in the usual way - with just one diago-

nalizing matrix. One needs a unitary bi-diagonalization (or as mathematicians call it - Singular Value

Decomposition), because one needs to diagonalize a matrix while rotating two different fields 4, thus the

matrices acting on them are, in general, different. Then, one has:

Uν
L
†MνUν

R = mν , U
l
L

†
M lU l

R = ml , (2.6)

where mν and ml are diagonal 3× 3 matrices with positive real entries, which contain the masses of the
3In the SM and in this extension Nf = 3
4One with positive and another with negative chirality - c.f. [eq. 2.5]
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neutrinos and charged leptons, respectively, in the diagonal5. From [eq. 2.5] one notes that we need to

transform the fields in this special way:

νδ0R,L = (Uν
R,L)

δkνkR,L , lδ0R,L = (U l
R,L)

δklkR,L , (2.7)

where the left hand side corresponds to interaction states (δ=e, µ, τ) and the right hand side corresponds

to mass states (k = 1, 2, 3). From now on, latin alphabet indices will be used when one is referring to

mass states.

Notice that ν1, ν2 and ν3 are the real particles, not νe, νµ and ντ , which are interaction states.

Referring to the mass of νe is nonsense6. Thus, an updated version of [fig. 1.1] should contain ν1, ν2
and ν3 and not νe, νµ and ντ , but I kept it that way because listing νe, νµ and ντ in these tables is

the most common practice. For many years the neutrino was thought to be massless, so I would say the

community is still in a transitory stage. After this detour, one proceeds in writing the Lagrangian that

defines the leptonic electroweak currents - the terms that are summed in α in [eq. 2.1] - in terms of the

mass states:

Ll
W = − g√

2

[
W+

µ ν
j
LU

†
jiγ

µliL +W−
µ l

i
LUijγ

µνjL

]
, (2.8)

Ll
A,Z = − g

2 cos θw

[
Zµ(νiLδijγ

µνjL − liLδijγ
µljL)

]
−
[
(
g sin2 θw
cos θw

Zµ + eAµ)(liLδijγ
µljL + liRδijγ

µljR)

]
, (2.9)

where U = UPMNS = U l
L

†
Uν
L

7 is the leptonic mixing matrix and it’s unitary by construction. This

implies that the otherwise diagonal charged interactions become non-diagonal, giving origin to what is

known as mixing. In the quark sector, the mixing matrix is known as VCKM . Neutral currents remain

diagonal, which means that there are no flavor Changing Neutral Currents (FCNC) at tree level in the

SM (in any sector) and in this extension. Beyond tree level they are highly suppressed - c.f. K0
L → µ+µ−

[108]. This is known as the GIM mechanism. The Yukawa Lagrangian [eq. 2.2] can also be written in

terms of mass states, which, in this case, is possible to transform into functions of the fields, physical

masses and the mixing matrices of the leptonic sector8:

LνSM
IntY ukawa =− g√

2mW

νLU
†φ+mllR − g

2mW
lLHmllR − ig

2mW
lLφZmllR

− g

2mW
νLHmννR +

ig

2mW
νLφZmννR +

g√
2mW

lLφ
−UmννR + h.c+ quark terms ,

(2.10)

and

LνSM
MY ukawa = −lLmllR − νLmννR − dLmddR − uLmuuR + h.c. . (2.11)

Usually one defines a basis - a Weak Basis (WB) - that best fits its needs. A WB is a choice of UR,L

(c.f. [eq. 2.7]) in the quark and leptonic sector which leaves the charged current Lagrangian invariant.
5One obtains Uν

R,L through the equation m2
ν = Uν

L
†MνMν†Uν

L = Uν
R

†Mν†MνUν
R. The same applies for the charged

leptons matrices.
6Although it has a meaning in the context of β decay, more on that on section 2.4.
7Named after Pontecorvo, Maki, Nakagawa and Sakata.
8Using Y i v√

2
= M i and mW = gv

2
- [eq. 1.22] .
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These bases need to respect some rules, in order to not spoil Gauge Invariance. This translates into the

existence of invariant quantities, named Weak Basis Invariants [109, 110, 111, 112]. An example of a WB

in the leptonic sector is:

ν′L =WL · νL , ν′R =W ν
R · νR , l′L =WL · lL , l′R =W l

R · lR , (2.12)

where the flavor indices are omitted. Note that one needs to rotate in the same way the negative chiral

fields, with W l
L, because they are part of the same doublet of SU(2)L. Positive chiral fields are singlets of

SU(2)L and, thus, can be rotated independently. For illustration purposes we will choose a basis where

the charged lepton matrix is diagonal, real and positive and UPMNS is the matrix that diagonalizes Mν .

For that one chooses WL = U ′l
L , W l

R = U ′l
R and W ν

R = I3×3. By looking at [eq. 2.5] one notes that the

mass matrices change in this way:

M ′l =WL
†M lW l

R = U ′l
L

†
M lU ′l

R = m′
l , (2.13)

and using [eq. 2.6]:

M ′ν =WL
†MνW ν

R = U ′l
L

†
Mν = U ′l

L

†
Uν
LmνU

ν
R
† , (2.14)

wherem′
l is diagonal. One can make another WB transformation such thatm′

l becomesml - diagonal with

real positive entries while turning M ′ν into a hermitian matrix. This is performed by doing WL = Kl
L,

W l
R = Kl

R, W ν
R = Uν

RU
ν
L
†U l

L where Kl
R and Kl

L are diagonal matrices with only complex phases. Also,

U l
R = U ′l

R ·Kl
R and U l

L = U ′l
L ·Kl

L. The mass matrices change in this way:

M ′′l = Kl
L

†
M ′lKl

R = Kl
L

†
m′

lK
l
R = U l

L

†
M lU l

R = ml , (2.15)

and

M ′′ν = Kl
L

†
M ′νKν

R = U l
L

†
Uν
LmνU

ν
R
†Uν

RU
ν
L
†U l

L = U l
L

†
Uν
LmνU

ν
L
†U l

L = UPMNSmνU
†
PMNS , (2.16)

achieving what was intended - a positive-definite real diagonal ml and an hermitian Mν . When one is in

this basis, the hermitian matrix Mν is diagonalized by the unitary matrix UPMNS . In a general basis,

UPMNS diagonalizes MνMν†.

The quark sector behaves in the same way, one can define a WB where the up quark matrix is diagonal,

real and positive and Md is hermitian, meaning that, in this basis, VCKM = Uu
L
†Ud

L is the matrix that

diagonalizes Md - the down quark mass matrix.

Thus, the following discussion is valid for the quark and leptonic sector, in this extension of the SM.

For this reason, until the end of this section one will use the notation V to refer to UPMNS or VCKM ,

as it serves both purposes. The mixing matrix V is complex but some of its phases have no physical

meaning, due to the fact that one has the freedom to rephase mass eigenstates, u′i = eiφiui, l′i = eiφi li,
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d′j = eiφjdj and ν′j = eiφjνj , transforming the entries of the mixing matrix:

V ′
ij = ei(φj−φi)Vij . (2.17)

Thus, it’s useful to look for rephasing invariants9 such as the quartets:

Qijkl = V ijVklV
∗
ilV

∗
kj , (2.18)

because it can be proved that invariants of higher order can always be written as combinations of quartets

and the moduli.

An important thing to note is that a global rephasing of all the quark and lepton fields,

u′i = eiφui, l
′
i = eiωli, d

′
j = eiφdj , ν

′
j = eiωνj , (2.19)

leaves the total Lagrangian invariant, particularly, the Yukawa Lagrangian [eq. 2.2] and the charged

interactions Lagrangian [eq. 2.1]. This is a global U(1)φ × U(1)ω symmetry of the Lagrangian. Thanks

to Emmy Noether’s Theorem [113] 10, one knows that this leads to two conserved charges, one for the

leptons - Lepton Number L = nl − nl and one for the quarks - Baryon number B = 1
3 (nq − nq)

11.

In the SM there is an extra symmetry. With massless neutrinos one can rephase neutrinos fields freely.

Thus it is possible to perform a transformation:

l′i = eiωi li, ν
′
i = eiωiνj , (2.20)

which leaves the charged interactions part of the Lagrangian of the SM [eq. 1.9] invariant and translates

into an extra SU(1) × SU(1) × SU(1) symmetry, comparing to the νSM one. Again, thanks to Emmy

Noether’s Theorem [113], this results in three conserved charges: Li = ni−ni, the flavor lepton numbers.

The existence of neutrino masses proves that this is not an exact symmetry of nature. The SU(3)c×U(1)Q

local gauge invariance of the SM Lagrangian is also responsible for the conservation of electrical charge

Q and color.

The fact that V is complex, in general, means that CP Violation can exist. Performing a CP trans-

formation is performing a Charge transformation - transforming a particle in its anti-particle12 - followed

by a Parity transformation - flipping the sign of the spatial coordinate13. One can check section 13.2 of

[109] to see how SM fields transform under CP transformations. In this model, neutrinos transform like

the down quarks and charged leptons transform like the up quarks14. Performing a CP transformation to

the SM Lagrangian after SSB, one obtains the condition for CP invariance of the SM (considering only
9Of course the moduli of each entry, |Vij |, is also a rephasing invariant.

10For me, the most important theorem in the history of physics.
11Defined in this way to accommodate the fact that quarks are not asymptotic states. A proton as baryon number 1.
12Note that this changes the sign of all the charges of the field. However, it doesn’t change the chirality. A neutrino with

negative chirality is transformed into a anti-neutrino with negative chirality [114].
13Which translates into changing the chirality of a field, since axial vectors get an extra sign under parity transformations.
14I mean, with the same index, like I implicitly did before [eq. 2.17], such that [eq. 2.21] is valid for both sectors
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VCKM ) and of the νSM (considering also UPMNS):

V ∗
ij = ei(ξW+ξj−ξi)Vij , (2.21)

where ξα are spurious CP phases that arise from the transformation. One can make [eq. 2.21] always

true for a single entry of V , however, if one considers all of the entries, one concludes that this forces all

quartets to be real and, thus, all other rephasing invariants to be real. Direct CP violation stems from the

non-removable phases of VCKM . Another possible approach is considering the Lagrangian before SSB.

Applying the CP transformations in section 14.2 of [109] (which are the same ones as in section 13.2 with

an extra weak basis transformation), one obtains the following conditions for CP invariance:

W †
LY

νW ν
R = Y ν∗ ,W †

LY
lW l

R = Y l∗ , (2.22)

and equivalent ones for the quarks. The existence of matricesWL,W l
R andW ν

R (and the quark equivalents)

that satisfy the above conditions is a necessary and sufficient condition for CP invariance in the νSM.

Thus, one can conclude that Direct CP violation stems from the clash between the Yukawa sector and

the charged currents sector.

Back to the mass basis, it’s important to determine how many physical CP violating phases might exist

in V . Due to the rephasing invariance, for Nf generations (V is Nf × Nf unitary matrix parametrized

by N2
f parameters) one can remove 2Nf − 1 phases, making the total number of parameters (Nf − 1)2.

Nf (Nf − 1)/2 of these parameters will be angles, while (Nf − 1)(Nf − 2)/2 will be phases. If one takes

Nf = 3, one obtains that there is only one phase. This is a CP violating phase, Kobayashi and Maskawa

[115] arrived to the above conclusion, proving that only for Nf ≥ 3 one has CP Violating phases in the

quark sector. The same statement is true for the leptonic sector, in this model. For Nf = 3 the imaginary

part of all quartets are equal, up to a sign [116]. This is known as the Jarlskog rephasing invariant:

J = |Im[Q]| (2.23)

From the unitarity constraints on the entries of V one can define what is known as unitarity triangles -

c.f. section 13.5 and 13.6 of [109]. From these one gets a remarkable geometrical interpretation to J - it

is twice the area of any of the six possible unitarity triangles.

For an extensive treatment of CP Violation one recommends [109, 117]. The standard parametrization

[89] of the mixing matrix is the following:

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.24)

where cij = cos θij , sij = sin θij , and δ is a Dirac-type CP violating phase. This translates into J =

c12c23c
2
13s12s23s13 sin δ.

However, it’s important to note that, for instance, δ is not a rephasing invariant and is only meaningful
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under this parametrization. It is possible to parametrize the mixing matrix using a non optimal number

of parameters but with everyone of them being a rephasing invariant [89]. The current best-fit values for

the quark sector [89] are:

VCKM =


0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012

0.22438± 0.00044 0.97359+0.00010
0.00011 0.04214± 0.00076

0.00896+0.00024
0.00023 0.04133± 0.00074 0.999105± 0.000032

 , (2.25)

and a Jarlskog invariant of J = (3.18 ± 0.15) × 10−5. The current best-fit values for the leptonic sector

are stated in section 2.4.

In spite of the theoretical similarities between Quarks and Dirac neutrinos, there are some major

differences. The unitarity of VCKM is heavily constrained [118], contrarily to the leptonic sector where

sizable deviations from unitarity of the mixing matrix are not ruled out [119].

This difference stems from the fact that there are many hadron decay processes which enable the direct

measurement of individual VCKM entries. However, in the leptonic sector this is not possible. There is

not enough precision to detect neutrino mass states (their mass scale is too small) in leptonic weak decays,

so in each process one can only know the produced interaction state with certainty. Currently, one of the

most reliable ways to get information regarding the mixing matrix are oscillation experiments and, even

in those, one only has access to the first row and the last column of the 3×3 mixing matrix. Furthermore,

what is measured in those cases are combinations of the entries of the mixing matrix, and not individual

entries like in the quark case [119].

To summarize the νSM , the list of of the new Feynman Rules added to the SM is presented at

Appendix A.

2.2 Seesaw Mechanism and Majorana fields

In this section one will add an extra assumption, comparing to the νSM , - neutrinos are Majorana

particles.

Majorana fields are real solutions of the Dirac Equation. The Dirac Equation can be made real by

going to the Majorana Basis, where all nonzero elements of the γ matrices are purely imaginary. Fields

and matrices on the Majorana basis are indicated by the presence of the tilde:

(iγ̃µ∂µ −m)ν̃ = 0 , (2.26)

with this, one can get solutions that satisfy:

ν̃ = ν̃∗ . (2.27)

To transform from the Majorana Basis to other Basis (Dirac or Weyl) one performs a unitary transfor-

mation:

γµ = Uγ̃µU† , ν = Uν̃ (2.28)
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The reality condition [eq. 2.27] in another basis becomes:

U†ν = UT ν∗ ⇔ ν = UUT ν∗

⇔ ν = CνT = νc , ν = νTC = νc ,
(2.29)

where UUT = CγT0 is a unitary matrix since U is also unitary, and C is also a unitary matrix with

properties:

γµC = −CγTµ , (2.30)

derived using properties of γ0, γµ and [eq. 2.28]

C = C∗ = −C−1 = −C† = −CT , (2.31)

derived using the fact that UUT is unitary, the previous property, and properties of γ0,

γ5C = CγT5 , (2.32)

derived using the definition of γ5 and the first property.

νc is a spinor, in the same Lorentz group representation as ν, since it transforms in the same way:

ν′(x′)c = CγT0

(
exp(− i

4
ωµνσµν)

)∗

ν(x)∗ =

(
exp(− i

4
ωµνσµν)

)
ν(x)c , (2.33)

νc also transforms as ν15, which proves that the reality condition in a general basis [eq. 2.29] is Lorentz

invariant. Because of this, and to distinguish it from the C transformation, this transformation is some-

times named Lorentz-covariant conjugate [114]. This ψc satisfies the same Dirac equation with minimal

coupling that ψ satisfies, with the term proportional to the electric charge gaining an extra sign. The C

transformation only changes the sign of all additive quantum numbers and commutes with the chirality

projectors. For a Weyl field, helicity and chirality is the same, and helicity involves spin and momentum -

neither of these changes under a C transformation. However, the Lorentz-covariant conjugate of positive

chiral field is a negative chiral field and vice-versa. CP transformations transform fields in the same

way as the Lorentz-covariant conjugation - apart from some possible complex phases. All of this can be

summarized in the important formula:

(NR,L)
c = PL,RN

c = eiξNNL,R , (2.34)

where the last equality only applies if N is a Majorana field.

Since neutrinos don’t have charge one can write in the Lagrangian new Lorentz-invariant quantities16

that are also gauge invariant: νcν, ννc. If ν was a bosonic field quantities like ννc would automatically

vanish: ννc = νCνT = (νCT νT )T = νCT νT = −νCνT = −ννc. The anti-commutation of the fields
15To prove this one needs the equation CγT

0 σ∗
µν = −σµνCγT

0 that can be derived from the previously stated properties
of C and the definition of σµν = i

2
[γµ, γν ].

16It can be easily seen that he quantity νcνc is just another form of writing νν

24



(fermion fields are Grassmann variables) is needed so that after transposing an extra minus sign is

gained.17

Because Weyl fermions are irreducible representations of the Lorentz-Poincare Group, they can be

used as building blocks of any kind of fermion field. A Dirac field in terms of Weyl fields can be written

as ν = νL + νR, where νL and νR are independent. While a Majorana field in terms of Weyl fields, can

be decomposed as:

ν1 = νL + (νL)
c , ν2 = νR + (νR)

c , (2.35)

where it’s obvious that ν1 and ν2 obey the reality condition [eq. 2.27]. From this one concludes that

if a field has a Majorana character one obtains the double amount of physical fields. However, the two

components of each field are related by conjugation, meaning that the degrees of freedom are the same.

Using chirality projectors, one can define the Weyl fields νR,L = PR,Lν such that:

νν = νLνR + νRνL , ννc + νcν = νLν
c
L + νcLνL + νRν

c
R + νcRνR . (2.36)

These new Lorentz-invariant quantities introduce the possibility of having terms like νcLMLνL+νcRMRνR+

h.c. in the Lagrangian. As long as they are gauge invariant under the chosen gauge group for our model.

In a minimal extension of the SM with 3 Majorana neutrinos, νcLMLνL is not gauge invariant under the

SM gauge group, thus, only the other term remains. Now that notation and definitions are settled, one

is ready to define another extension of the SM - the Seesaw type I SM (SIνSM).

2.2.1 SIνSM

As it was done for νSM, one will study the Lagrangian before SSB, after SSB - in the interaction basis

- and finally after SSB - in the mass basis. The assumption that neutrinos are Majorana brings nothing

new to LFermion in the interaction basis:

LSIνSM
Fermion = LFermion +

∑
α

ναRiγ
µDR

µ ν
α
R = LνSM

Fermion , (2.37)

However, the Yukawa sector suffers a dramatic change - an extra term - a gauge invariant Majorana mass

term 18:

LSIνSM
Y ukawa = LY ukawa−Ψδ

LY
ν
δσφ̃ν

σ
R−νσRφ̃

†Y ν†
δσ Ψ

δ
L−

1

2
νcRMRνR−

1

2
νRM

†
Rν

c
R = LνSM

Y ukawa−
1

2
νcRMRνR−

1

2
νRM

†
Rν

c
R .

(2.38)
17Note that one writes + h.c. to remove redundant information. When writing this part explicitly one doesn’t have to

actually perform the operation and take into account the Grassmann nature of fermion fields. It’s literally the hermitian
conjugate of the part that is written.

18The introduction of this term in the Lagrangian imposes the Majorana nature on the fields ν as proved in pages 295-297
of [109].
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Which, after SSB and using again the definitions LSIνSM
Y ukawa = LSIνSM

IntY ukawa + LSIνSM
MY ukawa:

LSIνSM
IntY ukawa =− νLφ

+Y llR − 1√
2
lLHY

llR − i√
2
lLφZY

llR

− 1√
2
νLHY

ννR +
i√
2
νLφZY

ννR + lLφ
−Y ννR + h.c+ quark terms = LνSM

IntY ukawa ,

(2.39)

and

LSIνSM
MY ukawa =− lLM

llR − νLM
ννR − dLM

ddR − uLM
uuR − 1

2
νcRMRνR + h.c.

= LνSM
MY ukawa −

1

2
νcRMRνR − 1

2
νRM

†
Rν

c
R ,

(2.40)

whereMR is a N×N matrix in flavor space (N is the number of neutrinos with positive chirality added to

the SM, the most natural case would be N = Nf and this choice was already made in the previous section

when defining the νSM). The origin of MR is not fixed. In the literature there are several explanations,

such as the one which claims that this term results from the interaction of a new Goldstone boson related

with lepton number symmetry breaking [120] with neutrinos. The most famous take on this has this term

in its initial Lagrangian, and assumes it has a scale much bigger than the electroweak scale. The heavy

fields νR are integrated out resulting in an effective theory with higher dimensional operators that result

in naturally small mass terms of the type νcLMLνL [83]. This approach will not be taken here, because

one intends to obtain results independently of the scale of MR. The origin of MR, for itself, is a very

interesting topic but is out of the scope of this work. Nevertheless, the results of this work may provide

hints for the origin of such term. From now on, one will assume that this term is not controlled by the

Higgs Mechanism, and thus, can be of a order of magnitude bigger than the vev - v, but not as big as

it is assumed in other works [121, 83] and will perform an exact approach to the study of the physical

repercussions of such term. Before advancing to the identification of the mass states, let us write the

above terms in a Weak Basis where M l is diagonal - WL = U l
L, W l

R = U l
R and W ν

R = I3×3:

LSIνSM
IntY ukawa =− g√

2mW

νLφ
+mllR − g

2mW
lLHmllR − ig

2mW
lLφZmllR

− g

2mW
νLHM

′ννR +
ig

2mW
νLφZM

′ννR +
g√
2mW

lLφ
−M ′ννR + h.c+ quark terms ,

(2.41)

and

LSIνSM
MY ukawa =− lLmllR − νLM

′ννR − 1

2
νcRMRνR + h.c.+ quark terms

= −νRM ′ν†νL − 1

2
νRM

†
Rν

c
R + h.c+ charged− leptons terms+ quark terms

= LSIνSM
MνY ukawa + charged− leptons terms+ quark terms ,

(2.42)

where M ′ν = U l†
LM

ν and the prime will be dropped from now on. To ease the the process of finding the

mass states, one will rewrite the mass terms regarding neutrinos in a way that reveals a generalized mass
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matrix. Using [eq. 2.34] , one can identify:

νcR,L := ν′L,R , (2.43)

which after inversion lead to:

νR,L = Cν′L,R

T
, νR,L = −ν′L,R

T
C−1 . (2.44)

This means that the terms referring to neutrinos in [eq. 2.42 ] can be rewritten as:

LSIνSM
MνY ukawa =ν′TL C−1Mν†νL +

1

2
[ν′TL C−1M†

Rν
′
L] + h.c

=
1

2
[ν′TL C−1Mν†νL + νTLC

−1Mν∗ν′L] +
1

2
[ν′TL C−1M†

Rν
′
L] + h.c ,

(2.45)

where the anti-commutation of νL and ν′L (Grassmann fields) was used. Thus meaning that the neutrino

mass Lagrangian is:

LSIνSM
MνY ukawa =

1

2

(νTL ν′TL

)
C−1

 0 Mν∗

Mν† M†
R

νL
ν′L

+ h.c. , (2.46)

where M† = M∗ =

 0 Mν∗

Mν† M†
R

, and M is the generalized mass matrix. In a basis where the mass

matrix of the charged leptons is already real, diagonal and positive, the matrix V that diagonalizes M

has physical meaning - it’s the generalized leptonic mixing matrix. The diagonalization can be performed

via the unitary transformation19 :

V TM∗V =

d 0

0 dR

 = Diag(m1,m2,m3,M1,M2,M3) = D → V †M = DV T . (2.47)

Parameterizing:

V =

K R

S Z

 , (2.48)

one identifies the new mass states n and N :νL
ν′L

 = V

nL
NL

 =⇒ νδL = KδjnLj +RδjNLj , ν
′δ
L = SδjnLj + ZδjNLj . (2.49)

From here one understands that K is the 3 × 3 mixing matrix, responsible for mixing between the light

mass states. In the previous section, this matrix was unitary, UPMNS , because neutrinos were Dirac

fermions and this corresponded to the full mixing matrix. However, in this case, V is a unitary 6 × 6

matrix which means that K is not necessarily unitary. As previously stated, results from oscillation
19The general mathematical way would be to perform a bi-unitary diagonalization V †MW = D. However, using the fact

that M is symmetric leads to W = V ∗ and one obtains the diagonalization formula obtained in [eq. 2.47] that one could
obtain simply from physical intuition from [eq. 2.46].
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experiments are consistent with an almost unitary K [119]. By unitarity of V this implies Z is also almost

unitary and that both R and S need to be suppressed and of the same order. Coming back to [eq. 2.46],

after diagonalization one has:

LSIνSM
MνY ukawa = −1

2
ncLdnL − 1

2
N c

LdRNL + h.c , (2.50)

using the definition of Majorana fields, one identifies 6 Majorana neutrinos:

n = nL + ncL , N = N c
L +NL . (2.51)

A brief treatment of the effective theory one can extract from here will be given in the next section. After

that one proceeds with a general treatment of the SIνSM.

2.2.2 Effective Treatment

The previously stated effective theory [83] can be obtained from here, in a straightforward way. The key

assumptions are:

MR ∼ dR >> Mν ∼ d , (2.52)

where in most cases Mν has entries of the order of the vev, at most, and MR is assumed to take values of

the order of the GUT scale - 1016 GeV . One can extract several relevant formulas from [eq. 2.47], such

as:

S†MνT = dKT ,K†Mν + S†MR = dST , Z†MνT = dRR
T , R†Mν + Z†MR = dRZ

T (2.53)

From the third equation one gets R =MνZ∗d−1
R , which implies that R is highly suppressed (as it should

be), since Mν << dR. From unitarity one concludes that S also needs to be highly suppressed. Under

these approximations, from the second equation on [eq. 2.53] one obtains:

S† = −K†MνM−1
R , (2.54)

where one set dST to zero because this term is small (d is suppressed while S is also suppressed) comparing

to the other two. Furthermore, in approximation, [eq. 2.49] turns into:

νL ≈ KnL , ν′L = νcR ≈ ZNL → νR ≈ Z∗N c
L (2.55)

So, it can be said there is a decoupling between light and heavy neutrinos, and the heavy neutrinos

are essentially sterile while the reactive neutrinos correspond to the light states. Coming back to [eq.

2.50] and using the definition of Majorana fields, one identifies 3 light Majorana neutrinos, and 3 Heavy

Majorana neutrinos:

n = nL + ncL ≈ K†νL +KT νcL , N = N c
L +NL ≈ ZT νR + Z†νcR , (2.56)
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where it can be seen that the degrees of freedom corresponding to negative chirality were used in the

three light neutrinos and the degrees of freedom corresponding to positive chirality were used in the three

heavy ones. The only missing piece of this effective approach is the promised mass term of the type

νcLMLνL [83], which emerges from the deocoupling of the heavy states. Well, using [eq. 2.54] on the first

equation of [eq. 2.53] one obtains:

d = −K†MνM−1
R MνT (KT )−1 , (2.57)

where one can identify an effective mass matrixMeff = −MνM−1
R MνT that is naturally small due to the

suppression given by M−1
R . This is a feature of the Seesaw mechanism, since it explains the small masses

of the neutrinos comparing to the other fermions of the SM. Under this approximation it is safe to take

K and Z as unitary since their deviations from unitarity are proportional to RR† ∼ SS† ∼ (MνM−1
R )2.

Thus, [eq. 2.57] turns into:

d = K†MeffK
∗ = KTM†

effK , (2.58)

which is just a bi-diagonalization equation of a symmetric matrix like in [eq. 2.47]. The fact that d is

a diagonal matrix with positive entries was used in the second equality. Using this on [eq. 2.50] while

using [eq. 2.55] one obtains the expected mass term in the low energy effective part of the Lagrangian,

if one recognizes ML =M†
eff :

LSIνSM
MνY ukawaeff = −1

2
ncLK

TM†
effKnL + h.c = −1

2
νcLM

†
effνL + h.c , (2.59)

which is naturally small according to ’t Hooft naturalness criterion [122] - if one sets ML to zero one

recovers lepton number conservation and active neutrinos are massless.

It is also interesting to discuss CP Violation in this effective theory due to its similarities with the νSM

case and its difference due to the fact that one is now assuming that neutrinos are Majorana particles.

Since, under this approximation, K is unitary, one would naively conclude that K would correspond to

UPMNS . However, due to the effective mass term on [eq. 2.59], neutrino rephasings are not allowed

because the effective Lagrangian is not invariant to such transformations. Thus, one can only remove Nf

phases, due to charged leptons rephasing, which results in:

K ≈ UPMNS · F , (2.60)

where UPMNS is defined on [eq. 2.24] and F = Diag(1, eiα1 , eiα2). Of course that this UPMNS is not

the same as in [eq. 2.16. From now on, one uses a more general definition for UPMNS , as the unitary

part of the light neutrino mixing matrix, with only one phase. This way both mathematical definitions

[eq. 2.16] and [eq. 2.58] are consistent with this definition and can be compared with oscillations data.

The total number of phases is now 3 because Nph = N2
f −Nf − Nf (Nf−1)

2 =
Nf (Nf−1)

2 . These two extra

phases are known as Majorana Phases.
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The novelty of this model, concerning rephasing invariants, are the new ones, comparing to the νSM:

Dij
k = KkiK

∗
kj , (2.61)

which stem from the fact that neutrino rephasings are not allowed. One can also construct new unitarity

triangles from these rephasing invariants - Majorana Unitarity triangles, which share the same property

as Dirac-type ones - their area is equal to half of the Jarlskog invariant [eq. 2.23]. Note that Majorana

phases always cancel in the quartets, and thus CP violation can be divided in two types: Dirac type and

Majorana type. The equivalent of the Jarlskog rephasing invariant for Majorana type CP Violation is:

Sij
k = Im|KkiK

∗
kj | , (2.62)

where it can be proved that only two are independent and are proportional to α1 and α2. Majorana type

CP Violation would occur if J = 0 and one of the Sk was different from zero. The conditions for CP

invariance translate into:

K∗
ij = Kijρj , (2.63)

where ρj = −iηCP (νj) = ±1 and ηCP (νj) = ±i is the CP parity of the neutrino νj 20. Differently from

the case of Dirac fermions, here CP is conserved not only if K is real but also if the entries of K are either

real or purely imaginary. For a general review on CP Violation in the Leptonic sector one recommends

[123, 124].

2.2.3 Exact Treatment

Returning to the Exact treatment, one proceeds where one left off, after the identification of the mass

states on [eq. 2.50]. From [eq. 2.49]] one obtains a useful equation:

νR = S∗ncL + Z∗N c
L . (2.64)

First, it’s important to confirm the consistency in terms of degrees of freedom. The equivalent of [eq.

2.56] in the exact treatment is:

n = nL +ncL = K†νL +R†νcR +KT νcL +RT νR , N = N c
L +NL = ST νcL +ZT νR +S†νL +Z†νcR , (2.65)

where [eq. 2.49] was used. Differently from the effective approach, both neutrino mass states have

contributions from the degrees of freedom corresponding to negative chirality and positive chirality.

However, since one knows from experiment and unitarity constraints that K and Z are almost unitary,

one concludes that light neutrino states are essentially composed of the negative chiral fields in the
20CP parities are quantities defined in the case of CP invariance. In that case Meff is real and is diagonalized by a real

orthogonal matrix O (δ = 0 by this). However, all the eingenvalues mi might not be real, but one can choose a basis where
m1 is always real and positive and only m2 and m3 can be negative. In that case, the diagonalizing matrix is K = OU ,
where U is a diagonal matrix with i′s on the lines that correspond to a negative eigenvalues mi (i 6= 1) and 1’s on the
rest. U contains the Majorana phases. After this all mass eigenvalues are real and positive and CP is conserved since the
Majorana phases can only be 0 or π.
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interaction basis while the heavy states are essentially composed of positive chiral fields in interaction

basis. Rewriting the whole Lagrangian in terms of the mass states [eq. 2.50], [eq. 2.41] transforms into:

LSIνSM
IntY ukawa =− g√

2mW

(nLK
† +NLR

†)φ+mllR − g

2mW
lLHmllR − ig

2mW
lLφZmllR

− g

2mW
(nLK

† +NLR
†)HMν(S∗(nL)

c + Z∗(NL)
c)

+
ig

2mW
(nLK

† +NLR
†)φZM

ν(S∗(nL)
c + Z∗(NL)

c)

+
g√
2mW

lLφ
−Mν(S∗(nL)

c + Z∗(NL)
c) + h.c+ quark terms ,

(2.66)

where [Eqs. 2.50], 2.64] were used and Mν is the neutrino Dirac mass matrix in the basis where the

charged lepton Dirac mass matrix is diagonal (same meaning as in [eq. 2.41]). The neutrino diagonal

mass terms are given in [eq. 2.50] and the leptonic part of [eq. 2.37] transforms into:

Ll
W = − g√

2

[
W+

µ (niLK
†
ik +N i

LR
†
ik)γ

µlkL +W−
µ l

k
Lγ

µ(Kkjn
j
L +RkjN

j
L)
]
, (2.67)

and

Ll
A,Z = − g

2 cos θw

[
Zµ

(
(niLK

†
ik +N i

LR
†
ik)γ

µ(Kkjn
j
L +RkjN

j
L)− liLδijγ

µljL

)]
−[(

g sin2 θw
cos θw

Zµ + eAµ

)
(liLδijγ

µljL + liRδijγ
µljR)

]
,

(2.68)

which should be compared with [Es. 2.8, 2.9]. It’s important to note that the terms from Ll
W can be

rewritten as:

W−
µ l

k
Lγ

µKkjn
j
L =W−

µ l
kγµPLKkjn

j =W−
µ l

kKkjγ
µPLCnj

T
= −W−

µ Kkj(l
k)c

T
C−1γµPLCnj

T

=W−
µ n

jKkjC(γ
µPL)

TC−1(lk)c = −W−
µ Kkjnj(PLγ

µ)(lk)c ,
(2.69)

where the commutation relations between γµ and γ5, the properties of the C matrix, [eq. 2.29] for n

, [eq. B.1] and the anti-commutation of fermion fields were used - a transposition in spinor space was

performed. A term like this explicitly violates lepton number and is useful when dealing with Dirac

fermion number violating processes like W+ + W+ → e+ + e+. When dealing with processes that

conserve Dirac fermion number one does not need to care about such term. Note that for Dirac neutrinos

this term is impossible - the second equality is false in that case. When discussing the Feynman rules

of this model a clarification about this will be given. Note that the same transformation can be made

to the Yukawa terms that concern charged leptons, neutrinos and charged Goldstone bosons and to

neutrino-neutrino terms. Naturally, neutrino-neutrino terms yield a trivial equality do to their Majorana

Character21. However, for charged Yukawa terms, the Dirac space part of the vertex is proportional to

C(PL,R)
TC−1 = PL,R, thus, no minus sign.

Along with this, a large number of new interactions appears in this model, and one of the most notice-

able are the flavor Changing Neutral Currents (FCNC) of the light states, that are naturally suppressed,
21This proves that processes only involving Majorana particles are not a test of lepton number conservation.

31



as they should be, because they’re proportional to the deviations of unitarity of K. Furthermore, there are

new interactions between the light and heavy states, and also between heavy states and charged leptons.

This generates new exotic decays (like N →Wl), possible at high energy. It’s possible that these decays

are not CP invariant 22, this would be a source of CP Violation known as indirect CP Violation. In the

leptonic sector, CP Violation in the decay is usually understood to be CP Violation at High Energies

because only heavy states can decay23.

If this kind of CP violation happened in the early universe, an interesting thing could have happened.

To achieve this, one should consider the symmetric phase, before SSB, where all particles are massless

but the neutrino states with positive chirality, with Yukawa Lagrangian given in [eq. 2.38]. In this epoch

one identifies the heavy neutrino mass states Nj = WT νR, where dR = WTMRW = Diag(M1,M2,M3)

and W is a unitary matrix, since MR is complex symmetric24. The relevant interactions are given in

[eq. 2.39] making the changes φ± → G±, H√
2
→ G0 and Y ν → U l†

L · Y ν ·W = Y ′ν . One works on a

weak basis where besides a diagonal MR one would have a diagonal M l (if it existed), such that there is

a connection between this Yukawa matrix and the one in the generalized mass matrix of the SIνSM. In

this phase, when the temperature of the universe reaches the order the mass of these positive chirality

neutrinos (assumed to be very heavy), these can decay and produce a CP asymmetry εj . The asymmetry

is not washed out because their decay happens out-of-equilibrium25 [125], yielding a CP asymmetry that

generates Leptogenesis that can be converted in Baryogenesis with the B + L violation contained in

the SM, and generate the observed asymmetry between matter and anti-matter [126]. This is known as

thermal Leptogenesis [124]. The CP asymmetry is defined as [126]:

εj =
Γ(Nj → φ̃Ψ)− Γ(Nj → φ̃†Ψ)

Γ(Nj → φ̃Ψ) + Γ(Nj → φ̃†Ψ)
, (2.70)

where Γ(Nj → φ̃Ψ) =
∑

i

[
Γ(Nj → G0νi + Γ(Nj → G−li)

]
and Γ(Nj → φ̃†Ψ) =

∑
i

[
Γ(Nj → G0∗νi) + Γ(Nj → G+li)

]
.

At tree level, Γ(Nj → φ̃Ψ) and Γ(Nj → φ̃†Ψ) have the same value:

Γ(Nj → φ̃Ψ) =
∑
i

Y ′ν
ji Y

′ν∗
ij

16π
Mj =

(Y ′νY ′ν†)jj
16π

Mj =
(Y νY ν†)jj

16π
Mj , (2.71)

because there is only one possible diagram for each case. Note that Y ′νY ′ν† = U l†
L Y

νWW †Y ν†U l
L =

U l†
L Y

νY ν†U l
L ≡ Y νY ν†26, since W is unitary. Thus, εtreej = 0. To achieve a non-zero value one has

to go to at least one-loop order, where the interference of the tree level contribution and the one-loop
22One decay is more likely than its CP conjugate. This is only possible when there is more than one diagram for the

decay, since the CP violation stems from the interference between them.
23Light states, due to their mass scale, are kinematically forbidden to decay to other SM particles.
24C.f. Takagi Factorization.
25For a reaction to be considered out-of equilibrium, its rate in one direction (N → lG) must be bigger than the other

lG → N). When the temperature of the universe drops below a certain value, N decays much more than it is produced via
the inverse reaction, and the produced asymmetry is not washed out.

26In the last equality we made the redefinition U l†
L Y ν → Y ν , since this quantity coincides with the Y ′ν in [eq. 2.41], and

the prime was dropped from that point on: no prime in [eq. 2.66 although it is the same quantity.] but with the prime
dropped.
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corrections in the decay width can generate it [127]. At one-loop level:

εj =
1

8π(Y νY ν†)jj

∑
i6=j

Mi

Mj

(1 + M2
i

M2
j

)
· Log

 M2
i

M2
j

1 +
M2

i

M2
j

+
2− M2

i

M2
j

1− M2
i

M2
j

 Im[(Y νY ν†)2ji]

 , (2.72)

as stated in [127]. Considering highly hierarchical positive chirality neutrinos - M2
i

M2
j
>> 1 - yields the

famous result of the produced asymmetry in the decay of the lightest heavy neutrino:

ε1 ≈ − 3

16π

∑
i 6=1

M1

Mi

Im[(Y ′νY ′ν†)21i]

(Y ′νY ′ν†)11
, (2.73)

as in refs [126, 124]. To achieve the observed baryon asymmetry, YB ∼ 10−11, the CP asymmetry

must be around ε1 ∼ 10−6, for thermal Leptogenesis. However, thermal Leptogenesis is based on the

assumption that heavy neutrinos are efficiently generated by thermal scatterings during the reheating

stage after inflation. In the scenario in which the heavy neutrinos are hierarchical in mass, successful

Leptogenesis requires a specific range of mass for the lightest heavy neutrino [124, 128]. In the resonant

Leptogenesis scenario [129] this tension may be avoided: if the heavy neutrinos are nearly degenerate in

mass, self-energy contributions to the CP asymmetries may be resonantly enhanced, thus making thermal

Leptogenesis viable at temperatures as low as the TeV.

Furthermore, one can observe that this CP asymmetry is not necessarily related to the CP violating

phases of the mixing matrix, since one can obtain a non-zero εj if only Y νY ν† has non-real entries, i.e,

non-removable phases, in a weak basis whereMR is diagonal. For more on Leptogenesis, one recommends

[121, 124, 130, 131, 132].

The other kind of CP violation, related with the phases of the mixing matrix, is known as direct

CP violation or low energy CP violation, since the CP violating phases reveal themselves in low energy

processes. In the exact treatment of Seesaw type I models, K assumes a different form and has new CP

violating sources:

K = UPMNS · F ·HR , (2.74)

using the polar decomposition theorem27, UPMNS ·F parametrizes the unitary part while H is hermitian

and parametrizes the deviations of unitary of K. In this scenario, K has a total of 18 parameters (9

from the unitary part and 9 from the hermitian part), however due to charged lepton rephasings one can

remove 3 phases from K, that can be chosen to be removed from the unitary part, getting K as in [eq.

2.74] with a total of 15 parameters. The rephasing invariants are the same as in the effective treatment,

but their actual values are not the same and they might be a function of the phases of H, which are also

CP violating phases [133]. For instance, in the effective treatment S23
1 is given by:

S23eff
1 = Im|c13s12s13ei(δ+φ1−φ2)| = |c13s12s13 sin (δ + φ1 − φ2)| , (2.75)

27Any general invertible matrix M can be decomposed in M = U ·H, where U is unitary and H is hermitian
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but if one parametrizes H as:

HR =


h1 aeiθ1 beiθ2

ae−iθ1 h2 ceiθ3

be−iθ2 ce−iθ3 h3

 , (2.76)

where a, b, c, h1, h2, h3, θ1, θ2, θ3 are reals, one gets:

S23
1 =Im|(a · c12c13eiθ1 + c · s13ei(α2−α3−δ) + c13 · h2eiα1s12)(b · c12e−iθ2c13 + c · e−i(α1+θ3)s12c13 + h3 · ei(δ−α2)s13)|

= |a · b · c212c213 sin (θ1 − θ2)− a · c · c12c213s12 sin (α1 − θ1 + θ3)

+ a · c12c13h3s13 sin (δ − α2 + θ1)− b · c · c12c13s13 sin (δ − α2 + θ2 + θ3) + b · c12c213 · h2 · s12 sin (α1 − θ2)

− c2 · c13s12s13 sin (δ + α1 − α2 + 2θ3)− c · c213 · h2 · s212 sin (θ3)− c · h3s213 sin (θ3)

+ c13 · h2 · h3 · s12s13 sin (δ + α1 − α2)| ,

(2.77)

which is pretty different from [eq. 2.75] and reveals θ1, θ2, θ3 as possible CP violating phases. These

phases may alter the value of the Dirac phase δ one obtains when fitting oscillations experimental data

to the effective model [134].

To summarize this model, the extra Feynman Rules one needs to add to the SM are given at Appendix

B.

2.3 Neutrino Oscillations in Vacuum and Matter

In this section one will cover neutrino oscillations in vacuum and in matter. The framework used will

be the effective treatment of Seesaw type I, which gives the same results as using the νSM, since the

Majorana phases cancel in all observables. In the end, the consequences of using the exact treatment

instead of the aforementioned one will be discussed.

Neutrino Oscillations are a quantum mechanical phenomenon that happens due to non-zero neutrino

masses and mixing and the small mass difference between mass states. Our current experiments don’t have

the sensitivity to distinguish between mass states. We can only know with certainty, which interaction

state (linear combination of mass states) they were in when its charged lepton counterpart is detected.

If one defines the ”neutrino state of flavor α” as the neutrino that is created or detected together with

a charged lepton lα in a leptonic W+ 28 decay, one can use [eq. 2.8] with the change U → K to express

it as a coherent sum of mass states:

|να >=
∑
i

K†
iα|νi >=

∑
i

K∗
αi|νi > , (2.78)

where K is defined in [eq. 2.60]. If immediately after this, the να interacts, the probability of producing
28W+ → lα + να
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a lβ is proportional to:

< νβ |να >=
∑
j

∑
i

< νj |KβjK
∗
αi|νi >=

∑
j

∑
i

< νj |δijKβiK
∗
αi|νi >=

∑
i

KβiK
∗
αi = δβα , (2.79)

where the orthonormality of mass states and the unitarity of K were used. However, if before interacting,

they propagate during a time t and a distance L, this probability changes dramatically. One can invert

[eq. 2.78], obtaining:

|νi >=
∑
α

Kαi|να > , (2.80)

Since the massive neutrino states [eq. 2.80] have definite mass and energy, they evolve in time as plane

waves, solutions of the time-independent Schrodinger equation.

i
∂

∂t
|νi(t) >= H|νi(t) >= Ei|νi(t) >→ |νi(t) >= e−iEit|νi > , (2.81)

where H is the Hamiltonian operator and |νi >= |νi(t = 0) >. Using this and [Eqs. 2.78, 2.80] one

obtains the time evolution of the flavor state α:

|να(t) >=
∑
i

K∗
αie

−iEit|νi >=
∑
β

(∑
i

K∗
αie

−iEitKβi

)
|νβ > (2.82)

which shows that if the mixing matrix K is not the identity matrix, for t > 0 να is a superposition of

different flavors. The quantity in parentheses in [eq. 2.82) is the amplitude of the transition να → νβ

at time t after the production of να, whose squared absolute value gives the probability of the transition

να → νβ :

Pνα→νβ
(t) = | < νβ |να(t) > |2 = |

∑
i

K∗
αie

−iEitKβi|2 =
∑
i

∑
j

K∗
αiKβiKαjK

∗
βje

−i(Ei−Ej)t , (2.83)

where one can note that this is independent of the Majorana phases, as previously stated, since this is

proportional to the quartet Qαjβi. One can see that Pνα→νβ
(t) depends on the energy differences Ei−Ej

. In the standard approach to neutrino oscillations it is assumed that all massive neutrinos have the same

momentum p, i.e. detectable neutrinos are ultra-relativistic:

Ei =
√
p2 +m2

i ≈ E +
m2

i

2E
→ Ei − Ej =

∆m2
ij

2E
, (2.84)

where E ≡ |p| is the energy of a massless neutrino, and ∆m2
ij = m2

i −m2
j . Under the ultra-relativistic

neutrino approximation, it is safe to assume that the time of propagation T is given by the distance

propagated:

T ≈ L , (2.85)
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in natural units. This way one can rewrite Pνα→νβ
(t) only in terms of known or measurable quantities:

Pνα→νβ
(L) =

∑
i

∑
j

K∗
αiKβiKαjK

∗
βje

−i

(
∆m2

ij
2E

)
L
= δαβ − 4

∑
i>j

Re
(
K∗

αiKβiKαjK
∗
βj

)
sin2

(
∆m2

ij · L
4E

)

+ 2
∑
i>j

Im
(
K∗

αiKβiKαjK
∗
βj

)
sin

(
∆m2

ij · L
2E

)
.

(2.86)

[eq. 2.86] is valid for any unitary n × n mixing matrix, with n neutrino species. For n = 3 using

the parametrization given in [eq. 2.24] for K, and ignoring the Majorana phases, one can rewrite it

only in terms of the Euler angles θij and the Dirac CP Violating phase δ. Note that the term ∝

Im
(
K∗

αiKβiKαjK
∗
βj

)
is proportional to the Jarlskog rephasing invariant J which is a function of Dirac

CP Violating phase δ. This term explicitly violates CP, and this statement becomes obvious when one

analyzes the probability Pνα→νβ
:

Pνα→νβ
(L) =

∑
i

∑
j

KαiK
∗
βiK

∗
αjKβje

−i

(
∆m2

ij
2E

)
L
= δαβ − 4

∑
i>j

Re
(
K∗

αiKβiKαjK
∗
βj

)
sin2

(
∆m2

ij · L
4E

)

− 2
∑
i>j

Im
(
K∗

αiKβiKαjK
∗
βj

)
sin

(
∆m2

ij · L
2E

)
.

(2.87)

On the determination of these formulas, three main assumptions were used:

1. Neutrinos produced or detected in charged-current weak interaction processes are described by the

flavor states in [eq. 2.78].

2. Massive neutrino states |νi > have the same momentum Ei = E +
m2

i

2E

3. The propagation time is equal to the distance L traveled by the neutrino between production and

detection (in natural units).

The validity of these assumptions and how they yield the correct result independently of that is discussed

in refs [135, 136].

These formulas were derived assuming the medium of propagation was the vacuum. However, we know

that the neutrinos we detect could have crossed several km of the Earth, of the universe, and in the case

of solar neutrinos, several km inside the sun. The probability that a neutrino of energy E ∼ MeV gets

scattered while crossing the earth is very low. Still, the presence of matter can significantly affect neutrino

propagation [65, 64, 63]. Effects due to propagation in a medium are not unheard of in Physics. The most

popular one must be the propagation of light in a medium, which reduces its phase speed significantly

vp = c
n , where n is the index of refraction of the medium. These effects can be very important in the

designing of experiments - the refraction of light in a medium introduced a new way of detecting highly

energetic particles, using the Cherenkov effect, used, for instance, in the Super-Kamiokande neutrino

experiment.
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To derive the matter-effects one needs to understand the effective matter Hamiltonian. First, one

should derive the vacuum one, H0. From [eq. 2.81] and using [eq. 2.80], one obtains:

Hν
0 αβ = K∗

αiEiδijKβj =
1

2E
K∗

αiDiag(m
2
i )δijKβj , (2.88)

where [eq. 2.84] was used, dropping the linear term on E since it gives rise to an overall phase factor,

common to all the flavor states and thus irrelevant for oscillations. For anti-neutrinos one has:

Hν
0 αβ = KαiEiδijK

∗
βj =

1

2E
KαiDiag(m

2
i )δijK

∗
βj . (2.89)

In the case there are 3 + p light neutrino states, K, and consequently, H, is a (3 + p) × (3 + p) flavor

matrix, with K having deviations from unitary. The interaction that generates the matter effects is the

electron - electron neutrino scattering, since normal matter is essentially composed of nuclei and non-

relativistic and non-polarized electrons and no positrons. For low energies - below the W boson mass -

this interaction is described, in an effective way, as a Fermi Interaction, by the Hamiltonian density:

Hν
m =

4GF√
2
νeγαPLeeγ

αPLνe = −Hν
m , (2.90)

where GF =
√
2
8

g2

m2
W
. From this, one understands that the the total effective Hamiltonian has a matrix

representation in flavor space with previously known and new CP violating terms due to the differences

between Hν
0 αβ and Hν

0 αβ , and Hν
eff and Hν

eff , respectively. Scattering of ν on electrons and quarks

mediated by the Z boson is flavor blind, and therefore does not affect flavor transitions between active

neutrinos.

The total effective Hamiltonian is given by:

Hν
eff = Hν

0 +Hν
m , (2.91)

where 29

Hν
mαβ =< Hν

m >=
√
2GFNe(x)δα1δ1β = −Hν

mαβ , (2.92)

where to achieve this result one has to integrate over the space coordinates, to go from Hamiltonian density

to Hamiltonian, and to calculate the matrix element of that for an initial and final state described by

a single electron neutrino, localized around x0 = x , and a large number of electrons almost at rest,

localized in the neighbouring positions - this is a realistic description of a neutrino propagating in the

matter of the Sun or of the Earth. These two operations are what is meant by < Hν
m >. The result

is naturally dependent on the number density Ne(x, t) = e†e, since for a non-relativistic scenario only

the time component of eγαPLe is not negligible, as the other terms are proportional to the current, or

polarization, and those are suppressed β = v
c << 1. Note that the existence of more than 3 light neutrino

states does not alter the matter effects.
29It’s necessary to use a Fierz identity to transform [eq. 2.90] into a more useful representation: Hν

m =
4GF√

2
νeγαPLνeeγ

αPLe
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To obtain the propagation states one has to diagonalize [eq. 2.91]. For the vacuum case, the diago-

nalizing matrix is the leptonic mixing matrix K, as it is clear on [eq. 2.88]. For the matter dependent

case, the diagonalizing matrix will contain effective oscillation parameters that depend on the neutrino

energy, and of course on the matter density. The effect is thus controlled by the parameter Ne(x). It can

be considered constant (Earth’s mantle) and it can vary with position (Sun’s interior). Both scenarios

have an analytical solution, under certain assumptions.

An interesting matter effect is resonance and can happen in the first case - constant Ne(x). For solar

neutrinos (neutrinos that are produced as electron neutrinos) considering only two flavors is enough 30,

since νe = cos θ12 cos θ13ν1 + sin θ12 cos θ13ν2 + sin θ13e
−iδν3 but cos θ13 ≈ 1.

Assuming a unitary mixing matrix, one has:

Hν
eff =

1

2E

m2
1 +m2

2

2

1 0

0 1

+
∆m2

2

− cos 2θ sin 2θ

sin 2θ cos 2θ

+
√
2GFNe

1 0

0 0

 , (2.93)

where ∆m2 = m2
2 −m2

1 and θ is the mixing angle since K =
(
cos θ sin θ − sin θ cos θ

)
. This Hamil-

tonian can be transformed into a much simpler version, using the fact that adding a constant will add

a global factor that will be the same for all flavors. Thus, not contributing to oscillations. Subtracting
Tr(Hν

eff )

2 on [eq. 2.93], one gets:

H ′ν
eff = Hν

eff − 1

2
Tr(Hν

eff ) =

√
2GFNe

2 − cos 2θ∆m2

4E sin 2θ∆m2

4E

sin 2θ∆m2

4E cos 2θ∆m2

4E −
√
2GFNe

2

 . (2.94)

From here one obtains the equivalence equations for the new effective parameters:

cos 2θ
∆m2

4E
−

√
2GFNe

2
= cos 2θm

∆m2
m

4E
, sin 2θ

∆m2

4E
= sin 2θm

∆m2
m

4E
, (2.95)

with solutions:

tan 2θm =
sin 2θ

cos 2θ − 2
√
2GFNeE
∆m2

, ∆m2
m = ∆m2 ·


√√√√sin2 2θ +

(
cos 2θ − 2

√
2GFNeE

∆m2

)2
 (2.96)

The resonance happens when θm = π
4 or, in other terms, when:

cos 2θ =
2
√
2GFNeE

∆m2
, (2.97)

which can always be satisfied for any Ne and ∆m2, provided that cos 2θ has the same sign as ∆m2 , since

E is a continuous parameter. The 2 flavor equivalent of [eq. 2.86] is:

Pνα→νβ
(L) = sin2 2θ sin2

∆m2L

4E
,α 6= β (2.98)

30It’s much simpler than considering 3 and it’s illustrative of the effect.
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Making the transformation θ → θm and ∆m2 → ∆m2
m one obtains the probability for the matter case.

It’s maximum occurs for θm = π
4 , which is the meaning of resonance. The resonance occurs for a certain

value of energy:

ESI
ν =

∆m2

2
√
2GFNe

cos 2θ
c4

(~c)3
, (2.99)

where to obtain a numerical value one is advised to use the useful relations (~c) = 197 MeV · fm and
31 Ne = 0.5×ρ

mp
, with mp ≈ 938 MeV/c2, the mass of the proton. As for ∆m2 and θ, for solar neutrinos

one should use the ”12” subscript data given in [Table 2.2]. Under the approximation that the whole

sun has a constant density and that it has its core value (ρ ≈ 100 g cm−3), the resonance energy is

Eν ∼ 1MeV . This is a crude approximation for the density, however it allows to take some conclusions

about the general behaviour of matter effects for solar neutrinos. For low energy neutrinos θm ≈ θ, there

is no matter effect. For neutrinos with energy given by [eq. 2.99], the probability of transition between

flavors is maximal. For energies above that, θm comes closer and closer to π/2, which means that highly

energetic electron neutrinos are essentially in the ν2m mass state since:

νe = cos θmν1m + sin θmν2m , (2.100)

and that transitions from νe to νµ are now impossible - c.f. [eq. 2.98] with θm = π/2. However, if the

neutrinos are detected at night this means that they crossed the Earth, and a new study of propagation

would have to be made, taking this νe state essentially composed of ν2m as the initial state.

This approximation of constant matter density is decent only for the Earth’s mantle, and thus useful

for atmospheric neutrinos and solar neutrinos detected at night. Of course that for atmospheric neutrinos

(mostly produced as muon neutrinos) the two flavor approximation would be wrong, unless one defines

one of the states as a combination of the other two.

To consider solar neutrinos in a realistic way, one would have to consider the spatial variation of

Ne inside the sun. This would also translate into a time dependence, since neutrinos are propagating,

and that Schrodinger’s equation would have to be solved instantaneously - allowing transitions between

the mass states. However one can remove this time dependence if one claims that the density changes

slow enough such that the system has time to adjust to the change. This is the case since the energy

splitting between mass states is very small. Thus, the system is adiabatic. Thus, highly energetic electron

neutrinos, produced above the energy given by [eq. 2.99] with θm ≈ π/2, will remains in that eigenstate

(|ν2m >) during all the adiabatic evolution. As the density drops to nearly zero when the neutrino leaves

the sun, the state |ν2m > becomes the vacuum state |ν2 > and the probability of detecting a highly

energetic νe on Earth is:

Pee = | < νe|ν(t) > |2 ≈ | < νe|ν2m(t) > |2 = | < νe|ν2 > |2 ≈ sin2 θ , (2.101)
31Since the neutron has approximately the same mass as the proton and the mass of the electron is negligible comparing

to it, ρ
mp

gives one the number of nucleons per unit volume. It’s necessary to divide by 2 to obtain the number of electrons
per unit volume, as most stable matter has the same number of protons, neutrons and electrons.
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which should be compared with the vacuum value, after averaging over the oscillation factor ∝ ∆m2:

P vac
ee = 1− 1

2
sin2 2θ . (2.102)

This is known as the MSW (Mikheyev–Smirnov–Wolfenstein) effect and solved the solar neutrino problem.

For a more detailed treatment one should read, besides the seminal papers [65, 64, 63], modern reviews

such as [137, 138, 139].

Now that the importance of matter effects on oscillations is clarified, it is also interesting to describe

the effects of a non-unitary mixing matrix on the probability of flavor oscillations. For a non-unitary K

the generalization of equation [eq. 2.86] is [140, 133, 141]:

Pνα→νβ
(L) =

1

(KK†)αα(KK†)ββ

∑
i

∑
j

K∗
αiKβiKαjK

∗
βje

−i

(
∆m2

ij
2E

)
L

=
1

(KK†)αα(KK†)ββ

|(KK†)αβ |2 − 4
∑
i>j

Re
(
K∗

αiKβiKαjK
∗
βj

)
sin2

(
∆m2

ij · L
4E

)
+

1

(KK†)αα(KK†)ββ

2∑
i>j

Im
(
K∗

αiKβiKαjK
∗
βj

)
sin

(
∆m2

ij · L
2E

) .

(2.103)

Confronting this with the unitary case, the two differences are noticeable. δαβ turns into |(KK†)αβ |2 and

there’s a overall factor of 1
(KK†)αα(KK†)ββ

. The first one would obviously exist, but the reasoning for the

second difference is not so trivial. It is a normalization factor and stems from the following relation:

P (W → lα + να) =
∑
i

P (W → lα + νi) =1 = N2
∑
i

|K∗
αi|2 = N2

∑
i

KαiK
†
iα = N2(KK†)αα ,

→ N =
1√

(KK†)αα
.

(2.104)

This means that, when the mixing matrix is not unitary, [eq. 2.83] should take into account this normal-

ization factor:

Pνα→νβ
(t) = | < νβ |να(t) > |2 =

∣∣∣∣∣∣
∑
i

K∗
αie

−iEitKβi√
(KK†)αα

√
(KK†)ββ

∣∣∣∣∣∣
2

=
∑
i

∑
j

K∗
αiKβiKαjK

∗
βje

−i(Ei−Ej)t

(KK†)αα(KK†)ββ
,

(2.105)

and this leads to [eq. 2.103]. For oscillations in matter with deviations from unitarity the same procedure

should be followed - taking into account the normalization factor. Doing this one obtains a similar set of

equations for the probability of oscillation between flavors, with the difference that K is now the matrix

that diagonalizes the effective matter Hamiltonian [140].

Although the effects of deviations from unitarity are very small, they are detectable. A fundamental

quantity for these tests is the zero-distance term:

Pνα→νβ
(L = 0) =

1

(KK†)αα(KK†)ββ

[
|(KK†)αβ |2

]
, α 6= β . (2.106)
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Note that if there are deviations from unitary the probability is non-zero, contrarily to what happens

when the mixing matrix is unitary. This translates into a physical effect: a flavor transition already at

the source before oscillations can take place. This can be tested in nuclear neutrinos near detectors.

2.4 State of the Art of Neutrino Physics

Although deviations from unitarity of the leptonic mixing matrix might be a reality, the current paradigm

on the interpretation of neutrino oscillation data is to assume that neutrinos are Majorana, the heavy

states have a much bigger mass and, thus, the deviations from unitarity are negligible. Theoretical work

has been performed in order to constrain the possible deviations from unitarity, using data from weak

decays and from the search of Lepton flavor Violating (LFV) decays [142, 143, 144]. The most recent

bounds are [142]:

I − |KK†| ≤


2.5× 10−3 2.4× 10−5 2.7× 10−3

2.4× 10−5 4.0× 10−4 1.2× 10−3

2.7× 10−3 1.2× 10−3 5.6× 10−3

 , (2.107)

which reveals that the claim that deviations from unitarity are negligible is arguable. More on this on

the next chapters. Thus, oscillation data is fitted to the effective model, with the mixing matrix, K,

defined as in [eq. 2.60]. Several groups are currently performing global phenomenological fits on θ12,

θ23, θ13 and δ, as well as on neutrino mass differences [145, 146]. The specific bounds vary slightly from

group to group. For definiteness, in [Table 2.2], is present the current bounds on neutrino masses and

parameters of the mixing matrix K defined as in [eq. 2.60] from [146]. The quantities ∆m2
ij are defined

by (m2
i −m2

j ).

Parameter Best fit 1σ range 3σ range
∆m2

21 [10−5eV 2] 7.55 7.39 – 7.75 7.05 – 8.14
|∆m2

31| [10−3eV 2](NO) 2.50 2.47 – 2.53 2.41 – 2.60
|∆m2

31| [10−3eV 2](IO) 2.42 2.38 – 2.45 2.31 – 2.51
sin2 θ12 0.320 0.304 – 0.340 0.273 – 0.379

sin2 θ23(NO) 0.547 0.517 – 0.567 0.445 – 0.599
sin2 θ23(IO) 0.551 0.521 – 0.569 0.453 – 0.598
sin2 θ13(NO) 0.02160 0.02091 –0.02243 0.0196 –0.0241
sin2 θ13(IO) 0.02220 0.02144 –0.02294 0.0199 –0.0244
δ/π(NO) 1.32 1.17 –1.53 0.87 –1.94
δ/π(IO) 1.56 1.41 –1.69 1.12 –1.94

Table 2.2: Neutrino oscillation parameter summary from [146]. For ∆m2
31, sin2 θ23 , sin2 θ13, and δ the

upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.
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As one can observe, two distinct cases are considered - Normal ordering (NO) and Inverted Ordering

(IO). This happens because the existing data does not allow one to determine the sign of ∆m2
31. Thus,

both possibilities are considered:

• Normal Ordering: m1 < m2 < m3

• Inverted Ordering: m3 < m1 < m2

This is known as the neutrino mass ordering problem. Below there is a summary of the biggest open

problems, concerning the three known neutrinos:

1. Is the mass ordering Inverted or Normal?

2. Is there CP Violation in the Leptonic Sector?

3. Are the masses hierarchical or quasi-degenerate?

4. What is the mass scale of neutrinos? (From oscillation experiments we can only get their mass

differences squared.)

5. Are Neutrinos Majorana or Dirac?

One could say the first problem is solved, since the most recent global fits favour the normal mass ordering

over the inverted one at more than 3σ [145, 146]. Concerning the second question, one cannot declare

that CP exists in the leptonic sector because the CP conserving δ = π is not yet ruled out, however, it

is disfavoured and every data points towards δ ∼ 3π
2 . However, such claims must be taken with a grain

of salt, since the performed global fits uses a unitary matrix by construction ([eq. 2.60]) [119]32.

Questions number 3 and 4 are related, since answering 4 might answer 3. Neutrinos can be quasi-

degenerate if their mass is much bigger than their mass differences : mi ≥ 0.1 eV . Nevertheless, cosmo-

logical studies have several bounds for their mass scale:

m.s. :
∑
i

mi ≤ 0.12 eV ,m.m. :
∑
i

mi ≤ 0.72 eV , (2.108)

at the 95% CL [89], where m.s. stands for most strict and m.m. stands for most moderate. The difference

between the bounds stems from the distinct data sets and assumptions used [89]. To understand how

these discrepancies are possible, it’s instructive to understand how these bounds are determined. General

relativity gives one a relation between the scale factor of the Friedmann-Robertson-Walker metric33, a(t),

and the matter and energy in the Universe, through the time-time component of Einstein’s equations for

a flat universe:(
˙a(t)

a(t)

)2

= H(t)2 =
8πGρ(t)

3
= H2

0

ρ(t)

ρ0c
= H2

0Ω(t) = H2
0 (Ωγ(t)+Ωdm(t)+Ωb(t)+Ων(t)+ΩΛ) , (2.109)

32Interpretations could change if, for instance, sizable (close to the bound) deviations from unitarity or a KeV ”heavy”
neutrino were discovered.

33A metric that can describe an expanding flat universe like ours.
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where ρ0c =
3H2

0

8πG ≈ 1.774×10−29h2 g cm−334 is the critical density and H0 is the Hubble parameter, both

at an epoch t0 that can be set to the current time. Ωi are the energy densities normalized to the critical

density at t0. They correspond to: i = γ → photons, i = dm→ ”dark matter”, i = b→ barionic matter,

i = ν → neutrinos and i = Λ → ”dark energy” (the energy density that comes from the introduction of

the cosmological constant Λ in Einstein’s equations). Note that for a flat universe, if ρ is measured at

time t0, Ω should be equal to one35. Using thermal models of the evolution of the universe, Ωi values

can be inferred from the observations of astronomical objects or from the Cosmic Microwave Background

(CMB) . Nevertheless, different methods and data sets yield different results36. Of these parameters,

only Ωγ = 2.47 × 10−5h2 is accurately measured directly, from the CMB observations. Fortunately, Ων

is inferred from that. Through thermal models of the evolution of the universe it’s possible to predict
ρν

ργ
= Ων

Ωγ
and nν

nγ
, inferring Ων and nν from that, since one obtains Ωγ and nγ from the CMB. Assuming

that the neutrino number densities have all the same value ni ∼ nν and ρν ≈
∑

i nimi ≈ nν
∑

imi, one

obtains:

Ων =
ρν
ρ0c

=

∑
imi

n−1
ν ρ0c

=

∑
imi

93.14h2eV
, (2.110)

where the value nν = 339.5cm−3 [89] was used. As one can conclude several approximations and model-

dependent assumptions where taken. The bound is highly dependent on the parameters of the thermal

model used to determine Ων and nν and on the measured values H0, Ωγ and nγ . The thermal model also

predicts an effective number of neutrinos. Again there are several model/assumption-dependent bounds.

The highest and the lowest are presented:

Neff = 3.08± 0.31 , Neff = 3.41± 0.22 , (2.111)

at the 68% CL [89]. Neff is the number of neutrinos that are non-relativistic37 at the present time and

that decoupled from the thermal plasma at temperatures Td ∼ 2 MeV . This means that neutrinos with

masses below T 0
νK ≈ 1.7×10−4 eV [89] and above Td ∼ 2MeV [89] don’t contribute to this parameter38.

Thus, a cosmological bound is not the most trustworthy to convince oneself about the possible quasi-

degeneracy of neutrino masses, although it provides an hint on their mass scale. Both questions can be

answered if KATRIN yields a positive result. As discussed in the first chapter, KATRIN is an experiment

that has the goal of measuring the quantity mβ , from β decay : n −→ p + e− + νe. The experiment is

projected to be sensitive to mβ > 0.2 eV , and started acquiring data on June 2018. But what is mβ? To

study β decay is convenient to consider the Kurie function:

K2(Ee) = (Q− Ee)
∑
i

|Kei|2
√

(Q− Ee)2 −m2
i ×Θ(Q− Te −mi)

≈ (Q− Ee)
√
(Q− Ee)2 −m2

β ×Θ(Q− Ee −mβ) ,

(2.112)

34h = H0/(100 kms−1Mpc−1)
35Using this one can estimate the ”dark energy” energy density ΩΛ and the ”dark matter” energy density Ωdm. Surpris-

ingly, the values consistent with observations are ∼ 0.70 and ∼ 0.25, respectively.
36For instance, The Hubble Space Telescope Project measured H0 = 73.2± 1.7km s−1Mpc−1, while the Planck Collab-

oration found a lower value, H0 = 67.8± 0.9km s−1Mpc−1.
37With masses much bigger than T 0

ν ≈ 1.9K ≈ 1.7× 10−4 eV
38From oscillation data one concludes that the lightest neutrino can have a mass below T 0

ν ≈ 1.7× 10−4 eV .
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where Ee is the electron energy, Q is the amount of energy released by the reaction and Θ is the Heaviside

step function. The approximation is valid for an experiment in which the energy resolution is such that

mk << Q − Ee. mβ is the “electron neutrino mass” and the Kurie function depends on it thanks to

the phase space factor. It is determined as a real average over all mass eigenstates contributing to the

electron neutrino:

m2
β =

∑
i

|Kei|2m2
i , (2.113)

where K is defined in [eq. 2.60]. Note that this is not sensitive to Majorana phases nor the Dirac phase δ,

as they cancel. Ideally, with enough resolution, one could determine exactly the mass of ith neutrino mi.

However, one only detects the final electron and does not know which neutrino mass state was produced,

since it is not possible to resolve between them, due to their very small mass splittings. If KATRIN has

a positive result, i.e, mβ > 0.2 eV , due to the mass differences one knows from oscillation experiments

this would mean that neutrinos are quasi-degenerate.

In the exact treatment one should use [eq. 2.113] with K given by [eq. 2.74]. In this scenario, not

only m2
β is sensitive to the CP Violating phases θ1,θ2, θ3 phases that come from the hermitian part of K

[Eqs. 2.74, 2.76] but it’s also sensitive to the Majorana phases α1, α2 and to the Dirac phase δ.

Another scenario is possible, if k of the three ”heavy” states have a mass of the order of the light

neutrinos (or higher, given that it is kinematically allowed). In that case, the electron energy spectrum

would be a superposition of the light neutrino spectrum and the ”heavy” neutrino spectrum, implying

that [eq. 2.112] would transform into:

K2(Ee) ≈ (Q− Ee)
√

(Q− Ee)2 −m2
β ×Θ(Q− Ee −mβ)

+ (Q− Ee)
∑
k

|Kek|2
√

(Q− Ee)2 −m2
k ×Θ(Q− Ee −mk) ,

(2.114)

The above expression shows that a ”heavy” neutrino mass, mk can be measured by observing a kink of

the kinetic energy spectrum at Ee = Qmk, the point where the ”heavy” neutrino spectrum ends. [147]

As for question 5, its answer can not only discern if neutrinos are Majorana particles but also, combined

with the answer to question 4 (mass scale), answer question 1 (ordering)! This could be achieved by

measuring Neutrinoless double β decay (0νββ) : (A,Z) → (A,Z +2)+ e− + e−, a Dirac fermion number

violating process like the one given in [eq. B.7]. The decay rate for this process is given by:

Γ0νββ = G(Q,Z)|M0
nuc|2| = G(Q,Z)|Mnuc|2 · |mββ |2 , (2.115)

where G(Q,Z) is a phase-space factor that depends on the nucleus and M0
nuc is the total nuclear matrix

element. M0
nuc contains the leptonic amplitude (W−

µ )∗(p3) + (W−
ν )∗(p4) → e−(p1) + e−(p2)

39, which as

two diagrams (channel t and u) because of the anti-symmetrization of the final state:

M0
nuc ∝ (Mt −Mu) . (2.116)

39W−
µ )∗ means an off-shell W− boson. It’s an intermediate state that is taken into account in the hadronic part of the

amplitude.
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Below is the part that is sandwiched between the spinors, for the t-channel amplitude. A lepton number

violating vertex was used, thus, making the process only possible if neutrinos are Majorana.

iMt =
∑
j

[
u(p1)

(
−ig√
2
γµPL(K)1j

)
i(γδpδ +mj)

p2 −m2
j

(
−−ig√

2
γνPL(K)1j

)
v(p2)

]
, (2.117)

where p = p1 − p3 = p4 − p2, and e−(p2) = (e+(p2))
c has the role of Conjugated Dirac fermion, which

means that the vertex connecting the momenta p2 and p4 is the lepton number violating one. When

calculating |M0
nuc|2, taking the traces of the leptonic part one notes that the terms ∝ γδpδ vanish 40.

Thus, the only surviving terms are the ones ∝ mj . Then, neglecting the neutrino mass in the denominator,

it’s possible to factor out an interesting quantity:

|M0
nuc|2 = |Mnuc|2 · |

∑
j

(K1j)
2mj |2 , (2.118)

which looking at [eq. 2.115] defines:

mββ =
∑
j

(K1j)
2mj , (2.119)

where K is defined in [eq. 2.60]. Note that this is sensitive to Majorana phases and to the Dirac phase δ
41. Again, there are two possible extra scenarios. In the exact treatment one should use [eq. 2.119] with

K given by [eq. 2.74]. In this scenario, m2
ββ is also sensitive to the CP Violating phases θ1,θ2, θ3 phases

that come from the hermitian part of K [Eqs. 2.74, 2.76].

The other scenario is if p of the three ”heavy” states have a mass of the order of the light neutrinos

(such that it is kinematically allowed). In that case:

mββ =

3∑
i

(Kei)
2mi +

p∑
j

(Rej)
2Mj (2.120)

The current experimental bound on mββ , considering only 3 light neutrinos, is depicted graphically

on [fig. 2.1]:

Thus, concluding, if 0νββ is detected, neutrinos are Majorana. To clarify the connections between

the various results, a quick analysis of the figure will be done. The picture shows that if 0νββ is detected

in the next round of experiments and KATRIN gives a positive sign working in the reported sensitivity

(mβ > 0.2 eV ), one cannot conclude if the ordering is normal or inverted. Nevertheless, if only KATRIN

gives a positive signal in this region, one can conclude that neutrinos are Dirac. However, if mββ is

detected below 10−2 eV , one can conclude that the ordering is normal. If mββ is detected between

0.05 eV and 0.01 eV and KATRIN yields a negative result, then for sure the ordering is inverted. If the

mβ signal is detected below 10−2 eV , the conclusion about ordering depends on the value of the detected

mββ . If there’s no positive signal from β decay and 0νββ in the next round of experiments, then inverted

ordering would eventually become ruled out and the only possibility would be Majorana neutrinos with
40Trace of odd number of gamma matrices.
41(K13)2 = s213e

2i(φ2−δ). Although when studying 0νββ it’s useful to redefine φ2 = φ′
2 + δ such that mββ only depends

on φ1 and φ′
2.
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Figure 2.1: mββ as given in [eq. 2.119] as a function of the lightest neutrino mass and its experimental
bounds from [148].

normal ordering or Dirac neutrinos with inverted ordering if the sign of ∆m3
13 was determined, in an

independent experiment, to be negative.

The interplay between the possible results of β decay and 0νββ decay experiments and the sign

of ∆m2
13 will give us answers about neutrino mass scale, hierarchy, ordering and character. Better

measurements of oscillation parameters will yield a conclusion about CP Violation in the Leptonic sector.

The possibility of the existence of Heavy neutrino states and sizable deviations from unitarity is still open.

An extra question that one might dwell on is what is the allowed mass scale for these heavy neutrino

states? If one neglects cosmological bounds, for the aforesaid reasons, the answer is any - from the sub-eV

region to the GUT scale. An important test to the number of active neutrino species with masses below

the Z boson mass was the measurement of the Z invisible width at LEP [43] : Nν = 2.984 ± 0.008.

However, this measurement doesn’t exclude sub-electroweak scale ”heavy” neutrino states [147]. The SM

predicts Nν = 3 and the νSM predicts Nν =
∑

i,j |(K†K)ij |2 = 3, since K is unitary. The SIνSM

predicts Nν =
∑

i,j |(K†K)ij |2 < 3, if there are no ”heavy” states with masses below the Z boson. The

prediction is below three because of the deviations from unitarity. If there are p ”heavy” states with

masses below the Z boson the prediction is:

Nν =
∑
i,j

|(K†K)ij |2 +
∑
i,k

|(K†R)ik|2 +
∑
k,j

|(R†K)kj |2 +
∑
k,l

|(R†R)kl|2 ≤ 3 , (2.121)

where i, j = 1, 2, 3 and k, l = 1, ..., p, [Tab. B.4] was used and the prediction for Nν is 3 if p = 3, otherwise

is below 3. Thus, there can be more than three neutrino mass states with masses below the Z boson

mass, since Nν is always ≤ 3, even in the SIνSM , because of the unitarity of the full mixing matrix V

and the fact that K is a contraction [149]. Summarizing, only states which interact weakly contribute to

this quantity, Nν , these states are given by [eq. 2.49], and are only three, the maximum value Nν can

have.
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Chapter 3

Appealing Models within the Seesaw Type I

Framework

From section 2.2, namely [Eqs. 2.66, 2.67, 2.68], one understands that heavy neutrino states (N) interact

with SM particles, via mixing. For negative chiral states, this mixing is controlled by the matrix R [eq.

2.49], defined in [eq. 2.48]. Thus, their entries are the relevant coefficients for electroweak processes

involving heavy neutrinos. This matrix is, naturally, as big as the deviations from unitary of K allow

(this statement will be proved in a few lines), since V is unitary and K is almost unitary.

The production of these heavy neutrino states in electroweak processes is possible in machines like

the LHC1, and its production rates are controlled by the matrix R and their mass Mi. Knowing present

unitary bounds [eq. 2.107], heavy neutrino masses around 100 GeV are not ruled out [150]. Nor are

heavy neutrino masses in the eV and KeV scale [147, 151], since the smallness of the R matrix highly

suppresses their interaction with SM neutrinos, making them invisible to measurements performed at

LEP or at the present LHC.

Thus, an important question is: Is it possible to have heavy neutrinos with masses around the elec-

troweak scale2 or lower, while satisfying all present phenomenological bounds, especially deviations from

unitarity?

This preoccupation with deviations from unitarity stems from the fact that, as stated above [eq.

2.58], in the usual seesaw3, the deviations from unitarity of K are proportional to (MνM−1
R )2. With MR

assuming values of the order 1016 GeV , being below the experimental bound is not a problem. However,

one could naively conclude that by taking the masses of the heavy states to be around the electroweak

scale or lower, one would decrease the scale of MR in such a way that deviations from unitarity would

become well above the experimental bounds.

In other words, the question this work tries to answer is: Can one have a seesaw, consistent with

experimental data, with all the benefits stated in Chapter 2, when the scale of MR is close to the
1If they have a kinematically allowed mass, i.e., not above the LHC’s maximum collision energy which at the moment

lies around 13 TeV .
2Let’s define this as the range from from mt ≈ 170 GeV to 10×mt ≈ 1700 GeV .
3Under the effective treatment, with MR assuming values of the order 1016 GeV
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electroweak scale or lower? Sizable deviations from unitarity along with masses in this scale would mean

that the detection of heavy neutrinos might be just around the corner.

3.1 Seesaw Formulas Adequate to an Exact Treatment

Before proceeding, it is important to explore all the degrees of freedom in the Seesaw formulas [eq. 2.47].

This means finding suitable parametrizations for the sub-matrices of [eq. 2.48], as done in [1]:

V =

K R

S Z

 =

K 0

0 Z

 ·

 I Y

−X I

 ,−X = Z−1S , Y = K−1R , (3.1)

which is a completely general parametrization, valid for K and Z non-singular. I is the 3 × 3 identity

matrix. The equations that stem from non-diagonal terms of V V † = I6×6 imply that:

Y = X† . (3.2)

[eq. 3.1] can then be written as:

V =

 K KX†

−ZX Z

 . (3.3)

The equations that stem from the diagonal terms of the unitarity relations of V yield:

V V † = I6×6 → K(K† +X†XK†) = I , Z(Z† +XX†Z†) = I , (3.4)

V †V = I6×6 → (K† +X†XK†)K = I , (Z† +XX†Z†)Z = I , (3.5)

which, at first sight, one might argue that they have redundant information: The right and left inverse

of K are equal and given by K† +X†XK†, or equivalent for Z. However, these are 4 different equations

and will be useful later. From them it is also clear that the matrix X parametrizes the deviations from

unitarity of K (and Z) and, as stated before, the matrix R = KX†, that controls the rate of electroweak

processes involving heavy neutrinos, is as big as X allows - if X is zero there are no deviations from

unitarity and R is zero.

With the importance of X established, it is useful to write it in terms of other known matrices, with

physical meaning. To try that, it is mandatory to write [eq. 2.47], using V given by [eq. 3.3]:

−X†Z†MνT = dKT , (3.6)

K†Mν −X†Z†MR = −dXTZT , (3.7)

Z†MνT = dRX
∗KT , (3.8)

XK†Mν + Z†MR = dRZ
T . (3.9)
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Replacing Z†MνT from [eq. 3.8] into [eq. 3.6] yields

d = −XT dR X . (3.10)

The only X that satisfies this equation is given by:

X = ±i
√
d−1
R Oc

√
d , (3.11)

where Oc is a complex orthogonal matrix, i.e., OT
c Oc = I, or explicitly:

|Xij | =
∣∣∣∣(Oc)ij

√
mj

Mi

∣∣∣∣ . (3.12)

This, by itself, proves that the deviations from unitarity are not only controlled by the mass scales

involved, but also by this matrix Oc. Thanks to this degree of freedom, in principle, it is possible to

generate deviations from unitarity of any order of magnitude, independently of the mass scales one is

working with.

With X defined, and R and S written in terms of K, Z and X, it is also relevant to parametrize K

and Z in terms of other matrices, using the Polar Decomposition theorem, and compare this result with

the definitions given in [Eqs. 2.74, 2.76]. Using the Singular Value Decomposition of X one obtains:

X =W dX U† , XX† =W d2X W † , X†X = U d2X U† , (3.13)

where U and W are unitary matrices, and dX is a real diagonal matrix. Using this, one can write the

hermitian matrices
(
I +X†X

)
and

(
I +X X†) as,
I +X†X = U

(
I + d2X

)
U† ,

I +X X† =W
(
I + d2X

)
W † .

(3.14)

Inserting [eq. 3.14] into [eq. 3.4], one obtains:

K U
(
I + d2X

)
U† K† = K U

√
(I + d2X) ·

√
(I + d2X)U† K† = I ,

Z W
(
I + d2X

)
W † Z† = Z W

√
(I + d2X) ·

√
(I + d2X) W † Z† = I .

(3.15)

Therefore, one concludes that

K U
√
(I + d2X) = UK , Z W

√
(I + d2X) =WZ , (3.16)
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are unitary matrices, with:

(√
I + d2X

)−1

=


1√

1+dX
2
1

0 0

0 1√
1+dX

2
2

0

0 0 1√
1+dX

2
3

 , (3.17)

where the labels i = 1, 2, 3 are given in ascending order, such that, for instance, dX2
2 > dX

2
1. Which leads

to 4

K = UK

(√
(I + d2X)

)−1

U† = UKU
†
(
U
(√

(I + d2X)
)−1

U†
)

= UKU
†
(√

I +X†X
)−1

,

Z =WZ

(√
(I + d2X)

)−1

W † =WZ W †
(
W
(√

(I + d2X)
)−1

W †
)

=WZW
†
(√

I +XX†
)−1

.

(3.18)

Putting everything together:

V =

 K R

S Z

 =

 UKU
†
(√

I +X†X
)−1

UKU
†
(√

I +X†X
)−1

X†

−WZW
†
(√

I +X X†
)−1

X WZW
†
(√

I +X X†
)−1

 . (3.19)

One can now analyze [Eqs. 2.74, 2.76] and identify:

UPMNS · F = UKU
† , HR =

(√
I +X†X

)−1

= U

(√
(I + d2X)

)−1

U† . (3.20)

In the literature, one usually finds the following definition for a K with deviations from unitarity [143,

144, 152, 153]:

K = (I − η) V , (3.21)

where (I − η) is a hermitian matrix and V a unitary matrix, usually associated with UPMNS . Using the

unitarity of U and UK together with the first equation of [eq. 3.18], one finds:

K =

(
UK

(√
I + d2X

)−1

U†
K

) (
UK .U

†) = (UK U†
(√

I +X†X
)−1

U U†
K

) (
UK .U

†) , (3.22)

where

HL = UK

(√
I + d2X

)−1

U†
K = UK U†

(√
I +X†X

)−1

U U†
K , (3.23)

is an hermitian matrix and UKU
† is unitary and equal to UPMNS · F by [eq. 3.20]. This is consistent

with the polar decomposition theorem, which states that if K is non-singular then:

K = HL

(
UK U†) = (UK U†) HR , (3.24)

4To obtain these relations, one needs to use [eq. 3.14] and
√

I + d2X = U† (
√

I +X†X) U
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the unitary part on both decompositions is the same and the hermitian parts are related by the equation:

HR =
(
UK U†) HL(UKU

†)† (3.25)

To be in line with the literature, from now onward HL = I − η, using η to describe the deviations from

unitarity. Using [eq. 3.24] and the unitarity of UK U†:

K K† = H2
L = (I − η)2 = I − 2η + η2 , (3.26)

where

η = I −HL = I − UK

(√
I + d2X

)−1

U†
K . (3.27)

Since UK is unitary, η is highly dependent on the eigenvalues of X , as it should be. Thus, to explain

the deviations from unitarity of K, it is important to understand what range of values one can find for

dXi.

3.2 On the Size of Deviations from Unitarity

Using [eq. 3.11], it is straightforward to conclude that the eigenvalues of X†X, d2Xi, will be related to the

eigenvalues of O†
cOc. However, there’s no general analytical expression that relates both. Nevertheless,

one can find special cases where this relation exists, thus providing important insights. Since Oc is an

orthogonal complex matrix, its eigenvalues are constrained by the usual equations:

OT
c Oc = I , Det(Oc) = x1 x2 x3 = ±1 , Det(O†

cOc) = |x1|2 |x2|2 |x3|2 = 1 . (3.28)

From the previous equation:

O†
cOcO

T
c O

∗
c = I → O†

cOc =
(
OT

c O
∗
c

)−1
, (3.29)

and, taking the trace on both sides of the last equation, gives5:

|x1|2 + |x2|2 + |x3|2 = |x1|−2 + |x2|−2 + |x3|−2 , (3.30)

5Note that O†
cOc =

(
OT

c O∗
c

)T . This yields that O†
cOc and OT

c O∗
c have the same eigenvalues. Finally, the eigenvalues of(

OT
c O∗

c

)−1 are just the inverses of the eigenvalues of OT
c O∗

c
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where |xi|2 is the ith eigenvalue6 of O†
cOc. Using the last equation of [eq. 3.28] , |x3|2 = |x1|−2|x2|−2,

and the previous equations:

|x1|2 + |x2|2 + |x1|−2|x2|−2 = |x1|−2 + |x2|−2 + |x1|2|x2|2

⇔ |x1|2|x2|2 − |x1|2 − |x2|2 = |x1|−2|x2|−2 − |x1|−2 − |x2|−2

⇔ |x1|2|x2|2 − |x1|2 − |x2|2 + 1 = |x1|−2|x2|−2 − |x1|−2 − |x2|−2 + 1

⇔ (1− |x1|2)(1− |x2|2) = (1− |x1|−2)(1− |x2|−2) .

(3.31)

This last equation proves that the eigenvalues of O†
cOc are: 1, r2, r−2. This can be seen by nothing that,

in the final equation of [eq. 3.31], if |x1|2 = 1, the above conclusion is trivial given r2 = |x2|2. The same

applies if one exchanges indices 1 and 2. If |xi|2 6= 1, with i = 1, 2, then:

(1− |x1|2)(1− |x2|2) = (1− |x1|−2)(1− |x2|−2)

⇔ |x1|2|x2|2(|x1|−2 − 1)(|x2|−2 − 1) = (1− |x1|−2)(1− |x2|−2)

⇔ |x1|2|x2|2 = 1 ⇔ |x1|2 = |x2|−2 ,

(3.32)

which gives that |x3|2 = 1 by [eq. 3.28] and r2 = |xj |2, with j = 1, 2.

In conclusion, one can write:

Tr(O†
cOc) = 1 + r2 + r−2 . (3.33)

Plugging [eq. 3.11] into the above equation leads to:

Tr(O†
cOc) = Tr(

√
d−1X†

√
dR
√
dRX

√
d−1) = 1 + r2 + r−2 . (3.34)

Taking the degenerate limit, where the diagonal mass matrices are given by d = m I, dR = M I, where

m and M are real numbers7 and I is the 3 × 3 identity matrix, one can generate an upper bound on

Tr(X†X):
M

m
Tr(X†X) =

M

m
(dX

2
1 + dX

2
2 + dX

2
3) ≤ 1 + r2 + r−2 . (3.35)

One can now estimate the size of the eigenvalues of X†X, as a function of r, by going to the equality

limit. In this limit:
M

m
dX

2
1 ∼ r−2 ,

M

m
dX

2
2 ∼ 1 ,

M

m
dX

2
3 ∼ r2 . (3.36)

Taking m ∼ 1 × 10−11 GeV and M ∼ 1 × 102 GeV yields M
m = 1013. For instance, for r2 = 1010 one

obtains:

dX
2
1 ∼ 10−23 , dX

2
2 ∼ 10−13 , dX

2
3 ∼ 10−3 . (3.37)

The term by term identification of [eq. 3.35] in the equality limit, presented in [eq. 3.36], may seem like

a crude approximation but, in fact, it isn’t, due to the difference in orders of magnitude of the terms.

To support this, the next section will contain a toy model, with degenerate light neutrinos with mass
6Real, since the matrix is hermitian.)
7m is the heaviest light neutrino mass and M is the lightest heavy neutrino mass, such that the inequality is satisfied.
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m, and degenerate heavy neutrinos with mass M , which can be analytically solved.

Another model, with a simple Oc, will provide plots where the evolution of the dX2
i is given as a

function of the masses and x2.

The behaviour presented in [eq. 3.37], and in the results of the next section, a sizable eigenvalue, one

nearly zero but tractable eigenvalue, and another practically zero eigenvalue, will turn out to be true not

only for the degenerate limit, m1 = m2 = m3 = m and M1 =M2 =M3 =M , but as long as Mi

mj
>> 1.

3.3 Toy Models

In this section, two toy models are presented to illustrate how the deviations from unitarity behave in

terms of the neutrino masses.

For the first model, one sets Oc to one of the simplest possibilities:

Oc =


0

√
x2 + 1 ix

0 ix −
√
x2 + 1

1 0 0

 , (3.38)

where the parameter x2, when large, corresponds to r2 in [eq. 3.35] but when x2 << 1, then r2 = r−2 = 1.

Plugging this into [eq. 3.11], choosing the minus sign:

X =


0 −i

√
m2

M1

√
x2 + 1

√
m3

M1
x

0
√

m2

M2
x i

√
m3

M2

√
x2 + 1

−i
√

m1

M3
0 0

 , (3.39)

which gives:

I +X†X =


1 + m1

M3
0 0

0 1 + m2x
2

M2
+ m2(x

2+1)
M1

i
(M1+M2)x

√
m2m3(x2+1)

M1M2

0 −i (M1+M2)x
√

m2m3(x2+1)
M1M2

1 + m3x
2

M1
+ m3(x

2+1)
M2

 . (3.40)

The eigenvalues of [eq. 3.40] can be calculated analytically, yielding:

1 + dX
2
1 =

g(x,M1,M2,m2,m3)−
√
f(x,M1,M2,m2,m3)

2M1M2
,

1 + dX
2
2 = 1 +

m1

M3
,

1 + dX
2
3 =

g(x,M1,M2,m2,m3) +
√
f(x,M1,M2,m2,m3)

2M1M2
,

(3.41)
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where

g(x,M1,M2,m2,m3) = x2(M1m2 +M1m3 +m2M2 +M2m3) + 2M1M2 +M1m3 +m2M2 ,

f(x,M1,M2,m2,m3) =
[
M1(m2x

2 + 2M2 +m3x
2 +m3) +M2(m2(x

2 + 1) +m3x
2)
]2

−M1M2

[
x2(4M1m2 + 4M1m3 + 4m2M2 + 4M2m3) + 4M1M2 + 4M1m3 + 4m2M2 + 4m2m3

]
.

(3.42)

To understand how the dX2
i evolve with the masses, it’s instructive to plot the functions given in [eqs.

3.41]. In the following plots, the light neutrino masses were all set to m, for simplicity. The heavy

neutrino masses are in units of m. x was set to x = 105 in all of them but the last.

0 20 40 60 80 100
0.5

1.0

1.5

2.0

2.5

3.0

M3(m)

1
+

d
X

2
2

Figure 3.1: 1 + dX
2
2 as given in [eq. 3.41] as a function of M3. M3 is in units of the light neutrino mass

m1 = m. The behaviour is maintained for m→ ∞

((a)) Mi are in units of the light neutrino mass m2 =
m3 = m divided by 10. In this plot, Mi ranges from 0
to 10m.

((b)) Mi are in units of the light neutrino mass m2 =
m3 = m multiplied by 1012. In this plot, Mi ranges
from 1012m to 1014m.

Figure 3.2: Order of magnitude of the eigenvalue dX2
1, using a density plot of Log10(Log(1 + dX

2
1)) ≈

Log10(dX
2
1) as given in [eq. 3.41] as a function of M1 and M2. Colder colors indicate smaller values.
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((a)) This is done for x = 105. In this plot, Mi ranges
from 1012m to 1014m.

0 20000 40000 60000 80000 100000

0

20000

40000

60000

80000

100000

M1(m)

M
2
(m

)

1.005

1.010

1.015

((b)) This is done for x = 5.In this plot, Mi ranges
from 10m to 106m.

Figure 3.3: Eigenvalue dX2
3, using a contour plot of 1 + dX

2
3 as given in [eq. 3.41] as a function of M1

and M2. Mi are in units of the light neutrino mass m2 = m3 = m. Colder colors indicate smaller values.

Starting by discussing the simplest, 1 + dX
2
2, [Fig. 3.1], one notes that for M3 >> m it is essentially

1 - for instance, dX2
2 has the value ∼ 10−13 for M3 = 1013m. For M3 < m dX

2
2 can have arbitrarily large

values. For M3 = m dX
2
2 is 2. As for dX2

1, [Fig. 3.2], one notes that for M1,M2 >> m it is essentially 0 -

for instance, it has the value ∼ 10−23 for M1,M2 = 1013m. For M1,M2 < m it can have arbitrarily large

values. ForM1 =M2 = m it is ∼ 10−10. Finally, for 1+dX2
3, [Fig. 3.3], one notes that forM1,M2 >> m

it tends to 1, but much slower than the other two - for instance, it has the value ∼ 1 + 1 × 10−3 for

M1,M2 = 1013m. For M1,M2 ≤ m it can have arbitrarily large values. It’s important to note that all of

these numerical values are dependent on the value of x. For instance, in [Fig. 3.3(b)] there is the same

contour plot as [Fig. 3.3(a)] done for x = 5, where one can see that it is possible to achieve the same size

of deviations from unitarity for much lower heavy neutrino masses.

The unitary matrix, U , that diagonalizes [eq. 3.40], can also be obtained analytically. However, its

entries are too complicated and too long to give any insight on the eigenvectors. To obtain such thing,

one needs to go to a parameter region where all expressions simplify.

This is done in the second model, where one considers the degenerate limit, where all light neutrinos

have mass m, and all heavy neutrinos have mass M . Furthermore, one also needs to go to the region

where x >> 1 →
√
x2 + 1 ≈ x, which turns out to be a very reasonable approximation for the case of

heavy neutrino masses around the electroweak scale with sizable deviations from unitarity. Thus, in this

model:

Oc ≈


0 x ix

0 ix −x

1 0 0

 , (3.43)

and, in approximation, one finds for X:

X =


0 −i

√
m
M x

√
m
M x

0
√

m
M x i

√
m
M x

−i
√

m
M 0 0

 , (3.44)
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leading to:

I +X†X =


1 + m

M 0 0

0 1 + 2mx2

M i 2mx2

M

0 −i 2mx2

M 1 + 2mx2

M

 . (3.45)

The matrix that diagonalizes the matrix in [eq. 3.45] is given by:

U =


0 1 0

− 1√
2
i 0 1√

2
i

1√
2

0 1√
2

 . (3.46)

Furthermore, the eigenvalues of X†X are:

d2X =


0 0 0

0 m
M 0

0 0 4mx2

M

 , (3.47)

where making the substitutions x = 105 and m
M = 10−13 gives values very close to the ones estimated

in [eq. 3.37]. It’s interesting to note that, in this parameter region, the functions
√
f and g defined in

[eq. 3.42] have the same value:
√
f = g = 2 m M x2. Let’s now proceed and try to find an analytical

formula for the matrix η, defined in [eq. 3.27]. One should be now convinced that, for Mi

mj
>> 1,

1 + dX
2
1 ∼ 1 + dX

2
2 ≈ 1. Furthermore, in a good approximation:

1√
1 + dX2

3

≈ 1− 1

2
dX

2
3 =⇒

(√
I + d2X

)−1

≈


1 0 0

0 1 0

0 0 1− 1
2dX

2
3

 , (3.48)

Using this in [eq. 3.27], one obtains:

η =
1

2
dX

2
3 ·


|UK13|2 UK13 · U∗

K23 UK13 · U∗
K33

UK23 · U∗
K13 |UK23|2 UK23 · U∗

K33

UK33 · U∗
K13 UK33 · U∗

K23 |UK33|2

 . (3.49)

With this one sees that when dX2
3 approaches 0, all entries of η will approach zero. Furthermore, if the

entries of UK are of same order of magnitude, such that every product of UKij yields ∼ 1, η is a democratic

matrix, dominated by dX2
3. The experimental bounds, [eq. 2.107], constrain much more the entries that

are proportional to UK23 than the rest. Looking at [eq. 3.26], one concludes that KK† − I ∼ −2η, for a

small η. Therefore:

|η| ≤


1.25× 10−3 1.20× 10−5 1.35× 10−3

1.20× 10−5 2.00× 10−4 6.00× 10−4

1.35× 10−3 6.00× 10−4 2.8× 10−3

 . (3.50)

Thus, to achieve such non-democratic deviations from unitarity like in [eq. 3.50], one will need a non-

democratic UK matrix. This suggests that, if one wants a model that has deviations from unitarity
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matching the experimental bounds, one will need to find a UK with the 23 entry small enough such that

the entries proportional to it are controlled by it and the rest is controlled by dX2
3.

One defines UPMNS · F = UK .U
†, as in [eq. 3.20], where F contains the Majorana phases, αi, and

UPMNS is a unitary matrix with one Dirac phase like VCKM . Therefore, to achieve a small UK23 one

needs to control the quantity:

Line2[UPMNS · F ]× Column3[U ] = U21
PMNS · U13 + U22

PMNS · eiα1 · U23 + U23
PMNS · eiα2 · U33 . (3.51)

Thus, one can choose the αi such that there is a cancellation and the above quantity is small.

For an Oc of the form:

Oc =


0

√
x2 + 1 ix

0 ix −
√
x2 + 1

1 0 0

 , (3.52)

one gets U13 = 0. This puts too much strain on the process of controlling UK23. Thus, the following Oc

can be used:

Oc = O′
c.O =


0

√
x2 + 1 ix

0 ix −
√
x2 + 1

1 0 0

 ·


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.53)

This angle θ will generate a controllable non-zero U13 without changing the eigenvalues of X. This

procedure proves that that the Majorana phases may have a crucial role on the size of a given entry of η.

The main conclusion of the last two sections is that, for Mi

mj
>> 1, the only eigenvalue of X†X that

contributes to the deviations from unitarity is dX2
3. For a fixed light and heavy mass scale, this variable

depends on the parameter x, which is totally free. Thus, the conclusion seems to be that one can generate

any size of deviations from unitarity, independently of the masses involved. However, there is a catch.

In this general approach to the seesaw mechanism, the Dirac mass matrix, Mν , is proportional to the

matrix X, and, thus, also depends on the parameter x. In conclusion, the desirable size of the Yukawa

couplings constrains the parameter space.

3.4 Constraining the Deviations from Unitarity using the entries of the

Dirac Mass Matrix

In this section, it will become clear that the entries of the Dirac mass matrix constrain the possible

deviations from unitarity for a given value of the lightest heavy neutrino mass. In other words, it is

shown that there is a correlation among:

• The size of deviations from 3× 3 unitarity of the leptonic mixing matrix K

• The mass of the lightest heavy neutrino, M1.
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From [eq. 3.8] one obtains:

Mν = KX†dR (Z∗)
−1

. (3.54)

As said before, the experimental fact that K is almost unitary implies that Z is also almost unitary.

Therefore the Dirac mass matrix Mν is of the same order as X times dR. Notice that the scale of dR
may be of the order of the top quark mass, so that indeed the Yukawa couplings need not be extremely

small.

The elements of the neutrino Dirac mass matrix, Mν , are connected to the deviations from unitarity

of the leptonic mixing matrix, K, in the following way:

Mν = UK

(√
(I + d2X)

)−1

dX W † dR W ∗
(√

(I + d2X)

)
WT

Z , (3.55)

where [Eqs. 3.16, 3.18, 3.13] were used. An interesting quantity that gives an insight on the order of the

entries of Mν is:

Tr
[
MνMν†] = Tr

[(√
(I + d2X)

)−1

dX W † dR W ∗ (I + d2X
)
WT dR W dX

(√
(I + d2X)

)−1
]
.

(3.56)

As previously emphasized, deviations from 3×3 unitarity in the leptonic mixing matrix, K, are controlled

by the matrix X. For X = 0, there are no deviations from unitarity. Small deviations from unitarity

correspond to dX small and, in that case, one has, in a very good approximation:

Tr
[
MνMν†] ≈ Tr

[
dX W †d2RW dX

]
= Tr

[
d2X W †d2RW

]
, (3.57)

where the terms with powers higher than 2 of dX were neglected. This can be written as:

Tr
[
MνMν†] = d2X1

(
M2

1 |W11|2 +M2
2 |W21|2 +M2

3 |W31|2
)
+

d2X2

(
M2

1 |W12|2 +M2
2 |W22|2 +M2

3 |W32|2
)
+

d2X3

(
M2

1 |W13|2 +M2
2 |W23|2 +M2

3 |W33|2
)
.

(3.58)

Using the conclusion from the previous sections - that only one of the dXi
, corresponding to dX3

, can have

a significant value (e.g. dX3 ≈ 10−3), while the other two are negligible - one finds in good approximation:

Tr
[
MνMν†] ≈ d2X3

(
M2

1 |W13|2 +M2
2 |W23|2 +M2

3 |W33|2
)
. (3.59)

Using the unitary of W :

Tr
[
MνMν†] ≈ d2X3

M2
1

(
1 +

(
M2

2

M2
1

− 1

)
|W23|2 +

(
M2

3

M2
1

− 1

)
|W33|2

)
, (3.60)
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which, with the choice M3 ≥M2 ≥M1, leads to:

d2X3
M2

1 ≤ Tr
[
MνMν†] =∑

i,j

|Mν
ij |2 . (3.61)

From [eq. 3.61], it is clear that for significant values of dX3 , M1 cannot be too large in order to avoid a

too large value of Tr
[
MνMν†], which in turn would imply that at least one of the

∣∣Mν
ij

∣∣2 is too large.

This can be seen in [Fig. 3.4(a)], where the plot of 1
2d

2
X3

versus M1 is presented. This is done for a large

x2, the parameter of the matrix Oc. In this case, x2 corresponds to r2 in [eq. 3.35]. For the case when

x2 << 1, then r2 = r−2 = 1, and the deviations from unitarity are totally controlled by the heavy mass

scale. Both cases yield similar plots. Significant values of d2X3
can only be obtained for M1 ≤ 1 TeV , in

the large x region. Of course that for a very small M1, to obtain deviations from unitarity of this order

(∼ 10−3), Tr
[
MνMν†] would yield a very small result and this is also not wanted.

Thus, the quantity Tr
[
MνMν†] constrains the lightest heavy neutrino mass by giving a lower and an

upper bound, for a given quantity of d2X3
. In the following plots, it is required that Tr

[
MνMν†] ≤ m2

t .

To create them, the case of normal ordering was considered, and the values of light neutrinos masses mi,

were varied up to m3 = 0.5 eV. Concerning the heavy Majorana masses Mi, M3 was allowed to reach

values of the order of 104mt and the Oc were randomly generated with a large x. In [Fig. 3.4], the

condition |η12| ≤ 2 × 10−5 is imposed. In [Fig. 3.4(b)], the absolute value of the 11 entry of the matrix

η is plotted.

((a)) Maximum deviations from unitarity as a func-
tion of M1, generated under the condition that
Tr(MνMν†) ≤ m2

t and |η12| ≤ 2× 10−5.

((b)) |η11| deviations from unitarity as a function of
M1, generated under the condition that Tr(MνMν†) ≤
m2

t and |η12| ≤ 2× 10−5.

Figure 3.4: Evolution of the deviations from unitarity as a function of M1.

3.5 The Importance of Loop Corrections

Loop corrections can be of two kinds: renormalizable and intrinsically finite. The renormalizable pieces

consist of corrections to the tree level parameters already present in the Lagrangian. In the case of

corrections to the masses, these are suppressed with respect to the tree level ones by the loop factor
1

16π2 and by being proportional to leptonic Yukawa couplings [154]. The intrinsically finite corrections

are terms which need to be finite since there are no counterterms that could be used to absorb possible

divergences arising from them. They are only suppressed by the loop factor, and, thus, can be potentially

59



large. At one-loop level, the generalized mass matrix, M from [eq. 2.46] turns into:

M =M tree +M loop , M tree =

 0 Mν

MνT MR

 , M loop =

 δML δMν

(δMν)T δMR .

 (3.62)

By observation of the previous equation one can conclude that δML will be the potentially dangerous

correction, since it is the one without a tree level counterpart. The renormalizable and suppressed

corrections are given by δMν . Discussing δMR is cumbersome since MR and Mi are free parameters of

the theory.

The corrections stem from the two point function known as neutrino self energy, Σ(p), where p is the

neutrino momentum. This is calculated in the mass basis, then [eq. 2.47] is used to transform it to the

interaction basis:

M loop = V Σ(p)V T . (3.63)

The diagrams one should consider in order to calculate Σ(p) at one-loop are:

Figure 3.5: Loop Diagrams used to calculate the neutrino self energy.

Where if A = Z,H, φZ then B = χK or else if A = φ±,W±, then B = l∓ and

χ =

n

N

 , νL = (K R)PLχ , ν
′
L = (S Z)PLχ , (3.64)

as in [eq. 2.49]. Σ(p) can be decomposed as:

Σ(p) = AL(p
2)/pPL +AR(p

2)/pPR +BL(p
2)PL +BR(p

2)PR (3.65)

Writing the new term explicitly, using [Eqs. 2.46, 3.62]:

νTLC
−1δM∗

LνL = χT (K R)TPT
L C

−1δM∗
LPL(K R)χ = χTC−1(K R)TPLδM

∗
LPL(K R)χ , (3.66)

and using [Eqs. 3.63, 3.65] one can conclude:

(K R)TPLδM
∗
LPL(K R) = PLΣ(p)PL = PLBL(p

2)PL =⇒ δML = (K R)B∗
L(p

2)(K R)T . (3.67)

This reduces significantly the complexity of the expressions to calculate8, as only the ones with A =

8The argument is general for any piece δMi. M loop only depends on BL(p
2) and it can be proven that diagrams with

W± never contribute to BL(p
2).
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Z,H, φZ contribute to δML [154]. The calculation of δML is done in Appendix C, and was performed

using the Higgs, gauge and Goldstone boson Feynman Rules for an arbitrary gauge, ξi, given at [92], the

textbook [155] and closely following [154, 156].

The result is finite (the infinities cancel), depends only on parameters of the theory and is gauge

invariant9, as expected:

δML = δMZ
L + δMH

L , (3.68)

with

δMZ
L =

3g2

64π2m2
W

(K R)D3

(
1

m2
Z

D2 − I

)−1

log

(
D2 1

m2
Z

)
(K R)T

δMH
L =

g2

64π2m2
W

(K R)D3

(
1

m2
H

D2 − I

)−1

log

(
D2 1

m2
H

)
(K R)T ,

(3.69)

where the expressions resemble the finite part of Passarino-Veltman functions B0 [155]10. D is the diagonal

mass matrix defined in [eq. 2.47].

As predicted, the corrections can be dangerously large due to the direct dependence on the heavy

neutrino masses Mi.

It’s interesting to note that even if the light neutrinos are massless at tree level the loop corrections

are non-zero [157]. This happens due to the non-zero heavy neutrino masses Mi along with the fact that

L(mB) = D3
(

1
m2

B
D2 − I

)−1

log
(
D2 1

m2
B

)
is a diagonal matrix:

L(mB) =

Lm(mB) 0

0 LM (mB)

 , (3.70)

where

Lm(mB) =


m3

1
log(m2

1/m
2
B)

m2
1/m

2
B−1

0 0

0 m3
2
log(m2

2/m
2
B)

m2
2/m

2
B−1

0

0 0 m3
3
log(m2

3/m
2
B)

m2
3/m

2
B−1

 , (3.71)

and

LM (mB) =


M3

1
log(M2

1 /m
2
B)

M2
1 /m

2
B−1

0 0

0 M3
2
log(M2

2 /m
2
B)

M2
2 /m

2
B−1

0

0 0 M3
3
log(M2

3 /m
2
B)

M2
3 /m

2
B−1

 , (3.72)

with mB = mZ ,mH and the entries vanish when mi,Mi → 0, i = 1, 2, 3.

3.6 One-Loop Seesaw equations in Exact Formalism

A relevant question is if the new δML term introduces any constraint in the matrix X defined in [eq.

3.11], since the existence of the zero block was fundamental in its derivation. WithM given by [eq. 3.62],
9The term that stems from φZ makes the gauge dependent terms cancel out.

10The logarithm of a diagonal matrix is a matrix with the logarithm of its entries in the diagonal.
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neglecting δMR and δMν , but considering every other quantity as its one-loop version11, [Eqs. 3.6, 3.8]

change to:

K†δML −X†Z†MνT = dKT , (3.73)

XK†δML + Z†MνT = dRX
∗KT , (3.74)

and [Eqs. 3.7, 3.9] stay the same. Substituting K†δML on [eq. 3.74] using [eq. 3.73] and recognizing

Z−1 from [eq. 3.4] one obtains:

Mν = K
(
X†dR − dXT

)
ZT , (3.75)

which is the new form of [eq. 3.54]. One could transform from one to another using [eq. 3.10], however

one cannot assume that [eq. 3.10] still applies at one-loop. Now taking Z†MR from [eq. 3.9]] onto [eq.

3.7] and using the new definition for Mν [eq. 3.75] yields:

(
K†K +X†XK†K − I

) (
X†dRZ

T − dXTZT
)
= 0 , (3.76)

which is the one-loop equivalent of [eq. 3.10]. The difference is that the above equation is always true,

due to [eq. 3.5]. Thus, X has no extra constraints at one-loop, and is still defined by [eq. 3.11], with

Oc and d their one-loop versions. Since it’s not possible to obtain an analytical formula for the one-loop

corrections of Oc, a better definition for X at one-loop is given by:

X loop =
(
K−1R

)†
. (3.77)

From [eq. 3.77] it is clear that if the one-loop corrections to the light neutrino masses are small, then

the one-loop version of matrices K and R won’t be much different from their tree level counterparts,

implying the same fate for X and the deviations from unitarity.

3.7 How To Control Light Neutrino Loop Mass Corrections

Controlling light neutrino loop mass corrections, [eq. 3.68], reduces to control the quantity:

K (Lm(mB))K
T +R

(
LM (mB)

)
RT ≈ R

(
LM (mB)

)
RT , (3.78)

where [Eqs. 3.70, 3.71, 3.72] were used on [eq. 3.68]. The approximation is valid since, as said before,

the entries of Lm(mB) vanish when mi → 0 and K is an almost unitary matrix. Thus, in very good

approximation, [eq. 3.68] becomes:

δML ≈ g2

64π2m2
W

R
[
3LM (mZ) + LM (mH)

]
RT . (3.79)

Since LM (mB) are, in general, large there are only three possibilities in order to generate a small δML:
11Assuming that δML was calculated using tree level quantities and M was diagonalized under the aforesaid assumptions,

d, X, K, S, R and Z are now different from their tree level versions.
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A Having a very small R, such that R
(
LM (mB)

)
RT is suppressed.

B Having a R with entries of arbitrary order of magnitude but with a given structure such that combined

with a proper choice of LM (mB) it yields a small R
(
LM (mB)

)
RT due to cancellations.

C Having two small heavy neutrino masses (of the order of the eV or KeV , for example), such that two

of the columns of LM (mB) are small while the remaining heavy neutrino has a large mass. Along with

the choice of a special type of Oc such that one of the rows of X has small entries, leading to a column

with small entries in R. This column should match the one column of LM (mB) that is not small,

i.e., the one that corresponds to the heavy neutrino with large mass. This way, R
(
LM (mB)

)
RT is

suppressed. 12

For case A, a small R means a small X, since R = KX† given [Eqs. 3.1, 3.3], and K is almost unitary,

agreeing with experimental data. This implies that, in this case, small deviations from unitarity suppress

the loop corrections.

As for models of case B, the cancellation is trivial to achieve when all the heavy neutrinos are degen-

erate M1 = M2 = M3, which implies LM (mB) = M × I, where M = M3
1
log(M2

1 /m
2
B)

M2
1 /m

2
B−1

is a real number.

In this parameter region, a small δML only requires RRT = KX†X∗KT << 1. For the same reason

as before, this translates into X†X∗ << 1. Using [eq. 3.11] in the parameter region where the heavy

neutrinos are degenerate, dR =M1 × I, gives:

X†X∗ = −
√
dO†

c

√
d−1
R

√
d−1
R O∗

c

√
d = −M−1

1 × d << 1 . (3.80)

Thus, in this parameter region, the matrix X already satisfies the necessary condition to achieve a

cancellation and obtain a small δML. Nevertheless, one can slightly break the degeneracy, while still

having X†X∗ << 1, resulting in a still small δML. This corresponds to having an almost conserved

lepton-number-like charge [158, 159].

Finally, for case C models, the cancellation happens due to the matching of big entries of R with small

entries of LM (mB) and vice-versa. For this, it is fundamental to have sizable deviations from unitarity,

such that one of the rows of X is very small and the other two are sizable.

It is relevant to cover the special case where the light neutrino masses are generated only at loop level.

This is done in Appendix D.

3.8 Numerical Examples and the Effect of Deviations from Unitarity on

Loop Corrections

This section is organized as follows. First, examples for the three types of models in which light neutrino

loop mass corrections are controlled are presented: For case A - small R, and, thus, small deviations from

unitarity, case B - sizable deviations from unitarity with quasi-degenerate heavy neutrinos and case C -

sizable deviations from unitarity with two light heavy neutrinos.
12A scenario with 3 light heavy neutrino would also work but it is disfavoured due to always leading to unnaturally small

neutrino Yukawa couplings, independently of the chosen deviations from unitarity.
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The case A example is given for normal ordering and includes an analysis of the effect of the deviations

from unitarity on the variation of the heaviest light neutrino mass after loop corrections.

The case B examples are given for normal and inverted ordering, each for two different patterns of

deviations from unitarity. For the normal ordering scenario, an analysis of the effect of the deviations

from unitarity on the variation of the heaviest light neutrino mass after loop corrections is also given.

A final case C example is given for normal ordering with M1 of the order of the eV , M2 of the order

of the KeV and a large M3, with sizable deviations from unitarity.

The numerical examples are given in the following tables, where the deviations from unitarity are

expressed by the hermitian matrix η, defined in [eq. 3.27]. The first row contains quantities that are the

same at tree and loop level - heavy neutrino masses, Dirac mass matrix, Mν and Heavy neutrino mass

matrix, MR. The second row contains relevant quantities - the light neutrino masses, the matrix X and

the mixing matrix that connects light and heavy neutrinos through electroweak processes, R - at tree

level. The third row contains the same quantities as the second row, but at one-loop level. The mixing

matrix K has entries in the UPMNS 1σ allowed range, both for tree and one loop level. The differences of

the squared light neutrino masses, ∆m2
ij , at one loop level are in the 1σ range of the values given in [Tab.

2.2]. All quantities with units of mass, except the light neutrino masses which are in eV , are expressed

in terms of the top quark mass mt. The matrix WZ , defined in [eq. 3.16], was chosen to be

WZ =


1 0 0

0 0 1

0 1 0

 , (3.81)

since there are no experimental bounds for the Z matrix.

3.8.1 Case A: Small Deviations from Unitarity

The used Oc is of the type given in [eq. 3.53] with θ = π
3 and x = 4.8. The Majorana phases were taken

to be α1 = α2 = 0.

Table 3.1: Example for case A, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 5.97 × 10−3 eV , defined in [eq. 2.119],
mβ = 9.67× 10−3 eV , defined in [eq. 2.113] and Nν = 2.999, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt)M1 = 30
M2 = 60
M3 = 100

  1.02× 10−5 6.08× 10−8 1.10× 10−6

1.19× 10−5 3.52× 10−7 3.41× 10−6

7.97× 10−6 3.72× 10−7 4.32× 10−6

 3.41×10−10

 3.03× 101 4.20× 101 6.77
4.20× 101 7.64× 10−1 9.38

6.77 9.38 9.90× 101


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.0062

m2 = 0.00902
m3 = 0.0542

  2.89× 10−14 3.40× 10−14 2.29× 10−14

3.40× 10−14 4.06× 10−14 2.72× 10−14

2.29× 10−14 2.72× 10−14 1.91× 10−14

  −1.46× 10−7
(
−2.04× 10−7

)
i 2.30× 10−7(

−1.06× 10−7
)
i 1.41× 10−7

(
1.66× 10−7

)
i(

−8.85× 10−9
)
i 0

(
−4.94× 10−8

)
i

  1.3× 10−7 −
(
1.47× 10−7

)
i 1.02× 10−7 +

(
9.37× 10−8

)
i 6.9× 10−9 −

(
4.97× 10−9

)
i

−1.97× 10−7 −
(
1.19× 10−7

)
i 8.24× 10−8 −

(
1.43× 10−7

)
i 6.68× 10−10 −

(
2.85× 10−8

)
i

−1.01× 10−7 +
(
1.19× 10−7

)
i −8.29× 10−8 −

(
7.32× 10−8

)
i 7.69× 10−10 −

(
4.04× 10−8

)
i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.00543

m2 = 0.0102
m3 = 0.0505

  2.92× 10−14 3.41× 10−14 2.27× 10−14

3.41× 10−14 4.09× 10−14 2.72× 10−14

2.27× 10−14 2.72× 10−14 1.88× 10−14

  1.39× 10−7 +
(
6.56× 10−9

)
i 1.98× 10−9 −

(
2.16× 10−7

)
i −2.24× 10−7 +

(
4.54× 10−10

)
i

4.60× 10−9 −
(
1.00× 10−7

)
i −1.50× 10−7 −

(
1.44× 10−9

)
i 2.90× 10−10 +

(
1.62× 10−7

)
i

2.90× 10−10 +
(
8.15× 10−9

)
i −4.07× 10−10 +

(
4.82× 10−10

)
i 5.04× 10−11 +

(
4.95× 10−8

)
i

  1.3× 10−7 −
(
1.47× 10−7

)
i 1.02× 10−7 +

(
9.37× 10−8

)
i 6.9× 10−9 −

(
4.97× 10−9

)
i

−1.97× 10−7 −
(
1.19× 10−7

)
i 8.24× 10−8 −

(
1.43× 10−7

)
i 6.68× 10−10 −

(
2.85× 10−8

)
i

−1.01× 10−7 +
(
1.19× 10−7

)
i −8.29× 10−8 −

(
7.32× 10−8

)
i 7.69× 10−10 −

(
4.04× 10−8

)
i


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Figure 3.6: m3 after loop corrections as a function of d2X3, generated in the example given in [Tab. 3.1],
varying the value of the parameter x, while Tr[MνMν†] ≤ m2

t and with everything else kept constant.

The loop corrections become controlled near the minimum possible value for the deviations from

unitarity d2X3 ∼ m
M , as for small x one has X ≈ −i

√
d
dR

. Higher level loop corrections on the example

given in [Tab. 3.1] are not expected to be very big due to the smallness of the entries of the R matrix.

3.8.2 Case B: Sizable Deviations from Unitarity with two Quasi-degenerate Heavy Neu-

trinos

The used Oc is of the type given in [eq. 3.53] with θ = π
3 and x = 2.36× 105. The used Majorana phases

were α1 = 53
58π, α2 = 19

34π.

Table 3.2: Example for case B, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 6.58 × 10−3 eV , defined in [eq. 2.119],
mβ = 1.01× 10−2 eV , defined in [eq. 2.113], and Nν = 2.989, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3
M2 = 3 + 1× 10−10

M3 = 50

  0.140 4.12× 10−13 6.49× 10−7

0.000876 2.06× 10−12 2.32× 10−6

0.171 1.84× 10−12 3.17× 10−6

 0.0488

 7.15× 10−10 2.99 1.76× 10−4

2.99 2.14× 10−11 3.85× 10−5

1.76× 10−4 3.85× 10−5 5.00× 101


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.00507

m2 = 0.0100
m3 = 0.0522

  1.09× 10−3 6.82× 10−6 1.33× 10−3

6.82× 10−6 4.27× 10−8 8.34× 10−6

1.33× 10−3 8.34× 10−6 1.63× 10−3

  −0.0206 −0.0328i 0.0351
−0.0206i 0.0328 0.0351i(

−1.13× 10−8
)
i 0

(
−6.85× 10−8

)
i

  −0.0262− 0.0201i −0.0201 + 0.0262i 4.78× 10−9 +
(
4.53× 10−10

)
i

0.000137 + 0.000154i 0.000154− 0.000137i −4.46× 10−8 −
(
1.28× 10−8

)
i

−0.0066 + 0.0398i 0.0398 + 0.0066i −5.12× 10−8 −
(
4.92× 10−9

)
i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.00491

m2 = 0.0100
m3 = 0.0504

  1.09× 10−3 6.82× 10−6 1.33× 10−3

6.82× 10−6 4.27× 10−8 8.33× 10−6

1.33× 10−3 8.33× 10−6 1.63× 10−3

  −0.0203 +
(
9.27× 10−6

)
i 6.29× 10−6 + 0.0330i −0.0350 +

(
5.33× 10−7

)
i

−9.27× 10−6 − 0.0203i −0.0330 +
(
6.29× 10−6

)
i −5.33× 10−7 − 0.0350i

2.77× 10−14 −
(
1.14× 10−8

)
i 9.27× 10−11 +

(
2.11× 10−12

)
i 2.68× 10−15 +

(
6.85× 10−8

)
i

  −0.0262− 0.0201i −0.0201 + 0.0262i 4.78× 10−9 +
(
4.53× 10−10

)
i

0.000137 + 0.000154i 0.000154− 0.000137i −4.46× 10−8 −
(
1.28× 10−8

)
i

−0.0066 + 0.0398i 0.0398 + 0.0066i −5.12× 10−8 −
(
4.92× 10−9

)
i


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Figure 3.7: m3 after loop corrections as a function of d2X3, generated in the example given in [Tab. 3.2],
varying the value of the parameter x, while Tr[MνMν†] ≤ m2

t and with everything else kept constant.

The loop corrections are essentially constant, independently of the size of the deviations from unitarity

d2X3. This happens due to the cancelling structure of R and because of the quasi-degeneracy of M1 and

M2. Higher level loop corrections on the example given in [Tab. 3.2] are not expected to be very big due

to the persistence of structure of R after loop corrections.

For a different heavy neutrino mass hierarchy, the used Oc is of the type given in [eq. 3.53] multiplied

on the left by a matrix: 
0 0 1

1 0 0

0 1 0

 (3.82)

with θ = π
3 and x = 3.60× 105. The used Majorana phases were α1 = 35

22π, α2 = 97
107π.

Table 3.3: Example for case B, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 1.78 × 10−2 eV , defined in [eq. 2.119],
mβ = 1.00× 10−2 eV , defined in [eq. 2.113], and Nν = 2.992, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3
M2 = 9

M3 = 9 + 1× 10−10

  0.00956 7.11× 10−13 1.64× 10−7

0.162 2.19× 10−12 5.89× 10−7

0.540 2.03× 10−12 7.44× 10−7

 0.318

 1.09× 10−10 8.98 2.42× 10−5

8.98 2.54× 10−11 1.05× 10−5

2.42× 10−5 1.05× 10−5 3.00


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.00500

m2 = 0.0100
m3 = 0.0502

  5.65× 10−7 9.55× 10−6 3.19× 10−5

9.55× 10−6 1.62× 10−4 5.40× 10−4

3.19× 10−5 5.40× 10−4 1.80× 10−3

  (
−4.25× 10−8

)
i 0

(
−2.83× 10−7

)
i

−0.0184 −0.0289i 0.0283
−0.0184i 0.0289 0.0283i

  4.15× 10−8 +
(
3.55× 10−8

)
i 0.000636 + 0.000401i 0.000401− 0.000636i

−5.62× 10−8 −
(
1.93× 10−7

)
i 0.00709 + 0.0105i 0.0105− 0.00709i

−6.48× 10−8 −
(
1.85× 10−7

)
i −0.0424 + 0.00194i 0.00194 + 0.0424i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.00484

m2 = 0.00992
m3 = 0.0503

  5.65× 10−7 9.54× 10−6 3.19× 10−5

9.54× 10−6 1.61× 10−4 5.39× 10−4

3.19× 10−5 5.39× 10−4 1.80× 10−3

  −2.09× 10−12 +
(
4.17× 10−8

)
i −3.12× 10−10 +

(
1.09× 10−12

)
i 3.28× 10−13 −

(
2.83× 10−7

)
i

−0.0183 +
(
2.27× 10−6

)
i 1.70× 10−6 + 0.0290i −0.0282 +

(
5.48× 10−7

)
i

2.27× 10−6 + 0.0183i 0.0290−
(
1.70× 10−6

)
i 5.48× 10−7 + 0.0282i

  −4.15× 10−8 −
(
3.55× 10−8

)
i 0.000636 + 0.000401i −0.000401 + 0.000636i

5.62× 10−8 +
(
1.93× 10−7

)
i 0.00709 + 0.0105i −0.0105 + 0.00709i

6.48× 10−8 +
(
1.85× 10−7

)
i −0.0424 + 0.00194i −0.00194− 0.0424i



For the same heavy neutrino mass hierarchy as the first example of this subsection, [Tab. 3.2] but for

inverted ordering, the used Oc is of the type given in [eq. 3.53] with θ = π
4 and x = 8.14× 104. The used

Majorana phases were α1 = 229
150π, α2 = 23

22π.
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Table 3.4: Example for case B, with Inverted Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 1.78 × 10−2 eV , defined in [eq. 2.119],
mβ = 5.00× 10−2 eV , defined in [eq. 2.113],and Nν = 2.996, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3
M2 = 3 + 1× 10−10

M3 = 50

  0.00184 5.87× 10−12 2.27× 10−6

0.0605 1.88× 10−12 2.98× 10−6

0.124 1.42× 10−12 2.91× 10−6

 0.0189

 1.95× 10−8 3.00 9.83× 10−4

3.00 4.09× 10−11 8.61× 10−5

9.83× 10−4 8.61× 10−5 5.00× 101


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.0516

m2 = 0.0517
m3 = 0.009

  1.87× 10−7 6.18× 10−6 1.26× 10−5

6.18× 10−6 2.04× 10−4 4.16× 10−4

1.26× 10−5 4.16× 10−4 8.49× 10−4

  −0.0185 −0.0256i 0.00742
−0.0185i 0.0256 0.00742i(

−5.34× 10−8
)
i 0

(
−2.32× 10−8

)
i

  −0.000395 + 0.000176i 0.000176 + 0.000395i 3.22× 10−9 +
(
4.47× 10−8

)
i

0.0143 + 0.000259i 0.000259− 0.0143i −2.36× 10−9 −
(
3.59× 10−8

)
i

−0.0291− 0.00207i −0.00207 + 0.0291i −1.94× 10−9 +
(
9.65× 10−9

)
i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.0503

m2 = 0.0510
m3 = 0.00875

  1.87× 10−7 6.17× 10−6 1.26× 10−5

6.17× 10−6 2.04× 10−4 4.16× 10−4

1.26× 10−5 4.16× 10−4 8.48× 10−4

  0.0185−
(
9.70× 10−6

)
i −5.70× 10−6 − 0.0257i 0.00731 +

(
4.43× 10−6

)
i

9.70× 10−6 + 0.0185i 0.0257−
(
5.70× 10−6

)
i −4.43× 10−6 + 0.00731i

1.22× 10−13 −
(
5.33× 10−8

)
i −7.85× 10−11 +

(
2.42× 10−11

)
i −2.52× 10−13 +

(
2.36× 10−8

)
i

  0.000395− 0.000176i −0.000176− 0.000395i 3.22× 10−9 +
(
4.47× 10−8

)
i

−0.0143− 0.000259i −0.000259 + 0.0143i −2.36× 10−9 −
(
3.59× 10−8

)
i

0.029 + 0.00207i 0.00208− 0.0291i −1.94× 10−9 +
(
9.65× 10−9

)
i



For the same heavy neutrino mass hierarchy as the second example of this subsection, [Tab. 3.3], but

for inverted ordering, the used Oc is of the type

Oc =


0 0 1

1 0 0

0 1 0

 ·


√
x2 + 1 0 ix

ix 0 −
√
x2 + 1

0 1 0

 ·


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (3.83)

with θ = π
10 and x = 2.44× 105. The used Majorana phases were α1 = 3

2π, α2 = 47
80π.

Table 3.5: Example for case B, with Inverted Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 1.76 × 10−2 eV , defined in [eq. 2.119],
mβ = 4.97× 10−2 eV , defined in [eq. 2.113] and Nν = 2.991, defined in [eq. 2.121] with p = 0.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt) M1 = 3
M2 = 9

M3 = 9 + 1× 10−10

  0.425 3.23× 10−12 5.56× 10−7

0.00434 1.49× 10−12 5.31× 10−7

0.432 1.93× 10−12 5.47× 10−7

 0.367

 1.54× 10−10 8.98 1.48× 10−7

8.98 5.35× 10−11 5.61× 10−8

1.48× 10−7 5.61× 10−8 3.00


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.0509

m2 = 0.0516
m3 = 0.00852

  1.12× 10−3 1.14× 10−5 1.13× 10−3

1.14× 10−5 1.16× 10−7 1.16× 10−5

1.13× 10−3 1.16× 10−5 1.15× 10−3

  (
9.66× 10−8

)
i
(
−2.99× 10−7

)
i 0

−0.0420i −0.0137i 0.0181
0.0420 0.0137 0.0181i

  1.68× 10−7 −
(
7.89× 10−8

)
i 0.00532 + 0.0330i 0.0330− 0.00532i

1.69× 10−7 +
(
5.18× 10−8

)
i −0.000225− 0.000256i −0.000256 + 0.000225i

−1.80× 10−7 −
(
2.80× 10−8

)
i −0.0148 + 0.0305i 0.0305 + 0.0148i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.0501

m2 = 0.0508
m3 = 0.00828

  1.11× 10−3 1.14× 10−5 1.13× 10−3

1.14× 10−5 1.16× 10−7 1.16× 10−5

1.13× 10−3 1.16× 10−5 1.15× 10−3

  1.10× 10−9 +
(
7.73× 10−8

)
i 2.78× 10−10 +

(
3.05× 10−7

)
i 1.94× 10−11 −

(
1.74× 10−11

)
i

−0.0000374 + 0.0428i 0.000154− 0.0110i 0.0180−
(
5.06× 10−6

)
i

0.0428 + 0.0000374i −0.0110− 0.000154i −5.06× 10−6 − 0.0180i

  1.68× 10−7 −
(
7.89× 10−8

)
i −0.00532− 0.033i 0.033− 0.00532i

1.69× 10−7 +
(
5.18× 10−8

)
i 0.000225 + 0.000256i −0.000256 + 0.000225i

−1.8× 10−7 −
(
2.8× 10−8

)
i 0.0148− 0.0305i 0.0305 + 0.0148i


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3.8.3 Case C: Sizable Deviations from Unitarity with two Light Heavy Neutrinos

The used Oc is of the type given in [eq. 3.53] with θ = π
3 and x = 0.78. The used Majorana phases were

α1 = 52
125π, α2 = 389

200π.

Table 3.6: Example for case C, with Normal Ordering of light neutrino masses. This example gives
the following phenomenological important quantities: |mββ | = 1.13 × 10−3 eV , defined in [eq. 2.119],
mβ = 1.03× 10−2 eV , defined in [eq. 2.113], and Nν = 2.999, defined in [eq. 2.121] with p = 2.

Heavy Neutrino Masses (mt) |Mν | (mt) Tr
[
MνMν†] (m2

t ) |MR| (mt)M1 = 2.88× 10−11

M2 = 1.44× 10−8

M3 = 5.76× 1012

  0.226 3.62× 10−13 3.24× 10−11

0.749 2.25× 10−12 8.69× 10−11

1.02 1.73× 10−12 1.22× 10−10

 1.66

 5.76× 1012 9.01 4.93× 102

9.01 1.54× 10−11 1.43× 10−9

4.93× 102 1.43× 10−9 5.66× 10−8


Tree Level Light Neutrino Masses (eV ) |η|tree Xtree Rtreem1 = 0.00500

m2 = 0.00987
m3 = 0.0627

  1.30× 10−3 1.86× 10−5 1.32× 10−3

1.86× 10−5 1.58× 10−6 1.88× 10−5

1.32× 10−3 1.88× 10−5 1.35× 10−3

  −0.0217 −0.0562i 0.0407
−0.00158i 0.00154 0.00297i(

−3.31× 10−14
)
i 0

(
−2.21× 10−13

)
i

  −0.0488 + 0.0141i 0.000655 + 0.00218i −3.21× 10−14 +
(
2.26× 10−14

)
i

−0.000699 + 0.000381i −0.000271− 0.00156i 2.22× 10−14 +
(
1.28× 10−13

)
i

0.0486− 0.0179i −0.000815− 0.00230i 2.55× 10−14 +
(
1.76× 10−13

)
i


One Loop Light Neutrino Masses (eV ) |η|loop X loop Rloopm1 = 0.00467

m2 = 0.00986
m3 = 0.0504

  1.23× 10−3 6.91× 10−6 1.32× 10−3

6.91× 10−6 1.35× 10−6 6.92× 10−6

1.32× 10−3 6.92× 10−6 1.34× 10−3

  0.0202− 0.0000320i 0.0000754 + 0.0559i −0.0418− 0.000156i
9.71× 10−7 + 0.00147i −0.00153 +

(
2.86× 10−6

)
i 5.67× 10−6 − 0.00305i

1.75× 10−16 −
(
4.22× 10−14

)
i 5.20× 10−18 −

(
3.55× 10−16

)
i −3.82× 10−17 −

(
2.20× 10−13

)
i

  0.0488− 0.0141i −0.000655− 0.00218i −3.21× 10−14 +
(
2.26× 10−14

)
i

0.000305− 0.00015i 0.000282 + 0.00158i 2.21× 10−14 +
(
1.28× 10−13

)
i

−0.0485 + 0.0179i 0.000815 + 0.0023i 2.55× 10−14 +
(
1.76× 10−13

)
i



This situation is possible because of the interplay of three things. The order of magnitude of the

masses M1 and M2, the big deviations from unitarity and the Oc chosen to be like in [eq. 3.53]. As the

deviations from unitarity are sizable, and X is of this type, its third row is very small, thus cancelling the

effect of a very large M3 on [eq. 3.79]. Furthermore, because of the smallness of M1 and M2, the first

two entries of [eq. 3.72] are small, thus controlling the loop generated mass matrix δML.

Studying the effect of the variation of the parameter x in these type of models, as done in [Figs.

3.6, 3.7], is cumbersome, since x doesn’t control the deviations from unitarity for these type of models.

This happens because these models achieve sizable deviations from unitarity for x ∼ 1. Thus, reducing

x doesn’t reduce the deviations from unitarity, because, as explained below [eq. 3.38], one enters the

regime where r = 1, with r defined on [eq. 3.35]. The only way to decrease the deviations from unitarity

is increasing the heavy neutrino masses, as one can infer from analyzing [eq. 3.36] with r = 1, and this,

of course, has a big effect on the loop corrections. Summarizing, it’s not possible to isolate the effect of

the deviations of unitarity on the loop corrections for these type of models.
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Chapter 4

Conclusions

In this work, a novel parametrization, adequate for the exact treatment of Seesaw Type I models inde-

pendent of the scale of MR was exploited. This revealed a matrix, X, defined in [eq. 3.11], responsible

for the deviations from unitarity of the leptonic mixing matrix K. This parametrization clarifies the

relation between heavy neutrino masses and deviations from unitarity which is explained in subsections

3.2, 3.3 and 3.4 and can be summarized in [eq. 3.61], which means that to achieve natural values for the

Yukawa couplings one needs to take both the size of the deviations from unitarity and the scale of the

heavy neutrino masses into account. The possibly dangerously large one-loop corrections were studied,

and from that, three types of models with controlled loop corrections were suggested.

Case A models, with small deviations from unitarity, without constraints on the heavy neutrinos

masses and with possibly small Yukawa couplings.1 These are very complicated to prove experimentally.

Case B models, with two quasi-degenerate heavy neutrino masses of the order of the top mass, sizable

deviations from unitarity and without unnaturally small Yukawa couplings. These are appealing because

they can be observed in the next round of experiments at the LHC. Moreover, it would be interesting to

study if the existence of at least two quasi-degenerate heavy neutrinos enables the possibility of resonant

Leptogenesis, providing an explanation to the observed matter-anti matter asymmetry [124, 128, 129].

Case C models, with two light heavy neutrinos, sizable deviations from unitarity and without unnatu-

rally small Yukawa couplings. These are appealing because KATRIN will be able to explore the existence

of at least one heavy (mostly sterile) neutrino in the mass range of 1− 18.5 KeV , with a mixing to the

active neutrino νe as |R11|2 ≥ 10−6 [160, 161]. Furthermore, they can explain the MiniBooNE excess [69]

and other anomalies [147] and can give explanations to other Physics puzzles like dark matter (when M2

has a mass on the KeV scale like in the example given in [Tab. 3.6]) as pointed out in [151].

The question of the possibility of Thermal Leptogenesis for case A and case C is highly relevant, and

requires further study. All models explain the smallness of light neutrino masses and case C models have

a dark matter candidate.

Experimental input from KATRIN, the LHC and neutrino oscillation experiments will be fundamental

to discern which, if any, of these models might match with Nature.

1Unnaturally small for heavy neutrino masses close to the electroweak scale like in the example in [Tab. 3.1]. For heavy
neutrino masses near the GUT scale one retrieves the standard seesaw, which can have order 1 Yukawa couplings.
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Appendix A

νSM extra Feynman Rules

All momenta point towards the vertex, arrows mean fermion flow (flow of −e charge), for outgoing

states flip the vertex while maintaining all the momenta and fermion flow arrows but the momenta of

the outgoing states, which one should also flip. A Dirac fermion is a particle if its momenta points in

the same direction as the fermion flow, otherwise it’s an anti-particle. If one flips the momenta of a

charged boson then one is considering the vertex with the charge conjugate of it, i.e., diagrammatically

B−(p) = B+(−p).

Vertex Rule

W+
µ

li

νj

−ig√
2
γµPLU

∗
ij

W−
µ

νj

li

−ig√
2
γµPLUij

Table A.1: νSM Charged Currents
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Vertex Rule

Zµ

νj

νi

−ig
2 cos θw

γµPLδij

Table A.2: νSM Neutral Currents

Vertex Rule

H

νj

νi

−ig
2mW

mνii
δij

φZ

νj

νi

−g
2mW

γ5mνiiδij

φ+

li

νj

ig√
2mW

(
mνjj

PL −mliiPR

)
U∗
ij

φ−

νj

li

ig√
2mW

(
mνjjPR −mliiPL

)
Uij

Table A.3: νSM Lepton-Higgs and Lepton-Goldstone Bosons Interactions
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Appendix B

SIνSM extra Feynman Rules

Taking the reality condition on [eq. 2.29] and applies it to the 1/2 spin field expansion on [Tab. 1.2],

while using the standard transformation of fields under charge conjugation:

Ψc = CΨ
T → , vs(p) = CγT0 u

∗
s(p) , us(p) = CγT0 v

∗
s (p) , (B.1)

one gets the following relation:

asp = bsp . (B.2)

This means that a Majorana fermion is its own anti-particle, and that there are more combinations of

field operators that can create and annihilate a particle than the usual ΨΨ. Using [eq. 2.29] one gets:

Sp(νaνb) = Sp(νaνd)C
T
db = −

(
i(γµp

µ +m)

p2 −m2
C

)
ab

,

Sp(νaνb) = C−1
ad Sp(νdνb) =

(
C−1 i(γµp

µ +m)

p2 −m2

)
ab

,

Sp(νaνb) = C−1
ad Sp(νdνc)C

T
cb = −

(
C−1 i(γµp

µ +m)

p2 −m2
C

)
ab

.

(B.3)

However, it is possible to write the Lagrangian of every chiral theory with Majorana fermions in a form

independent of C - using [eq. 2.34]. If one is consistent and extracts the theory’s Feynman Rules from

that C independent Lagrangian, one only needs to use the usual Dirac propagator [162, 163]. If one sticks

with a C dependent Lagrangian, it is always possible to cancel every C using a C dependent propagator

and [Eqs. B.2] , leading to a C independent result. As for the external lines, if one has 2 Majorana fields

in the incoming and/or outgoing, the result is independent of the labeling of particle or anti-particle to

them in the vertex. The standard procedure is to consider that one is a particle and the other is an

anti-particle, choosing the spinors accordingly [163]. If there’s only one Majorana field in the incoming

and/or outgoing lines of a vertex, two interesting cases are possible. There is a lepton number conserving

vertex, given in [eq. 2.67] and lepton number violating vertex, given by transforming [eq. 2.67] like in [eq.

2.69]. For the lepton number conserving case, the label of particle or anti-particle given to the Majorana

particle is fixed by the labeling of the Dirac particle [162]. Nevertheless, if one is dealing with a Dirac
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fermion number violating process involving Dirac fermions one should use the lepton number violating

vertex and take special care on using the adequate spinor for the conjugated charged particle - if one uses

the vertex factor on [Tables B.3, B.8] one should use the spinor given in [Table B.1] under ”Conjugated

Dirac Fermion” and ”Anti-Conjugated Dirac fermion”1. Furthermore, a factor of −1
2 must be associated

with each closed Majorana fermion loop [162]. This can be summarized in the following Feynman rules

for external lines:

Type of Particle Incoming Outgoing
Scalar 1 1
Dirac Fermion/Anti - Conjugated Dirac Fermion us(p) us(p)
Dirac Anti-Fermion/Conjugated Dirac Fermion vs(p) vs(p)
Majorana Fermion us(p) , vs(p) us(p) , vs(p)
Vector Boson εµr (p) ε∗µr (p)

Table B.1: Feynman Rules for external lines

For Majorana neutrinos, the direction of the arrow (fermion flow) is meaningless - the same vertex

with a reverted direction of the arrow exists. It might be useful to use, in some cases:

u(±q) = v(∓q) . (B.4)

In the cases where the arrow doesn’t matter (vertices involving two Majorana particles) all the direction

possibilities are drawn. Note that, including the lepton number violating cases, these amount to four

(the four non-repeating combinations of the arrow’s direction). However it can be proven that the lepton

number violating cases are actually the same vertices as the lepton number conserving ones [114] (for

Majorana particles). To avoid overcounting, one should only consider one fermion flow and use or a

lepton number conserving vertex or a lepton number violating vertex, with the proper choice of spinors

for each case choice. In this work, one uses the former - see first equality of example given in [eq.

B.5]. Choosing the other flow gives an extra minus sign for vector-like vertices, scalar-like vertices don’t

change. Thus, when dealing with multiple diagrams it’s fundamental to stick with the choice of fermion

flow (label of particle/anti-particle) for all diagrams, such that the one gets the relative signs correctly.

To aid the interpretation of the following Feynman rules, one presents the amplitude of the process

Zµ(p1) + νi(p2) → νj(p3):

iM =

[
u(p3)

(
−ig

2 cos θw
γµPL(K

†K)ij

)
u(p2)

]
εµ(p1) = −

[
v(p2)

(
−ig

2 cos θw
γµPL(K

†K)ij

)
v(p3)

]
εµ(p1) ,

(B.5)

of the process e−(p1) + νj(p2) → φ−(p3):

iM =

[
v(p2)

(
ig√
2mW

·
(
PLSjkM

ν∗
1k − PRK

∗
1jml11

))
u(p1)

]
=

[
v(p1)

(
ig√
2mW

·
(
PLSjkM

ν∗
1k − PRK

∗
1jml11

))
u(p2)

]
,

(B.6)

and of the t-channel amplitude of the Dirac fermion number violating process e+(p1)+e+(p2) →W+
µ (p3)+

1Note that Conjugated Dirac Fermion and Dirac Fermion have opposite charges.
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W+
ν (p4), with only the three light neutrinos in the intermediate state:

iMt =
∑
j

[
v(p1)

(
−ig√
2
γµPL(K)1j

)
i(γδp

δ +mj)

p2 −m2
j

(
−−ig√

2
γνPL(K)1j

)
u(p2)

]
εµ∗(p3)ε

ν∗(p4) , (B.7)

where p = p3 − p1 = p2 − p4, and e+(p2) = (e−(p2))
c has the role of Anti Conjugated Dirac fermion

, which means that the vertex connecting the momenta p2 and p4 is the lepton number violating one.

Furthermore, Mν presented in these tables is the the neutrino Dirac mass matrix in the basis where

the charged lepton Dirac mass matrix is diagonal (same meaning as in [eq. 2.41]). The following tables

should be compared with [Tables A.1, A.2, A.3 ]. All momenta point towards the vertex, arrows mean

fermion flow (flow of -e charge), for outgoing states flip the vertex while maintaining all the momenta

and fermion flow arrows but the momenta of the outgoing states, which one should also flip. A Dirac

fermion is a particle if its momenta points in the same direction as the fermion flow, otherwise it’s an

anti-particle. If one flips the momenta of a charged boson then one is considering the vertex with the

charge conjugate of it, i.e., diagrammatically B−(p) = B+(−p).

The equation [Eq. C.3] is needed to write the Higgs and Goldstone Boson Feynman Rules in the way

they are presented in tables [Tabs. B.5, B.6 , B.7, B.8]
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Vertex Rule

W+
µ

li

νj

−ig√
2
γµPLK

∗
ij

W+
µ

li

Nj

−ig√
2
γµPLR

∗
ij

W−
µ

νj

li

−ig√
2
γµPLKij

W−
µ

Nj

li

−ig√
2
γµPLRij

Table B.2: SIνSM Charged Currents
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Vertex Rule

W+
µ

lci

νj

−−ig√
2
γµPLK

∗
ij

W+
µ

lci

Nj

−−ig√
2
γµPLR

∗
ij

W−
µ

νj

lci

−−ig√
2
γµPLKij

W−
µ

Nj

lci

−−ig√
2
γµPLRij

Table B.3: SIνSM Lepton Number Violating Charged Currents
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Vertex Rule

Zµ

νj

νi

−ig
2 cos θw

γµPL(K
†K)ij

Zµ

Nj

Ni

−ig
2 cos θw

γµPL(R
†R)ij

Zµ

νj

Ni

−ig
2 cos θw

γµPL(R
†K)ij

Zµ

Nj

νi

−ig
2 cos θw

γµPL(K
†R)ij

Table B.4: SIνSM Neutral Currents
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Vertex Rule

H

νj

νi

−ig
2mW

·
(
(K†K d)ijPR + (d K†K)ijPL

)

H

Nj

Ni

−ig
2mW

·
(
(R†R dR)ijPR + (dR R†R)ijPL

)

H

νj

Ni

−ig
2mW

·
(
(R†K d)ijPR + (d R†K)ijPL

)

H

Ni

νj

−ig
2mW

·
(
(K†R dR)ijPR + (dR K†R)ijPL

)

Table B.5: SIνSM Neutral Lepton-Higgs Interactions
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Vertex Rule

φZ

νj

νi

−g
2mW

·
(
(K†K d)ijPR − (d K†K)ijPL

)

φZ

Nj

Ni

−g
2mW

·
(
(R†R dR)ijPR − (dR R†R)ijPL

)

φZ

νj

Ni

−g
2mW

·
(
(R†K d)ijPR + (d R†K)ijPL

)

φZ

Ni

νj

−g
2mW

·
(
(K†R dR)ijPR + (dR K†R)ijPL

)

Table B.6: SIνSM Lepton-Neutral Goldstone Boson Interactions
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Vertex Rule

φ+

li

νj

ig√
2mW

· (djjPL −mliiPR)K
∗
ij

φ+

li

Nj

ig√
2mW

· (dRjjPL −mliiPR)R
∗
ij

φ−

νj

li

ig√
2mW

· (djjPR −mliiPL)Kij

φ−

Nj

li

ig√
2mW

· (dRjjPR −mliiPL)Rij

Table B.7: SIνSM Lepton-Charged Goldstone Boson Interactions
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Vertex Rule

φ+

lci

νj

ig√
2mW

· (djjPL −mliiPR)K
∗
ij

φ+

lci

Nj

ig√
2mW

· (dRjjPL −mliiPR)R
∗
ij

φ−

νj

lci

ig√
2mW

· (djjPR −mliiPL)Kij

φ−

Nj

lci

ig√
2mW

· (dRjjPR −mliiPL)Rij

Table B.8: SIνSM Lepton Number Violating Lepton-Charged Goldstone Boson Interactions
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Appendix C

One-Loop Calculation of δML

It is useful to treat all 6 neutrinos all at once, using χ, defined in [Eq. 3.64]. To ease this, one needs to

extract flavour equations in terms of the 3×6 mixing matrices (K R) and (S Z). From the diagonalization

equation [Eq. 2.47] one gets the following equations:

(K R)D(K R)T = 03×3 , (K R)D(S Z)T =Mν , (S Z)D(S Z)T =MR , (C.1)

and from the unitarity equations [Eqs. 3.4, 3.5] one obtains:

(K R)(K R)† = I3×3 , (S Z)(S Z)
† = I3×3 , (K R)(S Z)† = 03×3 , (K R)†(K R)+(S Z)†(S Z) = I6×6 .

(C.2)

From using the transpose of the second equation of [Eq. C.1] on (S Z)†MνT , the last equation of [Eq.

C.2] and the first equation of [Eq. C.1] one obtains:

(S Z)†MνT = D(K R)T . (C.3)

The following equation, which is derived using the first equation of [Eq. C.1], will also be useful:

(K R)(k2D)(k2 · I6×6 −D2)−1(K R)T = (K R)
[
D3 +D(k2 · I6×6 −D2)

]
(k2 · I6×6 −D2)−1(K R)T

= (K R)(D3)(k2 · I6×6 −D2)−1(K R)T .

(C.4)

One will also need to rewrite the vertices given in [Tabs. B.4, B.5, B.6] such that the terms have a PL and

PR part and BL,R = BT
L,R, needed to fulfill the Majorana consistency condition [154] for the self-energy:

Σ(p) = CΣ(−p)C−1 , (C.5)

where the decomposition that was used for the self-energy is defined in [Eq. 3.65]. In order to achieve

this, one needs to rewrite the Lagrangian parts which correspond to the vertices given in [Tabs. B.4, B.5,

B.6], in terms of χ, using χ = CχT to get them in the correct form. These are the parts of the Lagrangian
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which correspond to neutrino neutral currents and to the interaction of φZ and H with the neutrinos.

This is because, as correctly stated in [154], the diagrams in [Fig. 3.5] with W± only contribute to AR

and AL and the ones with φ± which contribute to BL and which would contribute to δML give zero due

to the first equation of [Eq. C.1].

After using properties of the C matrix and of Majorana neutrinos, given in the beginning of section

2.2 of chapter 2, one obtains:

LZ =
−g

4 cos θW
Zµχγ

µ(PLF − PRF
T )χ , (C.6)

where F = [(K R)†(K R)], and

LH =
−g
4mW

Hχ[(A+AT )PR + (B +BT )PL]χ , (C.7)

LφZ
=

ig

4mW
φZχ[(A+AT )PR − (B +BT )PL]χ , (C.8)

where A = (K R)†Mν(S Z)∗ = (K R)†(K R) D and B = (S Z)TMν†(K R) = D (K R)†(K R) and

[Eq. C.3] was used.

For the diagram of [Fig. 3.5] with the Z boson, one defines the momenta in a clockwise direction,

being k the neutrino momentum and p− k the boson momentum. Using the Feynman Rules:

− iΣZ = 4×
(

−ig
4 cos θW

)2

γµ(PLF − PRF
T )∫

d4k

(2π)4

∑
l

i(/k +ml)

k2 −m2
l

(
−i

(p− k)2 −m2
Z

(
gµν − (1− ξZ)

(p− k)µ(p− k)ν
(p− k)2 − ξZm2

Z

))
γν(PLF − PRF

T ) ,

(C.9)

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some Dirac

algebra, it is possible to conclude that only mlγ
µγν(−FTF ) contributes to B∗

L. Then, one needs to go to

d = 4− ε dimensions, contract this with the Z propagator and use γµγµ = d and (/p− /k)(/p− /k) = (p−k)2.

Finally, after simplifying the denominators1:

BLZ(p)
∗ = − 4

2dπd−2
×
(

g

4 cos θW

)2

F †D[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

d

(p− k)2 −m2
Z

+
1

m2
Z

(
(p− k)2

(p− k)2 − ξZm2
Z

− (p− k)2

(p− k)2 − ξZm2
Z

)]]
F ∗ .

(C.10)

For the diagram of [Fig. 3.5] with the H boson, one defines the momenta in a clockwise direction, being

k the neutrino momentum and p− k the boson momentum. Using the Feynman Rules, the contribution
1BL is conjugated to be consistent with [Eqs. 2.47, 3.67] and the definition of the mixing matrix as V, such that the

Feynman Rules given above are correct.
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to the self-energy is:

− iΣH = 4×
(

−ig
4mW

)2 (
PR(A+AT ) + PL(B +BT )

)
∫

d4k

(2π)4

∑
l

i(/k +ml)

k2 −m2
l

−i
(p− k)2 −m2

H

(
PR(A+AT ) + PL(B +BT )

)
,

(C.11)

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some simplifica-

tions it is possible to conclude that only (B + BT )ml(B + BT ) contributes to B∗
L. Going to d = 4 − ε

dimensions:

BLH(p)∗ = − 4

2dπd−2
×
(

g

4mW

)2

(B∗ +B†)D

[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

1

(p− k)2 −m2
H

]]
(B∗ +B†) .

(C.12)

For the diagram of [Fig. 3.5] with the φZ Goldstone boson, one defines the momenta in a clockwise

direction, being k the neutrino momentum and p−k the Goldstone boson momentum. Using the Feynman

Rules, the contribution to the self-energy is:

− iΣφZ
= 4×

(
−g
4mW

)2 (
PR(A+AT )− PL(B +BT )

)
∫

d4k

(2π)4

∑
l

i(/k +ml)

k2 −m2
l

−i
(p− k)2 − ξZm2

Z

(
PR(A+AT )− PL(B +BT )

)
,

(C.13)

where the 4 is a symmetry factor due to the Majorana character of the neutrinos. After some simplifica-

tions it is possible to conclude that only (B + BT )ml(B + BT ) contributes to B∗
L. Going to d = 4 − ε

dimensions:

BLφZ
(p)∗ =

4

2dπd−2
×
(

g

4mW

)2

(B∗ +B†)D

[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

1

(p− k)2 − ξZm2
Z

]]
(B∗ +B†) .

(C.14)

Using the fact that BL can be evaluated at p = 0 [154] and [Eq. 3.67]:

δMZin
L = − 4

2dπd−2
×
(

g

4 cos θW

)2

(K R)F †D[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

d

k2 −m2
Z

+
1

m2
Z

(
k2

k2 − ξZm2
Z

− k2

(k)2 − ξZm2
Z

)]]
F ∗(K R)T .

(C.15)
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Using the first equation of [Eq. C.2] and [Eq. C.4]:

δMZin
L = − 4

2dπd−2
×
(

g

4 cos θW

)2

(K R)D[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

d

k2 −m2
Z

+
1

m2
Z

(
D2

k2 − ξZm2
Z

− D2

k2 − ξZm2
Z

)]]
(K R)T ,

(C.16)

and the definition of Passarino-Veltman function B0 from [155]:

δMZin
L = − 4

2dπd−2
×
(

g

4 cos θW

)2

(K R)D

[
dB0(0,m

2
Z , D

2) +
D2

m2
Z

[
B0(0, ξZm

2
Z , D

2)−B0(0,m
2
Z , D

2)
]]

(K R)T .

(C.17)

For H and φZ :

δMHin
L = − 4

2dπd−2
×
(

g

4mW

)2

(K R)(B∗ +B†)D

[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

1

k2 −m2
H

]]
(B∗ +B†)(K R)T ,

(C.18)

δMφZin
L =

4

2dπd−2
×
(

g

4mW

)2

(K R)(B∗ +B†)D

[
(2πµ)ε

iπ2

∫
ddk

(
k2I6×6 −D2

)−1
[

1

k2 − ξZm2
Z

]]
(B∗ +B†)(K R)T .

(C.19)

Using the first equation of [Eq. C.1] and the definition of Passarino-Veltman function B0 from [155]:

δMHin
L = − 4

2dπd−2
×
(

g

4mW

)2

(K R)D2
[
B0(0,m

2
H , D

2)
]
D(K R)T , (C.20)

δMφZin
L =

4

2dπd−2
×
(

g

4mW

)2

(K R)D2
[
B0(0, ξZm

2
Z , D

2)
]
D(K R)T . (C.21)

Putting all together, since δML = δMφZin
L + δMHin

L + δMφZin
L and using m2

W = cos θW
2m2

Z , it is clear

that the φZ contribution cancels the gauge dependent Z contribution, turning the result gauge invariant:

δML =− 4

2dπd−2
×
(

g

4 cos θW

)2

(K R)D

[
dB0(0,m

2
Z , D

2)− D2

m2
Z

[
B0(0,m

2
Z , D

2)
]]

(K R)T−

4

2dπd−2
×
(

g

4mW

)2

(K R)D2
[
B0(0,m

2
H , D

2)
]
D(K R)T

= − g2

2d+2πd−2m2
W

(K R)
[
d Dm2

ZB0(0,m
2
Z , D

2)−D3B0(0,m
2
Z , D

2) +D3B0(0,m
2
H , D

2)
]
(K R)T

= − g2

2d+2πd−2m2
W

(K R)
[
TZ1 + TZ2 + TH

]
(K R)T .

(C.22)

Using the definition from [154, 155]:

B0(0,m
2
B ,M

2) = −

∆ε + logM2 +
log M2

m2
B

M2

m2
B
− 1

 , (C.23)

96



where ∆ε is the term that is divergent for ε = 0, yields:

−(K R)TZ1(K R)T = (K R)dDm2
Z

∆ε + logD2 +
log D2

m2
Z

D2

m2
Z
− I

 (K R)T

= (K R)dDm2
Z

logD2 +
log D2

m2
Z

D2

m2
Z
− I

 (K R)T

= (K R)dm2
Z

[(
D3

m2
Z

logD2 −D logD2 +D log
D2

m2
Z

)(
D2

m2
Z

− I

)−1
]
(K R)T

= d(K R)

[(
D3 logD2 −m2

ZD logm2
Z

)(D2

m2
Z

− I

)−1
]
(K R)T

= d(K R)

[(
D3 log

D2

m2
Z

)(
D2

m2
Z

− I

)−1
]
(K R)T ,

(C.24)

where the first equation of [Eq. C.1] was used to eliminate the divergent term2 and it is again used in a

different form, in the final equality:

− (K R)
(
m2

ZD logm2
Z

)(D2

m2
Z

− I

)−1

(K R)T

=− (K R)

[(
D3 logm2

Z

)
−
(
m2

ZD logm2
Z

)(D2

m2
Z

− I

)](
D2

m2
Z

− I

)−1

(K R)T

= −(K R)
(
D3 logm2

Z

)(D2

m2
Z

− I

)−1

(K R)T .

(C.25)

As for the other terms:

−(K R)
[
TZ2 + TH

]
(K R)T = (K R)

−D3

∆ε + logD2 +
log D2

m2
Z

D2

m2
Z
− I

+D3

∆ε + logD2 +
log D2

m2
H

D2

m2
H
− I

 (K R)T

= (K R)

−D3

 log D2

m2
Z

D2

m2
Z
− I

+D3

 log D2

m2
H

D2

m2
H
− I

 (K R)T ,

(C.26)

where it is clear that the divergent terms, and also the log(D2) ones, cancel among them.

Retrieving the factors from [Eq. C.22] and taking d = 4, one can now split the result into two, the

Z boson mass dependent terms, combining [Eq. C.24] with part of [Eq. C.26] and the Higgs boson mass

dependent terms, part of [Eq. C.26]:

δMZ
L =

3g2

64π2m2
W

(K R)D3

(
1

m2
Z

D2 − I

)−1

log

(
D2 1

m2
Z

)
(K R)T ,

δMH
L =

g2

64π2m2
W

(K R)D3

(
1

m2
H

D2 − I

)−1

log

(
D2 1

m2
H

)
(K R)T ,

(C.27)

2This proves that if ML existed at tree level, the loop corrections would be infinite.
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as given in the text in [Eq. 3.69]. Finally, δML is given by :

δML = δMZ
L + δMH

L . (C.28)
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Appendix D

Light Neutrino Masses generated at Loop

Level in Exact Formalism

For massless light neutrinos at tree level, one cannot use [Eq. 3.11] for X, as this would give the trivial

case with Mν = X = R = S = 0. Not even at loop level the neutrino masses would be generated as

δML = 0 in this case. One has to find a new solution for [Eq. 3.10] with d = 0. This solution is given by:

Xd=0 = ±i
√
d−1
R Oc Q

√
J, (D.1)

where QT Q = 0 and J is any matrix with units of mass, that can be chosen to be J = dR. One can

easily check that this solves the equation 0 = −XT dR X. The combination Oc Q only has one non-zero

eigenvalue, that will be responsible for the deviations from unitarity. Q is a matrix of complex entries.

A possible type of Q is:

Q =


a b c

ia ib ic

0 0 0

 . (D.2)

All the other previously derived equations are valid for this scenario, as long as one takes d = 0. As

for the loop corrections, in this case [Eq. 3.79] is exact since Lm(mB) = 0. All the previous discussion

remains unchanged but the fact that, in the parameter region where the heavy neutrinos are degenerate,

dR =M1 × I,:

(Xd=0)†(Xd=0)∗ = −Q†
√
d−1
R

√
d−1
R Q∗ = −M−1

1

(
QTQ

)∗
= 0 . (D.3)

Which proves that the loop corrections are identically zero for degenerate heavy neutrinos. Thus, in

this case, the light neutrino masses arise from breaking the degeneracy of heavy neutrinos, yielding light

neutrino masses related to their mass difference. However, this effect is non-trivial as Q is singular which

makes X and R also singular, and in turn δML singular as well. Combining the loop generated eigenvalue,

proportional to the heavy neutrino mass differences with the possible eigenvalues of Mν to generate the

singular values of M that yield the light neutrino masses requires further investigation.
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