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Abstract—In this thesis, it is proposed a model for
courier services capable of handling the routing of a fleet of
vehicles. More specifically, a Capacitated Pickup Delivery
Vehicle Routing Problem with Time Windows on a Dy-
namic Environment is formulated. This problem emerged
from a real-world problem existent in the company Urban
Dynamic Delivery. This specific case study requires a lim-
ited, short time for solving the optimization problem. Thus,
a good solution must be found in a short time window,
instead of finding the optimal solution independently of
the required computational time. A new method pairing
nearest neighborhood search with subtractive clustering
is proposed to improve initial solutions and to accelerate
the convergence of the optimization algorithm. Further, a
hybrid method combining Ant Colony Optimization with
Local Search is proposed to model this problem. First, a
model was developed to solve a given static instance. Then,
a framework to coordinate any dynamic changes on the
inputs over time is proposed. A minimal functional model
for the tackled problem was derived and is applied as it is
to a case study. The proposed clustering approach improve
the results. Further, the proposed optimization algorithm
presents good results for the dynamic environment and is
suitable to be applied to the real-world scenario.

Index Terms—pickup delivery problem, ant colony op-
timization, local search, time windows, dynamic requests

I. INTRODUCTION

The objective of this thesis is to develop a model for
courier services based on the general guidelines provided
by the company Urban Dynamic Delivery. It deals with
transporting goods between two distinct locations while
efficiently handling the routing of a vehicle fleet. It is
constructed to handle both changing traffic conditions
and insertion of new customer requests in realtime.

A new model was created to model a routing problem
for handling pickups and deliveries. It is formulated to
respect most common constraints required for practical
purposes, such as obeying target delivery times and
having limited load capacity. Ultimately, our focus will
be to consistently get a good solution under a tight time
interval instead of achieving the optimal result, which
could take a long period of time. For validation, the

developed strategy is tested against publicly available
benchmarks of 100 customers for static problems [1].
Besides this final value comparison, our generated routes
are also validated as feasible according to a program di-
rectly granted from the entity behind the page providing
the benchmarks. Concepts were implemented and tested
in MATLAB. Hierarchical goal ordering is: minimizing
lateness to serve all current requests; number of used
vehicles; total travelled distance. The weights given to
each objective are an input to the model for greater
flexibility.

Besides defining a new mathematical formulation ap-
plicable to the modelled problem, it is showed that
pairing the ant colony metaheuristic with local neigh-
bourhood search is a valid approach. Also, a novelty
concept for initial solution construction is proposed
based on nearest neighbourhood search and subtractive
clustering

II. BACKGROUND

A. Vehicle Routing Problem

The Vehicle Routing Problem (VRP) category is a
combinatorial optimization and integer programming set
of problems. It deals on how to direct a fleet to serve
interest points in the most profitable way. It has many
uses in industry, for obvious reasons. The main hurdle
when solving a combinatorial problem is the sheer
number of solutions that compose the feasible solution
set, from where the ultimate goal is to extract the optimal
solution. Many of these problems are in fact NP-Hard,
i.e., there is no guarantee the optimal result can be
reached in polynomial computation time [2].

The first time this theme has approached was when
dealing with the Travelling Salesman Problem (TSP),
in [3], where the goal is to make a single salesman
find the round-trip through each and all the cities only
once. From this initial concept a broader generalization
was made in 1959, the Vehicle Routing Problem (VRP),
credited to [4]. The focus of the VRP shifts to finding
the optimal set of routes for a fleet of vehicles to service



Fig. 1. TSP and VRP example for the same set of points

a given set of customers. The new concept expands the
TSP by introducing the notion of delivery. We are no
longer interested only on the path between each city and
now need to take into account what needs to be done at
each location. An example comparison between the two
problems can be visualized in Figure 1 for the same set
of points.

From this starting point, over the years extra con-
straints were added to represent and solve diverse sce-
narios. Many of the additional constraints to add to VRP
can be expanded into their own categories [5] [6]:

• Capacitated VRP (CVRP): each customer has a
specific demand for an amount of goods, which are
characterized by a certain volume or weight. All
goods originate from a defined location called the
depot. Vehicles have finite capacity, meaning they
can only take a certain volume and/or weight at a
time.

• Time Windows: when each interest point needs
to be visited between a specified time interval. A
distinction can be made for hard time windows,
where it is mandatory that each node is serviced
within the defined time window limits, or soft
time windows, where interest points can be visited
outside the designated time window, incurring into
a penalty.

• VRP with Pickup and Delivery (PDVRP): when
there is a need to pickup an order from a specific
location, besides the depot, and deliver it to another.
A request is then characterized by the pair pickup-
delivery. A precedence constraint must be added to
the model assuring that for each pair, the pickup is
visited before the delivery. Multiple requests can be
serviced at once.

• Heterogeneous fleet: for problem formulations
where the vehicle fleet specifications are not equal,
such as maximum capacity, travel speed, operation
costs, etc.

When all input data is known beforehand, the routing
problem is said to be static and it means no changes
will happen in the inputs, namely requests, number of

vehicles, travel costs, etc. When input data is revealed
or modified during a routing problem’s working span,
we are before a dynamic problem and we can no longer
approach it in the same way. Usually, the input only fully
revealed over time is the user requests.

To solve a dynamic problem we can adapt a method
able to solve static instances into one that handles the
input changes over time. The most basic way is to
run the static solver every time the input conditions
change (i.e., there is a new request or a cancellation).
A troubling drawback from this path is that doing a
complete reoptimization every time there is an update
on the input conditions may not leave enough time for
the static algorithm to arrive at a satisfactory solution
between restarts.

An interesting approach is presented by [12], where
the working span is separated into successive time inter-
vals of fixed length and buffering all new requests for
later insertion. Starting from the solution of the static
algorithm for all the pre-defined requests, each time
interval will receive the selected best solutions from the
instance before, insert any requests that were buffered
and deploy the best solution. During the rest of the
interval a simulation is made to predict the system state
at the end of the interval, and that prediction is then
optimized as if it were a static solution. When the end
of the interval is reached, the deployed solution and
the solution from the reoptimization are used as input
solutions of the next interval.

B. Methods to solve VRP

Computational methods used to tackle such problems
can usually fit in two categories, exact algorithms and
approximation algorithms [8]. With an exact algorithm
it is possible to guarantee the optimal solution will be
computed but in the worst case scenario, we might
have to list all possible solutions before reaching the
optimal one, and problems with bigger size become
infeasible. Approximation methods work on a balance
between quality of solution (closeness to optimality) and
computational effort. These approximation methods can
be grouped into three different definitions: construction
techniques, local search techniques, and metaheuristics
techniques [9].
• Construction methods: Being the most simple of

the three types, these methods usually start from
scratch, with the initial set either empty or starting
at a random node. To compute a feasible solution,
heuristic rules iteratively add new elements until all
elements have been selected.

• Local Search methods: starting from a feasible
solution, systematically explores the neighbourhood
looking for improvements in the current solution. If
any improvement is found, the search is continued



from the new found best solution and repeats the
problem until a full search of the neighbourhood
finds no improvements. Without implementing any
extra strategies they are not able to escape a local
minimum.

• Metaheuristics methods: metaheuristics make use
of stochastic components in their searching pro-
cess and the algorithm might temporarily choose
solutions which do not improve current solution to
escape local minima. These methods are able to find
solutions very close to the real optimal solution but
are slow when dealing with large instances.

One way to overcome the methods limitations can
be to combine them. Merging the exploration of a
metaheuristic with the exploitation of a local search,
to complement the shortcomings of each model. This
approach is coined as hybrid method and is widely
applied to different problems [13] [14] [8]. While the
metaheuristic generates new solutions, the local search
ensures there is no better solution on the neighbourhood.
This approach allows to efficiently solve combinatorial
problems in reasonable time.

III. IMPLEMENTATION

A. Problem Formulation

An adaptation from the well-known mathematical
formulation of the VRPTW [10] is presented, where
the goal is to service as efficiently as possible a set of
customers requests R = {1, ..., n}.

Every request is defined by a pickup and a delivery
location, each represented by a unique graph node out
of a total 2n nodes. The full set of customers to ser-
vice is given by C = {p1, d1, p2, d2, ..., pn, dn} where
pr is the pickup node of request r from the subset
P = {1, 3..., 2n − 1} ⊂ C and dr is the delivery node
of request r from subset D = {2, 4..., 2n} ⊂ C.

In order to service each customer request we have
available k vehicles. The depot location is split into k
nodes forming the set of depot nodes W = {1, ..., k}.

The mathematical formulation is dimensioned for a
graph G(N ,A), where A ⊆ N ×N is the set of graph
edges representing all travel possibilities between nodes
and N = W ∪ C represent the graph nodes. V =
{1, ..., k} is the set of homogeneous vehicles, each with
ek vehicle costs and capacity q ≥ li, i ∈ {1, ..., n}
where li is the load capacity demand for customer i, i.e.
how much of a vehicle’s available capacity a request will
occupy.

The variable xkij is a binary parameter that expresses
if a vehicle travels directly from node i to node j. For
each arc ij, it takes the value 1 if vehicle k travels
directly from i to j and 0 otherwise. xkkj represents an arc
between a depot node and node j, serviced by vehicle k.
Similarly, xkik expresses an arc between a customer node

i and the depot, also serviced by vehicle k Each arc is
also defined in terms of travel time, tij specific positive
travel cost, cij , for each arc in A. Finally, ski is the exact
time of service at each point i by vehicle k and [ai, bi]
is the time window specified for node i. The variable
weights = [M1,M2,M3,M4] is a vector composed
by all scaling factors, which define the priority of each
term in the objective function.

minimize M1 ×
∑
k∈V

∑
(i,j)∈A

cijx
k
ij+

M2 ×
∑
k∈V

∑
j∈C

ekx
k
kj +

M3 ×
∑
k∈V

∑
(i,j)∈A

max(skj − bj , 0)xkij+

M4 ×
∑
k∈V

∑
(i,j)∈A

max(aj − skj , 0)xkij

(1)

subject to
∑
k∈V

∑
j∈C

xkij = 1, ∀ i ∈ C (2)∑
(i,j)∈A

lix
k
ij ≤ q, ∀ k ∈ V (3)

∑
p∈P

xkhpn
−

∑
d∈D

xkgdn
= 0, (4)

∀ h ∈ N , ∀ g ∈ N , ∀ k ∈ V, ∀ n ∈ R
(5)∑

j∈C
xkkj = 1, ∀ k ∈ V (6)∑

i∈V
xkih −

∑
j∈N

xkhj = 0, ∀ h ∈ C, ∀ k ∈ V

(7)∑
i∈V

xkik = 1, ∀ k ∈ V (8)

xkij(s
k
i + ti,j − skj ) ≤ 0, ∀ (i, j) ∈ A, ∀ k ∈ V

(9)

ai ≤ ski , ∀ i ∈ N , ∀ k ∈ V (10)

xkij ∈ {0, 1}, ∀ (i, j) ∈ A, ∀ k ∈ V (11)

Typically, VRPs focus on minimizing the sum of
travel costs over of the arcs used in the solution (∑

k∈V
∑

(i,j)∈A cijx
k
ij). Since we are dealing with an

heterogeneous fleet, we must also consider each ve-
hicles’ respective cost (

∑
k∈V

∑
j∈C ekx

k
kj). The first

edge of a non-empty tour is used (xkkj) in order to
only add vehicle costs on relevant tours. In this pro-
posed approach we are dealing with soft ending time
windows, which means servicing a node after its time
window end (bi) does not make a solution infeasible,
only unappealing. When a node is visited after its time
window ends, bi, the extra time it took between the



limit and the service time is called lateness. If it is
allowed, its respective minimization must also a part of
the objective function (max(skj − bj , 0)xkij). The early
limit of a time window, ai, is still hard and inviolable.
Finally, it might prove beneficial to specify not wanting
drivers to be idle. The minimization of the total waiting
times (max(aj − skj , 0)x

k
ij) appears as the last term

and is especially relevant when dealing with heavily
clustered data. The constraint represented in Equation
2 assures that all customers are serviced only once.
Vehicle capacity constraint is represented by Equation
3. Equation 5 assures the same vehicle services both
pickup and delivery nodes of the respective request.
The expression 6 defines that there is only one tour
per vehicle, which can be empty. Equation at 7 ensures
that if a vehicle arrives at a costumer location it also
departs from the mentioned customer location. Equation
8 define all tours’ ending location as the depot. For a
vehicle to travel directly from i to j Equation 9 states the
arrival time at customer j is such that it allows travelling
between i and j. Expression 10 specifies that the early
limit of a time window ai is hard and 11 denotes the xkij
variable as binary. Thus, the model is non-linear due to
the non-linear max operations in 1 quadratic terms in 9
and integrality constraints at 11.

B. Proposed Approach
The key of the approach is the static solver, a module

that receives an existing solution and tries to optimize
it further. It runs in loop until a stopping criteria is
meet and uses a hybrid Ant Colony System paired
with Local Search. The static solver only needs to be
accompanied by the initial solution constructor to solve
static instances. Our approach to solve dynamic instances
is based on the presented solution for static problems.
After creating an initial feasible solution, the static solver
is applied for a limited period of time. This intends to
represent the pre-computation of requests already known
beforehand. At this point we are at the beginning of
the working span and will next repeat the same set of
directives until all requests have been serviced:
• Insert any new requests from the previous interval

into the best selected routes.
• Deploy the best obtained solution from the insertion

to the physical vehicles.
• Predict current interval’s end-state, namely vehicle

positions and serviced requests.
• While current interval’s end isn’t reached, optimize

the end-state prediction with the static solver.
• Output from the static solver the best found solution

and the latest found solution.
• Group these two solutions with the state of the

deployed route to form the best selected routes.
• Update vehicle positions, serviced requests and

distance matrix.

C. Initial Solution

The initial solution constructor is used to generate
a feasible solution from scratch, as a starting point
for the static solver module. A proposed new strategy
based on Nearest Neighbourhood Search (NNS) and
subtractive clustering is presented. The better the initial
solutions, the faster the convergence of the model to a
good solution. With this in mind, a clustering of the
customers nodes location is done. To each of these newly
generated clusters we assign a single vehicle and guide
it through its respective clustered nodes, following the
NNS heuristic. A comparison between using only NNS
or clustered NNS is showed in Table I, which supports
the decision to use pre-clustering.

Since we are not considering the time availability
of the nodes, and are clustering instead based on the
location, lateness will be present on the solution. To
avoid assigning too many nodes into a single vehicle
to service we make an effort to go in the opposite
direction and assign as many vehicles as possible to an
initial solution. Starting with a very low cluster influence
range parameter, subtractive clustering is applied on
the midpoint of each pickup-delivery pair, taking into
account only their location. Having an extremely low
cluster influence range results in each midpoint being a
cluster centre, i.e, it asks for as many vehicles as there
are pickup-delivery pairs.

D. Local Search

Careful parameters tuning must be made to achieve
a good balance between an exhaustive neighbourhood
search space and computational speed when applying
Local Search.

At the start, a part of the route (from now on called
slice) of size s is removed from the original route. This
slice will tentatively be inserted between every route
node up to L times around the slice’s original position,
without leaving the current vehicle. If this slice is
independent of the other customers in the same vehicle,
this is, if only a pickup and the corresponding delivery
are selected, the slice is also inserted on equivalent
indexes at all other vehicles. The new insertion indexes
are generated by a simple linear interpolation between
available insertion indexes at each vehicle. When a
feasible solution is generated, the corresponding fitness
value is saved for later comparison.

This process is repeated for each possible slice of
length s. Only after all options have been computed do
we compare the best achieved result with the disturbed
solution. If at this point any new feasible solution is an
improvement comparing with the current disturbed one,
it replaces the disturbed route and repeats the previous
steps all over again. When no solution is found, slice



size is decreased and the cycle is repeated. All this is
stopped only when the slice’s length is decreased to 0.

E. Static Solver

The static solver is the key piece to the employed
solution, combining both ACO metaheuristic with local
search, as seen on Figure 3. Starting from a feasible
solution, module specific variables are initialized. The
pheromone trail matrix is also here generated. It is a
Q × Q matrix, where Q is the length of N , and it is
initialized uniformly at the value τ0. Pheromone limits
are dynamic and depend on the quality of the current
best solution, meaning they will be updated every time
a new global best solution, sbest, is found. Pheromone
trail matrix limits are computed according to [8].

First, m new ants are generated using the new ant
generator module. For a specified limit, LS limit, the
module runs purely as ACO algorithm since local search
method is not yet used. The best ant from each iteration
is compared with the best overall solution. If an improv-
ing solution is found, both sbest and pheromone matrix
limits are updated.

After all ants are computed, the local search method
is applied to the most promising ants on the top ant
fitness list from current iteration (size specified by
top ants number) until no improvement is found, and
are compared with the global best ant, sbest. From now
on, any time a comparison is made between any solution
and the global best, sbest, it is implied that if the new
solutions is better it will replace sbest and update the
pheromone limits accordingly.

If no best solution was found so far, a disturbance
is induced on sbest ant to the output snew the local
search method is applied. The number of new solu-
tions generated by the disturbance method is given by
perturbed ants number times. Every snew is saved on
exchange memory to avoid applying a local search on
equal solutions and save valuable computational time.
The disturbance introduced can either be a shift or a
switch, both represented at Figure 2. On the first one,
a randomly selected pickup-delivery pair is removed
from a vehicle and attributed to another at a random
location. On the second disturbance method a shift is
applied two times on the same pair of vehicles, removing
and inserting a new pickup-delivery pair in each. A
disturbance can happen to a route multiple times to
further increase the search space, as is the case of the
proposed model where it can happen from one to three
times.

If sbest is updated on current iteration, the LS counter
is reinitialized, exchange memory cleared and q0
equalled to its original value. If on the contrary
sbest remains the same as in the previous operation
LS counter is incremented. After local search is turned

Fig. 2. Representation of disturbance method shift and switch

Fig. 3. Schematics of the static solver module

on, LS counter starts to dictate when pheromone reini-
tialization will be applied. When this is not the case,
the pheromone trail matrix is updated. When it is and
we are before a pheromone matrix reinitialization, the
pheromone matrix is equalled to the midpoint between
τmax and τmin, the LS limit is doubled and L in incre-
mented by one and q0 is again reinitialized. All these
changes aim to increase the neighbourhood search area
and the time spent searching on it before reinitialization.

When eventually the time limit is surpassed for the
static solver module, it stops running iteratively and
outputs the best found solution as result.

F. Dynamic Solver

To handle the dynamic changes over time, the working
horizon is divided into successive intervals of length
timess. During each interval, the working conditions
(time and distances matrix) will remain unchanged and
any new requests appearing during this interval will be
buffered, i.e., saved for later insertion. When the end
of the interval is reached, time and distance matrix are



updated and new requests inserted in the already existing
routes. This way, during the length of the interval, the
problem instance does not change and the static solver
method can be applied.

The only place where a solution is generated from
scratch is at the start of the dynamic solver. Before be-
ginning this cyclic approach described above, depending
on the instance to solve, it can be relevant to run the
static solver, depending on the number of requests or
other instance related properties. This step is optional
and belongs to the initializations.

After this pre-optimization time interval is over, if
any occurred, we enter the iterative cycle represented on
Figure 4. Denoting the start of the interval as T , the best
solutions obtained in the previous optimization interval
serve as input to the least cost insertion module, which
adds any new requests buffered during the previous cycle
and outputs the best found solution. This is the solution
to be deployed to the physical vehicles, ṡdeployed, at time
T ′, which would start to travel immediately accordingly
to this route, ignoring any previous orders. Simultane-
ously to deployment, and while vehicles service their
stipulated pickups and deliveries, another module called
end-state simulator predicts where the vehicles will be
at the end of the current time interval, based on how
long the optimization interval is and how long each path
takes to travel. This predicted route, ṡ∗, is used as input
to the static solver, which will try to find improvements
to this solution for tss − (T ′ − T ) minutes.

When the end of the time interval T+ is reached, the
static solver module is stopped. When dealing with static
instances, the best solution is outputted from the module
and it is terminated. In dynamic instances however, the
best solution from the static solver, now ṡbest, is grouped
with the previously deployed solution, ṡbest, and together
they serve as input to next cycle’s least cost insertion
model, at T+. All requests made available between T
and T+ are now introduced into the routes. The cycle is
repeated until no more requests need to be serviced.

When solving dynamic instances, some changes are
needed in the static solver module to account for requests
that have already been fully serviced or whose pickup
has already been serviced in the real world and thus is
irreversibly tied to a vehicle. This means that the new
ant module must also account for vehicle history when
constructing the feasible node list. When generating

Fig. 4. Schematics for Dynamic Solver cycle

new solutions with the local search strategy, any time a
feasibility check is done it needs to also take into account
nodes outside the current planned route but which are on
the vehicle history.

The module system end state predicts where vehicles
will be and what nodes have serviced during tss, time
according to current distance matrix costs. To account
for changes between the predicted end-state environment
and the real environment at T ′, another module is
needed to check if at the interval’s end the predicted
state matches the real state and fix anything needed
accordingly. For the benchmark problems, the distance
between nodes is computed using the Euclidean distance
but for the case study it is calculated based on the
Haversine formula.

G. Validation

To validate obtained results, the benchmarks for a
pickup delivery problem with time windows instances
generated by Li & Lim [11] will be used. They can be
found on [1], under the PDPTW section, as well as the
best results for each file found, which shall be referred
to as the optimal solutions for each respective instance.
The datasets for the dynamic problem will be generated
from these files.

Since the presented results do not allow lateness and
have as objectives: 1) minimization of vehicle number;
2) minimization of travelled distance and hard time
windows, weights must be adjusted accordingly. This
will be implemented by having the scaling factors such
that M4 �M2 >M1 �M3.

Using a much greater factor for M4 proved to be
enough to steer away from any lateness in the solutions.
The scaling factor for the waiting times, M3, is given a
very low influence so that our solutions incur in extra
vehicles or travelled distance to decrease waiting times.

Benchmark file names contain encoded information on
the type of problem. Using as example the 100 customer
category (file name of type ”lc1xx”), each file is labelled
in accordance to the following logic:

topsep=0pt

• lc: generated requests are clustered geographically
• lr: generated requests are randomly distributed ge-

ographically
• lcr: generated requests are partially clustered and

partially randomly distributed
• 1: time windows have short and conflicting schedul-

ing horizon (many vehicles)
• 2: time windows have long scheduling horizon (few

vehicles)
• xx: file identifier



IV. RESULTS

A. Initial solution construction

To compare implementing the construction method
with and without pre-clustering the customer nodes,
Table I was generated. For each file and for each strategy
it is present the average between all runs of: initial fitness
value, the direct output of the constructor; run time at
which the first solution without lateness appears; final
fitness after 20 minutes. The best values in each case
are highlighted in bold.

TABLE I
COMPARING INITIAL SOLUTION CONSTRUCTION USING NEAREST

NEIGHBOURHOOD SEARCH WITH AND WITHOUT PRE-CLUSTERING
WITH THE BEST VALUES FOR EACH COMPARISON IN BOLD

File
name Strategy

Initial
Fitness

Transition
Time (min)

Final
Fitness

lc101 NNS 188.58 0 182.89
Clustering 190.49 0 182.89

lc105 NNS 3.31E+11 0.44 89.16
Clustering 8.04E+10 0.07 88.89

lc201 NNS 9.97E+09 8.04 437.11
Clustering 5.53E+09 2.41 310.02

lc205 NNS 347.24 0 212.63
Clustering 3.18E+10 1.73 178.654

lr101 NNS 7.08E+09 2.54 348.73
Clustering 9.67E+09 2.824 355.91

lr105 NNS 1.13E+11 1.99 264.47
Clustering 1.46E+11 1.58 252.04

lr202 NNS 182.89 0 182.90
Clustering 190.49 0 182.90

lr205 NNS 3.18E+11 0.59 89.16
Clustering 1.89E+11 0.091 88.89

lcr101 NNS 8.66E+09 6.42 421.25
Clustering 3.98E+09 2.19 309.89

lcr102 NNS 2.44E+11 1.74 225.76
Clustering 6.02E+10 2.02 173.84

lcr201 NNS 7.33E+09 3.57 367.03
Clustering 1.06E+10 2.60 359.92

lc205 NNS 9.6E+10 2.06 275.44
Clustering 1.48E+11 1.42 247.83

For both cases, the initial fitness show no special trend.
The first time a solution with no lateness is generated,
the transition time is either almost identical for both
strategies or the pre-clustering ones are at least three
times lower than only using NNS, trend which happens
for half of the cases. So far, only a slight advantage
is show for pre-clustering instead of only doing the
NNS. However, in the majority of cases using NNS on
pre-clustered points provides a better final fitness. Pre-
clustering the requests and then applying a NNS to each
cluster will be the strategy used in all other sections.

B. Static instances

Table II presents the average values for the error
tables per type of file. Clustered data behaves differently

Fig. 5. Optimal route plotting for the lc101 file

from the others files as it manages to always reach the
optimal number of vehicles for type 2 files. While for
type 1 it does not reach the optimal value for all of
them, it reaches a lower distance than the given by the
optimal. For the other two the conclusions are similar,
with average vehicle number error of 2 or less. Distance
does fall below the optimal value as with the clustered
files, but instead has an average error around 20%, which
is alarmingly high.

TABLE II
AVERAGE RESULTS OF MODEL VERSUS OPTIMAL VALUES FOR

EACH FILE TYPE.

File
Vehicle Distance

Mean % Best % Mean % Best %

lc1 0.31 3.46 0.22 1.39 -41.49 -4.06 -23.79 -2.00
lc2 0 0 0 0 5.38 0.91 0.96 0.16
lr 0.18 1.83 0.12 1.31 -19.44 -1.72 -12.14 -0.98

lr1 1.39 12.99 0.67 6.57 131.87 11.33 58.50 4.99
lr2 1.05 40.54 0.55 21.96 329.41 35.31 168.63 18.15
lr 1.23 26.17 0.61 13.93 226.34 22.80 111.17 11.29

lcr1 2 16.62 1.5 12.42 161.70 7.34 98.89 2.84
lcr2 1.35 38.51 1 29.16 371.76 28.86 226.77 15.66
lc 1.68 28.93 1.25 21.83 266.73 17.86 162.83 9.07

C. Dynamic Instance

For dynamic testing, a problem instance will be gener-
ated based on lc101, chosen since the static solver is able
to reach its optimal solution under 5 seconds. This way
we are focusing only on testing the dynamic changes and
the least insertion procedure by removing all difficulty
for the static solver to find a solution. By looking at
Figure 5 it is clear that using a clustered set of nodes
makes for the demonstration makes it more intuitive to
visualize the routes and the current solution quality.

Since no quantitative comparison can be made be-
tween dynamic and static solution we use this next
section as a demonstration exercise, showing that the
model works for the purpose it was created.

For simulation purposes it is necessary to distinguish
between the actual run time of the static solver, tss,
and the perceived time advanced by the algorithm, tsim.



For each time the static solver runs for tss time, the
algorithm will see as if the time passed was actually
tsim.

For the dynamic test an important variable needs to be
defined, the lookahead parameter, tlook. The generation
of dynamic files consists in making nodes available to
be serviced only after a specified time. Up to that point
they are not accounted for in the route planning. This
particular time is defined for each request as the earliest
service time (so the ai of the respective time window
limit) of both the pickup and the delivery. In other
words, a pickup-delivery pair is inserted into the set of
customers to serve as soon as any of the two have their
time window starting before the current simulation time,
tcurrent, plus the lookahead parameter, which can be
represented as when the condition ai < tcurrent + tlook
is true.

For dynamic testing, a problem instance will be gener-
ated based on lc101, chosen since the static solver is able
to reach its optimal solution under 5 seconds. This way
we are focusing only on testing the dynamic changes and
the least insertion procedure by removing all difficulty
for the static solver to find a solution. By looking at
Figure 5 it is clear that using a clustered set of nodes
makes for the demonstration makes it more intuitive to
visualize the routes and the current solution quality.

On the visualizations of the simulation, as seen on
Figure 6, for each vehicle their current location is rep-
resented by a diamond shape, each have a unique color
and when outside of the depot are associated to their
unique ID number. A dashed line represents the planned
route for a given vehicle while a solid line represents the
path previously travelled. Grey lines represent already
serviced routes whose respective vehicles are back at
the depot and circles represent customer nodes.

Here is presented a solution for the lc101 file with
tlook = 45 min, a tstatic = 1 min and tsim = 15 min.
For this specific file, service time at the nodes is 90
minutes for almost all cases, being 0 on the other few.
On Figure 6 we have plotted successive time instances,
representative of the simulation’s temporal evolution.

Starting at zero time, Figure 6 a) shows the planned
route for the few initial nodes to service from the
beginning. Next on Figure 6 b) is depicted the system
state after 240 minutes, where vehicles have already
moved from the depot and some customer nodes have
been visited. At Figure 6 c), in the 480 minute mark,
almost all requests have been inserted and vehicles have
travelled through some more customers. On Figure 6 d)
the first vehicle completes its route, and his previously
travelled path is displayed in grey. At Figure 6 e), minute
900, almost all nodes have been serviced and only 5
vehicles remain active. Finally at Figure 6 f) all routes
are completed, with all nodes serviced and the vehicles

Fig. 6. Visualization of dynamic routing for requests, geographical
distribution

back at the depot. For this case, the achieved routes
match the corresponding static solution.

The LCI module is responsible for adding new re-
quests to the current routes at the end of each tss interval.
Since insertion order is defined by the earliest time
windows of a request, the LCI might lead to sub-optimal
insertions, . If tsim and tlook parameters are adequate to
the current problem instance, the recently added nodes
will only be visited after tss time, meaning they will
pass at least once through static solver method. LCI is
not designed to find the optimal insertion, but instead to
provide a good and fast response, giving higher priority
to the most urgent nodes first. This means a selected
insertion move might be sub-optimal, such as depicted
on Figure 7. Even with well adjusted tss and tlook, a
recently added node at a sub-optimal position can be
serviced right away, and thus become immutable. When
such move is implemented, it is the static solver’s job
to find the best possible solution given the visited node
history. If tsim and tlook parameters are adequate to
the current problem instance, the chance of adding new



Fig. 7. Example of a sub-optimal LCI insertion

Fig. 8. Visualization of dynamic routing for requests, distribution of
time in minutes per vehicle

nodes to route and service them without passing the
static solver first decreases.

Lastly, it is presented the final time distributions per
vehicles at Figure 8. Each bar is a unique vehicle and
each segment a travel between two locations. As the label
says, blue bars represent the vehicle travelling, green
bars identify the vehicle waiting at location and red bars,
if any, represent lateness of a delivery.

D. Case Study

The presented case study was proposed by the com-
pany UDD, together with most design constraints de-
tailed next. The data is from a restaurant distribution ser-
vice, meaning all pickups happen at the depot location.
Due to the restaurant’s nature, their current assumption
for this data is that after a customer makes an order, the
delivery time window starts in 45 minutes, which lasts
for 15 minutes.

Currently, the distances between customer coordinates
are calculated using the Haversine formula as a poor
approximation to the actual road distances a vehicle has
to travel using the traffic network. However, the created
model can work with any matrix giving the distances
and travel times between nodes. This means that instead
of the Haversine formula one could easily switch to a
better alternative, for example the Google Maps Distance
Matrix API, and apply this model directly to a live
problem. The provided data contains 47 requests to serve

Fig. 9. Static solution for the case study, geographical distribution and
service times plot

Fig. 10. Dynamic solution for the case study, geographical distribution
and service times plot

from 18:30h to 23h. Since an optimal solution for the
tested data is not known, demonstration will be done
comparing the dynamic run with the best achieved static
solution.

First, the data is processed by the static solver module
for 30 minutes, similarly to the approach on the static
benchmarks. This will give a solution to be considered
as the optimal when performing any dynamic tests. The
case study data is similar to the benchmarks in size, with
47 requests to service. In terms of scheduling horizon,
the case study matches the type 2 files. Visualization of
a solution found can be seen on Figure 9.

For the static run, 2 vehicles were able to service all
requests without lateness for a total of 51.4 km travelled.
For the dynamic solution, with a tsim = 15 minutes and
a tlook = 45 minutes the solution obtained is represented
in Figure 10. It uses 4 vehicles instead of 2 and has a
total travelled distance of 68.6 km. It also arrives late
at one location, but only less than a second after time
window end.

V. CONCLUSIONS

A. Conclusions

The main objective was accomplished and a functional
model was created to solve Capacitated Pickup Delivery
Vehicle Routing Problems with Time Windows on a
Dynamic Environment. Further, the proposed approach is



suitable for implementation in a real world environment,
being able to deal with the tight time windows available
to solve such heavily constrained problems. In general,
the proposed approach shows a good performance in the
validation benchmarks. The introduction of the initial
clustering step improved the overall results of the pro-
posed approach, only little improvements are needed to
consider them competitive with other approaches from
the state of the art.

Considering the benchmark problems where the data is
not clustered, the proposed approach does not match the
competition when comparing with other multi-vehicle
pickup delivery problems, such as the one presented in
[27], a commercially available software developed over
20 years by researchers or [32], where the benchmarks
are introduced for validation of Pickup Delivery Prob-
lems with Time Windows. Even so, for at least two of
these benchmarks is still able to find the optimal solution,
which means that it is a viable approach. Under the case
study presented, the proposed approach is able to solve
the problem, presenting a solution without any delays in
the delivery time windows.

The developed strategy for initial solution construction
seems very promising and worth exploring further out-
side of this thesis. Pairing the ACO with Local Search
proved to be a very good strategy since each method
compensates for what the other is lacking. Nevertheless,
the overall implemented model is slower than the initial
model, due to the local search procedure, but the overall
results are better. The used Local Search method really
slows down the problem due to a feasibility check that
runs for every generated route to the point where more
than two thirds of the time is spent doing feasibility
checks.

B. Future Work

The proposed model can be improved by adding
the ability to handle different types of vehicles and to
account for the actual distances and times needed to
travel through the roads of a city in between the nodes
location. Further, solutions for the case study should
be provided to correctly assess what has already been
developed and to see if it behaves better or worse than
industry solutions.

One of the difficulties of the proposed approach is
when the data is unordered, which means that the model
of the static solver should be improved to provide better
solutions. The first attempt to improve the algorithm
would be to further elaborate the Local Search method,
namely adding more diversity to different types of solu-
tion disturbance. As for the dynamic approach, besides
the already mentioned usage of a more complete distance
and time matrices and handling a heterogeneous fleet
correctly, it is important for a model applied to a real case

to refuse new requests if they will badly influence the
already accepted routes. Using a more advanced waiting
strategy could also lead to better solutions.
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