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Resumo

O objectivo deste trabalho é projectar e afinar um conjunto de estimadores capaz de fornecer o

slipangle de um carro de Formula Student, capaz de trabalhar em tempo real, e de alimentar um algo-

ritmo de controlo. O estimador proposto utiliza uma IMU (Inertial Measurment Unit), que contém um

acelerómetro um giroscópio e um magnetómetro, um GPS (Global Positioning System), um sensor para

o angulo da direcção, o binário produzido pelos motores eléctricos e o modelo dinâmico subjacente

ao veı́culo. É apresentado um modelo exaustivo do carro, assim como modelos para os sensores que

são utilizados para testar e afinar os estimadores. São apresentados dois filtros cinemáticos um para

a orientação e outro para a velocidade, que alimentam um terceiro estimador que utiliza a dinâmica do

veı́culo. Neste último são comparados dois filtros, um linear e um não-linear, que para os quais são dis-

cutidos os seus prós e contras. Todos os estimadores lineares utilizados são baseados na teoria do filtro

de Kalman (KF), e no caso do filtro não-linear é utilizados o filtro de Kalman estendido. Os estimadores

propostos são depois testados com dados recolhidos de um carro real de Formula Student, e depois

implementados num microcontrolador a bordo de um veı́culo RC (Remote Control) num laboratório. Em

ambos os testes, os resultados são validados com sistemas secundários mais precisos.

Palavras-chave: Sideslip, Navegação, Estimação, Sensores, Filtro de Kalman, Filtro de

Kalman Estendido
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Abstract

The objective of this work is the design and tuning of an estimator architecture that can provide

the slipangle of a Formula Student prototype, with the requirement of working in real time, to be able

to feed a control algorithm. The proposed architecture uses an Inertial Measurement Unit (IMU) com-

posed of an accelerometer a gyroscope and a magnetometer, a Global Positioning System (GPS), a

steering encoder, the torque of the electrical motors and the underlying dynamic model of the vehicle.

An exhaustive car model is presented, as well as, sensor models, used to test and tune the estimators.

Two kinematic complementary filters are presented for attitude and velocity estimation that feed a third

estimator using the vehicle dynamics. For this last one, a linear and a non-linear filter are compared

and their pros and cons discussed. All the used estimators are based in Kalman Filter (KF) theory for

the linear ones and the Extended Kalman Filter (EKF) for the non-linear. The estimator architecture is

then tested with offline data from a real Formula Student prototype and implemented in a RC (Remote

Control) vehicle’s microcontroller inside the laboratory. Both tests are cross-validated with secondary

and more accurate systems.

Keywords: Sideslip, Navigation, Estimation, Sensors, Kalman Filter, Extended Kalman Filter
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Nomenclature

Greek symbols

αi Side slip angle of wheel i.

β Vehicle sideslip angle.

βi Vehicle sideslip angle projected on wheel i.

γ Camber angle.

Γi Generic term denominator differentiation.

δ Steering angle.

δr Steering angle reading.

δHI Magnetic field offset.

∆si Equivalent suspension displacement (i=1,...4).

η Ellipse tilt angle.

λr Reference latitude angle.

µr Resulting friction coefficient.

νr Reference longitude angle.

ρ Air density.

σSF Ellipse scale factor.

φ, θ, ψ Roll, pitch and yaw angle.

ψr Yaw angle reading from sensor.

ω Generic angular velocity.

ω̄r Angular velocities vector reading from sensor.

Roman symbols

Ac Generic continuous state transition matrix.

Ak Generic discrete state transition matrix.

Avlek Discrete state transition matrix of VLE model.

Aprojx , Aprojz Vehicle area projection in x and z directions.

Bc Generic continuous input matrix.

Bk Generic discrete input matrix.

Bvlek Discrete input matrix of VLE model.

CSI Soft iron transformation matrix.

CSF Ellipse scale matrix.
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Cα, Cαf , Cαr Cornering stiffness, generic, front and rear.

Cd, Cl Drag and Lift coefficients of the complete vehicle.

Ck Generic discrete observation matrix.

Cpi Equivalent tyre damping (i=1,...,4).

Csi Equivalent quarter suspension damping (i=1,...,4).

Ej Ellipse equation coefficients (j=1,...6).

FD, FL Aerodynamic forces, drag and lift.

Fk Jacobian state transition matrix.

Fr Resulting force.

Fx, Fy, Fz Force components.

Fyi , Fzi Force components at wheel i.

Gi Ground height input at wheel i.

Hk Jacobian observation matrix.

I Identity matrix.

Iφ, Iθ, Iψ Inertia components to roll, pitch and yaw.

Ic, If Collector and forward current.

Kacf ,Kpcf Discrete Kalman gain matrix for the respective filter.

Karj Equivalent anti-roll bar stiffness (j=1,2).

Kj Discrete Kalman gain entry j.

Kk Discrete Kalman gain matrix.

Kpi Equivalent tyre stiffness (i=1,...,4).

Ksi Equivalent quarter suspension stiffness (i=1,...,4).

Mφ,Mθ,Mψ Torque components in roll, pitch and yaw.

Pj Plane equation coefficients (j=1,2,3).

Pk Discrete error covariance matrix.

Pvle, Pvnle Discrete error covariance matrix for the respective filter.

Qacf , Qpcf , Qvle, Qvnle Discrete state weight matrix for the respective filter.

Qk Discrete state weight matrix.

Rφ, Rθ, Rψ Rotation matrices of the roll pitch and yaw.

Rη Rotation matrix of ellipse tilt angle.

Racf , Rpcf , Rvle, Rvnle Discrete observation weight matrix for the respective filter.

Rimu IMU rotation matrix.

Rk Discrete observation weight matrix.

Ro Output resistor.

T Sampling time.

V ccr Regulated supply voltage.

Xp, Yp, Zp ECEF position coordinates.

Xr, Yr, Zr ECEF reference position coordinates.

Z Center of gravity vertical position.
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a Distance from center of gravity to front axle.

āk Discrete acceleration vector.

ār Acceleration reading from sensor.

b Distance from center of gravity to rear axle.

bψ̇k Discrete yaw rate bias.

bφ̇, bθ̇, bψ̇ Bias of gyroscope components.

bax , bay , baz Bias of accelerometer components.

b̄ak Discrete acceleration bias vector.

c Distance from center of gravity to left wheels.

cSIj Soft iron coefficients of matrix (j=1...9).

cj Burckhardt tyre model coefficients (j=1,...,5).

d Distance from center of gravity to right wheels.

d̄ Distance vector from the CG to the IMU location.

ei Chassis quarter height displacement (i=1,...,4).

ek State error between measure and estimate.

fj Generic non-linear equation of index j.

ḡ Gravity acceleration vector.

hi Center of wheel i height (i=1,...,4).

m Vehicle plus driver mass.

mch Vehicle chassis mass.

mui Vehicle unsprung mass i.

mx,my,mz Magnetic field components.

m Magnetic vector.

mC Magnetic vector calibrated.

mr Magnetometer reading vector.

pcgx , p
cg
y CG position coordinates.

p̄k Discrete position vector.

p̄r Position reading vector from sensor.

ra, rb Ellipse axis.

r̄i Position vector of wheel i to the CG.

sl, ss, sr Wheel slip longitudinal, lateral and resulting.

tr Front a rear axle size (track).

uk Discrete input vector.

vR Rotational equivalent wheel velocity.

vW Wheel linear velocity.

vcg Velocity module at center of gravity.

vx, vy Velocity components.

vk Discrete observation noise vector.

vpk Discrete position observation noise.
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v̄ψk Discrete filter yaw noise.

v̄ Velocity vector of the vehicle.

v̄i Velocity vector of wheel i.

v̄k Discrete velocity vector.

wδ Noise of steering encoder reading.

wφ̇r , wθ̇r , wψ̇r Noise of gyroscope reading components.

wψr Noise of yaw reading.

waxr, wayr, wazr Noise of accelerometer reading components.

wxr , wyr Noise of position reading components.

wψ̇ Continuous yaw rate state noise.

wψ̇k Discrete filter yaw rate state noise.

wbψ̇k
Discrete filter bias yaw rate state noise.

wk Discrete filter state noise vector.

wvy Lateral velocity noise state.

w̄ark Discrete filter acceleration reading noise.

w̄bak Discrete filter acceleration bias noise.

w̄pk, w̄ak Discrete filter position and acceleration noise.

xi, yi Position components of wheel i.

xp, yp, zp ENU position coordinates.

xr, yr Position reading components.

xrec Longitudinal distance for the receiver location.

xk Discrete state vector.

zk Discrete observation vector.

Subscripts

0 Initial value.

i Quarter suspension index.

k Discrete time index.

x, y, z Cartesian components.

Superscripts

{−1} Inverse.

{−} Indication of variable computed in previous instant.

B, 1, E Body and Earth reference frames.

F, 1, R Front and rear.

FL, FR, RL, RR Front left, front right, rear left and rear right.

T Transpose.

Others

x̂ Estimated value of x.

x̄ Vector of x values.

ẋ, ẍ First and second derivative of x to time (velocity and acceleration).
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ACF Attitude Complementary Filter.

CG Centre of gravity.

CPU Central Processing Unit.

CTR Current Transition Ratio.

ECEF Earth-Centered, Earth-fixed.

ENU East North Up.
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LTI Linear Time Invariant (system).

PCF Position Complementary Filter.
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UAS Uniformly Asymptotically Stable.

UAV Unmanned aerial vehicle.

UDP User Datagram Protocol.

UKF Unscented Kalman Filter.

USB Universal Serial Bus.

VLE Vehicle Linear Estimator.

VNLE Vehicle Non-Linear Estimator.

dof Degrees of freedom.
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Chapter 1

Introduction

1.1 Motivation

Autonomous driving was been an area of active research in the last decades. For instance, in the

60’s, there were already projects undergoing to create highways specific for autonomous driving, with

promised of no hands-driving, self-parking or increased safety [1].

Over the past years, many mobile robotic competitions have been created, that require the combina-

tion of theoretical results and engineering development, and have been attracting the public audience as

well as big companies [2]. Some competitions like the Robocup serve more as an academic purpose,

others like MBZIRC and Darpa Challenges are used to make a step forward in technology evolution to

be applied in day-by-day applications.

In recent years, several companies like Mercedes, Google and Tesla have been transposing these

technologies to commercial road vehicles. At the time no public available vehicle uses a full driverless

automation or level 5. The automated driving levels are defined by the SAE International Standard J3016

[3]. Where the level zero is the standard for no automation, level 5 is the full automation where the vehicle

takes care of all aspects of the dynamic driving task, in every road and environmental conditions. The

current technology is between the level two and three. Where level two stands for partial automation,

where the vehicle uses one or more driver assistance system for steering, acceleration and braking, but

is expected that the driver takes care of every remaining tasks. The level three stands for conditional

automation, where the vehicle uses the drivers assistance systems to drive itself but expects that the

driver will respond to a requested intervention.

Connecting these two worlds, of mobile competitions and autonomous road vehicles, is Formula

Student with its new driverless competition. Formula Student is the biggest educational engineering

competition that challenges university students to build and race single seated racing cars. Founded

in 1980 in the U.S.A., has been in constant evolution from adapted motorcycle engines and tubular

steel frames, to a massive use of composite materials and independent four-wheel drive with electric

motors. These advances also lead to an evolution of control strategies implemented on the cars, namely

traction control, stability control, lunch control and torque-vectoring (electronic differential) to two and
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four wheels.

Most recently, Formula Student opened a new parallel competition for driverless cars, where the

vehicles, tracks and all the competitions characteristics remain the same with the single difference of no

human on board. This requires another big improvement in control systems applied in the cars, but for

that more sensors and more information on the car state are necessary .

Control strategies like vehicle stability control and torque-vectoring rely on sideslip observers to as-

sure that the vehicle remains in a stable condition [4]. The sideslip angle of a car is defined as the

angle between the velocity vector and the heading of the vehicle. Even though many advanced control

algorithms may benefit of a sideslip angle observation to improve its performance or reliability, this in-

formation is even more necessary in autonomous vehicles. When the car has a driver, this one can do

small adjusts to compensate over-steering and under-steering by means of steering wheel or reliving

the accelerator. However, a driverless car must have some information about the sideslip to be able to

make the same kind of adjustments.

1.2 State of the Art

The need for a sideslip angle value is not a new problem, and several approaches have already been

explored. In order to acquire this angle two types of sensors are available.

The first is an optical sensor or optical flow, that computes the velocity components by the apparent

motion between two images. One of the most commonly used in road vehicles is the Correvit R© family

sensors as used by [5]. This kind of sensors, since they work with image acquisition require some

considerable computational power that comes in a form off a logging unit associated with the sensor.

Also, these sensors require regular calibrations to maintain their performance. In short, this type of

sensors is not small, requires constant calibrations and has acquisitions prices in the order of several

thousands. But on the other hand, has high accurate results.

The second one is a differential global positioning system (DGPS). This acquisition system consists

in using two receiver antennas on the vehicle, and a dedicated system to combine the two acquisition

sources and to make reliable measurements. These sensors are also expensive, and are susceptible to

the same error sources as the normal GPS, like bad acquisition data in urban environments. Also, the

accuracy of this system is dependent of the distance between receivers. Long vehicles like trucks and

boats have very good results, while small vehicles like urban cars have worse.

Since these dedicated sensors are expensive, several works try to estimate this angle by other

means. The most common is by using inertial sensors and/or GPS as done by [6] [7] [8]. These

works usually use a planar model approximation as the system model, like [5] [7] [9] [10], some of them

also explore the influence of the vehicle roll [8] [11]. Most of them use common linear or non-linear

Kalman filters, KF or EKF, for the sensors integration, with some exceptions like [5] that explores the

Unscented Kalman Filter (UKF) instead of the EKF. Besides these algorithms some other authors try

different approaches like [12] that uses fuzzy models to minimize some erroneous estimates, and [13]
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that makes use of neural networks. Some other works tried a different approach than the INS/GPS

systems, by measuring the tyre forces using wheel-force transducers like [5] [9] [11]. In general, all

these works are made for common road vehicles or for small electric cars.

In order to combine different sensors, sensor fusion algorithms are used. The INS/GPS fusion has

been widely explored along the years [14] [15], and specifically in different types of vehicles like un-

manned aerial vehicles (UAV) [16] and in land vehicles [17]. Another strand of sensor fusion is using

complementary filters, where it is used the low-frequencies of a sensor and combined with the high-

frequencies of another. This is an algorithm explored by [18] and [19].

1.3 Thesis Objectives and Contributions

The primary objective of this work is to provide an estimator architecture that can do the same as

the dedicated sideslip sensors (optical flow and DGPS) within acceptable error, and that can be viable

enough to be implemented an be an integral part of a Formula Student racing prototype, something that

is not possible with the dedicated sideslip sensors due to size.

Additionally, dedicated sensors need regular calibrations or long warmups times. The proposed

architecture will be a self-calibrating system, capable of adapting to changes and drifts in the sensor

readings.

This work also aims to be a starting point for an estimator adaptable to any four wheel road vehicle,

capable of returning filtered real time information of common quantities as well as, parameters that

previously could not be measured and that remained unknown like lateral tyre forces.

The vehicle model presented, is expected to be a platform for testing filters and estimators saving

time in implementations and road tests. Also, due to its modules is expected to be upgradable with more

complex modules.

In [20] was developed the communication of a remote controller to a computer by USB, using

Simulink, which send it the values through wireless. In this thesis, the this work is continued by de-

veloping the C program that receives the values through wireless and encodes it to PWM signals in

order to control the motor and the servo of the RC vehicle.

Along this work, a generic library in C code was developed for Kalman Filter, used in Section 5, that is

expected to facilitate the integration of filters and estimators in the RC vehicle micro-controllers. Being C

code a widely used language, from micro-controllers to personal computers it can easily be transposed

to different systems.

1.4 Thesis Outline

Following this introductory section, Chapter 2 introduces the mathematical formulation for the vehicle

model to be used in the simulations and to adjust and test the estimators. The several sub models are

explained in detail and the assumptions used in each one, as well as the limitations.
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In Chapter 3 the estimator architecture is introduced. In a first part the Kalman Filter and the Ex-

tended Kalman Filter are explained. They are the starting point for the proposed estimators. Then the

estimators used are presented, beginning with the complementary kinematic filters for position and atti-

tude, and followed by the vehicle estimators with a linear and a non-linear models already presented in

the previous chapter.

Chapter 4 presents the simulations results. The vehicle model exposed in the Chapter 2 is used to

recreate the behaviour of a real vehicle, and the estimator architecture proposed in Chapter 3 is tested

and compared with the true values.

In Chapter 5, the estimator architecture is implemented in a micro-controller on a RC car inside a

laboratory. In this test the proposed estimator is receiving real time data from the onboard sensors, and

computing the sideslip angle, also in real time. The results are compared with the values acquired by a

high accuracy position acquisition system.

In Chapter 6 data from a real Formula Student prototype was acquired and is used to feed the

estimators. This test is made in offline, and the data crossed with the results of a differential GPS.

Chapter 7 will present some conclusions and some suggestions for future work to help improve

results and implementation.
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Chapter 2

Vehicle Model

This chapter presents a formulation for a dynamic car to test the estimators. A car is a complex

system that can be decomposed in several sub-models. In Fig.2.1 the subsystems used are shown and

how they are interconnect.

Under normal conditions, the forces applied in a car come from two major interactions, tyres and

aerodynamic devices. These forces are supplied to the planar model which is responsible for all the

horizontal movement of the vehicle. The accelerations (v̇x and v̇y) created by this planar movement

generate load transfers that are supplied to the vertical model, which combined with the vertical com-

ponent of the aerodynamic, widely known as downforce (FL), creates the load in each tyre (Fzi ). Also

a track input is used to simulate road inclination or road banking by an height input at each wheel (Gi).

The tyre model uses this vertical force as well as the velocity components and the steering angle (δ) to

generate the tyre lateral forces (Fyi ) supplied to the planar model.

The driver only has control of the steering angle and the acceleration and brake pedals. These last

two are combined and simplified as a longitudinal force (Fx) which is considered a direct input on the

vehicle to which is subtracted the aerodynamic longitudinal force known as drag (FD).

The last model is the sensors. All the values and states described before are not accessible in a real

vehicle in an absolute form as in a model. Thus, this block recreates the readings from a GPS (Global

Planar

Aerodynamics

Tyres

Ver�cal

Driver

Track

Sensors
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 ̇  
  

  

  
 ̇  

 ̇  

  

  

  

   ̇  

Figure 2.1: Car model diagram and interconnection between sub-models

5



Positioning System) for the position (p̄r), the accelerations (ār) from an accelerometer, the angular

velocities from a gyroscope (ω̄r) and the heading (ψr) from a digital compass. This is done using the

longitudinal (vx) and lateral (vy) velocities and yaw rate (ψ̇) from the planar model as well as the roll (φ)

and pitch (θ) angles and the roll rate (φ̇) and pitch rate (θ̇) given by the vertical model.

Besides the sub-models presented above, this chapter also contains two additional linear models

one for the tyres, and the other for the planar movement that are used ahead in the estimators.

2.1 Tyres

Recreating a tyre behaviour is a well-known problem and several models have been presented like

Lumped Models [21], Brush Model [22], Tread Simulation Model [22], TMeazy [23], Burckhardt [24] and

the most known and accepted, the Magic Formula of Pacejka [25]. Most of them use equations that

should be adjusted to real tyre data.

In Fig.2.2 a Cartesian coordinate system is attached to a tyre, where the three forces and three

moments that act on a tyre are depicted. The longitudinal force (Fx) that appears on driving wheels

while accelerating, and on all wheels while braking. The lateral force (Fy), that makes the car turn, it

only appears when the side slip angle of the wheel αi 6= 0. The wheel load (Fz), is the weight of the car

on that wheel. Roll moment (Mφ) contradicts the camber angle (γ) and can also generate lateral forces.

Pitch moment (Mθ), also called rolling resistance, counteracts the wheel rotation. Yaw moment (Mψ)

also called self aligning moment, opposes the steering angle.

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

  

Figure 2.2: Tyre coordinate system [26].

Some of the models already mentioned before are very precise at fitting experimental data, but

consequently, they are extremely complex and computationally heavy with several coefficients that need

to be calculated. Since this work’s main objective is not to simulate all the non-linearities of a tyre, and

all the efforts that it is subjected, the Burckhardt model was chosen, mostly due to its simplicity, but also

the ability to recreate the most significant characteristics of a tyre.
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2.1.1 Burckhardt

The Burckhardt model starts by the definition of longitudinal and lateral slip of a wheel in driving and

braking conditions (Tab.2.1), ensuring that each one is limited between -1 and 1. Where are used the

definitions of wheel linear velocity (vW ), and rotational equivalent wheel velocity (vR).

Braking Driving
vR cosα ≤ vW vR cosα > vW

Longitudinal Slip (sl) vR cosα− vW
vW

vR cosα− vW
vR cosα

Lateral Slip (ss) vR sinα
vW

tanα

Table 2.1: Tyre longitudinal and side slip definitions [24]

Instead of splitting the circle of Forces (or Kamm Circle) in longitudinal and lateral, this model as-

sumes equal conditions on both directions and works with a resultant slip given by (2.1) in order to

calculate a resulting friction coefficient (µr).

sr =
√
s2l + s2s (2.1)

µr(sr, Fz, vcg) = (c1(1− e−c2sr )− c3sr)e−c4srvcg (1− c5F 2
z ) (2.2)

Typical values for the coefficients of (2.2) are proposed by the Burckhardt model, where the three

first are given by Tab.2.2 for common road cars in different road conditions.

c1 c2 c3
Asphalt, dry 1.2801 23.99 0.52
Asphalt, wet 0.857 33.822 0.347

Concrete, dry 1.1973 25.168 0.5373
Cobblestones, dry 1.3713 6.4565 0.6691
Cobblestones, wet 0.4004 33.7080 0.1204

Snow 0.1946 94.129 0.0646
Ice 0.05 306.39 0

Table 2.2: Parameter sets for friction coefficient (Burckhardt [24])

The fourth (c4) is the velocity adjust parameter that is said to be between 0.002s/m and 0.004s/m.

The c5 is introduced as close to 0.00015(1/kN)2. The resulting force generate by the tyre is then given

by the Coulomb friction equation (2.3).

Fr = µr(sr, Fz, vcg)Fz (2.3)
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2.1.2 Tyre Model adaptation

Even though the Burckhardt model has values for several ground conditions, they are for regular

tyres, where the tyres on a formula student prototype are racing slick tyres with different compounds

than the regulars, that are made for better traction at the cost of higher tyre wear. In order to have a

more realistic result, real tyre data provided by the ”Formula SAE Tire Test Consortium (FSAE TTC)”

was used to fit results with equation (2.2), for the same tyres used in the real prototype.

The data provided by the FSAE TTC [27], includes several channels like Fx, Fy, Fz, Mφ and Mψ

already mentioned before, temperature at 5 locations, wheel and road speed, pressure, loaded radius,

inclination angle, slip ratio (sr) and slip angle. As said before the Burckhardt model is a simpler model

and does not consider all these values, besides in this work the longitudinal force is assumed as a

direct input and so the slip ratio does not have any influence. With this, only the lateral force (Fy), the

slip angle (α), and the normal force (Fz) are considered from the real data for the fit. The remaining

variables available from the raw data were kept at fixed values as close to a neutral value as possible, to

minimize the influence in the fit results.
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Figure 2.3: Raw tyre data fit to Burckhardt method. With a R2 = 0.944

In this approximation, the influence of the velocity (vcg) in the traction coefficient was neglected due

to lack of data, and therefore c4 is assumed as null. The fit presented in the Fig.2.3, relied in 15633

data points, and resulted in the coefficients presented in equation (2.4). It should be noted that equation

(2.2) only presents the data in the first quadrant, and for the sake of data presentation and similarity with

common side slip graphs, the third quadrant was added using the mirrored equation. No alteration was

made to the raw data.

Fy(sr, Fz) = (2.013× (1− e−20.294sr )− 0.966sr)(1− 1.837× 10−7F 2
z )× Fz (2.4)

sr = | tanα| (2.5)
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It’s then possible to resume these models for the required application to (2.4) which results in the

combination of (2.2), (2.3) and the results of the fit presented in Fig.2.3. Where the sr is given by (2.5)

the combination of Tab.2.1 with equation (2.1), using the assumption of only pure cornering while driving,

and neglecting the influence of longitudinal slip.

In Fig.2.4 is possible to see a comparison between the several types of road an tyres interaction as

seen in Tab.2.2, as well as the data from the FSAE TTC for the R25B tyre.

It is well known that this model is far from reality, due to a simplistic method (Burckhardt), ignoring

the longitudinal slip for the calculation of the available lateral force, and several others approximation

mentioned before. But despite that, this model held a few of the most important characteristics of the

tyre behaviour, which are the saturation of the lateral force at some slip angle value and even a reduction

of this force, a peak value for the force, and a major influence of the tyre’s vertical load.

2.1.3 Linear Tyre Model

A regular approximation used in linear models is the substitution of a tyre model for a cornering

stiffness constant (Cα) [26][28]. This value is defined as the initial slope of a function Fy = f(α). Several

problems arise from this approximation. The range of angles from where the slope is calculated is not

fix, and as can be seen in Fig.2.5 choosing a wider range of values (larger angles) result in a loss of

information when using low values of α, which results in a force considerably lower than the actual one.

On the other hand, choosing a smaller range of α does not give enough information for more aggressive

driving conditions. Another problem is the independence of the normal force that does not influence

with the lateral force. And the major problem is the fact that the force never saturates. If the value of α

used exceeds the assumed ranged, then the calculated lateral force will have no meaning since it will

surpasses the maximum peak force of the tyre by far. As a simple example, using the second linear

9
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Figure 2.5: Tyre Model: Linear (cornering stiffness) vs NonLinear (Burckhardt), for a vertical load of
Fz=900N.

equation of Fig.2.5, Fy = 264.3α, if the slip angle surpass the defined range even if only by 0.5o, the

lateral force will be 15% more than the maximum peak force the tyre can produce.

In conclusion, this linear approximation is only acceptable for very low values of the tyre’s side slip.

2.2 Vertical Model

To model the vertical dynamics of the car as well as the rotations of roll and pitch, a 7-dof simplified

vertical model is presented in Fig.2.6. In the literature is quite common to encounter suspension models

as quarters of a car simplified with two mass-spring-damper systems in series [26][28]. The proposed

model is a combination of the four quarters of the car to also consider the interactions between wheels,
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something that a quarter suspension models does not consider.

The degrees of freedom (dof) of this model are, the roll (φ), the pitch (θ), vertical position (Z), and the

height of each centre wheel (hi), where i=1,2,3,4 designates the suspension quarters. The model com-

ponents are a chassis of mass (mch) and inertia to roll and pitch respectively Iφ and Iθ, four unsprung

masses (mui) representing the wheel, tyre, brake, upright and all the remaining components that are

not suspended by the shock absorbers. Each suspension quarter (i) is defined as an equivalent linear

spring damper parallel system, where Ksi is the spring stiffness and Csi the damping coefficient. The

tyres are also represented as a spring damper system where Kpi is the tyre stiffness coefficient and

Cpi the damping coefficient. For each axle an equivalent spring (Karj , j=1,2) connects the unsprung

masses to represent the anti-roll bar.

The inputs of this model are, moments applied to roll (Mφ) and pitch (Mθ), vertical load (Fz) and

ground height applied to each wheel (Gi, i=1,2,3,4). To keep this model linear, a small angle approxima-

tion is performed, where the displacements of the top suspension quarters are:

e1 = Z + cφ− aθ , e2 = Z − dφ− aθ

e3 = Z + cφ+ bθ , e4 = Z − dφ+ bθ
(2.6)

For simplification of the equations is defined a ∆si = ei−hi and ∆̇si = ėi− ḣi for i=1,...,4. A balance

of forces (2.7)-(2.13) is performed for each degree of freedom.

mchZ̈ +

4∑
i=1

Ksi∆si +

4∑
i=1

Csi∆̇si = Fz (2.7)

Iθ θ̈ + a

(
2∑
i=1

Ksi∆si +

2∑
i=1

Csi∆̇si

)
− b

(
4∑
i=3

Ksi∆si +

4∑
i=3

Csi∆̇si

)
= Mθ (2.8)

Iφφ̈− c

∑
i=1,3

Ksi∆si +
∑
i=1,3

Csi∆̇si

+ d

∑
i=2,4

Ksi∆si +
∑
i=2,4

Csi∆̇si

 = Mφ (2.9)

mu1ḧ1 −Ks1∆s1 − Cs1∆̇s1 +Kp1(h1 −G1) + Cp1(ḣ1 − Ġ1) +Kar1(h1 − h2) = 0 (2.10)

mu2ḧ2 −Ks2∆s2 − Cs2∆̇s2 +Kp2(h2 −G2) + Cp2(ḣ2 − Ġ2) +Kar1(h2 − h1) = 0 (2.11)

mu3ḧ3 −Ks3∆s3 − Cs3∆̇s3 +Kp3(h3 −G3) + Cp3(ḣ3 − Ġ3) +Kar2(h3 − h4) = 0 (2.12)

mu4ḧ4 −Ks4∆s4 − Cs4∆̇s4 +Kp4(h4 −G4) + Cp4(ḣ4 − Ġ4) +Kar2(h4 − h3) = 0 (2.13)

The expansion of these equations is performed in Appendix A, and the system of equations is used

as a state space system. The state variables are [Z, Ż, θ, θ̇, φ, φ̇, h1, ḣ1, h2, ḣ2, h3, ḣ3, h4, ḣ4]T and

the inputs of the system [Fz, Mθ, Mφ, G1, G2, G3, G4]. The necessary roll (φ) and pitch (θ) angles are

outputs of the system, while the tyre vertical load is computed by (2.14) assuming the tyre as a linear

spring damper [29].

Fzi = Kpi(hi −Gi) + Cpi(ḣi − Ġi), i = 1, 2, 3, 4 (2.14)
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2.3 Planar Car Model: Non-Linear

As the name suggest, the planar car model implies that the vehicle only moves in two directions.

Assuming the car as a rigid body, the dynamics can be expressed by the Newton-Euler equations of

motion. Considering a reference frame attached to the centre of gravity (CG), results in the following

balance.

Fx = mv̇x −mψ̇vy (2.15a)

Fy = mv̇y +mψ̇vx (2.15b)

Mψ = ψ̈Iψ (2.15c)

Where ψ̇ is the angular velocity around Z-axis, that is, the yaw rate of the car, vx and vy are the

longitudinal and transversal velocities, respectively, Fx and Fy the longitudinal and lateral forces, m is

the mass of the vehicle plus driver, and Iψ is the inertia around the Z-axis. Without the aerodynamic

influence, the forces acting on the car are expressed in Fig.2.7, all of them depending on the tyres. The

tyres indexation used is front left (FL), front right (FR), rear left (RL) and rear right (RR). It’s assumed

the car is front steer only, and the steering angle δ is assumed equal on the two front wheels. The

distance between the CG and the front axle is a, and from the CG to the rear axle is b, also the track (tr)

front and rear is assumed equal.

v̇x = vyψ̇ −
1

m
[FFy sin δ − FFx cos δ − FRx ] (2.16a)

v̇y = −vxψ̇ +
1

m
[FFy cos δ + FRy + FFx sin δ] (2.16b)

ψ̈ =
1

Iψ
a[FFy cos δ + FFx sin δ]− 1

Iψ
bFRy (2.16c)

Combining (2.15) with the forces applied on the car (Fig.2.7), results the general balance (2.16),

 

 

 

 

 
 

 

 

 

  

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

  

 

 

 
 

 

 

 

 

 

Figure 2.7: Forces applied on the vehicle
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where any kind of moment created by a mechanical or electrical differential is neglected, and the simpli-

fications of (2.17) were applied, using F for front and R for rear.

FFx = FFLx + FFRx , FRx = FRLx + FRRx

FFy = FFLy + FFRy , FRy = FRLy + FRRy

(2.17)

The longitudinal forces are used as a direct input and since the car is assumed rear driven only,

FFx = 0. The lateral forces depend on the tyre model, and both the linear and the non-linear (2.4)

models rely on the tyre slip angle.

Figure 2.8: Wheel vectors. The w and c suggest the wheel and car reference frames respectively, and v
is the velocity vector

The sideslip of car (β) is defined as the angle between the heading of the car and the velocity vector,

and as can be seen in Fig.2.7, this angle is given by (2.18) where the velocities are given in the vehicle

reference frame. The slip angle αi of a tyre, as seen in Fig.2.8 is given by (2.19), where βi is the

projected sideslip of the car on the wheel i.

β = tg-1

(
vy
vx

)
(2.18)

αi = βi − δi (2.19)

Assuming that the wheel i is at a distance r̄i = (xi, yi) of the CG, and Bv̄ is the vector with the

velocity components at the centre of gravity, then the velocity components at the wheel Bv̄i can be

achieved by (2.20).

Bv̄i =B v̄ + ω̄ × r̄i =


vx

vy

0

+


0

0

ψ̇

×

xi

yi

0

 =


vx − yiψ̇

vy + xiψ̇

0

 (2.20)

Merging the result of equation (2.20) with (2.18) and (2.19), results in the general equation (2.21) for

the wheel slip angle. It should be noted that for rear wheels, δi=0 due to assumption of front steer only.

αi = tg-1

(
vy + xiψ̇

vx − yiψ̇

)
− δi (2.21)
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2.4 Planar Car Model: Linear

The car model presented above is highly non-linear, which is problematic for estimation, control and

requires much more computational power. A linear approximation has been widely used in literature

[6][11][26] which relies on the model presented before (2.16). This linear model has three major as-

sumptions, constant longitudinal velocity, small angle approximation, and is based on a bicycle model.

The bicycle model assumes there is no y dimension which combined with the small angle approxima-

tion results in a new equation for the side slip angle for each wheel (2.22). Besides that, for this model is

used the linear tyre model (2.23) based on the cornering stiffness definition. Note that the negative sign

is due to the referential in use.

αi = tg-1

(
vy + xiψ̇

vx − yiψ̇

)
− δi =

vy + xiψ̇

vx
− δi (2.22)

Fyi = −Cααi (2.23)

Recalling the model (2.16), using the the small angle approximations sin 0 ≈ 0, cos 0 ≈ 1, and equa-

tion (2.23), the new balance for the bicycle model is defined as (2.24). Assuming that all tyres are equal,

and that left and right normal loads are the same, then CFLα +CFLα =Cαf and analogously the same for

the rear wheels. Additionally, since there’s no y dimension in the bicycle model, then left and right αi are

equal.

v̇x = vyψ̇ +
1

m
[FFx + FRx ] (2.24a)

v̇y = −vxψ̇ −
1

m
[Cαfαf + Cαrαr] (2.24b)

ψ̈ = − 1

Iψ
aCαfαf +

1

Iψ
bCαrαr (2.24c)

Due to the assumption of constant longitudinal velocity, the first equation of (2.24) falls, and the

remaining are combined with (2.22), resulting in:

v̇y = −vxψ̇ −
Cαf + Cαr

mvx
vy −

aCαf + bCαr
mvx

ψ̇ +
Cαf
m

δ (2.25a)

ψ̈ = −aCαf + bCαr
Iψvx

vy +
−a2Cαf + b2Cαr

Iψvx
ψ̇ +

aCαf
Iψ

δ (2.25b)

This system can also be written in a state space form (2.26) which is more useful, where [vy, ψ̇]T are

the states and the input is the steering angle δ.

v̇y
ψ̈

 =

 −
Cαf + Cαr

mvx −aCαf + bCαr
mvx − vx

−aCαf + bCαr
Iψvx

−a2Cαf + b2Cαr
Iψvx


vy
ψ̇

+

 Cαf
m

aCαf
Iψ

 δ (2.26)

This model as several limitations, being them the validity for only small angles, the tyre model that

not only does not represent the minimal dynamics required (like the force saturation) but also does not

consider load transfers due to accelerations.
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2.5 Aerodynamics

For the aerodynamics is used simple model [28] for the drag and lift (downforce). Moments associ-

ated with aerodynamic devices are neglected, being the only forces used the lift (FL) for the extra load

on the tyres at higher velocities and the drag (FD) for the longitudinal force dissipation. The general

equations for these aerodynamic forces are (2.27) for the drag and (2.28) for the lift. Where ρ is the

air density, Aprojx and Aprojz are the vehicle area projections in the ”x” and ”y” directions, Cd and Cl are

respectively the drag and lift coefficients of the complete vehicle.

Cd =
FD

(1/2)ρAprojx v2x
(2.27)

Cl =
FL

(1/2)ρAprojz v2x
(2.28)

Since the projected areas are always equal for the same vehicle, the lift and drag coefficients are

also constant and is assumed the air has always the same density, a simplification (2.29) is made to

these equations.

CD =Cd
1

2
ρAprojx

CL =Cl
1

2
ρAprojz

(2.29)

The aerodynamic forces are then given by 2.30 and only depend on the longitudinal velocity of the

vehicle to the square.

FD =CDv
2
x

FL =CLv
2
x

(2.30)

2.6 Sensor Modelling

As stated before, in a real car the values are not available in an absolute and noisy free condition as in

the models. To be closer to reality, the available values of the models are reshaped as they are acquired,

with offsets and noises. The vehicle is assumed to be equipped with a GPS, a steering encoder and an

IMU which consists in a 3-axis accelerometer, a 3-axis gyroscope and a digital compass.

The IMU is attached to the vehicle and rotates with this one, therefore a rotation matrix is defined as

(2.31) where Rimu is the rotation matrix from vehicle axis to a global axis, φ and θ are the roll and pitch

angles given by the vertical model.

Rimu = RθRφ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (2.31)
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2.6.1 Compass

In an IMU the compass angle is given by a magnetometer, which is corrupted with soft and hard

non-linearities [30][31] as well as offsets and noise in all the axes. To simplify, the simulated yaw reading

will just be corrupted with Gaussian white noise wψr and given by (2.32) where the yaw angle reading

(ψr) is given by the time integration of the yaw rate (ψ̇) and ψ0 is the initial heading angle or yaw angle.

ψr = ψ0 +

∫
ψ̇dt+ wψr (2.32)

2.6.2 Gyroscope

The angular velocities readings (ω̄r) are given by (2.33) where φ̇ and θ̇ come directly from the vertical

model, and ψ̇ from the planar model.

ω̄r = Rimu



φ̇

θ̇

ψ̇

+


bφ̇

bθ̇

bψ̇

+


wφ̇r

wθ̇r

wψ̇r


 (2.33)

It is assumed that each rate is corrupted by a constant bias (bφ̇, bθ̇ and bψ̇) and by uncorrelated, zero-

mean Gaussian white noise (wφ̇r , wθ̇r and wψ̇r ). Also, the sensor has the rotations of the car, roll and

pitch, given by (2.31).

2.6.3 Accelerometer

Before the accelerometer model [32] is presented is important to notice that the accelerations (ax

and ay) sustained by the vehicle aren’t the same as the velocity derivative of the planar model, that is

ax 6= v̇x and ay 6= v̇y.

The accelerometer model readings (ār) are given by (2.34), where
∂v̄

∂t
is the time derivative of the

velocity vector v̄=[vx, vy, vz]T, ω̄=[φ̇, θ̇, ψ̇]T is the angular velocity vector, d̄ is the distance vector from

the centre of gravity to the IMU location, and ḡ=[0, 0, -9.81]T is the gravity acceleration vector.

ār = Rimu

∂v̄

∂t
+ ω̄ × v̄ + ω̄ ×

(
ω̄ × d̄

)
+ ḡ +


bax

bay

baz

+


waxr

wayr

wazr


 (2.34)

The reading are also corrupted with time invariant bias in each axis (bax , bay and baz ) and uncor-

related zero-mean, Gaussian white-noise (waxr, wayr and wazr). The accelerometer readings are also

modified by the orientation of the vehicle given by Rimu.
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2.6.4 Steering encoder

The steering encoder is usually connected to the steering wheel, which is not a linear with the wheel

angle due to the suspension geometry of the car where both wheels do not turn the same due to

Ackerman geometry [33]. For the sake of simplicity, in this model (2.35) is assumed that both wheels

turn the same, and the measured angle is the wheel angle δ with noise associated to the sensor reading

wδ.

δr = δ + wδ (2.35)

2.6.5 GPS

The GPS in this model works more like a path reconstruction than a common GPS, in the sense

that it already provides the processed x and y positions in a global referential than the actual longitude,

latitude and altitude coordinates that GPS receivers return.

p̄r =

xr
yr

 =

∫ (vx cosψ − vy sinψ) dt+ wxr∫
(vx sinψ + vy cosψ) dt+ wyr

 (2.36)

Equation (2.36) provides the path reconstruction of the CG by integration of the planar model veloc-

ities. It’s assumed that both position coordinates have an uncorrelated zero-mean noise (wxr , wyr ). No

bias is added since an offset in location wouldn’t have any effect on the estimators used.
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Chapter 3

Estimator Architecture

This chapter presents the estimator architecture as well as the algorithms used for the filters and

estimators. The main goal of this work is to estimate the sideslip of a car, and for that the proposed

algorithm consists in a series of 3 estimators as depicted in Fig.3.1.

First a small overview of the Kalman Filter (KF) and the Extended Kalman Filter (EKF) will be made

for their discrete versions, where the equations presented will be the foundation of the estimators used

ahead.

The first estimator is an ACF (Attitude Complementary Filter) which uses the readings from the

compass and the yaw rate from the gyroscope to provide an attitude estimation and a yaw rate bias

estimation to correct yaw rate reading.

A PCF (Position Complementary Filter) follows, that uses the accelerations and the position to give

a velocity estimation. Since the position is in a global frame and both accelerations are in the vehicle

frame, the attitude estimation from the ACF is used to make the transformation. The PCF also outputs

an acceleration bias estimation to correct the accelerometer readings internally.

Both complementary filters are an adaptation of [19] for planar movement and to the present condi-

tions. The attitude filter was reduced from three rotations to only one, and the position filter from three

to two axes but the accelerometer bias was introduced.

With perfect readings from the sensors, that is absolute values with no noise, both complementary

filters would be enough since the sideslip is defined as β = tg-1
(
vy
vx

)
, and with the velocity estimates

ACF

PCF VE

ACorr

Unwrap
 𝜓𝑟  

 𝒑 𝑟  

 𝒂 𝑟  
 𝑏 𝜔   𝝎 𝑟  

 𝜓  

 𝒂  

 𝒗  

 𝛿𝑟  

 𝛽  

 + 

 

 − 

 

Figure 3.1: Proposed architecture to estimate the sideslip of a vehicle.
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it would be a direct math. Due to all the noise associated with the readings, this sideslip computation

results in an imperceptible signal. To overcome this situation a third filter is proposed, a vehicle estimator.

This filter is based on the planar dynamics of a car. For this vehicle estimator two models are proposed

a linear one, and a non-linear one. Further ahead in this work a comparison between both approaches

and the direct math using only the complementary filters will be performed, and the pros and cons of

each one discussed.

To interconnect these filters two additional blocks are used as seen in Fig.3.1. The first is an un-

wrap function that converts the yaw angle from a circle range, [−π, π] to a continuous angle between

[−inf, inf ] since the original discontinuity is a problem for the ACF. The second one is the ”ACorr” block

that removes the accelerations induced by the angular velocity on the accelerometer.

3.1 Discrete Kalman Filter

The Kalman Filter and its discrete version are widely explored and documented algorithms [34] [35]

[36] [37] [38], and for that reason in this work, only the major aspects will be presented. First is assumed

that a random process and its observation can be expressed by (3.1) and (3.2) respectively. Where k

denotes a time instant tk, xk is the (n× 1) state vector at instant k, Ak is the (n×n) transition matrix, Ck

the (m× n) observation matrix, and zk the (m× 1) vector of measurements at instant tk.

xk+1 = Akxk + wk (3.1)

zk = Cxk + vk (3.2)

Also, wk is the (n × 1) input white noise contribution to the state vector, and vk is the (m × 1)

measurement error assumed to be a white sequence. For both vectors is assumed that their covariances

are known, and the covariance matrices given by (3.3)-(3.5).

E
[
wkw

T
i

]
=

 Qk, i = k

0, i 6= k
(3.3)

E
[
vkv

T
i

]
=

 Rk, i = k

0, i 6= k
(3.4)

E
[
wkv

T
i

]
= 0, i = k (3.5)

Is now defined x̂−
k as the estimation of the state vector for the instant tk done in the instant tk−1. Is

also assumed that the a priori error covariance matrix is known and defined by (3.6) where the estimation

error is (3.7).

P−
k = E

[
e−
k e−

k

T
]

(3.6)

e−
k = xk − x̂−

k (3.7)
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To improve the estimate made in the previous instant x̂−
k , the measurement zk is used. The update

estimate for the actual instant is performed using (3.8) where Kk is the Kalman gain defined by (3.9).

The deduction to achieve the Kalman gain can be found in [36].

x̂k = x̂−
k +Kk

(
zk − Ckx̂−

k

)
(3.8)

Kk = P−
k C

T
k

(
CkP

−
k C

T
k +Rk

)−1
(3.9)

The covariance matrix can be computed using (3.10) for any gain, and in a reduced form using (3.11)

for optimal gain condition. Once again is possible to find the deduction in [36].

Pk = (I −KkCk)P−
k (I −KkCk)

T
+KkRkK

T
k (3.10)

Pk = (I −KkCk)P−
k (3.11)

The updated estimate for the actual instant (x̂k) can be easily projected ahead by (3.12) using the

transition matrix.

x̂−
k = Akx̂k (3.12)

Combining equation (3.12) with the expression for the next instant estimated error (3.13) is fairly easy

to obtain the error covariance matrix for the next time instant (3.14).

e−
k+1 = xk+1 − x̂−

k+1 (3.13)

P−
k+1 = E

[
e−
k+1e

−
k+1

T
]

= AkPkA
T
k +Qk (3.14)

The Kalman Filter recursive algorithm can be summarized and implemented using equations (3.8),

(3.9), (3.11) and (3.14), as shown in Fig.3.2. In order to initialize this cycle is necessary to provide,

besides the measurements, the initial estimate x̂−
0 , and the initial error covariance matrix P−

0 .

Project for next instant:
 𝒙 𝑘+1

− = 𝐴𝑘𝒙 𝑘   
 𝑃𝑘+1

− = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘  

Project for next instant:
 𝒙 𝑘+1

− = 𝐴𝑘𝒙 𝑘   
 𝑃𝑘+1

− = 𝐴𝑘𝑃𝑘𝐴𝑘
𝑇 + 𝑄𝑘  

Compute error covariance:
 𝑃𝑘 =  𝐼 − 𝐾𝑘𝐶𝑘 𝑃𝑘

− 

Compute error covariance:
 𝑃𝑘 =  𝐼 − 𝐾𝑘𝐶𝑘 𝑃𝑘

− 

Update estimate with measurement:

 𝒙 𝑘 = 𝒙 𝑘
− + 𝐾𝑘 𝒛𝑘 − 𝐶𝑘𝒙 𝑘

−  

Update estimate with measurement:

 𝒙 𝑘 = 𝒙 𝑘
− + 𝐾𝑘 𝒛𝑘 − 𝐶𝑘𝒙 𝑘

−  

Compute Kalman Gain:
 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇 𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘 
−1

 

Compute Kalman Gain:
 

𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇 𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘 
−1

 

 𝒙 𝑘  

 𝒛𝑘  

Figure 3.2: Recursive Kalman Filter.
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3.2 Discrete Extended Kalman Filter

The discrete Extended Kalman Filter (EKF) is the non-linear version of the already presented Kalman

Filter, and like this one, it has been widely explored and documented [36] [39] [40], and for the same

reason as the previous, only the major aspects and equations are exposed. Most of the equations

and algorithm of the EKF is similar to the KF, with the only difference that the system equations are

non-linear.

First is assumed that the discrete process is represented by (3.15), where xk is the (n × 1) state

vector that contains the state variables at the instant k, uk is the (m× 1) input vector, wk is the process

noise contribution to the state vector, and f (xk−1,uk−1) are the (n × 1) non-linear process equations

that make the transition for instant k − 1 to k. The observations are given by (3.16), where zk is the

(m×1) vector of observations at the instant k, vk is the (m×1) noise associated to each measurement,

and h (xk) are the non-linear equations for the measurements.

xk = f (xk−1,uk−1) + wk (3.15)

zk = h (xk) + vk (3.16)

The major difference between the EKF and the KF is that the non-linear equations invalidate the

use of state transition matrices and observation matrix as seen in section 3.1. To deal with these non-

linear equations, the EKF uses the Jacobian matrices Fk and Hk, defined by (3.17), from the process

and observation equations respectively. These matrices are composed of the partial derivatives of each

function to each state variable at the instant k.

Fk−1 =
∂f

∂x

∣∣∣∣
x̂k−1,uk−1

, Hk =
∂h

∂x

∣∣∣∣
x̂−
k

(3.17)

Like the linear Kalman Filter, the first step of the recursive equations is the prediction. The states for

the new time instant k are computed by 3.18, using the non-linear equations with the information of the

previous instant x̂k−1 and the inputs of the actual instant. The predicted error covariance matrix for the

instant k is given by (3.19), where Qk−1 is defined in the same way as the KF by (3.3).

x̂−
k = f (x̂k−1,uk−1) (3.18)

P−
k = Fk−1Pk−1F

T
k−1 +Qk−1 (3.19)

Next are the update equations, where the Kalman gain Kk is similar to the linear version and given

by (3.20) where the only difference is the use of the Jacobian matrix of the observation equations Hk,

instead of the C matrix for the linear version.

Kk = P−
k H

T
k

(
HT
k P

−
k H

T
k +Rk

)−1
(3.20)

22



The state correction (3.21) is also made in the same way as before, with the difference that the

observations of the process states is not achieved by C.x̂k, but from the non-linear equations, h
(
x̂−
k

)
.

x̂k = x̂−
k +Kk

(
zk − h

(
x̂−
k

))
(3.21)

Pk = (I −KkHk)P−
k (I −KkHk)

T
+KkRkK

T
k (3.22)

The update covariance matrix (3.22), is the major difference from the linear KF. The equation (3.11),

can still be used instead of (3.22), but due to the known issue of numeric instability associated with the

EKF, is recommended [36] that this version is used instead, since it can better preserve the symmetry

and positive definiteness of the P matrix.

3.3 Attitude Complementary Filter

The attitude complementary filter presented where is an adaptation of the one seen in [19], that

combines the heading measurements of a compass, with the angular velocity readings of a gyroscope.

Let ψ define the vehicle heading or yaw angle, and ψ̇ the angular velocity of yaw, or yaw rate. Using now

the discrete equivalent, where k defines an instant in time t = kT , and T is the sampling time interval, is

then possible to write the discrete equation (3.23) for the yaw angle.

ψk+1 = ψk + T ψ̇k (3.23)

The yaw rate is given by the gyroscope, which is assumed to be coincident with the vehicle frame,

or that some necessary transformations were already made. This measure is defined as corrupted with

wψ̇k zero-mean Gaussian white-noise, and a constant sensor bias bψ̇k driven by zero-mean Gaussian

white-noise wbψ̇k
.

ψ̇rk = ψ̇k + bψ̇k + wψ̇k (3.24)

bψ̇k+1 = bψ̇k + wbψ̇k
(3.25)

The yaw rate reading ψ̇rk from the gyroscope is then given by (3.24), and the yaw rate bias by (3.25).

Rewriting the equations (3.23)-(3.25) in a state space form results in system (3.26).ψk+1

bψ̇k+1

 =

1 −T

0 1

ψk
bψ̇k

+

T
0

 ψ̇rk +

−T 0

0 1

wψ̇k

wbψ̇k

 (3.26)

From (3.26), is then possible to write the close-loop system used for the heading and yaw rate bias

estimation as (3.27). Where ŷψk is the heading estimation in the previous time instant for the current
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one, ψ̂k is the sensor reading which is corrupted with zero-mean Gaussian white-noise vk. ψ̂k+1

b̂ψ̇k+1

 =

1 −T

0 1

 ψ̂k
b̂ψ̇k

+

T
0

 ψ̇rk +

K1

K2

 (yψk − ŷψk) (3.27a)

ŷψk =ψ̂k , yψk = ψrk + vψk (3.27b)

The feedback gains K1 and K2 are the Kalman gains computed by the recursive equations of section

3.1 using the linear time invariant (LTI) system (3.28a).ψk+1

bψ̇k+1

 =

1 −T

0 1

ψk
bψ̇k

+

−T 0

0 1

wψ̇k

wbψ̇k

 (3.28a)

yk =
[
1 0

]ψk
bψ̇k

+ vψk (3.28b)

As proven by [19], it can easily be verified that the proposed filter is Uniformly Asymptotically Stable

(UAS) [41].

3.4 Position Complementary Filter

The Position Complementary Filter (PCF) is also an adaptation of [19]), which uses the position and

acceleration measurements to estimate the vehicle longitudinal and transversal velocities. The readings

for this filter come from sensors which use different coordinate systems. The position come from a GPS

which has a global reference frame or Earth reference frame {E}, while the accelerations come from an

accelerometer on-board the vehicle which uses the body reference frame {B}. Also, the needed velocity

components estimate should be in the body frame. The main difference from the filter used by [19]), is

the introduction of the accelerometer bias estimate.

Since the proposed estimator architecture uses planar movement only the x and y components are

needed unlike the PCF proposed by [19]. Three vectors are defined, the position vector p̄ = [x y]
T ,

the velocity vector v̄ = [vx vy]
T , and the acceleration vector ā = [ax ay]

T . It is also defined R as the

rotation matrix that transform body frame, into earth frame coordinates such as (3.29), where ψ is the

heading of the vehicle.

Ev̄ = Rψ
Bv̄; Rψ =

cosψ − sinψ

sinψ cosψ

 (3.29)

Considering the continuous-time kinematics ˙̄p = v̄, ˙̄v = ā, is then possible to derive the discrete-

time equivalent that represents the equations of motion as (3.30), where Rψk = Rψ(ψk) represents the

rotation matrix with a yaw angle ψ at the instant k, and T is the time sample.

p̄k+1 =p̄k + T v̄k +
T 2

2
Rk

B āk (3.30a)

v̄k+1 =v̄k + TRψk
B āk (3.30b)
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In the same way as seen for the gyroscope in the ACF, the accelerometers often have a bias in the

readings. Analogous to (3.24)-(3.25) the accelerometer model and bias are (3.31) and (3.32), where

w̄ark is a vector of zero-mean, Gaussian white noise, and the vector of bias (for both axis) b̄ak is also

driven by a vector of Gaussian white noise w̄bak.

ārk = āk + b̄ak + w̄ark (3.31)

b̄ak+1 = b̄ak + w̄bak (3.32)

Rewriting and combining equations (3.30)-(3.32) in a state space form results in the system (3.33),

where I is a 2x2 identity matrix, and w̄pk is the noise associated to the position.


p̄k+1

v̄k+1

b̄ak+1

 =


I TR −T

2

2 R

0 I −TI

0 0 I




p̄k

v̄k

b̄ak

+


T 2

2 R

TI

0

 ārk +


I −T

2

2 I 0

0 −TI 0

0 0 I




w̄pk

w̄ak

w̄bak

 (3.33)

From (3.33) is then possible to write the close-loop system (3.34) for the velocity components esti-

mate. Where ypk is the vector with the x and y coordinates given by the GPS, ŷpk is position estimation

on the previous time instance for the actual, and v̄pk accounts for the small perturbations in the mea-

surements of the location system.


p̄k+1

v̄k+1

b̄ak+1

 =


I TR −T

2

2 R

0 I −TI

0 0 I




p̄k

v̄k

b̄ak

+


T 2

2 R

TI

0

 ārk +


K1

RTkK2

RTkK3

 (ypk − ŷpk) (3.34a)

ŷpk =p̂k , ypk = p̄k + v̄pk. (3.34b)

The gains K1, K2 and K3 are 2x2 diagonal matrices with the Kalman gains computed using the

recursive algorithm presented in section 3.1. To attain these Kalman gains, a time invariant system is

defined as (3.35), which is the special case when yaw is zero (ψ = 0).


p̄k+1

v̄k+1

b̄ak+1

 =


I TI −T

2

2 I

0 I −TI

0 0 I




p̄k

v̄k

b̄ak

+


I −T

2

2 I 0

0 −TI 0

0 0 I




w̄pk

w̄ak

w̄bak

 (3.35a)

yxk =
[
I 0 0

]
p̄k

v̄k

b̄ak

+ v̄pk (3.35b)

As proven by [19] for the filter without bias, it can easily be verified that the proposed filter (3.34) is

Uniformly Asymptotically Stable (UAS) [41].
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3.5 Vehicle Linear Estimator

The Vehicle Linear Estimator (VLE) arises from the need to introduce the vehicle dynamics to the

sideslip estimator architecture, since both complementary filters only use particle cinematic equations.

The proposed estimator uses the linear car model presented in section 2.4, which relies also on a linear

tyre approximation also presented before in section 2.1.3.

The vehicle linear estimator is based on the (2.26) which is time-varying depending on the longitudi-

nal velocity estimate v̂x from the PCF. It has as state variables the lateral velocity estimate v̂y also from

the PCF and the bias corrected yaw rate. Thus, based on system (2.26), the underlying model for the

estimator design is expressed as (3.36a).

v̇y
ψ̈

 =

 −
Cαf + Cαr

mvx
−aCαf + bCαr

mvx − vx

−aCαf + bCαr
Iψvx

−a
2Cαf + b2Cαr

Iψvx


vy
ψ̇

+

 Cαf
m

aCαf
Iψ

 δr +

1 0

0 1


wvy

wψ̇

 (3.36a)

y =

1 0

0 1

vy
ψ̇

+

vvy

vψ̇

 (3.36b)

On the dynamics of this system, an important detail should be noted. Due to the dependency of

the longitudinal velocity, if the car is stopped, every entry of the transition matrix is dividing by zero,

causing the system to fail. Also, using longitudinal velocity values to close to zero will result in numerical

problems.

The (3.36a) system is continuous. The main objective of this document is to find an estimator ar-

chitecture that can provide the sideslip of the vehicle on-board. And for making this implementation is

convenient that the filters are discrete to reduce the computation power needed. In order to make the

achieve the discrete model, a property [42] is used where the conversion from continuous to discrete

is given by (3.37). Where Ac is the generic continuous transition matrix, Bc is the continuous discrete

matrix and Ak and Bk are the respective discrete equivalents for a sampling time T .

exp

Ac Bc

0 0

T
 =

Ak Bk

0 I

 (3.37)

The matrix of the exponential has as many rows of zeros as necessary to assure the matrix is square,

and the I in the discrete is the identity matrix that assures the result is a square matrix.

For the proposed filter is introduced the Avlek and the Bvlek , as the discrete matrices for the system

(3.36a). v̂yk+1

ˆ̇
ψk+1

 = Avlek

v̂yk
ˆ̇
ψk

+Bvlek δr +

K1 K2

K3 K4

 (yk − ŷk)

ŷk =

v̂yk
ˆ̇
ψk

 , yk =

vyk
ψ̇k

+

vvy

vψ̇


(3.38)
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The time varying filter is then given by (3.38), where vvy and vψ̇ are zero-mean, Gaussian white

noise, ŷ is the estimated state vector of the linear model, and y is the vector that contains the most recent

values of vy from the Position Complementary Filter and ψ̇ from the gyroscope with bias correction. The

Ki gains are the Kalman gains that relate the error of measured and estimated data to each state

variable computed using the recursive equations presented in section 3.1.

For this filter it is not possible to directly prove its stability since it is not an LTI system due to the

longitudinal velocity. However, if a value of longitudinal velocity is fixed, using the Lyapunov stability

criterions [41] is possible to prove its stability.

3.6 Vehicle Non-Linear Estimator

Previously, the VLE was presented with the intent of introducing the car dynamics in the sideslip esti-

mator architecture. Has explained before in section 2.4, the linear vehicle model has several limitations,

being the most relevant, the small angle approximation, and the tyre model. To overcome these limita-

tions, is presented the Vehicle Non-Linear Estimator (VNLE) as an option to the VLE. This estimator is

not limited to small angles and uses the Burckhardt tyre model, making it closer to reality than the VLE.

On the other hand, since the equations are non-linear, is necessary to use the EKF already presented

in section 3.2, which is computationally heavier and may have some numerical problems.

This estimator uses the non-linear planar model equations (2.16) as the process equation. Since the

main objective is always to have real-time estimation, the filter should be in discrete-time to facilitate the

implementation in an on-board system. With this is mind (2.16) is discretized using Euler method, where

the accelerations of (2.16) are replaced by (3.39), and T is the sampling time, or time step between two

consecutive instants.

v̇x =
vxk+1

− vxk
T

, v̇y =
vyk+1

− vyk
T

, ψ̈ =
ψ̇k+1 − ψ̇k

T
(3.39)

It is known that the Euler method induces some error at each iteration, but since the time sampling

interval will be small, around 0.01 seconds, and the equations will work in a close loop, the error asso-

ciated with this method is of little concern. The discrete version of the non-linear planar model is then

given by (3.40).

f1 : vxk+1
= vxk + vyψ̇T −

1

m
[FFy sin δ − FFx cos δ − FRx ]T (3.40a)

f2 : vyk+1
= vyk − vxψ̇T +

1

m
[FFy cos δ + FRy + FFx sin δ]T (3.40b)

f3 : ψ̇k+1 = ψ̇k +
1

Iψ
a[FFy cos δ + FFx sin δ]T − 1

Iψ
bFRy T (3.40c)

27



Fk =



∂f1
∂vx

∣∣∣∣
x̂k,uk

∂f1
∂vy

∣∣∣∣
x̂k,uk

∂f1

∂ψ̇

∣∣∣∣
x̂k,uk

∂f2
∂vx

∣∣∣∣
x̂k,uk

∂f2
∂vy

∣∣∣∣
x̂k,uk

∂f2

∂ψ̇

∣∣∣∣
x̂k,uk

∂f3
∂vx

∣∣∣∣
x̂k,uk

∂f3
∂vy

∣∣∣∣
x̂k,uk

∂f3

∂ψ̇

∣∣∣∣
x̂k,uk


(3.41)

In order to implement the EKF, it is necessary to compute the Jacobian matrices. The Fk matrix is

given by (3.41), and the functions are (3.40). The partial derivatives of each function are expressed by

equations (3.42).

∂f1
∂vx

= − T sin δ

m

[
∂FFLy
∂vx

+
∂FFRy
∂vx

]
+ 1 (3.42a)

∂f1
∂vy

= − T sin δ

m

[
∂FFLy
∂vy

+
∂FFRy
∂vy

]
+ rT (3.42b)

∂f1

∂ψ̇
= − T sin δ

m

[
∂FFLy

∂ψ̇
+
∂FFRy

∂ψ̇

]
+ vyT (3.42c)

∂f2
∂vx

=
T cos δ

m

[
∂FFLy
∂vx

+
∂FFRy
∂vx

]
+
T

m

[
∂FRLy
∂vx

+
∂FRRy
∂vx

]
− ψ̇T (3.42d)

∂f2
∂vy

=
T cos δ

m

[
∂FFLy
∂vy

+
∂FFRy
∂vy

]
+
T

m

[
∂FRLy
∂vy

+
∂FRRy
∂vy

]
+ 1 (3.42e)

∂f2

∂ψ̇
=
T cos δ

m

[
∂FFLy

∂ψ̇
+
∂FFRy

∂ψ̇

]
+
T

m

[
∂FRLy

∂ψ̇
+
∂FRRy

∂ψ̇

]
− vxT (3.42f)

∂f3
∂vx

=
aT cos δ

Iψ

[
∂FFLy
∂vx

+
∂FFRy
∂vx

]
− bT

Iψ

[
∂FRLy
∂vx

+
∂FRRy
∂vx

]
(3.42g)

∂f3
∂vy

=
aT cos δ

Iψ

[
∂FFLy
∂vy

+
∂FFRy
∂vy

]
− bT

Iψ

[
∂FRLy
∂vy

+
∂FRRy
∂vy

]
(3.42h)

∂f3

∂ψ̇
=
aT cos δ

Iψ

[
∂FFLy

∂ψ̇
+
∂FFRy

∂ψ̇

]
− bT

Iψ

[
∂FRLy

∂ψ̇
+
∂FRRy

∂ψ̇

]
+ 1 (3.42i)

The above equations, depend on the partial derivative of the lateral force given by the Burkhardt tyre

model (3.43). Since the difference between front, rear, left and right wheels is only visible in the slip

angle (αi), a generic equation (3.44) is used at this point. The same goes for the state variables, that

are only present in the slip, and for that reason is introduced a generic term Γi = [vx vy r] to represent

the 3 partial derivatives.

Fyi =
(
c1
(
1− e−c2sri

)
− c3sri

) (
1− c5F 2

zi

)
Fzi (3.43)

∂Fyi
∂Γi

=

(
c1 −

(
c1e

−c2sri
)(
−c2

∂sri
∂Γi

)
− c3

∂sri
∂Γi

)(
1− c5F 2

zi

)
Fzi (3.44)

The tyre model uses a definition of resulting slip as explained in section 2.1.1. Combining Tab.2.1

with (2.1), results in (3.45). Once again is used the simplification of generic derivative Γi, resulting in

(3.46).

sri = |tan (αi)| (3.45)
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∂sri
∂Γi

=
∂αi
∂Γi

tan (αi) sec2 (αi)

|tan (αi)|
(3.46)

The partial derivative of the wheel slip angle (2.21) to each state variable are given by (3.47)-(3.49).

The difference of each wheel will be the location of the wheel relative to the CG given by the vector

[xi yi].

∂αi
∂vx

=

− vy + xiψ̇(
vx − yiψ̇

)2
(
vy + xiψ̇

vx − yiψ̇

)2

+ 1

(3.47)

∂αi
∂vx

=

1

vx − yiψ̇(
vy + xiψ̇

vx − yiψ̇

)2

+ 1

(3.48)

∂αi
∂vx

=

− vyyi + vxxi(
vx − yiψ̇

)2
(
vy + xiψ̇

vx − yiψ̇

)2

+ 1

(3.49)

The observation equations for this model are simple, since they are the same as the state variables.

The Jacobian matrix Hk for the observations is then given by a simple 3-by-3 identity matrix.

For this estimator, the stability is not explored due to its complexity, however some works have already

explored the stability criteria necessary for the non-linear Kalman filter like [43].
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Chapter 4

Simulation

This chapter presents the simulation using the models of Chapter 2, to test the proposed estimator

architecture of Chapter 3.

First is exposed the vehicle used for the tests, which is based on FST06e (Fig.4.1), a real Formula

Student prototype. To recreate this car, the non-linear models presented in Chapter 2 are interconnected

in order to model as accurate as possible the behaviour of the real car. The states of the different models

that make up the vehicle are then combined to reproduce the sensors available in the car, and all the

relations between the states. The sensors assumed to be on-board are a GPS, an IMU and a steering

encoder. The measurements taken from these sensors are then corrupted with random white noise,

uncorrelated between measurements.

In a second part, the estimators are tested in optimal conditions, which means that the vehicle pa-

rameters are accurate, and the difference between estimator’s model and the vehicle model is minimum.

Figure 4.1: FST06e.
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Variable Value Unit Variable Value Unit
Car weight + driver m 350 kg Susp. front stif (i=1,2) Ksi 44692 N/m
Unsprung mass (i=1,2,3,4) mui 9.2 kg Susp. rear stif (i=3,4) Ksi 50400 N/m
Dist. CG to front axle a 0.873 m Susp. front damp (i=1,2) Csi 2941 Ns/m
Dist. CG to rear axle b 0.717 m Susp. rear damp (i=3,4) Csi 4194 Ns/m
Left half track c 0.6 m Anti-roll bar stif (i=1,2) Kari 17513 N/m
Right half track d 0.6 m Tyre stiffness (i=1,2,3,4) Kpi 113290 N/m
Moment of inertia, roll Iφ 22.67 kg.m2 Tyre damping (i=1,2,3,4) Cpi 1436 Ns/m
Moment of inertia, pitch Iθ 74.62 kg.m2 Drag coefficient Cd 1.1 N/(m/s)2

Moment of inertia, yaw Iψ 120.13 kg.m2 Lift coefficient Cl 2.13 N/(m/s)2

Table 4.1: Variables for the different vehicle modules, based on a real Formula Student prototype, to be
used in the Simulation chapter.

The results for each estimate are presented, briefly discussed and compared with the perfect signals

from the vehicle model. These perfect signals are denoted as the real value.

In a final part, the estimator architecture is tested for erroneous conditions. The estimators are kept

equal to the previous test, and some alteration are made to the vehicle model. These alterations are the

tyre model, which is changed from dry to wet conditions, and the track is no more perfectly flat.

In both simulation tests, the pros and cons of the linear and the non-linear vehicle estimators are

discussed.

It also should be noted that for every filter only the final weights and gains are presented for simpli-

fication. To reach these values, the weights started as the variance of the signals, and an adjust was

made to improve the results leading to the presented values.

4.1 Simulation variables

4.1.1 Vehicle

The vehicle used for the simulations ahead is based on a real Formula Student prototype, FST06e

(Fig.4.1). The values used in the model to simulate the vehicle were given by the team and are summa-

rized in Tab.4.1. The car weights 350kg with a driver and has a 45%-55% (front-rear) weight distribution.

The wheelbase of the car is 1.59m with two front and rear tracks of 1.20m. The suspension values for

stiffness and damping are also presented as the equivalent of quarter suspension which depends on the

suspension geometry. The tyres are modelled with the Burckhardt equation (2.2) and the coefficients

are the ones for the fitting of the TTC data presented in section 2.1.2.

On the car two limits are imposed to the inputs. The first is the steering angle, which is limited

to a range of -30o to 30o. The second one is the longitudinal force. The car has two 50kW electric

PMSM (permanent magnet synchronous motor) motors, and as is characteristic of electric motors, the

maximum torque is available right from the 0rpm until the maximum power limit is reached. The car as

a single fixed gear with a ratio of 4.1:1, and an effective tyre radius of 0.228m, which gives a maximum

longitudinal force of 3.8kN. For these simulations, as explained in section 2.3, the longitudinal force is

assumed a direct input on the CG. For braking, the force produced by the brakes is dependent of the

velocity and is much higher, but for simplification is used the same limit of force but in reverse of -3.8kN.
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4.1.2 Sensors

As seen in section 2.6, to replicate the available data present in the car, a set of sensors was mod-

elled. These ones, were corrupted with random white noise, and some of them have an offset. In Tab.4.2

are represented the statistical values of the errors associated with each sensor. The GPS doesn’t have

an offset because is irrelevant, since the position is only used to estimate the velocity, a constant offset

to the position wouldn’t produce any effect.

Accelerometer [m/s2] Gyroscope [o/s] GPS [m] Comp.
[o]

Steering
enc. [o]x y z x y z x y

mean -0.060 0.170 -0.100 1.500 0.300 -1.200 n/a n/a n/a -0.400
σ 0.706 0.709 0.714 0.627 0.645 0.695 0.064 0.064 0.588 0.265
3σ 2.118 2.127 2.142 1.881 1.935 2.085 0.192 0.192 1.764 0.795
σ2 0.498 0.502 0.393 0.393 0.416 0.483 0.004 0.004 0.346 0.070

Table 4.2: Statistical data for the noise associated to each sensor in the model. Where σ represents the
standard deviation, σ2 the variance, and n/a means not applicable.

4.2 Estimation Results

For the following simulations, the sampling time chosen was of t=0.01s, this because most of the

sensors work at these frequencies, around 100Hz, and since the main objective is to provide estimated

values for a control strategy, where much lower frequencies would be almost useless.

The inputs for the simulation are a combination of soft and hard forward accelerations and braking,

and narrow and wide curves. The performed trajectory can be seen in Fig.4.2. For these first tests, the

ground is kept flat (no banking). In section 4.2.4 the influence of the ground will be explored.
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Figure 4.2: Trajectory performed by the vehicle in the present simulation test. Some time markers are
present to better relate the path with the remaining time graphics.
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4.2.1 Attitude Complementary Filter

The first filter, as seen in Fig.3.1, is for the attitude which combines the yaw from the magnetometer

readings, with the yaw rate from the gyroscope. As seen in Tab.4.2, the z-axis of the gyroscope has

an initial offset of -1.2deg/s, which can fluctuate due to the contributions of the remain axis during roll

and pitch rotations. The filter was presented in section 3.3, and all the filter parameters can be found

in Tab.4.3. Since all the variables for this filter are always constant, the Kalman gain was not computed

iteratively along the simulation, but ”a priori”, and the optimal gain found was kept the same along the

simulation. In Fig.4.3 is presented the frequency response of the filter. The sum of both transfer functions

is unitary, as expected from a complementary filter.

Observation weight State weight Filter Gain

Racf =
[
103
]

Qacf =

[
10−3 0

0 10−3

]
Kacf =

[
4.572× 10−3

−9.977× 10−4

]
Table 4.3: Parameters for the Attitude Complementary Filter in simulation.

The initial condition is x̂0 = [5, 0]T . The results of the filter can be seen in Fig.4.4, where is compared

the error to the true value, from the magnetometer, and from the ACF. To note that the wrong initial

condition of yaw is corrected after 8sec. Also, the yaw rate bias is estimated and can be seen in Fig.4.5.

As stated above, the initial condition of the bias is zero, but several tests were made with different values

to show the convergence of the estimated bias. Once again, after around 20sec, the estimated yaw rate

bias converges around the offset assumed for the gyroscope z-axis in Tab.4.2. The oscillations around

this offset are due to the roll and pitch.
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Figure 4.3: Attitude complementary filter transfer function.
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Figure 4.4: Yaw error comparison between the magnetometer and the ACF result relative to the real yaw
angle of the vehicle.
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Figure 4.5: Convergence of yaw rate bias estimate from the ACF, for different initial conditions (IC).

4.2.2 Position Complementary Filter

The Position Complementary Filter besides the position as an observation and the accelerations from

the IMU as and input, uses also the estimated yaw angle inside the filter matrices. As explained in section

3.4, the filter gains are computed using the time-invariant equation (3.35). The parameters for this gain

can be found in Tab.4.4, and the frequency response of the close-loop filter is depicted in Fig.4.6, which

shows a unitary gain for the sum of both transfer functions as expected of a complementary filter.

In order to demonstrate the influence of the estimated bias in the accelerations, to PCF filters were

tested, one with the bias as seen in section 3.4 and other without the bias. This last one (without bias)

is used only for this comparison.

The initial conditions of the filter were x̂0 = [0, 0, 3,−0.5, 0, 0]
T . The results of the longitudinal velocity

can be seen in Fig.4.7 and the estimated lateral velocity in Fig.4.8.

For the longitudinal velocity, little can be said. Both filters have satisfactory results, and can recover

under 1 second from a wrong initial condition. The difference to the real velocity is almost imperceptible

Observation
weight Rpcf =

[
5× 101 0

0 5× 101

]

State weight Qpcf =

10−3 I2 0 0
0 I2 0
0 0 2× 10−2 I2


Filter Gain Kpcf =

5.33× 10−2 I2 0 0
0 1.45× 10−1I2 0
0 0 1.95× 10−2 I2


Table 4.4: Parameters for the Position Complementary Filter in simulation, where I2 denotes a 2 × 2
identity matrix
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Figure 4.7: Estimated longitudinal velocity compared with the real. Two position complementary filters
were tested, one with acceleration bias estimated, other without.
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Figure 4.8: Estimated lateral velocity compared with the real. Two position complementary filters were
tested, one with acceleration bias estimated, other without.

due to the scale of values and the effect of the bias is irrelevant in this case. The error to the real velocity

can be seen in Tab.4.5.

In the lateral velocity estimate, the errors are more perceptible, largely due to the range of lateral

velocities achieved. Compared with the error of the longitudinal velocity (Tab.4.5), the standard deviation

to the real value is greater, but the effect of the bias is evident whether it is in statistical values (Tab.4.5)

or in graphical data (Fig.4.8). The estimate using the bias, shows an advantage since the results are

closer to real, and since for lateral velocities close to zero, the estimate does not have an offset.

The acceleration bias, unlike the yaw rate bias estimated in section 4.2.1, does not depend only on

the accelerometer offset, but a combination of the 3-axis offset of the accelerometer and gyroscope and

the rotation induce by roll and pitch, given by the accelerometer model (2.34). Due to this, isn’t possible

to expect a convergence to a constant value, instead is possible to evaluate the bias by the convergence

from different initial conditions as seen in Fig.4.9 and Fig.4.10. In the longitudinal bias (Fig.4.9), the peak

before the 5 second mark is due to the initial condition of the longitudinal velocity. This can be verified

by setting this condition to match the real one.

Longitudinal velocity Lateral velocity
mean σ 3σ mean σ 3σ

PCF without bias 0.013 0.053 0.158 0.056 0.079 0.237
PCF with bias -0.013 0.054 0.162 -0.001 0.071 0.213

Table 4.5: Statistical error of two different PCF estimators relative to the real velocity components.
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4.2.3 Vehicle Estimator

The third estimator as seen in Fig.3.1 introduces the vehicle dynamics to the estimate. For this

place two estimators are compared, the Vehicle Linear Estimator (VLE) and the Vehicle Non-Linear

Estimator (VNLE), where the objective is to explore the pros and cons of each one. For the final estimator

architecture only one is necessary.

Both filters are projected with the same values as the simulation vehicle in section 4.1. The needed

variables for the two filters are summed up in Tab.4.6. The cornering stiffness values were computed

as explained in section 2.1.3, for the Burckhardt tyre curve using the TTC data, for a slip angle αi=2o

with a vertical load of 773N for the front tyres and 944N for the rear. The tyre load is computed from the

45%-55% weight distribution implicit by the CG position.

For the VLE presented in section 3.5, the filter gains are computed using the Discrete Kalman Gain

Variable Value Unit
Car + driver mass m 350 kg
Moment of inertia, yaw Iψ 120.13 kg.m2

Distance from CG to front axle a 0.873 m
Distance from CG to rear axle b 0.717 m
Distance from CG to left wheels c 0.6 m
Distance from CG to right wheels d 0.6 m
Cornering Stiffness, front (1 wheel) Cαfi 30170 N/rad
Cornering Stiffness, rear (1 wheel) Cαri 34820 N/rad
Vertical load, front (1 wheel) Fzf 773 N
Vertical load, rear (1 wheel) Fzr 944 N

Table 4.6: Parameters for the VLE and VNLE estimators. The cornering stiffness approximation was
made for Fz=773N at front and Fz=944N at rear, both for 2 degrees of wheel slip.
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VLE VNLE

Observation weight Rvle =

[
3× 10−2 0

0 5× 10−2

]
Rvnle =

2× 10−3 0 0
0 2× 10−1 0
0 0 10−2


State weight Qvle =

[
10−3 0

0 10−4

]
Qvnle =

10−3 0 0
0 10−2 0
0 0 10−1


Covariance error Pvle =

[
10 0
0 10

]
Pvnle =

0.1 0 0
0 10 0
0 0 10


Table 4.7: Parameters for the computation of Kalman gains for both the VLE and the VNLE.

(section 3.1). The transition matrix for this estimator is time-varying and relies on the longitudinal velocity,

and that implies the gain is also time-varying and only dependent of v x. For this reason, the gain is

computed offline, and a lookup table generated dependent of the longitudinal velocity, in order to keep

the Kalman gain as close as possible to the optimal gain. The gain evolution is presented in Fig.4.11,

which is computed using the observation and state weight matrices presented n Tab.4.7.

On the VNLE the same can not be done to the gain, since it is computed with the Jacobian ma-

trix FVNLE that relies on the three states used, implying that the gain must be computed online. The

observation and state weight matrices for these computations are depicted in Tab.4.7.

The input on the VLE is the steering angle corrupted with noise as presented in section 2.6.4. The

VNLE besides the steering angle uses also the longitudinal force Fx, that for simplification is used as a

direct input from the vehicle. The observations of both estimators are the same, the yaw rate from the

gyroscope corrected with the estimated bias from the ACF, and both velocity components from the PCF.

With a small difference, where in the VLE the observation is βPCF=atan-1(vy/vx), and also the longitudinal

velocity enters directly in the transition matrix. In the VNLE, both velocities are direct observations.

The results of the sideslip estimate of both estimators, VLE and VNLE, can be seen in Fig.4.12,

where they are set side by side with the real sideslip computed from the vehicle model before the

sensors. In order to keep the graph clean, a rule was implemented that for longitudinal velocities below

3m/s, no sideslip exists. This rule is only applied in the first 5 seconds where the car is almost stopped.

The problem was the noise, even small, if vx=0.1m/s and vy=0.1m/s, then the sideslip is β=45o, which

resulted in high noise at the beginning.
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Figure 4.11: Evolution of Kalman gain entries along the longitudinal velocity, for the Vehicle Linear
Estimator.
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Figure 4.12: Sideslip results for the VLE and the VNLE in comparison with the real value.
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Figure 4.13: Sideslip error for the VLE and the VNLE in relation to the real value.

In Fig.4.12, both estimators can give the asked result, and close to reality. Is also evident that the

VLE is better behaved than the VNLE, with a lower noise, and a smaller error. It should also be noted

that in constant sideslip angle, for example, between [11, 17] seconds, a constant error exists. This

is due to all the despised dynamics like wheel load change along the time, and the IMU rotation due

to roll. In Fig.4.13 is presented the error to the real sideslip of both estimators, also in Tab.4.8 some

statistical information is condensed, where the sideslip computed directly from the PCF velocities is also

introduced. It is also clear by this table that the VLE is better than the two other options.

max error mean σ σ2

PCF 9.8780 -0.0062 0.7202 0.5187
VLE 0.6311 -0.0119 0.1582 0.0250

VNLE 1.8907 -0.0095 0.2685 0.0721

Table 4.8: Comparison of statistical data for the computation of the sideslip angle for three different
methods.
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4.2.4 Unpredicted conditions

The above simulation uses the filters with perfect parameters relative to the vehicle, but this almost

never happens in the real world, there are always some differences from non-modelled dynamics, or

poorly calculated variables.

The following test aims to evaluate the performance of the filters in unpredicted conditions. The most

common difference that can occur and the one that can drastically change the behaviour of the vehicle

is the tyre-road interaction, especially when it is raining. Other common alteration is the road inclination

or banking, that introduces an unbalance tyre load that can also influence the car behaviour.

For this simulation the filters were kept the same as before with regard to the vehicle, and filter

weights. The changes were at the vehicle were the tyre model was change for the wet asphalt as seen

in Fig.2.4, the road has now a banking with a -2% inclination in the Y direction. Besides all this, the

references given of longitudinal velocity and yaw rate are the same as before, which are close to the car

limit in dry conditions and almost impossible to achieve in wet. In Fig.4.14 is possible to see the new

vehicle trajectory which is a deformed version of Fig.4.2.

In Fig.4.15 is showed the load of each tyre, for a road with and without the -2% inclination, as well as

the vertical load assumed in the filters.

Since both the ACF and the PCF are kinematic filters, they are not affected by the tyres or the

banking, so only the results of the VLE and VNLE are presented.

In Fig.4.16 is possible to see the results of both tested vehicle estimators. Like in the previous

simulation (Fig.4.12), the VLE is a much cleaner signal than the VNLE, but in this case the VLE can not

follow the real sideslip value by far. This problem is associated to the cornering stiffness approximation,

where the one used (Tab.4.6) is for wheel slip angles below or very close to 2o, and in this case where

the car is pushed to the limit, these angles are much higher as seen in Fig.4.17.

For example, using the wheel slip angle of the front left wheel on second 25, αFL=21.9o, with a
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Figure 4.14: Trajectory of the vehicle for the new assumptions.
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Figure 4.15: Vertical force in each tyre for comparison between a road with and without banking. The
vertical load assumption for the cornering stiffness approximation is present for reference.

Real VLE VNLE
Cα|α=2◦ Cα|α=5◦

Force [N] 533.78 12128.3 9081.1 1117.6
Diff. - ×22.7 ×17.0 ×2.1

Table 4.9: Comparison of lateral force estimated for αFL=21.9o and Fz=744N using different methods,
and differences between them.

vertical load of 744N, the difference in lateral force between models can be seen in Tab.4.9. Where

at that moment the wheel is only generating 533.78N, where the VLE assumes it is doing 12128.3N,

almost 23 times more than the real. This value is also compared with a cornering stiffness computed

with angles up to 5 degrees, where it still expects values 17 times greater than the real one. On the

other hand, since the VNLE uses the tyre equation, even a wrong one, it limits the maximum force, only

expecting 2 times more, which is enough for the filter to compensate and give a close enough estimate.
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Figure 4.16: Sideslip estimate result for the VLE and VNLE, compared with the real sideslip, for the new
unpredicted conditions of the vehicle.
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Figure 4.17: Wheel lateral slip angle for each tyre comparison for wet and dry road conditions. Also
presented the cornering stiffness limits assumed.

In the end, it is possible to say that both estimators, the VLE and VNLE can be used, and the choice

between them depend and the platform and test conditions used. If the vehicle is well known, and it is

expected to have a behaviour inside the limits of what was defined for the estimator, then the VLE is

recommended since it has a less noisy output, and is computationally lighter. On the other hand, if the

vehicle and test condition are outside of the estimator limitation, then the VNLE is recommended, with

the con of being computationally heavier and having a noisier output signal.
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Chapter 5

Laboratory Implementation

This chapter presents the implementation of the estimator architecture in a micro-controller on a RC

vehicle inside a laboratory. The hardware used is the continuation of the work done in [20].

In a first part it will be presented the hardware used, where the vehicle and the sensors will be

explored. Since in this implementation the micro-controller will be responsible for managing all the

communications and computations, a section about the software will depict the information flow. Lastly,

the results obtained with this system, for the different filters, will be presented and compared with a

secondary and more precise system for validation.

Since in the used vehicle was not possible to access the torque produced by the motor, the VNLE

was not implemented and will not be referenced in this chapter.

Shield
Raspberry Pi

IMU

Powerbank

Rear Marker

Le� Marker

Right Marker

Front Marker

Motor
Servo

Spacers

Figure 5.1: RC vehicle used in the laboratory, equipped with a Raspberry Pi 3, an IMU, and the infra-red
markers. Several important components are identified. The battery is on the other side of the vehicle
and not visible on the image.
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5.1 Hardware

The vehicle used is presented in Fig.5.1, and consists in a radio-controlled 1:18 four-wheel drive car,

to which the receptor and original remote controller were removed. The control of the car is then made

by wireless and through the micro-controller.

The propulsion source is a single motor connected to the four wheels with two mechanical differen-

tials, one per axle. The steering is only at the front wheels and is actuated by a small servo motor. Both

actuators are supplied by a 7.2V NiMH battery with 1200mAh.

Due to the added weight, spacers had to be place in each shock absorber to increase the pre-load

of the spring. This also helps to reduce the roll and pitch on the car.

The car was equipped with a standard Raspberry Pi 3 model B, which is the only micro-controller on

board. This one is connected to an IMU through I2C (Inter-Integrated Circuit), to two computers using

the integrated wireless, and controlling both motors using two PWM (Pulse-Width Modulation) outputs.

The Raspberry Pi 3 is supplied by a 2300mAh power bank.

To incorporate the raspberry and the remaining control and acquisition system, some parts were

design and made with resource to 3D printing.

5.1.1 Sensors

The vehicle is equipped with two main sensors. The IMU (Fig.5.2) and a positioning system replacing

the GPS that does not work inside the laboratory for obvious reasons.

The position is given by a system from Qualisys that consists in a set of six infrared cameras (Fig.5.3).

These cameras acquire the reflection of the infrareds by the markers on the body to be identified. As

seen in Fig.5.1, the vehicle has four marks. A dedicated software (Qualisys Track Manager) uses the

information of the six cameras to triangulate the position of the body. The three position coordinates and

three rotations are then transmitted over TCP/IP to any device listening at a rate of 100Hz.

This system sometimes shows a gap in the values due to bad data acquisition. The cameras are

emitters and receptors of infrared light, and the floor of the laboratory is mirrored. In some locations it

happens that the light from a camera is reflected to another one, and when the vehicle passes over this

location, the system loses the tracking of the marker. In Fig.5.4 is possible to see this reflection by a

Figure 5.2: GY-80 IMU used in the vehicle
for acquiring the accelerations, angular ve-
locities and orientation.

Figure 5.3: Infra-red camera used by Qual-
isys software to acquire the vehicle position
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Figure 5.4: Infra-red intensity image of cameras five and six. The vehicle location is identified by four
markers in each image, and the reflection problem is present by a lighter color.

brighter colour, an almost white glow. Some dark squares are placed in the floor to limit this effect.

The IMU is a GY-80, composed of a 3-axis accelerometer (ADXL345) from Analog Devices, a 3-axis

gyroscope (L3G4200D) by ST Microelectronics, and a 3-axis magnetometer (MC5883L) by Honeywell.

The accelerometer is configured for±4g’s, the gyroscope for±2000o/s and the magnetometer for±1.3G

(Gauss). The data from the three sensors is retrieved at 100Hz.

This IMU has several outliers on the gyroscope and on the X and Y axis of the accelerometer as

seen in Fig.5.5. This is not a common noise, but most likely a problem in the breakout or in the sensor

itself, since the outlier represents always a full buffer (negative or positive). The hypothesis of being

a problem with this specific IMU or an implementation error is also discarded since in [20] the same

problem arises. To overcome this situation an one dimensional median filter with a window of three is

implemented using the raw data before any conversion. The result can be seen in Fig.5.5(c) for the

accelerometer and Fig.5.5(d) for the gyroscope.
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Figure 5.5: Comparison of the raw data of the accelerometer (a) and gyroscope (b), with the data
using an one dimensional median filter with a window of three. All the data in LSB. The three axis are
presented, x-axis in blue, y-axis in orange and z-axis in yellow.
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Accelerometer [mg] Gyroscope [dps] Magnetometer [mG]
x y z x y z x y z

Range ±4g ±2000dps ±1.3G
Scale [*/LSb] 7.7 7.6 7.9 0.07 0.07 0.07 0.92 0.92 0.92
Offset [LSb] 0 -2 -5 0 0 0 n/a n/a n/a

Mean -0.9 0.2 988.4 0.11 -0.42 0.25 n/a n/a n/a
σ 3.7 4.2 5.8 0.18 0.19 0.22 1.59 0.86 4.08
σ2 13.8 17.4 33.8 0.03 0.04 0.05 2.53 0.74 16.65

Table 5.1: Information relative to the IMU sensors. Results for configurations, calibration and acquired
data. Accelerometer data in milli-g, gyroscope in milli-degrees per second and magnetometer in milli-
Gauss. Ranges equal for 3-axis. Where σ represents the standard deviation and σ2 the variance.

A resume of the IMU sensor data can be found in Tab.5.1. The scales of the accelerometer and the

offsets were determined by experimental data.

The mean and offset of the magnetometer are not presented since it has a special calibration de-

scribed in Appendix B. In this particular implementation the magnetometer is not very useful due to the

laboratory topology. As seen in Fig.5.6, underground power and communication cables supply different

equipment’s in the laboratory. Since the IMU is very close to the ground, its affected by the magnetic

fields generated by the cables. This distortion can not be accounted in the calibration since it is a

characteristic of the environment and goes against the assumptions of a constant magnetic field.

Besides these sensors is also necessary the steering angle for the VLE. Since no sensor present in

the car can give this information, the value is acquired through the actuation signal of the servo. As it was

identified in [20], the actuation is a PWM signal with a period of 10ms and a duty cycle comprehended

between 10% and 20%, where 15% is the neutral. By means of experimental data, equation (5.1) was

identified as the relation between the PWM duty cycle and the steering angle.

δr[deg] = (duty cycle[%]− 15)
20

25
(5.1)

It is well known that some of the servo dynamic is being neglected, but the steering has some slack

that introduces more uncertainty than the ignored dynamic.

Cables

Figure 5.6: Laboratory ground with identification of the cables location underground.
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5.1.2 Wired Connections

The connections on the vehicle, as stated before, are based on the work of [20], with a few upgrades.

The general schematic can be seen in Fig.5.7. The Electronic Speed Controller (ESC) is controlled

by a PWM signal as common servo motor, but instead of requiring power from the control connector, it

is directly supplied by the vehicle battery. The servo that actuates the steering is also controlled by a

PWM signal. The power to the servo comes from the ESC.

The major upgrade to the work in [20], is the addition of a shield to the Raspberry Pi 3, that makes

the interface from the micro-controller to the IMU and actuators of the car. The Raspberry Pi is supplied

by a power bank through an USB cable.

The purpose of the shield (Fig.5.8) is to facilitate the connections, and to protect the Raspberry Pi

from wrong connections. It also reduces the problems of wires disconnections due to vibrations. The

documentation of the shield can be found in Appendix C.

This shield consists of two optocoupler, one for each PWM signal. One LED attached to a Raspberry

Pi output for debug. A voltage regulator to retrieve power from the battery to the PWM. And a second

LED indicating that the tractive system of the car in on. The board is connected to the header of the

Raspberry PI and has only three pin arrays. One for the IMU, one for the servo, and one for the ESC.

IMU

Shield

PowerBank

Raspberry
Pi 3

ESC

ServoServo

MotorMotor

Ba�eryBa�ery

Figure 5.7: RC Vehicle wiring schematic.

Figure 5.8: Shield that makes the interface between the Raspberry Pi 3 and the sensors and actuators.
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5.2 Software

5.2.1 Wireless communications

In Fig.5.9 is depicted the wireless communication flow. The computer responsible for the Qualisys

software, receives the information from the cameras (Cam) and sends one message with the three

positions and three rotation components over TCP to the vehicle.

The second computer or laptop has two programs running in simultaneous. The first (Prgm1) is a

program created by [20] and is connected by USB to a remote controller. The steering and velocity

information acquired by the remote is then sent by UDP to the vehicle. The second program (Prgm2)

is connected by TCP with the vehicle and is a two way communication channel. It sends start and stop

information to the program on-board the vehicle and receives results from the same.

RC Vehicle

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Cam

Laptop

Prgm1

Prgm2

Remote
Qualisys

PC TCP

USB

Figure 5.9: Diagram of wireless communication flow.

5.2.2 Program on-board the vehicle

A program was created to run in real-time inside the Raspberry Pi 3. This one was written in C

code, and besides the common Linux base libraries like ”math.h”, it only relies more on the ”wiringPi.h”

[44] for the GPIO input/output interface. All the other necessary libraries like for the Kalman filter were

self-developed.

The general structure and pseudo-code algorithm can be seen in Fig.5.10. The program is divided

in a main program and three parallel threads.

The first thread is for the IMU. This one, starts by making the configuration of the sensors registries,

and to test the acquisition and speed of the communication. After that, enters in an infinite while loop. In

this loop the thread acquires the data from the three sensors, converts the raw data to usable information

with all the calibrations, sends the data to the buffer and writes the information in a file. A timer function

ensures that the cycle only restarts at the desired time step. The thread only exits when it gets the

information from the main.

The second is for the remote control. This thread starts the PWM signals in the neutral value (15%),

and starts an UDP channel with the program on the laptop responsible for the remote. It enters a while

loop where it waits for a new message from the laptop, converts the message to duty cycle and updates

the output PWM values. These values are also sent to a buffer accessible by the main function. When
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the main breaks the while, the thread puts the PWM signals to neutral before it ends. This function uses

the hardware PWM capabilities of the Raspberry Pi 3, to remove load from the CPU.

The third thread takes care of the communication with the Qualisys computer. It starts by sending

the configuration messages necessary to the Qualisys. The while loop waits for a new message and

converts the raw data to usable values. These values are sent to the buffer, and written on a log file.

The while cycle is just stopped by the main function.

The main function, initiates every necessary variable, and starts the three threads. Before advancing,

it waits for valid messages from every thread. After that, it initializes the three filters, and waits for the

order from the laptop to start the cycle. The cycle starts by retrieving all the data available from the

buffers, and then runs the filters. The results are sent over TCP to the laptop, and logged in a file. The

while cycle is only stopped with information from the laptop. A function ensures that the defined time

Main

- Variable Ini�aliza�on
- Global �mer ini�aliza�on
- IMU thread ini�aliza�on
- Remote thread ini�aliza�on
- Starts TCP with laptop
- Qualisys thread ini�aliza�on
- Waits first read from each thread
- Ini�alize filters
- While(){
   - Retrieve data from Qualisys buffer
   - Retrieve data from IMU buffer
   - Retrieve data from Remote Buffer
   - Compute �me step from previous
   - Compute one step of ACF
   - Compute one step of PCF
   - Compute one step of VLE
   - Write data to file
   - Send data over TCP to laptop
   - Ensures frequency
   - Check for termina�on informa�on
   - If termina�on{
       - Break while
   }
}
- Send "end program" to IMU thread
- Send "end program" to Qualisys thread
- Send "end program" to Remote thread
- Wait for thread confirma�ons
- End program

Main

- Variable Ini�aliza�on
- Global �mer ini�aliza�on
- IMU thread ini�aliza�on
- Remote thread ini�aliza�on
- Starts TCP with laptop
- Qualisys thread ini�aliza�on
- Waits first read from each thread
- Ini�alize filters
- While(){
   - Retrieve data from Qualisys buffer
   - Retrieve data from IMU buffer
   - Retrieve data from Remote Buffer
   - Compute �me step from previous
   - Compute one step of ACF
   - Compute one step of PCF
   - Compute one step of VLE
   - Write data to file
   - Send data over TCP to laptop
   - Ensures frequency
   - Check for termina�on informa�on
   - If termina�on{
       - Break while
   }
}
- Send "end program" to IMU thread
- Send "end program" to Qualisys thread
- Send "end program" to Remote thread
- Wait for thread confirma�ons
- End program

Thread1: IMU

- IMU register configura�on
- While(){
   - Acquire data from IMU
   - Data calibra�on
   - Send data to Buffer
   - Write data to file
   - Ensures frequency
   - If "end program"{Break}
}
- End thread

Thread1: IMU

- IMU register configura�on
- While(){
   - Acquire data from IMU
   - Data calibra�on
   - Send data to Buffer
   - Write data to file
   - Ensures frequency
   - If "end program"{Break}
}
- End thread

Thread2: Remote

- Configures PWM hardware
- Ini�alize neutral PWM
- Starts UDP communica�on
- While(){
   - Waits for new message
   - Convert to duty cyle
   - Update PWM output
   - Send data to Buffer 
   - If "end program"{Break}
}
- Set PWM outputs to neutral
- End Thread

Thread2: Remote

- Configures PWM hardware
- Ini�alize neutral PWM
- Starts UDP communica�on
- While(){
   - Waits for new message
   - Convert to duty cyle
   - Update PWM output
   - Send data to Buffer 
   - If "end program"{Break}
}
- Set PWM outputs to neutral
- End Thread

Thread3: Qualisys

- Starts TCP communica�on
- Sends configura�on messages
- While(){
   - Waits for new message
   - Convert data
   - Send data to Buffer
   - Write data to file
   - If "end program"{Break}
}
- End thread

Thread3: Qualisys

- Starts TCP communica�on
- Sends configura�on messages
- While(){
   - Waits for new message
   - Convert data
   - Send data to Buffer
   - Write data to file
   - If "end program"{Break}
}
- End thread

IMU 
Buffer

Qualisys 
Buffer

Remote 
Buffer

IMU
Log File

Qualisys
Log File Filter

Log File

Figure 5.10: Program pseudo-code algorithm with interaction between threads.
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step is satisfied.

Every buffer is for a single message only. If the main did not read the message in time, then the

content of the buffer is rewritten. Three log files are used to ensures every function can make the log at

their own pace, however every message written has a time stamp relative to the global timer defined in

the main.

5.3 Tests and Results

Next the results for the different implemented filters on the vehicle will be presented. Since in this

platform all sensors could be acquired at 100Hz, the estimates are done at the same frequency.

For the validation of the estimated results, is used the data from the Qualisys. The heading is a direct

output of the system, however the same does not happen with the velocities. These ones are computed

by a simplistic numerical differentiation of the position. As seen in Fig.5.9, all the data from Qualisys

passes only through the vehicle, and the sole reason is to get the same time stamp as the estimates.

The results will be presented for the different filters and compared whenever possible with the Qual-

isys data. As its going to be seen, and as it was already mentioned, the limitation is the magnetometer.

5.3.1 Attitude Complementary Filter

As already stated, the magnetometer its almost useless in the laboratory environment. Even so, to

maintain the consistence with the remaining work, the magnetometer is used with a small modification

to the ACF.

The ACF in this implementation uses another functionality of the Kalman Filter, the integration of two

different readings for the same state. Instead of only using the yaw from the magnetometer, it is also

used the yaw from the Qualisys. The objective is to still have the uncertainties of the magnetometer, but

a little close to reality to be useful. The observability matrix of the ACF is then given by (5.2) and the

Kalman gain is a 2×2 matrix. The weights and gains used for the ACF are presented in Tab.5.2. The first

entry of the Racf correspond to the data from the magnetometer and the second one to the Qualisys.

As can be seen, it was still given more importance to the angle from the magnetometer.

Ck =

1 0

1 0

 (5.2)

In Fig.5.11 is presented the results of the yaw estimate using the ACF. Also, the Qualisys and mag-

netometer angles are present and as can be seen, the magnetometer yaw has a significant difference

Observation weight State weight Filter Gain

Racf =

[
103 0
0 7× 102

]
Qacf =

[
10−1 0

0 10−1

]
Kacf =

[
9.58× 10−3 1.37× 10−2
−6.34× 10−3 −9.06× 10−3

]
Table 5.2: Parameters for the Attitude Complementary Filter used in the RC vehicle.
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Figure 5.11: Yaw angle results comparison between the true Qualisys angle, the yaw computed from
the magnetometer and the estimated value from the ACF.

to the Qualisys angle. The ACF estimation is always somewhere between the two readings, and always

a little closer to the magnetometer as specified with the weights.

The Qualisys data has some gaps that are going to be explored ahead. The ACF using the two

sources of yaw angle and the yaw rate from the gyroscope, can give an estimate without gaps of infor-

mation.

Also in Fig.5.11 two light green zones are represented. These are zones where the Raspberry Pi

has blocked for unknown reasons, and all the data stopped for some time. This freeze is visible in all the

data presented.

In Fig.5.12 is presented the yaw rate bias estimated by the ACF for the Z-axis of the gyroscope. Also,

the mean offset presented in Tab.5.1 is represented. The initial spike is due to the initial yaw adjust seen

in Fig.5.11. The estimate, as seen, stays around the expected offset and the variations correspond to

the roll influence of the vehicle.
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Figure 5.12: Yaw rate bias estimate from the ACF compared with the expected static bias for gyroscope.
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5.3.2 Position Complementary Filter

The PCF did not suffer any modifications as the ACF above. The position is given by the Qualisys,

and the accelerations from the accelerometer with the corrections associated with model (2.34). The

PCF is a time-varying filter that depends on the yaw angle estimate from the ACF. The yaw angle as

seen before will be the major source of error.

The weights and gains for this filter are presented in Tab.5.3. These gains were adjusted to this

particular sensor, specially the position, which is more precise than the one given by a GPS.

Observation weight State weight Filter Gain

Rpcf =

[
10−4 0

0 10−4

]
Qpcf =

 0.1I2 0 0
0 10I2 0
0 0 10−5 I2

 Kpcf =

0.757 I2 0 0
0 6.98I2 0
0 0 −0.068I2


Table 5.3: Parameters for the Position Complementary Filter used in the RC vehicle.

The results for the velocity components is presented in Fig.5.13 for the longitudinal velocity and in

Fig.5.14 for the lateral component.

Before analysing the PCF results, the Qualisys velocities deserve a closer look. In both components

the velocity components of the Qualisys have outliers all around. This is a sum of two problems. The

first, as stated before, is the computation. The Qualisys does not provide the velocity in real time, so it

must be computed using the position. This numerical differentiation often creates these situations. The

second problem is related with the receiving data. For some unknown reason, sometimes the buffer

receiving the TCP data stacks several messages. When the thread retrieves the information, it gives a
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Figure 5.13: Longitudinal velocity component in the vehicle frame. Comparison between the differentia-
tion from the Qualisys position, and the estimate from the PCF.
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Figure 5.14: Lateral velocity component in the vehicle frame. Comparison between the differentiation
from the Qualisys position, and the estimate from the PCF.
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Figure 5.15: Accelerometer bias estimate from the PCF. In (a) the x-axis component, and in (b) the
y-axis component.

time stamp. If several messages are stacked, and computed almost instantaneously, the time step will

not be the true 0.01sec, but less, which originates a spike in the velocity.

Another situation that occurs is when the vehicle passes in zones were the cameras cannot fix the

car position, as seen before. At these moments no message is sent and a gap appear in the data.

For the estimates and filters these velocities are not used, so the only problem is in the presentation

of the results. However, the error in the time stamp will be noticed along the results even if its influence

is minimal.

In Fig.5.13 is presented the longitudinal velocity component. In general, the results present a small

deviation from Qualisys. This is associated to the error in the yaw angle. A similar deviation is also seen

in Fig.5.14 for the lateral component.

Also, some spikes appear along the estimate, some due to the time stamp error in the position like

at 16sec, and others are due to missing data also from the Qualisys like at the 50sec.

The analysis of the lateral velocity in Fig.5.14 is similar to the longitudinal one. With the only differ-

ence that the deviation is more pronounced due to the range of values.

In Fig.5.15 is also presented the bias estimate of the accelerometer for both components. And for

both axis is clear that they try to converge for a value. In the x-axis is around the -0.4m/s2, and for the

y-axis around the 0m/s2. Both, as expected respond in order to compensate the rotations of the vehicle.

5.3.3 Vehicle Linear Estimator

For using the VLE, a problem arises. The VLE depend on the cornering stiffness of the interaction

between the tyres and the road surface. However, for the RC vehicle and the surface of the laboratory

ground there is no data. To implement the VLE, first is presented the model identification, and after that

is presented the implementation and results.

Model identification

The approach taken consists in using the Matlab System Identification Toolbox, to adjust acquired

data from the RC vehicle to a modified version of model (2.26). The new model (5.3) as seen in [26]

uses as state variables the sideslip of the vehicle and the yaw rate.
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β̇
ψ̈

 =

 −
Cαf + Cαr

mvx −aCαf + bCαr
mv2x

− 1

−aCαf − bCαrIψ
−a2Cαf + b2Cαr

Iψvx


β
ψ̇

+

 Cαf
mvx
aCαf
Iψ

 δ (5.3)

The data used for the identification correspond to a set where the car was at an almost constant

velocity around 0.77m/s. From the fit resulted the state transition and input matrices (5.4), with a per-

centage of fit to estimation data of 93.9% for state one and 87.9% to state two.

Avlek =

−4.473 −0.114

−0.070 −8.633

 , Bvlek =

1.174

22.87

 (5.4)

The fit results are for a single longitudinal velocity. To expand the results to a time-varying model a

direct relation was made with (5.3) resulting in (5.5) which is time-varying and dependent of the longitu-

dinal velocity.

β̇
ψ̈

 =

 3.4576
vx

0.5298
v2x

− 1

−0.07032 −6.6733
vx


β
ψ̇

+

1.371
vx

22.87

 δ (5.5)

VLE implementation and results

This model is still continuous and is only converted to discrete inside the micro-controller. The conver-

sion is made with resource to the already presented property (3.37). The matrix exponential is computed

using (5.6), where I is the identity matrix.

eA = I +A+
A2

2!
+
A3

3!
+ · · ·+ An

n!
(5.6)

The stop criteria implemented for the convergence of (5.6) is n = 200 or the maximum difference

between two consecutive sum terms is less than 10−9.

With the model converted to discrete, the Kalman Filter can then be implemented in the micro-

controller as the others. In this one, since the filter is time-varying, the Kalman Gain is computed

iteratively inside the Raspberry Pi, for each time step. The weights are presented in Tab.5.4.

In Fig.5.16 is presented the estimation result of sideslip angle from the VLE and compared with the

one from Qualisys.

As seen before, the Qualisys data sometimes has gaps and missing information from passing in blind

zones for the cameras. These sources of error appeared before in the yaw angle and in the velocities,

and the sideslip is no exception. These errors originate the spikes on the Qualisys data.

Observation weight State weight Covariance error

Rvle =

[
10−2 0

0 0.5× 10−2

]
Qvle =

[
10−3 0

0 10−3

]
Pvle =

[
1 0
0 1

]

Table 5.4: Parameters for the Vehicle Linear Estimator used in the RC vehicle.
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Figure 5.16: Sideslip result from the VLE compared with the sideslip angle from the Qualisys.

Analysing now the VLE estimate result. As seen before in the PCF the velocities components have

some deviation from the Qualisys data, and the same is verified in the sideslip. Even though, with

the VLE the difference is significantly lower, it still appears and generates a considerable error. This

deviation is more evident in the constant velocity turns between [5, 16]sec and between [19, 42]sec.

However, in faster turns as seen from 74sec till the end, the error appears to be smaller.

Also in the constant velocity turns an oscillation appears in the estimate result. This is the influence

of the magnetometer yaw angle. When the vehicle passes closer to the underground cables (Fig.5.6)

the magnetic field changes for the magnetometer giving a considerable error in the sideslip estimate.

5.3.4 Results discussion

The final result of the sideslip angle presented in Fig.5.16 has some significant error to the Qual-

isys angle. This was attributed mainly to the magnetometer yaw error but other factors also contribute

to this. The model used is a linear one since the VNLE could not be implemented. Also, the linear

model was achieved through identification of real data is for a single velocity and extrapolated for the

remaining ones. With these, the weights used for the VLE, had to be wide enough to contemplate all the

uncertainties sources.

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-60

-45

-30

-15

0

15

30

45

60

Be
ta

 [d
eg

]

Qualisys
VLE

Figure 5.17: Sideslip result from the VLE compared with the sideslip angle from the Qualisys, with the
assumption of perfect yaw angle.
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mean σ σ2

VLE (original) -0.4695 10.6579 113.5108
VLE (ACF yaw) -0.8077 9.6955 94.0026

Table 5.5: Comparison of statistical data for the computation of the sideslip angle for the result with the
original VLE and with the yaw hypothesis proposed.

To corroborate the wrong influence introduced by the magnetometer a second test is made. The data

used is the same as before, as well as the weights and gains used in the filters. The only assumption

is that the yaw angle used for computing the velocity components from the Qualisys is the yaw angle

estimated by the ACF. In resume, is assuming that the yaw angle from the ACF is the correct one.

In Fig.5.17 is presented the comparison of both sideslip angles assuming the same yaw angle. And

as can easily be seen by comparison with the results in Fig.5.16, the error is much smaller, and all the

dynamics are caught by the estimator. Additionally, the statistical results of the error for both cases can

be seen in Tab.5.5. The remaining deviations can then be associated with the linear model used, instead

of a non-linear one.
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Chapter 6

Formula Student Implementation

In this chapter is presented the implementation of the estimator architecture in a real Formula Student

prototype. Unfortunately, at the time available for the tests with the car, the estimators were not yet

integrated in a platform capable of interacting directly and in real time in the vehicle. To overcome this

situation, all the data from the car was logged and the filters used in offline.

For the test, the car was the already mentioned FST06e (Fig.4.1), equipped with two different and

completely independent systems (Fig.6.1). The first is the embedded acquisition line of the car, which

is an integral part of the car, and its control systems. The second is a DGPS (Differential Global Posi-

tioning System), directly capable of providing the heading of the car as well as the velocity components,

elements to make the validation of the vehicle sideslip estimate.

Throughout the chapter both systems will be closely explored, as well as the test conditions, and

adjusts made to the acquired data. The estimate of each filter will be put side by side with the DGPS

data, and the results discussed.

It should be noted that, the DGPS data is only used to compare results, and its data is not used, at

any time in the estimators.

GPS
IMU

+
Steering

Motors Log
Unit

CAN H
CAN L

Processing LogRover Base

FST06e

DGPS

Figure 6.1: Acquisition architecture used in the vehicle. The FST06e represent the systems already
implemented in the car, and the DGPS is the equipment used for the validation. The ”CAN H” and ”CAN
L” suggest the CAN high and low lines of a CAN-bus protocol.
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6.1 Test Platform

As already stated before, the vehicle used was the FST06e. The details of the car will not be mention

in this chapter since they were already explored before. For this test run the car was stripped of all

aerodynamic devices (undertray, front and rear wings) as seen in Fig.6.2. Two main reasons motivated

this decision. The first was to remove the influence of the aerodynamic forces acting on the car. The

second and main reason was for the DGPS antennas to have a cleaner view of the sky, and to have

fixing points for the supports. Also having the antennas at roughly the same height was desirable to

remove any unwanted influences.

The test was made in a university campus parking lot, with roughly 25x60 meters of useful asphalt as

seen in Fig.6.3. Since the track was short, high velocities could not be reached in safety, nevertheless

some peak velocities around 50km/h and an average of 30km/h was still achieved. The ground is not

perfectly flat, with a convex deformation on the larger side (hill top), and a small slop on the other.

DGPS “Rover” 
antenna

DGPS 
Acquisi�on 

system

DGPS “Base” 
antenna

Car GPS 
antenna

Car IMU + 
Steering encoder

Figure 6.2: FST06e Acquisition system with DGPS. in orange are the sensors belonging to the car, and
in blue the elements of the DGPS.

Figure 6.3: Trajectory of the car (blue) overlapped with a satellite image using Google Earth. A grid
(green) with 5 meters division is also present for better notion of space.
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6.1.1 Vehicle Acquisition system

The FST06e relies on a modular electronic circuit for all the monitoring, controls and acquisition.

This circuit spreads all along the car, and consists in several modules connected using a CAN-bus

(Controller Area Network) line working at 1Mbit/s. Even though the car has several modules, for the

information required during this test, only four are directly required (Fig.6.1).

The GPS module, which receives the computed position information from a SkyTraq S1216F8 GNSS

receiver at 25Hz and sends it to the CAN-bus line.

The IMU + steering encoder, as the name says, acquires the data from the IMU as well as the steering

encoder value. The IMU is a GY-80 10dof, that has a 3-axis accelerometer ADXL345 from Analog

Devices configured for ±4g’s, a 3-axis gyroscope (L3G4200D) from ST configured to ±500o/s, and a

3-axis compass from Honeywell configured to ±1.3Ga. The steering encoder consists in a rotational

potentiometer connected to the steering column. Both sensors are acquired at 100Hz.

The third module is connected to the motors. The motors used in the car are from Siemens and have

a dedicated controller by the same manufacture. In order to actuate these motors a module (the motors

module) makes the bridge between the vehicle CAN-bus line and the motors controller. Also, these

controllers return some values like motor speed, power, and the torque needed for the EKF. This module

returns data at 20Hz. The torque at each motor is computed using the voltage and current to achieve

the electric power, and with the motor speed by the encoder. These computations are all internal to the

motor controller.

The fourth and final module is a log unit. This module receives every message in the CAN-bus line

and writes it down in a SD card.

Each of these modules uses a generic board (Fig.6.4) to compute the necessary data which consists

of a dsPIC30f4013 from Microchip working at 30MHz. Every CAN-bus message has a time stamp

associated.

6.1.2 DGPS Acquisition system

The DGPS acquisition system (Fig.6.5) uses two ASH-660 GNSS antennas from Ashtech connected

to a dedicated Ashtech MB100 board that besides the position and velocity also returns the heading

angle. The data returned from the board is pre-processed and logged (orange briefcase). The system

Figure 6.4: Board used in FST06e modules with
the dsPIC30f4013.

Figure 6.5: DGPS acquisition system. Two anten-
nas and the logging and supply system.
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has its own power supply, and the data can be retrieved by connecting a computer to the acquisition

system. Unfortunately, this system was only working at 10Hz. This DGPS uses a ”rover-base” system.

The ”base” antenna is used as reference, and the position and velocity are given for the ”rover” location.

6.2 Data treatment

Unlike simulations, in real data acquisition, most of the time the data does not return in perfect usable

conditions, and some processing must be done.

6.2.1 GPS conversion

This situation is particularly true for the GPS. In simulation is assumed that the position is given in

meters, in reality the GPS returns Latitude, Longitude and Altitude (LLA) and ECEF (Earth-Centered,

Earth-fixed) coordinates. To have useful data a transformation is made from the previous coordinate

systems to ENU (East North Up) [45]. Is chosen a point or location of reference with latitude λr, longitude

νr and an ECEF position {Xr, Yr, Zr}, that is going to be the origin of the new referential. The ECEF to

ENU transformation consists in approximating a plane centred at that point. This is only valid for small

distances, but given the size of the Earth, the size of the track used, or other type of motorsport track,

this is still a valid approximation.
xp

yp

zp

 =


− sinλr cosλr 0

− sin νr cosλr −sin sinλr cos νr

cos νr cosλr cos νr sinλr sin νr



Xp −Xr

Yp − Yr
Zp − Zr

 (6.1)

The transformation is given by (6.1), where {Xp, Yp, Zp} is the ECEF coordinates to make the con-

version to ENU, and {xp, yp, zp} are the ENU coordinates in meters.

However, this transformation is not enough for the intended application. The required position is of

the CG, and the obtained position is from the receiver, that in the case of the FST06e is at a considerable

distance. The general equation that corrects this offset is (6.2), where xrec is the distance from the CG

to the receiver. pcgx
pcgy

 =

cos ψ̂ − sin ψ̂

sin ψ̂ cos ψ̂

xrec
0

+

xp
yp

 (6.2)

Since the position used is only in the X-Y plane, the vertical coordinate was drop. Also since the

receivers are aligned with the X-axis, the y coordinate is assumed zero. The car GPS receiver is at

xrec = 0.82m and the DGPS front receiver at xrec = 1.2m

6.2.2 Accelerometer displacement

The accelerometer as stated in the model (2.34) is susceptible to the distance from the sensor

location to the body CG, where the acceleration readings are required. For this correction is assumed

that IMU location relative to CG is d̄ = [0.46, 0, 0.2]m.
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6.3 Estimate results

Besides the corrections presented before, all the filters work and are used in the same way as in the

simulation, with only small adjusts to the gains. In the following sections, the results of each filter will

be presented and discussed. Whenever available, the data from the DGPS is presented side by side

with estimated results. As stated before the DGPS system only works at 10Hz, and being a system that

requires satellite data in urban environment is also susceptible to disturbances and errors. Nevertheless,

the data retrieved are enough to work as ground truth for the estimates.

The data presented only goes to 300 seconds, since at that point the DGPS turned off. The filters

continue but without ground truth for reference it was not worth it to presented.

It is noteworthy that the filter does not need the DGPS to work. It is only needed for comparison

purposes.

6.3.1 Attitude Complementary Filter

In Fig.6.6 is depicted the yaw angle of the car, using the raw data from the magnetometer after the

calibration proposed in Appendix B, the estimated yaw angle from the ACF and the yaw angle computed

by the DGPS. The ACF gains used are presented in Tab.6.8 as well as the weights used for state and

observations.

From the comparison of the magnetometer with the estimates is possible to see that the estimated is

a much cleaner signal, and the effects of using the yaw rate in ACF are clearly visible. These influences

can be spotted especially in turnings like between 200s and 202s, where the estimate is separated

from the magnetometer and closer to the DGPS value. But in some other occasions the DGPS angle

is much different from the estimate. However the DGPS values are not completely explainable, with
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Figure 6.6: Yaw angle comparison between the DGPS, the magnetometer and the ACF estimate, also a
detail of the yaw angle from 220 to 223.5 seconds.
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Observation weight State weight Filter Gain

Racf =
[
103
]

Qacf =

[
10−3 0

0 10−3

]
Kacf =

[
4.572× 10−3

−9.977× 10−4

]
Table 6.1: Parameters for the Attitude Complementary Filter used in the FST06e data.

some variations that are hard to justify like the detail between the 220s and the 223.5s where the

magnetometer shows a smooth behaviour, the ACF estimate also shows a smooth behaviour, even thou

it has a clear correction given by the yaw rate, and the DGPS has three major variations that do not

appear in the previous two signals. However, in the beginning and at the end the three signals have

closely the same values. These oscillations may be due to GPS acquisition difficulties at the time.

Even with these oscillations in Fig.6.7 is possible to see the angle error along the time to the DGPS

signal from the raw angle and the estimated yaw. It is clear that even with some error due to the estimate

or due to the DGPS, the yaw estimated by the ACF is more stable and smaller than the direct raw angle.

In Fig.6.8 is presented the yaw rate bias estimate for different initial conditions as well as the offset

observed on the sensor output. As seen in the simulations, the roll, pitch and ground inclination influ-

ences the bias, which is evident when the car starts moving at the 162 seconds. Before that, the bias is

stable around the offset.

In this filter since it has around 160 seconds to stabilize, the gain was computed iteratively along the

simulation, which converges just after 15 seconds. The peak at the beginning is due to the initial error

covariance matrix used. Even though these peaks are undesirable in a filter, since it had some time to

stabilize, they are useful for helping in a faster convergence.
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Figure 6.7: Yaw error comparison of the raw magnetometer yaw and the ACF estimate relative to the
DGPS yaw angle.
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Figure 6.8: Bias estimate of ACF for the yaw rate, using different initial conditions (IC).
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6.3.2 Position Complementary Filter

In Fig.6.9 is depicted the longitudinal velocity estimate by the PCF compared with the longitudinal

velocity from the DGPS. Analogously in Fig.6.10 is depicted the same comparison but for the lateral

velocity.

The weights used for the computation of the Kalman gain and the gain itself are presented in Tab.6.2.

As the ACF, the Kalman gain for the PCF was computed iteratively along the time reaching the conver-

gence for the Kpcf before the 40 seconds. As stated before, this method as some disadvantages like

the transient part at the beginning of the estimates, but results in faster convergence of the values,

especially the bias.

The gains used for the FST06e data presented where are different from the ones used in the simula-

tion. In the simulation, was given a smaller weight (more confidence) to the state matrix, in this data the

smallest weight was for the observation matrix. This was due to the accelerometer readings that were

much noisier than the expected. This noise is small when the IMU is standing still, but when moving the

noise increases. For example, in the constant velocity turn between 223s and 253s, where the lateral

acceleration is expected to be constant, the mean value is 10m/s2 with a standard deviation of 1.8m/s2

much higher than the used in the simulation (Tab.4.2) of 0.7m/s2. These higher values force the filter to

Observation weight State weight Filter Gain

Rpcf =

[
10−3 0

0 10−3

]
Qpcf =

 I2 0 0
0 5I2 0
0 0 7× 10−3 I2

 Kpcf =

0.999 I2 0 0
0 2.25I2 0
0 0 −0.082I2


Table 6.2: Parameters for the Position Complementary Filter used in the FST06e data.
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Figure 6.9: Longitudinal velocity results using the PCF relative to the DGPS longitudinal velocity. Also
green zones represent periods of time when the yaw rate was ≥ 30deg/s.
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Figure 6.10: Lateral velocity results using the PCF relative to the DGPS lateral velocity.
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Figure 6.11: Bias estimate for the longitudinal acceleration using the PCF for different initial condition
(IC).
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Figure 6.12: Bias estimate for the lateral acceleration using the PCF for different initial condition (IC).

have more confidence in the GPS position.

Analysing Fig.6.9 is possible to see that in general the estimate of the longitudinal velocity accompa-

nies the longitudinal velocity from the DGPS, especially in straight lines. However, some discrepancies

appear during the turns (green zones), generating some errors that can be neglected due to the range

of velocities used.

In the lateral velocity, Fig.6.10, the estimated value suffers similar errors, but since the range used

in the lateral velocity is smaller, the errors are more evident. The estimated lateral velocity shows a

similar behaviour to the DGPS lateral velocity. Even in the constant velocity turns ([223,253] seconds

and [266,299] seconds), is able to pick the subtle changes in the lateral velocities cause by the road

inclination. However, at some other instants, both velocities have opposite behaviours, as for example

in [206,210] seconds.

Like it was explained before, the bias of the accelerometer cannot be as easily predicted as the

yaw rate, so in Fig.6.11 and Fig.6.12, the bias estimate of the longitudinal and lateral accelerations

respectively, is presented for different initial conditions. In both cases is possible to see that the bias

converges for a value when the car is stopped, but when the car is moving the bias tries to adapt. Note

that the constant velocity turns mentioned before are in opposite directions.
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6.3.3 Vehicle Linear Estimator and Vehicle Non-Linear Estimator

Next are presented the sideslip estimate results for the VLE (Fig.6.13) and VNLE (Fig.6.14), both

of them compared with the sideslip from the DGPS. The results are divided in two graphs for an easier

reading.

The weights used for the computation of the filter gains can be seen in Tab.6.3. Like before, the

Kalman gain for the VLE was computed before relative to each longitudinal velocity and then used as a

lookup table in the filter. The gains for the VNLE had to be computed online at each iteration. The major

change to the weights was the observation matrix of the VNLE, where the gains were slightly increased.

This was made to better adapt the filter to the measurements, but mainly due to the longitudinal force

introduction, that has been assumed as a free noise signal, but like any measurement that is not true.

The three signals presented, VLE, VNLE and DGPS sideslip, show a perfect zero angle until the 164

seconds, this was due to post-processing where is assumed that below 3m/s of longitudinal velocity, no

sideslip occur. This algorithm was also used in the simulation and has as its sole purpose to remove

undesirable noise when the vehicle is standing still or slow enough to not generate significant sideslip.

Note that the 3m/s isn’t any special value, just a threshold that seem to not introduce any significant

error, but that could do the job of cleaning the noise.

As already seen before, the VLE shows up as a smoother signal than the VNLE, however it is not as

close to the DGPS signal.

Analysing first the VLE in Fig.6.3 shows that almost every time that a clear spike of sideslip appears

in the DGPS, the VLE also picks it up. However, the estimated angle is a little more conservative than the

one from the DGPS. Besides that, in the constant velocity turns, even with the lateral velocity observation

oscillating due to the road inclination, the VLE sideslip is almost constant.
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Figure 6.13: Comparison between the sideslip β using the VLE and the β computed from the DGPS.
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Figure 6.14: Comparison between the sideslip β using the VNLE and the β computed from the DGPS.
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VLE VNLE

Observation weight RV LE =

[
3× 10−2 0

0 5× 10−2

]
RV NLE =

2× 10−3 0 0
0 2× 10−3 0
0 0 10−2


State weight QV LE =

[
10−3 0

0 10−4

]
QV NLE =

10−1 0 0
0 10−3 0
0 0 9× 10−1


Covariance error PV LE =

[
10 0
0 10

]
PV NLE =

0.1 0 0
0 10 0
0 0 10


Table 6.3: Parameters for the computation of Kalman gains for both the VLE and the VNLE used with
the FST06e.

The VNLE, unlike the VLE, can catch smaller disturbances at the cost of being noisier. Where the

VNLE stands out is the constant velocity turns, where it can pick the oscillations induced by the road

inclination something that the VLE cannot do. Another situation that attracts some attention is around

the second 218, where the VNLE and the DGPS have opposite reactions. This situation also emerged

in the lateral velocity estimate in Fig.6.10, and arise a doubt of whose fault is it. It can be that the VNLE

is using two much of the PCF estimate, and this one had a bad estimation for that point for some reason,

or it can be an error in the DGPS like those seen in the ACF.

Other situation that arises, is in the constant velocity turns, where the VNLE and the DGPS seem

unsynchronized. This may be related to the time log of some system that for some reason got delayed.

In the overall is safe to conclude that the VNLE had better results compared with the VLE.

Without an absolute, high frequency sensor for the sideslip like the optical flow, is not possible to

clearly say if the estimator architecture used in the car could complete the job with small errors or not.

However, with the estimated value close to the DGPS sideslip as seen with the VNLE, is possible to say

that it is a good alternative system, and with a more deeper validation, and more accurate sensors could

reveal as the best overall alternative. Additionally, in Tab.6.4 is possible to see the statistical values of

error for both vehicle estimators.

Max Error mean σ σ2

VLE 9.3041 -0.0763 2.7314 7.4606
VNLE 11.1352 -0.3845 2.5833 6.6736

Table 6.4: Comparison of statistical data for the computation of the sideslip angle for the result with the
VLE and VNLE.
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Chapter 7

Conclusions

7.1 Achievements

This works proposes an estimator architecture using a fusion of a GPS/INS to retrieve a sideslip

estimation of a Formula Student prototype. The main goal is to have an on-board system capable of

providing real-time data at high enough frequencies to be used in a more complex control algorithm and,

in this way, be able to replace expensive dedicated sensors.

First a complex vehicle model was presented, that can recreate the non-linearities and interactions

of the different modules. This model is used to simulate the data acquired from sensors on-board the

vehicle, and provide the true result of sideslip.

An architecture was presented using three filters. Two kinematic, one for the attitude that combines

the readings of a digital compass with the yaw rate, giving a heading angle of the vehicle. A second that

uses the position from a GPS with the accelerometers on-board to provide the velocity components in

the vehicle frame.

For the third filter it is used the planar vehicle model to introduce the dynamics of the car and pro-

vide the sideslip angle. For this one, two estimators are compared one with linear dynamics, and other

with non-linear dynamics. The linear estimator showed good results for a more controlled and pre-

dicted actuation, as the non-linear showed good results for an overall actuation with the price of being

computationally heavier.

The estimator architecture was then tested with real data. First, inside the laboratory where the filters

were implemented in a micro-controller and running data at 100Hz, proving that the system was capable

of working in the necessary conditions to supply a control algorithm. Then, the estimator architecture

was tested off-line, but with real data acquired from a Formula Student prototype where it was compared

side-by-side with the data from a DGPS, showing very promising results.

From this work resulted two technical conference papers. One already presented [46], and a second

[47] already accepted and to be presented in the end of November 2017.
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7.2 Future Work

Despite the developed work achieved almost every main objective proposed, some work should still

be done to improve this system.

The missing objective in this work, is the implementation in real-time in a Formula Student prototype.

The work addressed the implementation of the filters in a micro-controller, and tested the architecture

with real data, but was still missing the opportunity to be implemented in the vehicle.

The results obtained can still be improved. The IMU used is a low-cost one, and the data retrieved

from it is not ideal for this type of work. The replacing of the IMU for one more precise and accurate is a

must in a system like this.

Another route to be explored, is the use of redundant sensors, namely, the use of two IMUs in

different locations of the vehicle.

In this work, was always possible to use all the sensors at the same frequency. The use of sensors

with different rates should also be explored.

Even after all the work done with the calibration of the magnetometer, this sensor was always the

weaker point of the system. A more reliable source for the heading should be explored since the remain-

ing filters depend widely on this information.

68



Bibliography

[1] W. Bertelsen. Popular Science, chapter You’ll cross the U.S. in two hours in the air car that steers

and parks itself, pages 68, 69, 178. August 1961.

[2] L. B. Almeida, J. Azevedo, C. Cardeira, P. Costa, P. Fonseca, P. Lima, A. F. Ribeiro, and V. Santos.

Mobile robot competitions: fostering advances in research, development and education in robotics.

2000.

[3] SAE International. Automated driving: Levels of driving automation are defined in new sae interna-

tional standard J3016., 2014. URL https://www.sae.org/misc/pdfs/automated_driving.pdf.

Accessed: 2017-09-30.

[4] L. De Novellis, A. Sorniotti, P. Gruber, and A. Pennycott. Comparison of feedback control techniques

for torque-vectoring control of fully electric vehicles. IEEE Transactions on Vehicular Technology,

63(8):3612–3623, 2014.

[5] M. Doumiati, A. C. Victorino, A. Charara, and D. Lechner. Onboard real-time estimation of vehicle

lateral tire–road forces and sideslip angle. IEEE/ASME Transactions on Mechatronics, 16(4):601–

614, 2011.

[6] D. Bevly, J. Ryu, and J. Gerdes. Integrating ins sensors with gps measurements for continuous

estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Transactions on Intelligent

Transportation Systems, 7(4):483–493, December 2006.

[7] H. F. Grip, L. Imsland, T. A. Johansen, J. C. Kalkkuhl, and A. Suissa. Vehicle sideslip estimation.

IEEE control systems, 29(5), 2009.

[8] J. Ryu, E. J. Rossetter, and J. C. Gerdes. Vehicle sideslip and roll parameter estimation using gps.

In Proceedings of the AVEC International Symposium on Advanced Vehicle Control, 2002.

[9] M. Doumiati, A. Victorino, A. Charara, and D. Lechner. A method to estimate the lateral tire force

and the sideslip angle of a vehicle: Experimental validation. In American Control Conference (ACC),

2010, pages 6936–6942. IEEE, 2010.

[10] M. Gadola, D. Chindamo, M. Romano, and F. Padula. Development and validation of a kalman

filter-based model for vehicle slip angle estimation. Vehicle System Dynamics, 52(1):68–84, 2014.

69

https://www.sae.org/misc/pdfs/automated_driving.pdf


[11] K. Nam, S. Oh, H. Fujimoto, and Y. Hori. Estimation of sideslip and roll angles of electric vehicles

using lateral tire force sensors through rls and kalman filter approaches. IEEE Transactions on

Industrial Electronics, 60(3):988–1000, March 2013.

[12] C. Geng, L. Mostefai, M. Denaı̈, and Y. Hori. Direct yaw-moment control of an in-wheel-motored

electric vehicle based on body slip angle fuzzy observer. IEEE Transactions on Industrial Electron-

ics, 56(5):1411–1419, 2009.

[13] M. Abdulrahim. On the dynamics of automobile drifting. Technical report, SAE Technical Paper,

2006.

[14] P. Zhang, J. Gu, E. E. Milios, and P. Huynh. Navigation with imu/gps/digital compass with unscented

kalman filter. In Mechatronics and Automation, 2005 IEEE International Conference, volume 3,

pages 1497–1502. IEEE, 2005.

[15] J. Sasiadek and P. Hartana. Sensor data fusion using kalman filter. In Information Fusion, 2000.

FUSION 2000. Proceedings of the Third International Conference on, volume 2, pages WED5–19.

IEEE, 2000.

[16] A. Nemra and N. Aouf. Robust ins/gps sensor fusion for uav localization using sdre nonlinear

filtering. IEEE Sensors Journal, 10(4):789–798, 2010.

[17] S. Sukkarieh, E. M. Nebot, and H. F. Durrant-Whyte. A high integrity imu/gps navigation loop for

autonomous land vehicle applications. IEEE Transactions on Robotics and Automation, 15(3):572–

578, 1999.

[18] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel. A complementary filter for attitude estimation

of a fixed-wing uav. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on, pages 340–345. IEEE, 2008.

[19] J. F. Vasconcelos, B. Cardeira, P. Oliveira, and P. Batista. Discrete-time complementary filters for

attitude and position estimation: Design, analysis and experimental validation. IEEE Transactions

on Control Systems Technology, 19(1):181–198, January 2011.

[20] N. Martins. Integration of rc vehicles in a robotic arena. Master’s thesis, Instituto Superior Técnico,
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Appendix A

Vertical Model Expansion

The model presented in section 2.2 for the vertical dynamics of the car is defined has a classic state-

space system ẋ = A.x + B.u where x is the vector containing the state variables (A.1), and u is the

input vector (A.2).

x =
[
Z Ż θ θ̇ φ φ̇ h1 ḣ1 h2 ḣ2 h3 ḣ3 h4 ḣ4

]T
(A.1)

u = [Fz Mθ Mφ G1 G2 G3 G4] (A.2)

The expanded model equations from section 2.2:

• The expansion of equation (2.7) for the Z-axis:

mchZ̈ =Fz − [Ks1 +Ks2 +Ks3 +Ks4]Z − [Cs1 + Cs2 + Cs3 + Cs4] Ż

+ [(Ks2 +Ks4)d− (Ks1 +Ks3)c]φ+ [(Cs2 + Cs4)d− (Cs1 + Cs3)c] φ̇

+ [(Ks1 +Ks2)a− (Ks3 +Ks4)b] θ + [(Cs1 + Cs2)a− (Cs3 + Cs4)b] θ̇

+Ks1h1 + Cs1ḣ1 +Ks2h2 + Cs2ḣ2 +Ks3h3 + Cs3ḣ3 +Ks4h4 + Cs4ḣ4

(A.3)

• The expansion of equation (2.8) for the roll:

Iφφ̈ =Mθ + [(Ks2 +Ks4)d− (Ks1 +Ks3)c]Z + [(Cs2 + Cs4)d− (Cs1 + Cs3)c] Ż

−
[
(Ks1 +Ks3)c2 + (Ks2 +Ks4)d2

]
φ−

[
(Cs1 + Cs3)c2 + (Cs2 + Cs4)d2

]
φ̇

+ [(Ks1a−Ks3b)c+ (Ks4b−Ks2a)d] θ + [(Cs1a− Cs3b)c+ (Cs4b− Cs2a)d] θ̇

+Ks1ch1 + Cs1cḣ1 −Ks2dh2 − Cs2dḣ2 +Ks3ch3 +Ks3cḣ3 −Ks4dh4 −Ks4dḣ4

(A.4)

• The expansion of equation (2.9) for the pitch:

Iθ θ̈ =Mθ + [(Ks1 +Ks2)a− (Ks3 +Ks4)b]Z + [(Cs1 + Cs2)a− (Cs3 + Cs4)b] Ż

+ [(Ks1c−Ks2d)a+ (Ks4d−Ks3c)b]φ+ [(Cs1c− Cs2d)a+ (Cs4d− Cs3c)b] φ̇

−
[
(Ks1 +Ks2)a2 + (Ks3 +Ks4)b2

]
θ −

[
(Cs1 + Cs2)a2 + (Cs3 + Cs4)b2

]
θ̇

−Ks1ah1 − Cs1aḣ1 −Ks2ah2 − Cs2aḣ2 +Ks3bh3 + Cs3bḣ3 +Ks4bh4 + Cs4bḣ4

(A.5)
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• The expansion of equation (2.10) for the unsprung mass 1:

mu1ḧ1 =Ks1Z + Cs1Ż +Ks1cφ+ Cs1cφ̇−Ks1aθ − Cs1aθ̇

− [Ks1 +Kp1 +Kar1]h1 − [Cs1 + Cp1] ḣ1 +Kar1h2 +Kp1G1

(A.6)

• The expansion of equation (2.11) for the unsprung mass 2:

mu2ḧ2 =Ks2Z + Cs2Ż −Ks2dφ− Cs2dφ̇−Ks2aθ − Cs2aθ̇

− [Ks2 +Kp2 +Kar1]h2 − [Cs2 + Cp2] ḣ2 +Kar1h2 +Kp2G2

(A.7)

• The expansion of equation (2.12) for the unsprung mass 3:

mu3ḧ3 =Ks3Z + Cs3Ż +Ks3cφ+ Cs3cφ̇+Ks3bθ + Cs3bθ̇

− [Ks3 +Kp3 +Kar2]h3 − [Cs3 + Cp3] ḣ3 +Kar2h3 +Kp3G3

(A.8)

• The expansion of equation (2.13) for the unsprung mass 4:

mu4ḧ4 =Ks4Z + Cs4Ż −Ks4dφ− Cs4cdφ̇+Ks4bθ + Cs4bθ̇

− [Ks4 +Kp4 +Kar2]h4 − [Cs4 + Cp4] ḣ4 +Kar2h4 +Kp4G4

(A.9)
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Appendix B

Magnetometer Calibration

The magnetometer is used to acquire the yaw angle of the vehicle, but its readings are full of errors

and perturbation that must be corrected before the data can be used. In this chapter, a small introduction

will be made to the errors associated with this sensor as well as a proposed model by [30]. Later on,

keeping in mind the sensor model, a calibration procedure will be presented using real data, where

the results can be integrated in a real-time acquisition system, to produce a more accurate yaw angle

measure.

B.1 Magnetometer model

The magnetometer suffers from several sources of error being them:

• Magnetic declination - Since the sensor is to be used in a vehicle, in a track, the magnetic declina-

tion variation is minimal, and can be considered just a constant deviation in the yaw reading.

• Hard Iron - This is created by ferromagnetic materials, and in general by any material in the vehicle

or in the environment that generates a constant magnetic field additive to the earth’s magnetic

field. Thus, usually represented by an offset associated to the magnetic readings.

• Soft Iron - This is a distortion to the magnetic field created by materials that do not necessarily

generate magnetic fields. These materials distort the earth magnetic field and the fields generated

by other materials.

• Electric influences - Nearby electric elements like electric motors and just the current flowing in

a wire or circuit, generates magnetic fields that add to the earth magnetic field. Unlike the hard

iron influence that is constant, current flowing in a motor is much motor unpredictable, since the

magnetic field will change with velocity and torque. The same goes for current in a wire or circuit.

• Manufacturing and application - Errors or imprecisions in the manufacturing of the sensor can

generate misalignments between the axes, and different scale factors for each axis. Also, when

soldering and applying a sensor, misalignments between the sensor and vehicle frames also gen-

erate errors.
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• Noise - All sensors have noise, and the magnetometer is no exception.

Is almost impossible to correct all the errors perfectly, but is possible to reduce their influence. In

order to calibrate this sensor, first is necessary to comprehend how the above distortions influence the

readings. A model for the magnetometer is proposed by [30] and [31] described by equation (B.1).

Where m represents the ideal magnetic vector, and mr the sensor reading.

mr = RTη CSFRη (CSIm + δHI) (B.1)

As stated before, the hard iron distortion is an additive magnetic field represented by δHI , and the

soft iron distortion are represented by the CSI matrix. The hard and soft iron distortions equations are

presented in more detail in (B.2). Where the terms cSI1 , cSI2 , cSI3 , cSI4 , cSI5 , cSI6 , cSI7 , cSI8 , cSI9 are

responsible to generate the soft iron effects.

CSIm + δHI =


(1 + cSI1) cSI2 cSI3

cSI4 (1 + cSI5) cSI6

cSI7 cSI8 (1 + cSI9)



mx

my

mz

+


δHIx

δHIy

δHIx

 (B.2)

The rotation matrix Rη, makes the rotation from the sensor frame to the body frame, and the matrix

CSF contains the scaling factors for each axis.

B.2 Calibration algorithm

The proposed algorithm for the magnetometer calibration, uses as reference the magnetometer

model (B.1) and the calibration proposed by [30]. Also, some additional conditions were applied for

the specific type of use needed. The following algorithm is exemplified using real data acquired using
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Figure B.1: Raw data from 3-axis magnetometer, acquired inside a laboratory
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the RC car (Fig.5.1) inside a laboratory.

From Fig.B.1, is possible to see that the data is not usable as it is, being the major problem the centre

of the axis. Computing the yaw like this will not return any usable data.

The first step is a fit to a plane in order to remove the IMU orientation, and application errors of the

sensor. This can be done since the vehicle only moves in a plane, and the data used must be acquired in

a flat surface. The raw data is fitted to a plane equation (B.3) as seen in (Fig.B.2) using a Least Squares

algorithm with no weights.

P1x+ P2y + P3 = z (B.3)

With the parameters P1, P2 and P3, of the equation is then possible, using the normal vector to the

plane, to compute the rotation matrices around the x and y axis respectively Rφ and Rθ. Being the

rotation matrices for this given by (B.4) where the angles are computed from (B.5).

Rφ =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , Rθ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (B.4)

φ = tg-1

(
P2

−1

)
, θ = tg-1

(
P1

P 2
2 + (−1)2

)
(B.5)

In Fig.B.3 is possible to see the influence of these rotation. For this case, the differences are small

since the IMU frame is pretty close to the vehicle frame.

The z-axis of the sensor is only needed for the calibration above. Since the yaw only depends of the

x and y axis, the z will be neglected from now on. In Fig.B.4 is possible to see the data corrected above

in the x-y plane, and once again is clear that computing the yaw from this will have no utility.

The second step is a fit to a 2D ellipse. It’s chosen an ellipse due to the transformation suffered from

the soft iron distortions. The data is fitted to the conic equation of the ellipse (B.6), where E1, E2, E3,
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Figure B.2: Plane fitted to magnetometer raw data
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E4, E5, E6 are coefficients to be determined using a Least Squares fitting [48]. For the sake of simplicity,

is assumed F = −1. The fitted equation can be seen in Fig.B.4.

E1x
2 + E2xy + E3y

2 + E4x+ E5y + E6 = 0 (B.6)

As can easily be interpreted, the E2 term is the responsible for the rotation of the ellipse. The non-

tilted ellipse will have E2 = 0, and to find it using equation (B.6), x is replaced by x cos η − y sin η and y

by x sin η − y cos η, where η is the ellipse angle of rotation. Rearranging the equation to be similar to the

original results in (B.7).

x2
(
E1 cos2 η − E2 cos η sin η + E3 sin2 η

)
+ xy

(
2E1 cos η sin η + E2

(
cos2 η − sin2 η

)
− 2E3 cos η sin η

)
+ y2

(
E1 sin2 η + E2 cos η sin η + E3 cos2 η

)
+ x (E3 cos η − E5 sin η) + y (E4 sin η + E cos η) + E6 = 0

(B.7)

Using the condition of no tilt E2 = 0, is then easy to find the angle η from (B.8). With the angle found,

the new coefficients for the non-tilted ellipse {n} are given by (B.9)

2E1 cos η sin η + E2

(
cos2 η − sin2 η

)
− 2E3 cos η sin η = 0 ⇒ η =

1

2
tg-1

(
E2

E3 − E1

)
(B.8)

nE1 =E1 cos2 η − E2 cos η sin η + E3 sin2 η , nE4 = E3 cos η − E5 sin η

nE3 =E1 sin2 η + E2 cos η sin η + E3 cos2 η , nE5 = E4 sin η + E5 cos η
(B.9)

Using these new parameters, the conic equation of the ellipse (B.7) is transformed in the general

equation of the ellipse (B.10) using the complete squares method, and the ellipse parameters retrieved

as (B.11). Where x0 and y0 are the centre coordinates of the ellipse, ra is the radius of axis a and rb the

radius of the axis b.
(x− x0)

2

r2a
+

(y − y0)
2

r2b
= 1 (B.10)

x0 =
−nE4

2nE1
, y0 =

−nE5

2nE3
, ra =

√∣∣∣∣nE”
6

nE1

∣∣∣∣ , rb =

√∣∣∣∣nE”
6

nE3

∣∣∣∣
where : nE”

6 = −E6 +
nE2

4

4nE1
+

nE2
5

4nE3

(B.11)

With these parameters, the non-tilted ellipse centre is used to remove the offset, and the radius used

to compute the scaling factor, σsf , that transforms the ellipse in a circle.

σsf =
rb
ra

(B.12)

The result of the calibration compared with the initial raw data of the magnetometer can be seen in

Fig.B.5. In this case the effect of the soft iron influences is not evident and as such, the data is close

to a circle. This was also confirmed by the scale factor which was close to one, σsf = 1.003. Using
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all the constants found in this calibration/identification process, is possible to implement it in a real time

acquisition using equation (B.13) which is similar to the previous model (B.1).

mC = RTη



σsf 0 0

0 1 0

0 0 1


Rη

RθRφmr −RTη


x0

y0

0




 , Rη =


cos η − sin η 0

sin η cos η 0

0 0 1

 (B.13)

Where mr is the raw data readings from the magnetometer, Rx andRy are the rotation matrices (B.4)

for the plane adjust, x0 and y0 the coordinates of the non-tilted ellipse, σsf the scaling factor (B.12), and

Rη is the rotation matrix for the ellipse tilt angle η. The yaw angle can then be computed using the

calibrated readings mC . In Fig.B.6 is possible to see the difference between the raw and calibrated data

with a reference value given by a second system.
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Figure B.6: Comparison of yaw angle computed from raw data, yaw computed from calibrated data, and
reference given by a second more precise system.
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Appendix C

Raspberry Pi 3 - Shield

The shield designed for the Raspberry Pi 3, serves several proposes. Being them, the protection

of the Raspberry Pi from wrong connections, to facilitate the implementation and connections, and to

remove the tangle of cables on top of the vehicle.

To protect the raspberry the shield should have two optocouplers, one for each PWM signal. A

tension regulator was implemented since the actuation of both the motor and the servo require a 3.3V

logic signal and the only source from the RC vehicle side is the battery.

Also, two LED’s were implemented. One to indicate that the tractive system is on. And a second

connected to a digital output of the Raspberry for debug and information.

The shield prototype made is presented in Fig.C.1. The PCB design is also presented in Fig.C.2 for

identification of the pins number related to the schematic of Fig.C.3. The list of materials is:

• ×1 LDO (MCP1702-3302)

• ×2 Optocoupler (4n35)

• ×2 Capacitors (1µF)

• ×4 Resistors (560Ω)

• ×2 Resistors (1kΩ)

• ×1 Red LED

• ×1 Green LED

• ×1 Female Header (40×2)

• ×2 Male Header (3×1)

• ×1 Male Header (4×1)

Figure C.1: Prototype shield. Figure C.2: PCB design of shield.
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Figure C.3: Schematic of the shield.

The voltage regulator circuit presented in Fig.C.3 is the one proposed in the datasheet. The cir-

cuit for the optocoupler was design with a commitment between fast output response and low current

consumption.

For the optocoupler emitter resistor was found that around 500Ωwas a good compromise between

the fast response and a low current. It was used 560Ωresistor due to availability in the laboratory. The

forward current (If ) is then:

If =
3.3V

560Ω
= 5.9mA (C.1)

From the optocoupler datasheet is found that the current transfer ratio (CTR) is 100%, resulting in

the same current at the collector (Ic) since:

Ic = CTR× If (C.2)

The output is supplied by a V ccr=3.3V from the regulator, and for the logic signal to have the same

3.3V the condition (C.3) must verify. This means the tension lost will be less or equal to zero.

V ccr −RoIc ≤ 0 (C.3)

Which results in a resistor output Ro value of at least 560Ω. This is expected due to the CTR value.
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