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Abstract—Tasks such as action detection and recognition are
a promising step in several areas such as retail, security, robotics
and recommendation systems. Recently, challenging datasets have
been introduced, which are representative of the task of multi-
person spatiotemporal action detection and recognition task with
multi-labels. We propose to augment the state-of-the-art two-
stream CNN architectures for this task. These architectures are
limited in that they try to detect the actions independent of
the background and other humans in the same video. To this
end, three novel contributions are presented: attention filtering,
context streams and a combination of both. For attention filtering,
with the goal of not only extracting information from a target
but from the image background, we train two-stream CNN
architectures with different kinds of filters applied on RGB
and Optical Flow inputs. For context streams, with the goal of
predicting the labels of a target using the labels of the surround-
ing neighbours, we use dataset labels to explicitly encode the
relationship of classes performed by multiple humans as context
features and train LSTM networks on these features. Finally, we
combine these methods by fusing the context streams with the
two-stream approaches trained with attention filtering. Results
show the combination of the first two methods outperforms each
of them and that all augmentations improve on a two-stream
CNN baseline.

Index Terms—Action Detection, Action Recognition, Multi
label datasets, Attention filters, Spatiotemporal context label
relationships, Two-stream Convolutional Neural Networks.

I. INTRODUCTION

Recently video-based human action detection and recog-
nition has been getting more attention since it allows for the
detection of a larger range of actions and incorporation of more
contextual information than inertial sensors [1]. As a conse-
quence, video-based human action detection and recognition
has many possible applications in retail, security [2], robotics
and as a representative task for video understanding (i.e to
understand human video dynamics). A large commercial pay-
off would come from accurate human action recognition and
detection since, with the amount of online videos increasing
everyday [3], a major drawback is the need to analyze video
either for improving suggestions or to check for undesired
content by hand.

A. Problem Description

We firstly introduce the basic concepts involving atomic,
action and activities and also the type of task, namely, action
recognition and action detection and multi-class opposed to
multi-label tasks.

While most literature uses a somewhat fluid notion of
many of these concepts it is important to separate the notions
hierarchically [4] as activity, action and atomic action for
humans. [5] define atomic action as an atomic movement
that can be described at a limb level (leg forward), an action
as a sequence of atomic actions, and an activity as a whole
body movement (running) containing a number of subsequent
actions. [6] also introduce verb-only labels which tend to
be associated with atomic actions as a means to reduce the
ambiguity in many action class labels. More recent datasets,
Charades/Holywood In Homes [7], Moments in Time [8], and
the dataset we use, AVA [9], tend to use atomic actions with
that same intention of reducing ambiguity, while older datasets
like UCF101 [10], HMDB51 [11] and Sports-1M [12] tend to
focus on broader activities. Furthermore, [13] [14] show how
actions can be decomposed into and grouped according to an
atomic action structure that can be learned.

Similarly to the notion of actions as sequences, the idea of
using meaning to categorize actions is also popular and [15]
define action as the most elementary human movement that
surrounds interaction with meaning. The meaning associated
with this interaction is called the category of the action: this is
important as it allows us to separate the actions into conceptual
groups.

As for the tasks, from a computer vision standpoint the
objective is to match an observation (video) with one or
more labels of actions as a supervised learning task. Action
recognition (classification is a synonym) [16] can be defined
as the task of categorizing an action in a video clip to one or
more of the pre-defined set of actions. Action detection [16]
(localization is a synonym) is the task of correctly specifying
via a boundary (e.g a bounding box) where an action is located
throughout the video. This means that action detection can be
both interpreted as spatial and temporal and multiple people
can perform different actions in the same frame. Additionally,
in theory, a single-person can have multiple labels, that is,
a single person can perform one or more actions at the
same time. This distinguishes between Single Label/Multi-
class Datasets and Multi Label Datasets [17], and the tasks
must adapt accordingly.

Action recognition tasks are challenging due to the long
temporal context needed for models [16]. As shown in recent
datasets [18], the task is made even harder as datasets tend
to be large due to the large amount of long videos with a
high FPS rate. This implies models are more complex and



computationally heavy which makes overfitting likely [19].
Since we have a very small fraction of the resources available
to other implementations, one of our goals is to try to make
our approach as light in terms of resources as possible without
compromising results. Another noteworthy observation is that
action recognition tasks are more difficult than actor detection
[9] (i.e spatial detection of people performing actions). As
such, for our approach we mainly focus on the action recogni-
tion component and assume the bounding boxes of the targets
are given a priori.

Since we believe many recent datasets have been too
simplistic and do not reflect the real complexity of this task
[9] [20], our main goal in this work is to go beyond the
common challenges of action recognition and tackle a multi-
label multi-person action detection and recognition task in an
imbalanced dataset where we can exploit a rich action structure
as previously described.

B. Main Contributions

Our main contribution is a novel architecture that deals with
an imbalanced, multi-label, action detection and recognition
task with a small amount of computational resources that
builds on previous similar approaches [21] [22] [23]. Our
method extends these approaches by using additional mech-
anisms such as attention and inter-human class relationship
context. Due to the large size of the dataset (AVA [9]),
we partitioned it to obtain a smaller representative set with
a similar distribution (miniAVA) which we provide for the
research community. Additionally, since we will release our
models online for free, we would like to highlight how
there is a lack of uniform standards in the deep learning
research community and how models are often available in
non-compatible frameworks, which forced us to implement
tools to translate between these frameworks. We also highlight
that most of the available frameworks rarely have any utilities
for multi-label or imbalanced problems and this fact often
forced us to extend already existing frameworks to suit our
needs.

II. PREVIOUS WORK

In this section we present a brief overview of the main
previous work that contributed to our approach and the current
related state of the art.

Firstly, we can separate approaches in two types: before
Convolutional Neural Networks (CNNs) and after CNNs.
Before most pipelines were called handcrafted since they
heavily focused on features that were often computed and
encoded via interpretable, analytical methods of which iDT
(improved Dense Trajectories) [24] is a good example.

After data-driven approaches became more powerful, the
use of CNN architectures in action recognition quickly became
the state of the art [25]. The more modern action recognition
frameworks normally differ in how they employ temporal
information and can be categorized as shown in Fig. 1. Since
human actions can be interpreted as sequences over time it is

Fig. 1. Examples of typical action recognition approaches with CNNs as
shown in [20]. The rightmost two approaches, while achieving the best results,
tend to be computationally heavy due to performing 3D convolutions while
the leftmost two tend to lack explicit motion features like OF which have
been proven to be advantageous.

relevant to mention an architecture that was designed to ex-
ploit temporal sequences: Recurrent Neural Networks (RNNs).
More recently, a more efficient architecture was proposed by
[26] named Long Short Term Memory (LSTMs), which was
able to handle longer sequences by altering the main repeating
cell in these networks to have memory elements. The main
idea of most LSTM based action recognition approaches is to
use LSTMs to model sequences [27] on trained features maps
extracted with CNNs to capture long temporal information.

While we use LSTM networks, our main focus is on two
stream approaches like Two-StreamFusion [28] or TSN [23].
The most novel addition introduced [21] by this type of
network model is that the use of an additional CNN trained on
explicit motion features such as optical flow to try and capture
short temporal information. These networks are particularly
attractive due to the possibility of achieving competitive results
while using small amounts of computational resources since
they tend to use only 2D CNNs and a frame level classification
scheme. More recent and computationally heavy approaches
like I3D [20] simply make these networks perform 3D Convo-
lutions on stacked volumes of RGB frames and Optical Flow.

A key aspect of this architecture is optical flow computation.
Optical Flow computes the displacement vectors between two
frames to obtain a representation of motion, which are then
stacked (over pair-wise video frames) and used as input. In
our implementation we used the TV-L1 [29] algorithm since
[20] showed it outperformed other methods including network-
based methods offering a good balance between computational
resources and accuracy.

One of the first architectures to employ two CNN streams
for action recognition [21] addressed the failures of previous
single-stream early approaches [12] by using explicit motion
features such as Optical Flow. The input to the spatial stream
is a single frame of the video, and the input to the temporal
stream are successive optical frames centered around the input
RGB frame. Each stream was pre-trained separately and the
output scores of both streams are averaged as seen in Fig.
2 which is called class score fusion. Despite seeming a
rudimentary approach, other recent state-of-the-art methods
have achieved good results with this type of fusion [23] for a
larger number of streams.

Recently, [28] go beyond the architecture of [21] and



Fig. 2. Early 2-stream CNN [21] as an example of Class Score Fusion and
two stream inputs.

explore alternative fusion strategies that allow for the learning
of combined spatial and temporal features. An example of
such method is concatenation fusion. While the definition
used by [28] is for the fusion of convolutional layers the
same ideas were used for the fusion of fully connected layers
was used. Concatenation fusion does not define a layer with
filters itself but leaves this to subsequent fully connected layers
to learn suitable weights. While these results are tested on
relatively small networks, the same authors [22] [30] tested
their concepts also on deeper architectures like ResNet [31]
variations with similar results.

III. IMPLEMENTATION

In Fig. 3 we show the main pipeline of our approach. Orig-
inal videos are split in 3s second segments. We use the TV-L1
[29] for computing optical flow which we store in disk and
we use groundtruth bounding boxes at training time. However,
at testing time we can see that some error propagation from
using another network for bounding box extraction as a pre-
processing step can occur. We argue this impact is not the main
priority when trying to improve performance as shown by the
relevant ablation study in [9]. Some key aspects of the pipeline
are the attention filtering to filter out background of frames
given bounding boxes or using labels to generate context
features which are then used to train context architectures. We
note that even the two-stream architecture is tailored for this
specific task and as such some aspects of it may not generalize
to all action recognition datasets. Examples of this include
our subsampling strategy and our custom output layers/loss
function.

Fig. 3. Conceptual pipeline of our approach. In green are the pipeline
components we are mostly focused on, the ones we do not focus on are
grayed out. In white are the inputs and outputs of the pipeline. The switch
shows how context features can be generated from 3 different sources.

In the following sections we first give a description of the
dataset we use followed by all the improvements we proposed
in the aforementioned pipeline.

A. AVA and miniAVA

Firstly we describe the main AVA [9] dataset. This dataset is
a multi-label spatio-temporal action detection and recognition
dataset which was created to be purposefully challenging to
modern approaches. This dataset is heavily class imbalanced
so as to emulate real data acquisition. All the actions are
atomic actions (very elementary or ”fine-grain” actions) which
tend to interact in more complex patterns.

The annotations are done at a sampling frequency of 1 Hz,
each sample corresponding to a keyframe. To provide temporal
context, the labels are for short segments of 3 seconds centered
on the keyframes. There are 80 atomic actions labels and
the dataset is sourced from the 15th to the 30th minute time
intervals of 192 movies at an average rate of 30 FPS.

Fig. 4. Examples of AVA [9] labeling. In yellow pose actions, in blue human-
human actions and in red human-object actions.

The dataset has a unique multi-label structure as shown in
Fig. 4. Each bounding box in a frame must have 1 pose label
like stand or walk (from mutually exclusive CP of them), 0-
3 human-human labels (from non-mutually exclusive CH of
them) like talk to or hit and 0-3 human-object labels (from
non-mutually exclusive CO of them) like hold object or watch
(e.g TV). The total number of classes is C = CP +CH +CO.

Due to the large dimension of the original AVA [9] dataset
we had to make a partition of the original dataset on which to
train and test our models. As we subsampled the dataset we
had to keep two facts in mind. Firstly, we wanted to maintain
temporal continuity in the samples (i.e have 3s segments from
the same 15 minute snippets) which we achieved by sampling
in the first segments from each split of the AVA dataset,
which while not ideal, assured the continuity which would
be lost in random sampling. Secondly, we wanted to maintain
a distribution that still followed the original distribution for the
training, validation and testing split as shown in Fig. 5 even
with a smaller number of classes as shown in Table I. We
took particular care to make sure that all classes had at least
20 samples in the test set. The number of samples chosen for
each set are such that we could process them in a reasonable
time, particularly for the training set.

TABLE I
CLASS CATEGORIES IN THE AVA [9] DATASET VS MINIAVA.

Class Category miniAVA AVA Mutually Exclusive?
Pose 10 14 Yes
Human-Object 12 49 No
Human-Human 8 17 No



Fig. 5. The distribution of the training, validation and test set of our partition
of the AVA [9] dataset. The colors of the labels reflect the type of action, we
use alternative colors to the original dataset as in Fig. 4.

B. miniAVA Context

On another topic it is relevant to ascertain two important
aspects: firstly, how much information from neighbours over
a time window can actually be learned given that it is possible
for segments to only have a single actor and secondly how rich
is the inter-class, inter-actor temporal context in our partition
of the larger AVA [9]. For the first aspect, in Fig. 6 we can

Fig. 6. Relative number of BB’s in segments (in pink, percentage of single
BB segments, in orange those with more than one). Notice that the average
bounding box per video is lower on the training set than on the testing set
and that the test set has a larger amount of groups.

see that in the training and validation sets most segments have
only a single actor/BB. This means that the context networks
are only learning relevant information from a small percentage
of the dataset. The test dataset on the other hand seems to
have a more balanced distribution in terms of BBs per frame
which means that we fortunately have an ideal challenging
situation on which to test our models. For the second aspect,
in Fig. 7 we show a matrix that depicts the normalized co-
occurrence of classes in our test set. Several interesting facts
can be interpreted from this matrix that reveal structures a
classifier could use (for example the large correlation between
martial-arts and fight/hit a person)

C. Generalized Binary Loss Function

At a first glance, if we notice the label structure of the AVA
[9] dataset as discussed in section III-A and if we followed

the example of the provided AVA Localization Model [9]
we would have an output layer of C (number of classes)
independent sigmoid activation functions. Note however that
this does not truly reflect the label structure of the AVA [9]
dataset which is not entirely mutually exclusive but also not
entirely multi-label.

As such, in our architecture we address this heterogeneity
by having three separate output layers one of which (corre-
sponding to the pose classes) has size CP and has a softmax
activation function and the other two each have many sigmoid
activation functions for each of their element vectors and their
sizes are respectively CH and CO.

This implies that the loss function cannot simply be cate-
gorical cross-entropy or binary cross-entropy [32]. Therefore
the architecture must minimize a global loss which is the sum
of the losses of each output layer and which can be expressed
as follows:

LGB =

pose classes loss︷ ︸︸ ︷
− log

 esp∑CP
j esj

+

human−human classes loss︷ ︸︸ ︷
CH∑
j

(
−

2∑
i=1

tj,i log(σ(sj,i))

)
+

human−object classes loss︷ ︸︸ ︷
CO∑
j

(
−

2∑
i=1

tj,i log(σ(sj,i))

)
(1)

where the s vectors are the predictions of each layer in
equation 1 and are different for each component of the sum,
sp is the only positive label in the softmax layer, and σ is the
sigmoid function. Note that this backpropagation is possible
as the encoding of the target labels is done as a binary vector
which can then be partitioned into smaller vectors for each
output layer. Given all this and since we could not find any
type of similar loss in the literature we decided to name this
loss generalized binary loss.

D. Subsampling and Voting Scheme

A straightforward implementation, at a rate of 30 FPS for
each 3s segment, would need a receptive field of 90 frames
and a 3D architecture to process a single segment. This would
imply a much more computationally heavy architecture and as
such we propose a subsampling scheme as shown in Fig. 8.

While it is inevitable to lose some information this makes
our implementation more computationally feasible and we
consider that our sampling is spaced enough that the frames are
representative of the whole segment. Since we have 5 frames
and OF volumes representative of a segment, we use a voting
scheme to arrive at a consensus for the label to assign to a
segment.

As such, to obtain the predictions for a single segment we
pass each frame of our 5 subsampled representative frames
and its corresponding OF through the network and we store
its predictions. For the mutually exclusive (pose classes)
predictions we count the maximum valued prediction as a
vote and for all non-mutually exclusive (human-human and
human-object classes) predictions we count any prediction
values above a certain threshold v as a valid vote. Then, for
the mutually exclusive classes we take the most voted class



Fig. 7. Co-occurence matrix of the miniAVA Test Set reveals a rich contextual environment even for our small dataset. For all frames of a given action (as
a row) we count the actions of other actors in the same frames (across the columns), and then we normalize across the rows. In red are the pose classes, in
blue are the human-object classes, in green are the human-human classes.

Fig. 8. Our subsampling scheme. We extract 5 representative RGB frames
and 5 OF stacks around a keyframe.

as the predicted class for the segment and for each of the
non mutually exclusive classes we take their top 3 most voted
classes as the predicted classes for the segment. For the non-
mutually exclusive classes the number of predicted classes will
be between 0 (if no prediction is above the threshold) and 3.

E. Attention Filtering

The main idea for attention filters is that, given a region in
an image (for example, a bounding box) we filter the image in
such way that a classifier learns features related to that region
rather than with the surrounding background.

Two naive approaches are possible: the first, which we
refer to as Crop filter, would be to crop the area outside that
region and the second, which we refer to as GBB (Gaussian
Background Blur) would be to simply apply a Gaussian blur
with a Gaussian kernel to everything outside that region.

Despite the goal of the attention filters, the Crop filter having
no background context at all might hinder the classifier (i.e
an abundance of blue might help a classifier guess the swim
action). Additionally for both the GBB and the Crop filter,
regions with large contrasts exist (i.e in the crop filter there
is a sharp transition from the attention region to black and in
the GBB there is a sharp transition from the relevant region
to a blurred region). Since many network based approaches
tend to learn edges as low-level features, we hypothesize

these artificially introduced edges would compromise their
effectiveness.

To solve this problem we use an artificial foveal vision filter
from [33] inspired by human foveal vision [34] and the work
of [35] which provides a smooth blur transition between the
bounding box and the background. Firstly, a Gaussian pyramid
is built with increasing levels of blur. The image gk+1 can be
obtained from gk via convolution with 2D isotopic Gaussian
filter kernels with progressively higher σk = 2k−1σ1 standard
deviations for each kth level. Next, a Laplacian pyramid [35]
is computed from the difference between adjacent Gaussian
levels. Finally, exponential weighted kernels are multiplied by
each level of the Laplacian pyramid to emulate a smooth fovea:

k(u, v, fkx, fky) = e
−
(

(u−u0)2

2f2
kx

+
(v−v0)2

2f2
ky

)
, 0 ≤ k ≤ K

(2)
where f0x = 1

2w, f0y = 1
2h, and fkx = 2kf0x, fky = 2kf0y is

used to define the fovea intensity at the k-th level and the fovea
is centered at uo = x+w/2, vo = y+h/2, given (x, y, h, w)
where x, y are top-left corner coordinates and h,w are the
height and width of the bounding box.

For the Optical Flow input frames we decided to only
employ the crop filter because both GBB and fovea filtering
involve blurring and the blurring of motion features would
have a possibly misleading and undesirable interpretation of
creating artificial motion vectors in incorrect places.

F. Two Stream Model

We propose a base architecture inspired by two stream ap-
proaches such as [28] [30]. We chose a ResNet50 architecture
for each stream as not only has this architecture demonstrated
to be successful [22] for these tasks, but we had pre-existing
weights from [28] trained on UCF101 [10]. Each network
stream, RGB and OF, was individually fine-tuned for our task.



Fig. 9. Example of all the attention filters applied on an RGB frame and on
an OF frame.

We fuse these networks using concatenation fusion of their
last FC layers and then train a FC layer so that spatiotemporal
features can be learned as shown in Fig. 10. Since retraining
both networks together would be too computationally heavy
we loaded their previously individually fine-tuned weights, and
froze them (i.e not update them in backpropagation) so we
only trained the desired FC spatiotemporal filters.

Fig. 10. Our proposed two-stream architecture. Remember that for the
presented architecture the input is a single frame and an optical flow stack
and the output are a set of floating point predictions. The predicted labels are
merely illustrative.

G. Context Features and Architecture

Based on the idea of human to human interactions we
compute features that encode relations of human actions over
time. More specifically we define context as trying to learn the
labels of one actor based on the labels of its neighbours across
time. Given the labels for a given actor, we must encode the
labels of their neighbours such that these can be used as input
features.

We assume the number of timesteps used from the past and
the number of timesteps used from the future are identical
T (in seconds) and we chose the N closest neighbours to
an actor using a pixel-wise Euclidean distance between their
BB’s center and we assume this order is kept throughout the
entire context encoding. If our task has C classes then each
timestep has NC features and the length of the context vector
is (T + 1 + T )×N × C, as we can see in Fig. 11.

Our architecture has two LSTM layers as an input: one
receives a sequence of the past timesteps and the present
timestep (i.e it must have a T + 1 timestep receptive field)
and another receives a sequence of the future timesteps and

Fig. 11. A simple example of context generation with number of backward
and forward timesteps T = 3, neighbours N = 2 and number of classes
C = 4. At the end of the procedure we obtain the context vector for target
(x, y, h, w) at time t. The same procedure must be done for the other targets
at other times.

the present timestep (i.e it also must have a T + 1 timestep
receptive field). The present timestep is used in both inputs
since using it only as input in one layer would introduce a
bias towards either past or future timesteps. Two different
approaches appear as how to merge the outputs of these two
LSTM layers: using an additional LSTM layer or an FC layer
as in Fig. 12:

(a) Model A (b) Model B

Fig. 12. Our two proposed context models: model A encodes the input
sequence into yet another sequence, model B outputs two predictions which
are then fused with a FC layer.

H. Context Fusion

We propose to explore two ways in which the fusion
of our context models and the two-stream attention models
can be made: concatenation fusion and class score fusion.
Concatenation fusion is similar to the previous two stream
fusion and is shown in Fig. 13, but the concatenation now
also uses the last layer of the context models and for each of
the 5 subsampled frames the context features are assumed to
be the same (as shown in the further passes of Fig. 14).

The main idea behind class score fusion, shown in the
further passes of Fig. 15, is that at testing time the predictions
from both models (two stream and context) are averaged. Since
context operates at a keyframe/segment level the prediction for
every subsampled frame is the same, but the predictions for
each frame from the two stream model differ. While this does
not require training, there are no learned shared weights as in
concatenation fusion. In a first approach we used groundtruth
labels to generate context vectors for our context models
to evaluate if context does indeed help. However, since this



Fig. 13. Our proposed concatenation fusion model for context. Note that
the Fig. shows only the input of a single frame and that each 3s segment is
subsampled to 5 RGB frames.

assumption cannot be used in real cases, we propose a two-
pass testing scheme in 15 where this is no longer the case.

Fig. 14. Our proposed two pass testing scheme when the further passes use
the concatenation fusion method. We omit that each two stream model also
receives the optical flow volume corresponding to its frame according to Fig.
9 for simplicity. The predicted labels are merely illustrative.

Fig. 15. Our proposed two pass testing scheme when the further passes use
the class score fusion method. The predicted labels are merely illustrative.

For the first pass we use the previously explained two stream
with attention methods to generate predictions on the test set.
These predictions are then used to generate labels that are then
used to generate context features and as shown in Fig. 15 and
14 this can be repeated further n times. These are then used
by our context models for yet another pass using one of the
previously described fusion methods. If the initial two stream
model generated perfect predictions, this would be the same
scenario of using groundtruth labels to generate context.

IV. RESULTS

All the following experiments were carried out with a single
GTX 1080 Ti and 16-32 GB RAM. The AVA task involves
localizing the atomic actions in space and time, achieving the

highest mAP (at 0.5 IoU) possible on 3s segments extracted
around 1 FPS keyframes of 15-minute segments. mAP is the
AP (average precision) averaged over all classes. For CNNs
and following the recommendations of [36] the training was
for 200 epochs, batch size is 32 with a learning rate of
0.001 decaying to 0.0001 after 80% of the epochs, while
for the LSTMs the training time was for 100 epochs with
a fixed learning rate of 0.001. The RGB and OF streams were
ResNet50 [31] networks which were initialized with weights
from [22] from the respective RGB and OF networks trained
on the UCF101 dataset. For the results we use the same
benchmarking tools as those provided for the AVA challenge.

A. Baseline

The results of this experiment are the analogous of the 2D
AVA Localization Model baseline but on our smaller dataset.
We trained two separate ResNet50 networks, one on RGB
frames and one on the extracted optical flow volumes. Then
we fused these two networks for a two-stream approach using
concatenation fusion and fine-tuned a FC layer to learn spatio-
temporal features as shown in Fig. 10.

TABLE II
BASELINE INDIVIDUAL STREAMS AND THEIR FUSION.

Model mAP@0.5IoU
RGB 5.06%
Flow 5.85%
RGB + Flow 5.00%

We can observe several facts from these results shown
in Table II. Firstly, we note how using only OF performs
better than RGB. This has been also found the case for some
implementations of these types of networks and is often due
to the fact that certain actions have very clear motion patterns.
Secondly, we highlight how the baseline of the fusion is lower
than both approaches, which suggests that the spatiotemporal
features being learned are not properly using complementary
features from both streams. We believe our small partition is
even more challenging as the use of even less data increases
the chance of overfitting.

B. Attention for individual streams

This experiment can be divided into two parts: testing
attention filtering on RGB frames and attention filtering on
Optical Flow volumes and the results are shown in Table III.
For the first part we trained individual streams on the outputs
of crop filtering, GBB filtering and fovea filtering, while for
the second part we trained an individual stream on cropped
optical flow as shown in Fig. 9.

Two main conclusions can be drawn from these results. One
is that the use of all pre-filtering attention mechanisms improve
results, although marginally for Optical Flow. The second is
that the filtering techniques we hypothesize would lead to the
networks learning artificial edges (i.e not fovea) perform best.
This may be due to the fact that these artificial edges might
be contributing to the prediction of certain classes, particularly
stand, which is the most common class in miniAVA.



TABLE III
ATTENTION FILTERING RESULTS ON INDIVIDUAL RGB STREAMS AND

INDIVIDUAL OF STREAMS.

Model mAP@0.5IoU
RGB + GBB 5.63%
RGB + Crop 5.19%
RGB + Fovea 5.12%
Flow + Crop 5.90%

C. Two-Stream Fusion

For this experiment we fused paired combinations of the
streams trained on pre-filtered inputs from the previous ex-
periment as shown in Fig. 10 and show their results in Table
IV. We fuse them in the same fashion as shown before in
Fig. 10. Remember that one of our goals is to analyze how
the attention filters impact the joint learning of spatiotemporal
filters which is only possible with this type of fusion. We did
not fuse RGB and cropped flow as we felt the improvement
on the baseline might be minimal, and we prioritized RGB
attention filters over flow attention filters due to the results of
the last experiments. The first result is that cropped flow seems

TABLE IV
TESTING OF SEVERAL COMBINATIONS OF STREAMS AND THEIR

RESPECTIVE ATTENTION FILTERS

mAP@0.5IoU Flow Flow + Crop
RGB + GBB 3.59% 4.16%
RGB + Crop 5.01% 5.06%
RGB + Fovea 5.94% 4.95%

to worsen results when fused with all other streams except the
RGB crop stream. This suggests some synergy in the learned
features. A second result is how the fovea filter outperforms
all others. At first we hypothesized this might be due to the
fact that the artificial edges introduced by the other filters
would harm their performance when later merged with flow
features, upon further analysis we conclude that all two stream
approaches seem to be fitting the distribution and learning only
from a few relevant classes, however the two stream approach
using fovea filtering seems to hit more samples than the others
in some of these under represented classes as shown in Table
V.

TABLE V
AP ON SOME NOTEWORTHY CLASSES THAT ILLUSTRATE WHY THE FOVEA

FILTER SEEMS TO PERFORM BEST.

AP@0.5IoU Stand Listen Touch (an object)
Flow + (RGB + GBB) 53.3% 0.0% 0.0%
Flow + (RGB + Crop) 63.3% 0.0% 0.0%
Flow + (RGB + Fovea) 63.3% 28.4% 6.1%

Nonetheless, while this analysis provides valid hints to
the true validity of the methods, they need to be further
investigated by themselves on a more balanced dataset where
their results are not as affected by the large imbalance.

D. Best Context Architecture

Before discussing the results, whenever we mention the
number of hidden units for both our context models we are
referring to the sizes of the two input LSTM layers. The size
of the next layer, whether a FC or LSTM layer, is always half
this value.

In this experience we propose to analyze how well the
context architectures shown in Fig. 12 perform by themselves.
This has the advantage that the context models we tested were
much less computationally heavy and as such we could test the
architectures more extensively. We try to find the best context
parameters used to generate the data namely the time window
T = (3, 5, 10) and the best architecture between model A
and model B by testing over several values of the number of
hidden units (64, 128, 256, 512). We tested larger versions of
the best model A and the best model B (with a larger number
of hidden units (1024, 2048)) to see if the models required a
larger number of hidden units to learn the complexity of the
data.

TABLE VI
EVALUATION OF THE BEST CONTEXT GENERATION FOR MODEL A AND

MODEL B LSTM ARCHITECTURE, WITH THE COLUMNS CORRESPONDING
TO THE NUMBER OF HIDDEN UNITS. ALL RESULTS USE N = 3 (I.E THREE

CLOSEST NEIGHBOURS)

A 64 128 256 512 1024 2048
T=3 4.99% 5.04% 4.96% 4.80% – –
T=5 5.01% 4.97% 4.98% 5.05% 5.09% 5.11%
T=10 4.85% 5.00% 4.68% 5.04% – –
B 64 128 256 512 1024 2048
T=3 5.01% 5.00% 4.92% 5.12% 5.08% 5.09%
T=5 4.93% 4.94% 4.95% 5.04% – –
T=10 4.81% 4.90% 4.92% 4.97% – –

We can draw several conclusions from Table VI. The first
one is that while model B is marginally better, model A seems
to operate better with a slightly larger time window, regardless
of the fact that there is not a significant difference between
the best model A architecture or the best model B architecture.
Model A seems to need larger layers to model more complex
sequences successfully. Since model A performs better for
a larger NHU, this allows us to use it for concatenation
context fusion in the next experiment, since in concatenation
context fusion (shown in Fig. 13) all streams should have a
contribution with the same number of hidden units (1024 NHU
in our experiments). As such we chose model A as the best
model from this experiment.

Evaluation on a longer time window or more neighbours
was not done since we believe actions longer than 21 (10 + 1
+ 10) seconds are rare and so are complex interactions between
more than 3 people.

E. Context Fusion

Given the discussion in our previous experiments we use
LSTM model A and we use the two-stream with fovea filtering
and optical flow with no filtering as the basis for all fusions.
We test concatenation fusion and class score fusion under
two testing schemes: one uses test labels (i.e groundtruth)



to generate context and the other, as shown in 15, uses the
predictions generated by a first pass through the best of the
two-stream architectures to generate context.

The results of the first are shown in VII where we can
see that class score fusion largely outperforms the other
methods. We believe this may be because when concatenated,
the internal feature representations of the LSTM models are
too distinct from the two-stream spatiotemporal features for
a FC layer to learn merged features. However, at a class
score level the context predictions are able to correct the
two-stream predictions. Note that while this situation is an
idealized situation the context features only use information
of labels from neighbours of actors in frames not from the
actors in the frames themselves.

TABLE VII
TESTING CONTEXT FUSION ARCHITECTURES UNDER A GROUNDTRUTH
CONTEXT SCENARIO. RESULTS IMPROVE CONSIDERABLY WHEN USING
CLASS SCORE FUSION BUT NOT WHEN USING CONCATENATION FUSION.

Model mAP@0.5IoU
(Groundtruth Context) Concatenation Fusion 5.92%
(Groundtruth Context) Class Score Fusion 9.11%

The results of the real-case scenario are shown in Table
VIII where similarly to the last experiment we can see that
using FC fusion does not seem to improve the model, and we
believe the same reason applies.

For the two pass scheme we can see that there is a small
improvement of 0.30% mAP. While the improvement may be
considered small when comparing to the ground-truth scenario
improvement of 3.16% mAP, consider that the context features
in this case are being generated from a classifier with only
5.94% mAP while in the other case we could theorize an
ideal classifier with 100% mAP. This small improvement is
due to the influence of context to force the model to make
valid guesses on under represented small classes (like sit, walk,
hold an object) at the expense of losing AP in the largest
stand class, thus confirming the effect of negating overfitting
to a certain extent we also witnessed in the last experiment.
Additionally, using the results of the context fusion to yet
generate more context features and test again (i.e Three Pass
in Table VIII) only seemed to yield marginal improvements.

TABLE VIII
TESTING CONTEXT FUSION ARCHITECTURES UNDER A REAL CASE
SCENARIO, NO ASSUMPTION OF HAVING THE GROUNDTRUTH TEST

LABELS AT TESTING TIME. RESULTS OF CLASS SCORE FUSION WITH A
TWO PASS AND THREE PASS SCHEME DEMONSTRATED IN FIG. 15.

Model mAP@0.5IoU
(Two Pass) Concatenation Fusion 5.91%
(Two Pass) Class Score Fusion 6.24%
(Three Pass) Class Score Fusion 6.28%

F. Balancing via oversampling

In the literature it is referenced that most multi-label datasets
suffer from a high level of imbalance [37] since the number of
positive training instances with respect to each class label for

many labels is far less than its negative counterparts, which
may lead to performance degradation for multi-label learning
techniques.

A method of counteracting this imbalance is oversampling
which is the process of replicating randomly selected samples
from minority classes until the dataset is balanced. We chose
this option as [38] mention it tends to be the most effective.

Simply applying naive oversampling would lead to disrupt-
ing the distribution as mentioned by [17]. To solve this our
oversampling repeats all labels in the segments that contain
under represented classes. This means that over represented
classes will probably also be repeated but the relative im-
balance will be reduced. With this method of oversampling
the training set can get considerably larger and thus training
time becomes considerably longer, we chose to use only a
demonstrative study of training a single RGB stream using the
Gaussian Background Blur attention filter, the results of which
are shown in Fig. 16. While the overall mAP results (4.71%
vs the original 5.63%) seem to indicate that the approach was
not successful there is an important observation that supports
that this result is misleading. On a further analysis if we
analyze Fig. 16 we can see that while oversampling loses AP
in more common classes like stand (refer to Fig. 5 to see
which classes are more frequent) or talk to, we can see that for
many others it outperforms the classifier without oversampling
(for example, sit, hold an object, walk and bow at the waist).
Interestingly enough, these improvements happen on all three
types of classes which validates our approach even further.
Therefore, while the results do not seem positive we can see
that the balancing is indeed working as intended, however,
since the test set itself is imbalanced the reported results are
that the classifier performs more poorly.

Fig. 16. AP per class on the miniAVA split for the balancing and oversampling
experiment. The model used for the oversampling experiment is the same and
the repeated frames are all GBB filtered so that the only difference between
the two is the oversampling strategy.

V. CONCLUSION

We proposed several architectures, from the initial two
stream architectures using only attention filtered inputs as
shown in Fig. 10 to our final approach shown in Fig. 15
where we fuse our custom context features with the two-stream
approach. We demonstrated improvements on our baseline for



each of the proposed improvements using the aforementioned
architectures. Although these results may be deemed provi-
sional, as due to computational resource constraints we had
to make our own partition of the larger AVA [9] dataset,
we believe it is necessary to conduct further investigation
and further testing to truly validate them, not only on the
full AVA [9] but also on smaller balanced datasets like [10].
Nonetheless, we believe our work stands on its own as a
valid proof of concept for further research on the topic of
using alternative human interaction context features and pre-
processing attention filtering in the field of action detection
and recognition.
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