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Abstract  
There is a great opportunity to reduce energy consumption in Europe by addressing energy efficient 

measures applied to residential buildings since they are responsible for 27% of Europe’s final energy 

consumption and are known to be highly ineffective. To evaluate these measures, building energy 

simulation (BES) models have been widely used. However, these models are very complex and require 

detailed input data on building characteristics and operation, which is usually hard to collect. The recent 

investment in smart meters encourages innovative studies addressing residential and non-residential 

electrical consumption by making high-resolution data available. 

A mathematical model is proposed to disaggregate total electrical consumption data into possible end-

use profiles for building energy simulation. Data from several smart meters is collected and used to 

perform cluster analysis via k-means algorithm, to determine residential users’ daily consumption profile 

in three reference months (free-float, winter and summer). Building energy simulations are performed to 

test, if the resulting input profiles for occupancy, lighting, equipment, heating and cooling use can describe 

the real consumption of a given set of users. Different comfort temperature, heating and cooling systems 

types are considered in a model calibration step.  

The model proved to be effective, as the difference between the total daily consumption from measured 

and simulated data is small: for free-float (0.22%), for winter (0.90%) and for summer (4.00%).  Concluding 

that even if the measured and the simulated profile consumption do not present a perfect hourly match, 

the total consumption does present a close approximation. 
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1 Introduction 

The building sector is the largest single consumer of energy in Europe, accounting for 40% of the final 

energy consumption in 2012 and 38% of the EU’s CO2 emissions, having 66% of the buildings’ total final 

energy consumption being represented by residential buildings [1]. In general, the energy efficiency in the 

residential sector can be improved by using more efficient energy equipment, upgrading the energy 

characteristics of buildings or by inducing changes in the consumers behavior [2]. 

To be able to measure the impact of such actions one should be able to simulate energy savings and 

therefore accurate dynamic models of buildings energy consumption need to be developed. Buildings are 

complex systems in which energy consumption is influenced by a combination of factors, including the 

age and location of the building, the household size and the occupants lifestyle, and the penetration of 

appliances and electronic devices [1]. However, it remains challenging to acquire this type of information. 

With this goal in mind, EU has adopted a number of initiatives aiming to improve energy consumption 

awareness, including the replacement of at least 80% of electricity meters with smart meters by 2020 [3]. 
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Since then, there has been an increasing use of smart meters data in current studies, namely to identify 

various types of consumers for short-term and midterm load forecasting, time of Use (ToU) tariff design 

and Demand Side Management (DSM) strategies [4]–[6]. Other studies focus only on the residential load 

characterization [7]–[10], or on inferring about the drivers behind the residential consumption, in terms 

of socio-economic status, appliances stocks and dwellings characteristics [11]–[13]. Finally, electric 

consumption disaggregation, appliances, lighting and plug load profiles distinction [14]–[17], as well as 

occupancy inference and inhabitants routines are other uses of smart meter data [18]–[21]. 

The objective of this research is to analyze the behavior of different residential electricity consumers to 

identify input operation parameters and run a complete dynamic building energy simulation. The 

clustering k-means method is applied to identify different occupant’s profiles. By comparing different 

seasons, it is possible to infer about the inhabitant consumptions habits on heating and cooling energy 

use. A mathematical model is developed, where hourly occupancy profiles are inferred, with 

disaggregated lighting, equipment, heating and cooling consumption. A dynamic energy simulation is 

taken and the model accuracy is evaluated against real energy data.  

The final goal of this thesis is to develop a method to give back information about the different end-uses 

of the hourly electrical consumption (lighting, equipment, cooling and heating) and occupancy profiles, 

using aggregated smart meter data.  

2 Methodology 

The methodology proposed in this work consists of six stages: Stage 1 refers to the identification of 

missing-value users, zero-use residential users and outliers, where a method to fill in the empty data is 

proposed. Stage 2 proposes a method to distinguish residential from non-residential consumption 

profiles, through clustering analysis. In Stage 3, residential users are selected and characterized by using 

clustering analysis in 3 reference months: a free-float month, a winter month and a summer month, to 

identify the changes in the consumption profiles thorough the seasons. In Stage 4, a mathematical model 

is developed using as input the paths consumption profiles, as well as the time of use survey and 

illuminance values to determine possible occupancy, lighting, baseline, activity, heating and cooling 

profiles. In Stage 5, a parametric model of a reference dwelling in the building is created and the 

disaggregated consumption profiles by end-use obtained from Stage 4 are used as inputs to perform the 

building energy simulation. Finally, in Stage 6, a model evaluation is taken to evaluate the reliability of the 

mathematical model proposed in Stage 4. Model calibration through different heating and cooling 

systems efficiencies as well as temperature setpoints are tested.  

3 Case study 

The building under analysis in this thesis is located in Lisbon, more precisely in Parque das Nações 

neighborhood. The building geometric information used in this model was provided by the Municipal 

Archives. A typical dwelling representative of the existing dwellings in this neighborhood was chosen to 

test in the energy simulation. It is a 3-room apartment with a floorplan area of 148,5m2 and a floor-to-

floor height of 3m. Information about the building’s envelope, ventilation and energy systems was 

retrieved from 18 Energy Performance Certificates (EPC) provided by ADENE. A thermal transmittance 

value of 0.54 W/(m2.oC) was considered for exterior walls, 1.16 W/(m2.oC) for interior walls and 2.9 

W/(m2.oC) for windows.  The equipment considered for space heating and cooling was a multi-split with 

an average SCOP of 2.6 and SEER of 2.5. Moreover, electricity data from smart meters installed in this 

neighborhood was provided by the local energy supplier. Before any preprocessing and treatment, the 

dataset was formed by 267 users with a 15-min time-step of electrical consumption values in kWh, from 

March 2016 to February 2017, inclusive. 



3 
 

4 Model development 

 Data cleaning and preprocessing 

To create a clustering model as accurate as possible, it is necessary to identify the inconsistencies in the 

initial dataset, and remove them from the dataset. After removing missing-value users, zero-use 

residential users and outliers the size of the final dataset was 90 users. A data treatment was taken with 

the objective to fill in the hourly electric consumption for the users with less than 10% of missing data. To 

do so, hourly values from the previous and next hour were used. If this data was not available, values for 

the same day of the week during the same month were considered.   

 Typification of energy consumption 

As the objective of this research is to analyze residential electrical consumption, it is necessary to identify 

and eliminate the non-residential users.  To accomplish this goal, the 365 daily profiles representing each 

user were combined into an average daily consumption profile. After performing data normalization with 

the maximum value, a clustering analysis using k-means algorithm was performed to identify different 

user type profiles. The Mean Square Error, the Calinski Harabasz and the Davies-Bouldin validity indexes 

were considered efficient [8][22] and were used 

as adequacy measures to determine the more 

appropriate number of clusters. From this 

analysis, the number of clusters considered 

appropriate was 5. As a result, the final cluster 

centroids are presented in Figure 1. Through the 

visual inspection it was possible to identify the 

cluster centroid c2 and c4 as non-residential 

profiles. By removing these users from the 

dataset (which means to remove 9 profiles 

corresponding to 10% of the total analyzed 

profiles), the final sample considers 81 residential 

consumption profiles, which are represented by 

c1, c3 and c5. 

 Residential consumption characterization 

In this step, the objective is to characterize the residential users and identify the changes throughout the 

days, weeks and seasons. To do so, three reference months have to be analyzed: a free float month with 

no heating or cooling needs; a winter month, with heating needs and a summer month, with cooling 

needs. The selection of the appropriate months was done using the Heating Degree Days (HDD) and 

Cooling Degree Days (CDD) methodologies. However, other indicators as precipitation and solar 

irradiation were also considered. The reference months selected in this work were May for the free-float 

month, January for the winter month and July for the summer month. Considering these months, the 

dataset was filtered to perform another clustering analysis which proceeded in the same way as described 

in Section 4.2, with the only difference that the profiles are not normalized. In the end, 4 clusters centroids 

per reference month were identified and used to create different paths. These paths are the combination 

of the cluster centroids, representing the behavior of a certain number of users throughout the different 

seasons. From this analysis it was possible to distinguish: two lower consumption profiles, one with 

heating use (Path 111) and another with no heating and no cooling use (Path 212); two medium 

Figure 1- Final cluster centroids 
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consumption profiles with heating use (Path 222) and another without heating use (Path 422) and finally 

a high consumption profile, with heating use (Path 444).  

  Input profiles determination   

The paths identified in the previous section are used to create the inputs for the building energy 

simulation. A mathematical model was developed to identify the occupancy patterns, distinguish the 

consumption related to certain activities from the occupant’s behavior, create the lighting profiles and to 

identify the use of electric consumption for heating and cooling (Figure 2). Electricity patterns change 

when occupants are present due to their interaction with the electrical loads which leads to Higher 

consumption periods and Turning on events. The method starts by identifying the startup and shutdown 

events [20] and identifying the interval of time of possible active occupancy (i.e. the house is occupied 

and the occupants are not sleeping). That possible active occupancy is then combined with a threshold of 

Higher consumption periods (by using the difference from hourly consumption and daily median 

consumption) and a threshold of Turning on events (by using the difference between the hourly 

consumption and its predecessor) to create an occupancy profile. 

 
Figure 2 - Workflow  of mathematical model 

To determine the lighting profile, the active occupancy profile is combined with the illuminance values 

and the values of the installed lighting units calculated taking into consideration the Portuguese reference 

[23].The baseline profile corresponds to the minimum value of electrical consumption and does not have 

a direct relation to the occupancy. To calculate the maximum value of baseline consumption, the 

minimum value of the daily consumption profile is obtained. The first assumption is that the fridge has a 

steady consumption with an assumed 10% increase during occupied hours. Its consumption agrees with 

typically values attributed to refrigeration, presented in literature. To calculate the maximum value of 

standby, the maximum baseline consumption value previously obtained was combined with the fridge 

consumption and lighting consumption. To create the standby consumption profile, it was assumed that 

its consumption was inversely proportional to the total percentage of activities related to the electrical 

consumption. To do so, values from a Portuguese survey about the use of time are used [24]. Finally, the 

remaining values of electrical consumption, after removing the baseline and the lighting consumption, 

are distributed into activity, heating or cooling profiles. In the free-float month, the activity profiles are 

directly estimated while for the winter or summer months a percentage is used to report the heating or 

cooling use. This is achieved by comparing each activity consumption profile with the free-float values: if 
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higher, the free-float values are used for winter and summer activity profiles and the remaining 

consumption is attributed to cooling or heating; otherwise the values are obtained directly for winter and 

summer.  

4.4.1 Application to the case study 

Due to the substantial number of paths, the path 111 will be used to demonstrate the application to the 

case study. The obtained active occupancy profile (columns) is closely related to the consumption profile 

(line) as showed in Figure 3.  

 
Figure 3- Free-float consumption profile and active occupancy profile 

After applying the mathematical model described previously, the resulting consumption profiles, per end-

use for the occupancy profile presented in Figure 3 is illustrated in Figure 4. 

 

The method is different when it comes to the winter month and the summer month, as it was explained 

previously, due to the addition of cooling and heating use. As a result, Figure 5 presents the electrical 

consumption distributed by its end-uses for the winter and summer months. 
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Figure 4 - Electrical consumption distributed by its end-use for the free-float month  

Figure 5 - electrical consumption distributed by its end-use for the winter (left) and summer (right) 
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 Parametric building energy model  

The energy simulation model is created using the EnergyPlus software. The profiles described previously 

are used as input. However, other inputs such as geometry, construction characteristics, internal gains, 

zone airflow and HVAC systems have to be considered in order to create a complete building energy 

model. As information about the number of occupants is not provided it was assumed a value of 100 

Watts per occupant, based on the average yearly consumption per household and average members per 

household, this value was then compared with the maximum value of the consumption profile, from the 

free-float month. Peak loads from the lighting, fridge, standby and electric equipment consumption 

profiles are used as input and are combined into schedules (by dividing the hourly values by the peak 

loads). For the reference dwelling presented in the Case study, a 3D model is created (Figure 6). The 

boundary conditions are defined as adiabatic for roof and ceiling (since this is in an intermediate floor), 

as well as the common walls in contact to other buildings or dwellings. The shadows from the 

surroundings and from the upper floor balcony were also modeled.  

  

Figure 6- 3D facing north (left) and 3D facing south (south) 

The value of 0.62 ach for ventilation was retrieved from the EPC and it includes infiltration and natural 

ventilation from opening the windows. It was assumed a value of 0.4 ach for infiltration and the remaining 

was modeled as natural ventilation, with the correspondent opening area of 50%.  The HVAC was modeled 

as an ideal load air system and the areas assumed to be heated or cooled were the living room and the 

bedrooms. Further, the HVAC equipment only works if these rooms are occupied.  

 Model evaluation 

The validation of building energy simulation model is presently built on a model’s compliance with the 

standard criteria for Normalized Mean Bias Error (NMBE) and the Coefficient of variation of the Root Mean 

Square Error (Cv(RMSE)). The consideration of both indices allows preventing any calibration error due to 

errors compensation, and the limit values were obtained from ASHRAE [25]: for the hourly criteria the 

maximum values are 30 % for Cv(RMSE) and NMBE of 10%. Two variables were chosen for calibration: the 

type of system used for cooling and heating; and the interior temperature setpoints. 

5 Results and discussion 

The profiles developed in the mathematical model in 4.4 are used as input for the building energy 

simulation described in 4.5, for the three reference months determined in 4.3. The model evaluation and 

calibration is taken considering the indexes described in 4.6 and the results are presented and discussed. 

After performing the model calibration, the best fit obtained was: 

• Path 111: heating system with SCOP of 2.6 and cooling system with SEER of 2.5; 

• Path 212: no use of electric system for cooling or heating; 

• Path 222: heating system with SCOP equal to 1 and cooling system with SEER of 2.5; 

• Path 422: heating system with SCOP of 2.6 and no use of cooling system; 

• Path 444: heating system with SCOP equal to 1 and no use of cooling system. 
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All paths met the reference criteria for the free-float, winter and summer months (Figure 7). The free-

float month had the lowest values, with the worst fitting path having only 1% of Cv(RMSE) and 0.23% of 

NMBE. Path 212 reported the best fitting for the winter month (Cv(RMSE) of 2.2 % and NMBE of 0.5%) 

due to the absence of heating consumption, while path 422 reported the best fitting for the summer 

month (Cv(RMSE) of 1.6 % and NMBE of 0.4%) due to the absence of cooling consumption. Path 444 

reported the worst fitting, namely in the winter month (with Cv(RMSE) of 13.1% and NMBE 0%) and in 

the summer month (with Cv(RMSE) of 11.2% and NMBE 4%). This is due to higher heating consumption 

in winter and differences in the cooling use identified by the mathematical model and the simulation 

model. 

 
Figure 7-CVRMSE and NMBE values per path compared with Limits for each index 

Figure 8, illustrates the winter and summer hourly fits for path 111, this path was chosen since it is the 

path with the second worst results and uses equipment’s for cooling and heating. For winter, it is possible 

to observe that some difference exists, during the night period (from 19h to 22h), where the measured 

consumption is higher than the simulated values and that the opposite occurs between 2h to 8h. However, 

the total daily consumptions from measured and simulated data only differ by 0.79%. For the summer 

month it is possible to observe that the fitting presents some diversity (26.06% of difference in the worst 

case, which occurs at 18h). Nonetheless, the total daily consumptions from measured and simulated data 

only differ by 0.1%. From the end-use disaggregation it is possible to infer that this difference is most 

influenced by the cooling consumption. In fact, when comparing this simulation result with the winter 

month, during the night period, an opposite effect is observed: for the winter month, the model 

underestimates the heating consumption while for the summer month it is overestimating. Other 

variables may also be introducing uncertainty in the model, as for example building construction 

characteristics such as materials, infiltration, etc., affecting the heating consumption predictions. In a 

future improvement of the model evaluation, a calibration model considering a wider range of variables 

can be considered.  

  
Figure 8 - Comparison between simulated and measured average daily consumption profile for path 111. Winter 

month (left), summer month (right) 

0
5

10
15
20
25
30
35

fr
ee

-f
lo

at

w
in

te
r

su
m

m
er

fr
ee

-f
lo

at

w
in

te
r

su
m

m
er

fr
ee

-f
lo

at

w
in

te
r

su
m

m
er

fr
ee

-f
lo

at

w
in

te
r

su
m

m
er

fr
ee

-f
lo

at

w
in

te
r

su
m

m
er

111 212 222 422 444

%

Cv(RMSE)

NMBE

Limit of
Cv(RMSE)

Limite of
NMBE

0.0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16 18 20 22

el
ec

tr
ic

al
 c

o
n

su
m

p
ti

o
n

 (
kW

h
)

hour

fridge

standby

lighting

electric. equipment

heating

measured

simulated

0.0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16 18 20 22
hour

fridge

standby

lighting

electric. equipment

cooling

measured

simulated



8 
 

6 Conclusions  

The present work proposed the development of a model able to disaggregate hourly values of electrical 

consumption into lighting, equipment, cooling and heating consumption schedules and occupancy 

profiles for different households, using smart metered data. This information is coupled with data on 

buildings geometry and construction as inputs for an energy simulation model.  

A clustering analysis using the k-mean algorithm was taken with different purposes: to identify different 

user types and exclude non-residential users and to characterize different residential user profiles for 

three reference months: free-float month (May); winter month (January) and summer month (July).  For 

each month, 4 cluster centroids were obtained and paths describing typical users were created. Five paths 

were analyzed, representing around 60% of the entire sample. The simulation results were evaluated and 

a calibration procedure was taken with interior temperature setpoints and heating and cooling systems 

efficiencies as uncertain variables.  

Overall, the mathematical model proved to be effective for the simulation and modelling of the electrical 

consumption for different user types. All paths met the criteria for the free-float, winter and summer 

months. However, in the winter and the summer months the hourly fit was not as good as the one 

achieved in the free-float month. Nonetheless, the difference between the total daily consumption from 

measured and simulated data was very small: 0.22% for the free-float month, 0.01% for the winter month 

and below 4% for the summer month, suggesting that even if the measured and the simulated profiles do 

not have a perfect hourly match, the total consumption still presents a good approximation. Therefore, it 

is possible to conclude that the proposed method is effective in simulating the electrical consumption of 

different types of residential users and can be used to test energy efficiency measures in future scenarios. 

Future work addresses the improvement of the estimation of the occupancy profile by testing 3 different 

new models of combining the information from high consumption periods and on event by using the 

average, the maximum value or the sum of both values. Moreover, the improvement of the identification 

of high consumption periods and on events as a continuous evaluation proportional to the correspondent 

threshold, will be considered. The identification of uncommon occupancy patterns by the mathematical 

model is also an improvement to consider. Further developments on the model calibration by including 

an uncertainty analysis considering more variables can also improve the model predictions. 
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