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Abstract

The objective of this work is the design and tuning of an estimator architecture that can provide
the slipangle of a Formula Student prototype, with the requirement of working in real time, to be
able to feed a control algorithm. The proposed architecture uses an Inertial Measurement Unit (IMU)
composed of an accelerometer a gyroscope and a magnetometer, a Global Positioning System (GPS),
a steering encoder, the torque of the electrical motors and the underlying dynamic model of the
vehicle. An exhaustive car model is presented, as well as, sensor models, used to test and tune the
estimators. Two kinematic complementary filters are presented for attitude and velocity estimation
that feed a third estimator using the vehicle dynamics. For this last one, a linear and a non-linear
filter are compared and their pros and cons discussed. All the used estimators are based in Kalman
Filter (KF) theory for the linear ones and the Extended Kalman Filter (EKF) for the non-linear. The
estimator architecture is then tested with offline data from a real Formula Student prototype. The test
is cross-validated with a secondary and more accurate system.
Keywords: Sideslip, Navigation, Estimation, Sensors, Kalman Filter

Introduction
Formula Student is an university competition

that challenge students from around the world to
build a single-seat racing car. Along the years the
competition has been evolving with the implemen-
tation of new materials and technologies, always
looking to follow the world evolution of automotive
technology. Recently it has approach the driverless
cars starting a new parallel competition for these
vehicles, which associated with electric independent
all-wheel drive already used by the teams, opens
a door for countless control approaches. Control
strategies like vehicle stability control and torque-
vectoring [1] depend widely on a sideslip observer
to assure that the vehicle stays in a stable route.
This observer is especially needed when there are

Figure 1: IST - FST06e

significant differences between the model and the
true vehicle, something that usually happens when
working with road vehicles and tyres.

This paper undertakes the implementation of an
architecture proposed in [2] for a Formula Student
prototype to estimate the sideslip of the vehicle.
During a test day, data was acquired from an in-
ertial measurement unit (IMU) consisting of an ac-
celerometer a magnetometer and a gyroscope, all of
them with 3 axis, a global positioning system (GPS)
and a steering encoder. These sensors were already
part of the vehicle. In order to verify the results ob-
tained from the estimators, a secondary system us-
ing a differential global positioning system (DGPS)
was attached to the car. This one gives the heading
and the velocity components, values required to cal-
culate the sideslip angle of the car. Both systems,
the DGPS and the car sensors are completely inde-
pendent. The acquired values are then processed in
offline to skip implementation issues.

In this document, the models and estimators are
briefly explained in sections 2 and 3 respectively,
with only the more important equations presented,
their deduction can be found in [2] and [3]; followed
by a closer look to the test platform (Fig.1), its tech-
nical characteristics, and the sensors are explored in
section 4; Section 5 illustrates the results obtained
in each estimator and a comparison is performed
with the values from the DGPS; Finally, Section 6
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Figure 2: (a)Forces applied on the Car; (b)Tyre angles and frames. Images from [2]

outlines some remarks and future work.

Car Model
This section presents the general non-linear equa-

tions for the vehicle model from where the linear car
model is obtained. These equations and their de-
duction are explored in detail by [2], and as such, in
this work only the resulting equations are exposed.

The following model is named a planar model
since it considers that no pith (θ) or roll (φ) ro-
tations exist, being these the major assumptions,
which also implies that no load transfer occurs. Be-
sides this limitation, aerodynamics forces acting on
the car are neglected. This restricts all the forces to
the tyres, as can be seen in Fig.2(a), where each one
produces a longitudinal and a lateral force respec-
tively Fx and Fy, with the indexation Front Left
(FL), Front Right (FR), Rear Left (RL) and Rear
Right (RR). And where δ defines the wheel steer
angle, v is the velocity vector, β is the car sideslip
angle, a is the distance between the centre of grav-
ity (CG) and the front axle, b the distance between
the CG and the rear axle, and tr is the length of
the axle, where both are considered equal.
The resulting equations of this model are described
by (1), where r is the angular velocity around the
z-axis, m is the mass of the car plus the driver and
Iz is the moment of inertia around the z-axis.

v̇x = vyr −
1

m
[FFy sin δ − FRx ] (1a)

v̇y = −vxr +
1

m
[FFy cos δ + FRy ] (1b)

ṙz =
1

Iz
aFFy cos δ − 1

Iz
bFRy (1c)

The longitudinal force Fx on the car is assumed to
be a direct input, without considering the tyres lim-
itations. The lateral forces Fy on the tyres are given
by a cornering stiffness approximation expressed by
(2), where Cα is the cornering stiffness constant,

and αi is the slip angle of the tyre i, defined as
αi = βi − δi, as seen in Fig.2(b).

Fy = −Cααi (2)

The sideslip angle of the wheel (βi) is the projec-
tion of the sideslip angle β of the car in the wheel
by vi = Bv + Br × Bri, where Bri is the vector
of distance between the CG and the wheel i. This
cornering stiffness approximation contains several
assumptions that are explained in detail in [2].

Linear Car Model

The car model used in the estimator is an ap-
proximation of the equations (1) and (2) for small
angles and the assumption of a constant longitudi-
nal velocity (vx = const), which has been widely
used in the literature [4][5][6]. With the small angle
approximation is possible to define the wheel slip
angle as:

αi = tg-1

(
vy + xir

vx − yir

)
− δi ≈

vy + xir

vx
− δi (3)

Using a different cornering stiffness for front and
rear wheels, respectively Cαf and Cαr, is then pos-
sible to rewrite (1)-(3) in a state space form:

v̇y
ṙ

=


−Cαf+Cαrvxm

−aCαf+bCαr
vxm

− vx
−aCαf+bCαr

Izvx
−a

2Cαf−b2Cαr
Izvx


vy
r



+


Cαf
m

aCαf
Iz

δ
(4)

Estimator Architecture

In this section, the proposed architecture for the
estimation of the sideslip is exposed. As depicted in
Fig.3, the estimation process is composed of three
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Figure 3: Flowchart of Filter Scheme where mr, ωr, ar, pr and δr are respectively the reading from the
magnetometer, gyroscope, accelerometer, GPS and steering encoder. Grey boxes represent required data
processing before use in filters.

sequential filters. An Attitude Complementary Fil-
ter (ACF), a Position Complementary Filter (PCF),
and a Car Estimation Model (CEM).

The ACF is used to correct the yaw reading from
the magnetometer and to estimate the bias of the
gyroscope. The yaw is then used in the rotation
matrices inside the PCF, which uses the accelerom-
eter and the GPS to estimate both velocity com-
ponents in the body reference frame. The CEM
is used to include the car dynamics in the sideslip
estimation using the velocity components, the cor-
rected yaw rate and the steering angle. The three
filters are implemented using discrete Kalman Filter
[7][8], where the CEM is discretized from a continu-
ous state space model. Both complementary filters
are explained in more detail in [2] and [3].

Attitude Complementary Filter

The ACF combines the yaw readings with the
angular velocity around the z-axis to give a more
accurate yaw value and a bias estimation for the an-
gular velocity to correct the gyroscope signal. This
assumes that the yaw rate ψ̇ = ωr,k reading is af-
fected by random white noise (wωr,k) as well as a
constant bias (bωk):

ωrk = ωk + bωk + wωr,k

With this, is then possible to write the discrete
Kalman Filter in a state space form as:

ψk+1

bωk+1

=

1 −T
0 1


ψk
bωk

+

T
0

ωr,k+

K1

K2

(yk − ŷk)

ŷk = ψ̂k , yk = ψr,k + vk

where the index k defines the instant in time t = kT
being T the sampling time interval. The gyroscope
reading is ωr,k, and the yaw reading from the mag-
netometer is ψr,k which is corrupted with random
white noise vk. The values K1 and K2 are the
Kalman gains associated to each state.

Position Complementary Filter
The PCF combines the readings of the accelerom-

eter with the ones from the GPS to give an esti-
mate of the velocity components in the vehicle body
frame which in this case are unobservable states.
Since the GPS uses a global reference frame as the
opposite of the accelerometer and the needed veloc-
ity components, the yaw estimation from the ACF
is used to convert between reference frames using a
rotation matrix defined as Rk. The equations that
rule the PCF are the motion equations:

p̄k+1 = p̄k + T v̄k +
T 2

2
Rkāk

v̄k+1 = v̄k + TRkāk
where p̄, v̄, ā are respectively the vectors of posi-
tion, velocity and acceleration. Is then possible to
write the PCF system as:

 p̂k+1

Bv̂k+1

=

I T R̄k
0 I


 p̂k
Bv̂k

+


T 2

2 R̄k
TI

āk

+


K1p

R̄′

kK2p

(ypk − ŷpk)

ŷpk = p̂k , ypk = p̄k + vpk

where I ∈ R2 is the identity matrix, āk is the
readings from the accelerometer, p̄k is the GPS
readings of position that are corrupted with ran-
dom white noise vpk. The values K1 and K2 are
2×2 diagonal matrices with the Kalman gains iden-
tified with a linear time-invariant system based on
the above, explored in [2] and [3]. The subscript B
indicates the components in the vehicle body frame.

Car Estimator Model
The Car Estimator Model is based on system (4),

which depends on two state variables [vy r]. This
system is time variant due to vx, which can gen-
erate complications if the longitudinal velocity is
zero, or close to zero due to numeric problems. The
CEM uses the velocity components estimations of
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Table 1: FST06e Parameters
Description Var Variable Units

Front and rear track − 1.24 m
Mass of the Car + Driver m 356 kg

Yaw Inertia Iz 120 kg.m2

Weight distribution − 45.1− 54.9 %−%
Static load at front wheels FFz 787.5 N
Static load at rear wheels RFz 958.7 N
Cornering Stiffness front Cαf 1.527× 104 N/rad
Cornering Stiffness rear Cαr 1.995× 104 N/rad

the PCF, the gyroscope reading corrected with the
bias from the ACF, and the steering angle of the
wheel. The system for the filter is given by:


˙̂vy
˙̂r

=


−Cαf+Cαrvxm

−aCαf+bCαr
vxm

− vx
−aCαf+bCαr

Izvx
−a

2Cαf−b2Cαr
Izvx


v̂y
r̂



+


Cαf
m

aCαf
Iz

δ+

K1vy K1r

K2vy K2r

(yl − ŷl)

ŷl=

v̂y
r̂

 , yl=

vy
r

+

vvy
vr



where vvy and vr are the noises associated to each
measurement and the Ki gains are the Kalman
gains that relate the error of measured and esti-
mated data to each state variable.

Test Platform
In order to test the proposed estimation archi-

tecture, a real test was conducted. At the time,
these algorithms weren’t already implemented in
a hardware capable of real-time processing, so all
the data was logged, and processed offline after the
test. The test platform was FST06e (Fig.1), an
electric Formula Student Prototype. This vehicle is
propelled by two independent 50kW motors at the
rear, one motor per wheel, with a single fixed gear

DGPS Front 
antenna

DGPS 
Acquisi�on 

system

DGPS Rear 
antenna

Car GPS 
antenna

Car IMU and 
Steering 
encoder

Figure 4: FST06e Acquisition system with DGPS.
In orange are the sensors belonging to the car, and
in blue the elements of the DGPS.

with no clutch. With a weight of 280Kg and a dis-
tance between axis of 1.59m, is capable of achieve
0-100Km/h in 2.9s, and a top speed of 150km/h.
The remaining parameters of the car needed for the
models and estimators are presented in Tab.1.

The car relies on a distributed electronic cir-
cuit for all the monitoring, controls and acquisition.
This circuit spreads all along the car, and consists
in several modules interconnected by a CAN-BUS
line working at 1Mbit/s. For this test 3 modules
were essential, the GPS, the Steering and IMU,
and the log unit. Each of these modules has one
dedicated micro-controller, a dsPIC30f4013 from
Texas Instruments, working at 30MHz in a self-
developed board. The GPS module incorporates a
SkyTraq S1216F8 chip configured to an update rate
of 25Hz. The Steering and IMU module consists of
a GY-80 IMU that includes a 3-axis accelerometer
(ADXL345), a 3-axis gyroscope (L3G4200D) and
a 3-axis magnetometer (HMC5883L). The steering
encoder is a 3-turn rotational potentiometer used
as a voltage divider with a 12bit ADC, that is at-
tached to the steering column. The log unit simply
reads one message at the time in the CAN-BUS line
and writes it to a file in an SD card.

In order verify the estimated data, a second in-
dependent system was used. This one, wasn’t con-
nected to the car’s previous system, and had a sep-
arated log system. This system consisted of two
GPS antennas placed on the front and rear of the
car separated by 2.5m as seen in Fig.4. The an-
tennas were connected to an Ashtech MB100 board
that can deliver the heading angle and velocity com-
ponents needed to calculate the sideslip angle of the
car. This data was logged at 10Hz.
The acquisition was made during a track day at the
university campus using a parking lot limited to an
asphalt area of approximated 60m× 25m. The tra-
jectory of the car consisted in several circles in both
ways, and turns after a long straight.

Results

This section presents the results from the differ-
ent filters and estimators during the test run using
the FST06e with the DGPS (Fig.4). Is also ex-
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Figure 5: ACF heading angle result and raw heading measurement from the magnetometer.

plained the processing done to each signal before
the filters.

For this test, the car was stripped of all aerody-
namic elements, to better correspond to the models,
and for the antennas to have a clean view of the sky.

Attitude Complementary Filter
To feed the Attitude complementary filter, the

data from gyroscope and the magnetometer are re-
quired. Before the use of this data, a calibration
to align the axis of the IMU with the vehicle axis
is done using the accelerometer with data from a
static acquisition. This calibration is used in the
three sensor units (accelerometer, gyroscope and
magnetometer), and kept for all the filters. The
yaw angle is computed from the magnetometer af-
ter a 3-dimensional calibration is done to correct
hard and soft non-linearities [9]. The yaw angle
is also corrected from the magnetic declination, to
match the position referential.

The ACF is fed with this data resulting in a cor-
rected yaw angle of the vehicle as can be seen in
Fig.5. The angle must be in a continuous or cumu-
lative form, since discontinuities in the transition
from 0◦ ↔ 360◦ or −180◦ ↔ 180◦ generate prob-
lems in the ACF. In Fig.5, is possible to see the es-
timated heading angle of the car, side by side with
the raw value from the magnetometer. Besides the
yaw angle, also the bias of the gyroscope’s z-axis is
estimated. In Fig.6, an overlapping of several re-
sponses to different initial conditions are presented,
showing a convergence after some seconds. From
the analysis of the raw data of the sensor, an offset
of −0.62◦/s was expected for a stationary measure-
ment, something that is verified in the graph.

Analysing Fig.6, is possible to see that around
the 160s, the bias starts to oscillate. This is when
the vehicle started to move. One of the assumptions
made at the start is that no roll or pitch happens,
but in the real vehicle this isn’t true. Although
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Figure 6: Bias result from the ACF, and a overlap-
ping of several responses for different initial condi-
tions

small, these rotations exist and influence the IMU
that is attached to the car. Besides that, the track
isn’t perfectly flat containing a slight tilt in one side.
These unpredicted rotations can justify the oscilla-
tions when the car is moving.

Position Complementary Filter
The position complementary filter relies on three

major sources, the GPS, the accelerometer and the
corrected yaw angle or heading of the car from the
ACF. A GPS receiver doesn’t give the required X
and Y position coordinates, so a transformation is
done from ECEF (Earth-Centred, Earth-Fixed) co-
ordinates to ENU (East North Up) coordinates, us-
ing as origin a point along the track. The East is
defined as the X coordinate, and North the Y coor-
dinate, the Up or Z is not used. Also, a correction
is performed to the location of the GPS antenna,
this was considered necessary since the distance be-
tween the antenna and the centre of gravity was
substantial (≈ 1m). The correction was performed
using (5) where d̄gps is the vector with the distance
from the GPS antenna to the centre of gravity, and
ψ is the yaw angle from the ACF.

[
xcg
ycg

]
=

[
xgps
ygps

]
+

[
cosψ − sinψ
sinψ cosψ

]
d̄gps (5)
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Figure 7: Sideslip angle (β) estimation from the CEM compared with the one given by the DGPS

The GPS only has a 25Hz acquisition frequency
compared with the 100Hz of the remaining sensors,
this was overcome by using an interpolation for the
missing points to match the general frequency, and
was only possible because processing was done of-
fline. For an online application, a multi-rate solu-
tion must be implemented, or the global frequency
reduced to match the smallest frequency available.

The accelerometer kept the axis calibration ex-
plained in the ACF section, and was corrected from
offsets in the readings. It was also implemented a
correction from the influences of angular velocities
due to the distance between the IMU and the cen-
tre of gravity using equation (6) where Āimu is the
vector of accelerations of the reading, Ācg is the
vector of accelerations in the centre of gravity, ω̄ is
the vector of angular velocities, and d̄imu the dis-
tance vector from the IMU to the centre of gravity.

Āimu = Ācg + ω̄ × (ω̄ × d̄imu) (6)

The results of the PCF using the values of po-
sition acceleration and yaw angle can be seen in
Fig.8. This graph presents an overlapping of the
velocity components acquired from the DGPS, and

160 180 200 220 240 260 280 300

 

0

5

10

15

Lo
ng

itu
di

na
l v

el
oc

ity
 V

x [m
/s

]

 

DGPS Vx

Estimated Vx

160 180 200 220 240 260 280 300

Time [s]

-3

-2

-1

0

1

2

3

La
te

ra
l v

el
oc

ity
 V

y [m
/s

]

 

DGPS Vy

Estimated Vy

Figure 8: Velocity components estimations result-
ing from the PCF compared with the ones from the
DGPS.

the estimates from the PCF. It must be noticed that
the PCF doesn’t use in anyway the data from the
DGPS, being the two signals completely indepen-
dent one from the other. The noise is clearly higher
in the estimation, this is due to the sensor signals,
specially the accelerometer. Since the accelerome-
ter is corrected with the gyroscope unfiltered data
using (6), the combination of both signals results in
a very noisy signal. An example is the time window
between [225s; 250s], where the vehicle was per-
forming several turns at constant radius and speed,
and the resulting lateral acceleration from (6) has
a mean value of 10.2m/s2 and a standard deviation
σ = 1.8m/s2. In the overall, even with the noise,
the estimation of both velocity components is con-
siderably close to the results from the DGPS with
small errors.

Car Estimation Model

For this estimator, is necessary the velocity com-
ponents from the PCF, the steering angle of the
front wheels, and the corrected gyroscope reading.
The steering encoder mentioned before doesn’t read
the δ value of the wheel, but the steering wheel an-
gle, besides that, the encoder to achieve a greater
resolution relies on a gear ratio to convert the steer-
ing wheel range to make a better use of the 3-
turn encoder. Due to Ackerman geometry [10] both
wheels rarely have the same angle, and the ratio be-
tween the steering wheel angle and the wheel angle
isn’t linear, but for the sake of simplicity this angle
is assumed linear and equal. The linear car estima-
tor, uses equation (4) where the transition matrix
relies on the longitudinal velocity vx. For values
equal or close to 0, some problems arise since some
of the elements are dividing by zero. To overcome
this situation, is assumed that the longitudinal ve-
locity used in the transition matrix of (4), has a
lower saturation of vx = 3m/s.

A similar problem arises computing
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β = tg-1(vy/vx) when the velocities are very
close to zero, any small noise can generate huge
angles. To get around this situation a rule was im-
plemented that when vx < 3m/s then vy = 0m/s,
which means that for small velocities (under
3m/s) no sideslip occurs. Note that 3m/s was
just a value that seems small enough to not in-
duce a great error, and worked well during the tests.

The results obtained using the car model estima-
tor for the sideslip angle are presented in Fig.7, as
well as the sideslip angle measured by the DGPS.
This last one didn’t use any signal treatment, and
is acquired at only 10Hz. The resulting signal is a
bit noisy due to the input signals, in this case the
velocity components from the PCF, as seen previ-
ously. Once again, the estimator doesn’t use any
value from the DGPS. Analysing both signals is pos-
sible that the estimative is a little more conservative
in terms of amplitude of the angle. With some sim-
ple changes in the gains is possible to increase this
amplitude, but with the consequence of an increase
in the noise. The presented result is a compromise
between accuracy and noise. It’s also important to
remember that one of the assumptions in this fil-
ter is the small angle approximation, which from
the DGPS values, was clearly exceeded. Even with
some differences the estimator keeps up with all the

variations registered by the DGPS.

In Fig.9 is possible to see a graphical repre-
sentation of the car during a part of the track
([221s; 227s]), where the car is simplified by a red
triangle allign with the heading angle. A blue arrow
represents the velocity vector of the car at the centre
of gravity. The β, is the angle between the head-
ing and the velocity vector. It’s a well-known fact,
among all the drivers of this car, that it suffers a lot
from understeer, something visible in Fig.9, where
is possible to see that the velocity vector always
points to the inside of the curve in relation to the
heading, showing that behaviour. This situation
was also clearly visible during the data acquisition.

Conclusion

The estimation architecture explored was vali-
dated on a Formula Student prototype. The Atti-
tude Complementary Filter was implemented with
interesting results of heading and an estimate that
corresponds to the expected bias. The results of
the Position Complementary Filter were close to
the ground truth given the low-cost sensors used.
The Car Estimation Model was able to produce a
sideslip estimation close to the values acquired from
the DGPS, and the observed during the field tests.
The final results were similar to the values from
the DGPS. Thus, the estimation architecture pro-
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posed is capable to produce the intended results.
This architecture paves the way for the next stages
of the projects, namely control system design and
driverless competition prototype development, by
providing an observer for the sideslip.
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