

Long-term evolution of *Burkholderia multivorans* bacteria during chronic respiratory infections of cystic fibrosis patients

Filipa Duarte Pessoa

Thesis to obtain the Master of Science Degree in

Biotechnology

Supervisor: Doctor Leonilde de Fátima Morais Moreira Co-Supervisor: Doctor Inês Nunes Silva

Examination Committee:

Chairperson: Doctor Miguel Nobre Parreira Cacho TeixeiraSupervisor: Doctor Leonilde de Fátima Morais MoreiraMembers of the Committee: Doctor Arsénio do Carmo Sales Mendes Fialho

November 2017

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Prof. Leonilde Moreira for the constant support and guidance during the development of this work, and my co-supervisor Dr. Inês Silva for all the help and valuable advice. I also thank every member of the Biological Sciences Research Group (BSRG) that helped me throughout my experimental work, in particular Marcelo Ramires, for all the teachings and for always showing great availability, and Filipe Bica, for making the hardest days at the lab a lot more fun.

Additionally, I would like to acknowledge Prof. David P. Speert from the University of British Columbia, Canada, for providing the clinical isolates I used in the experiments, and to Prof. Vaughn Cooper and Dr. Chris Marshall from the University of Pittsburgh, USA, for all their efforts in the *de novo* assembly step required for this work.

Financial support by Programa Operacional Regional de Lisboa 2020 (LISBOA-01-0145-FEDER-007317) is also thankfully acknowledged.

Finally, I would like to thank my family and friends, especially my parents, for their unconditional support and invaluable motivation. A special thanks to my dear friends Inês and Rebeca, who have been by my side since the beginning of this five-year journey, and Mariana, who has been by my side for as long as I can remember. To Laura, the one person that always understands how I'm feeling, even when I can't put it in words, and knows exactly what to say in every single moment. And to João, for the endless support, patience and for constantly encouraging me to be better.

RESUMO

A fibrose quística é uma doença genética autossómica recessiva que afeta principalmente as funções pulmonares dos doentes, sendo que infeções respiratórias causadas por agentes patogénicos oportunistas podem ter consequências letais. Infeções crónicas causadas por bactérias pertencentes ao complexo Burkholderia cepacia são associadas a uma pior condição clínica para os doentes. Constituindo um ambiente complexo, as vias respiratórias de doentes com fibrose quística apresentam diversas fontes de stress que proporcionam o surgimento de variantes bacterianas com uma capacidade superior de subsistir nesse ambiente. Neste trabalho foi estudada a evolução genómica e fenotípica de 37 isolados clínicos de Burkholderia multivorans recolhidos seguencialmente de dois doentes com fibrose quística ao longo de 18 anos. Com este fim, a estratégia compreendeu a sequenciação de todos os genomas e identificação de mutações entre os isolados de cada doente e a análise de fenótipos relacionados com a adaptação bacteriana às vias respiratórias de doentes com fibrose quística, tais como a produção do antigénio O do lipopolissacárido, a suscetibilidade a antibióticos, a formação de biofilmes, a motilidade e a virulência em Galleria mellonella. Observou-se que os últimos isolados recolhidos dos doentes apresentaram resistência a antibióticos e formação de biofilmes superiores, e motilidade, taxas de crescimento e virulência em G. mellonella inferiores. Complementando estes resultados, as mutações mais relevantes que diferenciaram os isolados recolhidos posteriormente dos iniciais ocorreram em genes relacionados com resistência a antibióticos, metabolismo de lípidos e regulação da formação de biofilmes, motilidade e virulência. Adicionalmente, o regulador global fixL foi identificado como um possível candidato para a regulação de propriedades que influenciam a adaptação de bactérias do complexo Burkholderia cepacia ao hospedeiro. A compreensão das estratégias inerentes à adaptação evolutiva de bactérias responsáveis pelo desenvolvimento de infeções crónicas em doentes com fibrose quística poderá elucidar novos alvos para a criação de terapias com maior eficácia.

PALAVRAS-CHAVE

Fibrose quística; *Burkholderia multivorans*; evolução bacteriana; infeções respiratórias crónicas; genómica comparativa

ABSTRACT

Cystic fibrosis is an autosomal recessive genetic disorder that affects mainly the pulmonary functions of patients, creating a particular environment for airway infections with opportunistic pathogens that might have fatal consequences. Chronic infections with Burkholderia cepacia complex bacteria have been associated with a worse clinical outcome for patients. As a complex and challenging environment, the cystic fibrosis airways display several stress sources that lead to the emergence of bacterial variants with improved capacity to subsist in that environment. The aim of this work was to assess the genomic and phenotypic evolution of 37 Burkholderia multivorans isolates sequentially retrieved from two infected cystic fibrosis patients over 18 years. The approach included genome sequencing of all isolates and the identification of mutations among the isolates of each patient, and the study of phenotypes associated with adaptation to the cystic fibrosis airways. Alterations in lipopolysaccharide O-antigen production, susceptibility to antibiotics, biofilm formation, motility, growth rate, and virulence in Galleria mellonella are reported here, with the latter isolates collected from both patients displaying increased resistance to antibiotics, increased biofilm formation, decreased motility, decreased growth rates and decreased virulence in G. mellonella. Furthermore, the most relevant mutations distinguishing the latter isolates from the first isolates occurred in genes that may relate to antibiotic resistance, lipid metabolism and regulation of biofilm formation, motility and virulence, with the identification of the global regulator fixL as a possible candidate for regulating traits that impact Burkholderia cepacia complex bacteria adaptation to the host. Insights into the strategies underlying the adaptive evolution of bacteria during the course of cystic fibrosis chronic infections may provide novel targets for the development of therapies.

KEYWORDS

Cystic fibrosis; *Burkholderia multivorans*; bacterial evolution; chronic respiratory infections; comparative genomics

LIST OF ABBREVIATIONS

ABC	ATP-binding cassette	
AHL	N-acyl-homoserine lactone	
ΑΤΡ	Adenosine triphosphate	
Bcc	Burkholderia cepacia complex	
BDSF	Burkholderia diffusible signal factor	
BLAST	Basic local alignment search tool	
cAMP	Cyclic adenosine monophosphate	
c-di-GMP	di-GMP Cyclic diguanosine monophosphate	
CF	Cystic fibrosis	
CFTR	Cystic fibrosis transmembrane conductance regulator	
CFU	U Colony-forming unit	
DNA	Deoxyribonucleic acid	
EDTA	Ethylenediaminetetraacetic acid	
EPS	Extracellular polymeric substance (exopolysaccharide)	
FBS	Fetal bovine serum	
HMW	High molecular weight	
LPS	Lipopolysaccharide	
MFS	Major facilitator superfamily	
MOI	Multiplicity of infection	
mRNA	Messenger RNA	
MSD	Membrane spanning domain	
NBD	Nucleotide binding domain	
OD	Optical density	
PBS	Phosphate-buffered saline	
PMN	Polymorphonuclear leukocytes	
PTS	Phosphotransferase system	
RNA	Ribonucleic acid	
rRNA	Ribosomal RNA	
SCFM	Synthetic cystic fibrosis medium	
SDS	Sodium dodecyl sulfate	
SNP	Single-nucleotide polymorphism	
tRNA	Transfer RNA	
YEM	Yeast extract mannitol medium	

TABLE OF CONTENTS

ACKNOV	WLEDGEMENTS	i
RESUMO	0	iii
PALAVR	RAS-CHAVE	iii
ABSTRA	ACT	iv
KEYWO	RDS	iv
LIST OF	ABBREVIATIONS	v
TABLE C	OF CONTENTS	vii
LIST OF	FIGURES	ix
LIST OF	TABLES	xi
1. INTI	RODUCTION	1
1.1.	Cystic fibrosis	1
1.1.1	1. Cystic fibrosis overview	1
1.1.2	2. Cystic fibrosis transmembrane conductance regulator (CFTR)	1
1.1.3	3. Mutations in the CFTR gene	2
1.1.4	4. Cystic fibrosis lung environment	3
1.1.	5. Pathogens and adaptation to the cystic fibrosis airways	5
1.2.	Pseudomonas aeruginosa infections in cystic fibrosis	7
1.2.1	1. P. aeruginosa overview	7
1.2.2	2. <i>P. aeruginosa</i> in the cystic fibrosis airways	7
1.2.3	3. Genomic and phenotypic evolution of <i>P. aeruginosa</i> isolates in cystic fibrosis	8
1.3.	Burkholderia cepacia complex infections in cystic fibrosis	13
1.3.1	1. <i>B. cepacia</i> complex overview	13
1.3.2	2. B. cepacia complex in the cystic fibrosis airways	13
1.3.3	3. Genomic and phenotypic evolution of <i>B. cepacia</i> complex isolates in cystic fibrosis .	14
1.4.	Objectives	18
2. MAT	TERIALS AND METHODS	19
2.1.	Bacterial strains and growth conditions	19
2.2.	Analysis of lipopolysaccharide	20
2.3.	Exopolysaccharide production	20
2.3.1	1. Liquid medium	20
2.3.2	2. Solid medium	20
2.4.	Antimicrobial susceptibility	20
2.5.	Biofilm formation	21
2.6.	Motility	21
2.6.1	1. Swimming motility	21
2.6.2	2. Swarming motility	21
2.7.	Growth rate and doubling time determination	21

2	2.8.	Virulence determination in Galleria mellonella	22
2	2.9.	Adhesion to epithelial cells	22
2	2.10.	Detection of single-nucleotide polymorphism (SNP) and indel mutations	22
2	2.11.	Phylogenetic analyses	23
2	2.12.	Statistical analyses	23
3.	RES	SULTS	24
3	8.1.	Analysis of <i>B. multivorans</i> isolates retrieved from CF patient P213	24
	3.1.1	1. B. multivorans isolates from CF patient P213	24
	3.1.2	2. Analysis of single-nucleotide polymorphism and indel mutations	24
	3.1.3	3. Analysis of lipopolysaccharide	31
	3.1.4	4. Exopolysaccharide production	32
	3.1.5	5. Susceptibility against antimicrobials	33
	3.1.6	6. Biofilm formation	35
	3.1.7	7. Swimming and swarming motility	35
	3.1.8	8. Growth rate and doubling time determination	37
	3.1.9	9. Adhesion to epithelial cells	37
	3.1.1	10. Virulence in <i>Galleria mellonella</i>	38
З	8.2.	Analysis of <i>B. multivorans</i> isolates retrieved from CF patient P426	41
	3.2.1	1. B. multivorans isolates from CF patient P426	41
	3.2.2	2. Analysis of single-nucleotide polymorphism and indel mutations	41
	3.2.3	3. Analysis of lipopolysaccharide	50
	3.2.4	4. Exopolysaccharide production	50
	3.2.5	5. Susceptibility against antimicrobials	52
	3.2.6	6. Biofilm formation	53
	3.2.7	7. Swimming and swarming motility	54
	3.2.8	B. Growth rate determination	54
	3.2.9	9. Adhesion to epithelial cells	55
	3.2.1	10. Virulence in <i>Galleria mellonella</i>	56
4.	DISC	CUSSION	59
5.	REFERENCES		67
6.	APP		73

LIST OF FIGURES

Figure 1 - Illustrative scheme of the CFTR protein at the cell membrane
$\label{eq:Figure 2} \textbf{Figure 2} \textbf{-} Scheme of CFTR mutations grouped in classes I to VI based on the associated functional$
defect
Figure 3 - Differences in mucociliary clearance between a non-CF airway epithelium and a CF airway epithelium
Figure 4 - Regulation network of MucA–AlgU
Figure 5 - Burkholderia multivorans mucoid phenotypes on yeast extract medium (YEM) plates: (A) non-
mucoid and (B) mucoid
Figure 6 - <i>B. multivorans</i> isolates recovered from CF patient P213
Figure 7 - Number of single-nucleotide polymorphisms (SNPs) distinguishing each B. multivorans
isolate retrieved from patient P213 from the first isolate over time
Figure 8 - Schematic representation of large deletions identified among the 16 B. multivorans isolates
recovered from CF patient P213
Figure 9 - Phylogenetic tree of the 16 <i>B. multivorans</i> isolates recovered from CF patient P213 31
Figure 10 - Changes in the LPS pattern of the 16 <i>B. multivorans</i> isolates recovered from CF patient P213. 32
Figure 11 - Exopolysaccharide production of the 16 B. multivorans isolates sequentially retrieved from
CF patient P213
Figure 12 - Mucoid phenotype assessment in yeast extract medium mannitol (YEM) for B. multivorans
isolates 6 (highly mucoid, ++), 9 (mucoid, +) and 10 (non-mucoid, -) of patient P213
Figure 13 - Susceptibility of the 16 <i>B. multivorans</i> isolates sequentially retrieved from CF patient P213
to antibiotics (piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin)
Figure 14 - Biofilm formation of the 16 <i>B. multivorans</i> isolates sequentially retrieved from CF patient P213
Figure 15 - Swimming motility of the 16 <i>B. multivorans</i> isolates sequentially retrieved from CF patient
P213
Figure 16 - Swarming motility of the 16 B. multivorans isolates sequentially retrieved from CF patient
P213
Figure 17 - Adhesion of the 16 B. multivorans isolates sequentially retrieved from CF patient P213 to
the bronchial epithelial cell line CFBE41o
Figure 18 - Survival of Galleria mellonella larvae inoculated with B. multivorans isolates retrieved from
CF patient P213
Figure 19 - <i>B. multivorans</i> isolates recovered from CF patient P426
Figure 20 - Number of single-nucleotide polymorphisms (SNPs) distinguishing each B. multivorans
isolate retrieved from patient P426 from the first isolate over time
Figure 21 - Schematic representation of large deletions identified among the 21 B. multivorans isolates
recovered from CF patient P426
Figure 22 - Phylogenetic tree of the 21 B. multivorans isolates recovered from CF patient P426 49

Figure 23 - Changes in the LPS pattern of the 21 B. multivorans isolates recovered from CF patient
P426
Figure 24 - Exopolysaccharide production of the 21 B. multivorans isolates sequentially retrieved from
CF patient P426
Figure 25 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) for B. multivorans
isolates 13 (highly mucoid, ++), 17 (mucoid, +) and 19 (non-mucoid, -) of patient P42651
Figure 26 - Susceptibility of the 21 B. multivorans isolates sequentially retrieved from CF patient P426
to antibiotics (piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin)
Figure 27 - Biofilm formation of the 21 B. multivorans isolates sequentially retrieved from CF patient
P426
Figure 28 - Swimming motility of the 21 B. multivorans isolates sequentially retrieved from CF patient
P426
Figura 29 - Adhesion of the 21 B. multivorans isolates sequentially retrieved from CF patient P426 to
the bronchial epithelial cell line CFBE41o55
Figure 30 - Survival of Galleria mellonella larvae inoculated with B. multivorans isolates retrieved from
CF patient P426

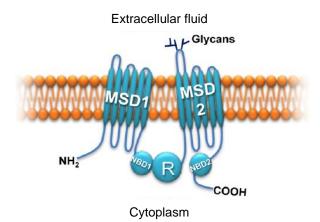
LIST OF TABLES

Table 1 - Date of isolation and ID of each B. multivorans isolate recovered from CF patient P213 19
Table 2 - Date of isolation and ID of each B. multivorans isolate recovered from CF patient P426 19
Table 3 - Lengths of the 5 contigs generated from the assembly of the genome of the first B. multivorans
isolate recovered from patient P213 and lengths of the corresponding chromosomes of <i>B. multivorans</i>
ATCC 17616
Table 4 - Polymorphic genes identified among the 16 B. multivorans isolates recovered from CF patient
P213
Table 5 - Large deletions identified among the 16 B. multivorans isolates recovered from CF patient
P213
Table 6 - List of mutations that fixed in the infecting B. multivorans population, distinguishing the first
three isolates and the subsequent isolates sampled from CF patient P213
Table 7 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of
incubation at 37°C for the 16 B. multivorans isolates sequentially retrieved from CF patient P213 33
Table 8 - Doubling times (in hours) calculated for the 16 B. multivorans isolates sampled from CF patient
P213
Table 9 - Lengths of the 7 contigs generated from the assembly of the genome of the first B. multivorans
isolate recovered from patient P426 and lengths of the corresponding chromosomes of B. multivorans
ATCC 17616
Table 10 - Polymorphic genes identified among the 21 B. multivorans isolates recovered from CF patient
Table 10 - Polymorphic genes identified among the 21 B. multivorans isolates recovered from CF patient P426. 42
P426
P426
P426. 42 Table 11 - Large deletions identified among the 21 <i>B. multivorans</i> isolates recovered from CF patient P426. 47
P426. 42 Table 11 - Large deletions identified among the 21 <i>B. multivorans</i> isolates recovered from CF patient P426. 47 Table 12 - List of SNPs that exist in the majority of the isolates belonging to the infecting <i>B. multivorans</i>
P426. 42 Table 11 - Large deletions identified among the 21 <i>B. multivorans</i> isolates recovered from CF patient P426. 47 Table 12 - List of SNPs that exist in the majority of the isolates belonging to the infecting <i>B. multivorans</i> population sampled from CF patient P426.
P426. 42 Table 11 - Large deletions identified among the 21 <i>B. multivorans</i> isolates recovered from CF patient P426. 47 Table 12 - List of SNPs that exist in the majority of the isolates belonging to the infecting <i>B. multivorans</i> population sampled from CF patient P426. 48 Table 13 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of

1. INTRODUCTION

1.1. Cystic fibrosis

1.1.1. Cystic fibrosis overview


Cystic fibrosis is the most common inherited disease among Caucasians (O'Sullivan & Freedman 2009). The genetic defect responsible for the CF disorder results from mutations in the gene that encodes a membrane chloride channel, known as the cystic fibrosis transmembrane conductance regulator (CFTR; Riordan 2005). Recurrent symptoms of CF are exocrine pancreatic insufficiency, chronic airway infections with opportunistic pathogens, elevated sweat electrolytes and male infertility (Gibson *et al.* 2003; Ratjen & Döring 2003). This condition affects mainly the pulmonary functions of the infected patients, as it impairs normal mucociliary clearance of bacterial pathogens and consequently originates bronchopulmonary infections that can be extremely severe (Ratjen & Döring 2003; Filkins & O'Toole 2015). These infections can ultimately lead to the destruction of lung tissue, as they cause a persistent inflammatory response (Chmiel & Davis 2003).

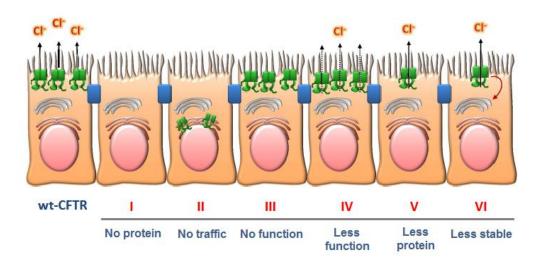
In 1974, the international median age at death of CF patients was 8 years, since the infections were not treated (Folkesson *et al.* 2012). More recently, the mean expected lifetime has increased drastically due to intensive antibiotic therapies and the median predicted survival age in 2015 was 41.6 years (Cystic Fibrosis Foundation US 2016). Patients with cystic fibrosis receive antibiotic treatment intermittently for the management of chronic infection and in a more aggressive manner upon hospitalization due to pulmonary exacerbation (Filkins & O'Toole 2015). Despite the remarkable therapeutic advances accomplished to present time, life expectancy and quality of life for individuals with CF are still limited.

1.1.2. Cystic fibrosis transmembrane conductance regulator (CFTR)

The cystic fibrosis transmembrane conductance regulator (CFTR) is a 1480 amino acid protein encoded by a 230-kb gene known as the CFTR gene (Ratjen & Döring 2003). This protein is a member of the ATP-binding cassette (ABC) family of membrane transport proteins that functions as a cyclic AMP-regulated chloride ion-selective channel (Riordan 2005; Farinha & Matos 2016). Although functioning mainly as a chloride channel, CFTR has additional regulatory functions, such as inhibition of sodium transport through the epithelial sodium channel and regulation of ATP channels, intracellular vesicle transport and acidification of intracellular organelles (O'Sullivan & Freedman 2009).

CFTR channels are present at the luminal surface of epithelia and are composed of five domains (figure 1): two transmembrane domains (MSD1 and MSD2) that form the channel through the membrane, two nucleotide binding domains (NBD1 and NBD2), responsible for gating the flow of chloride (CI⁻) through the channel, and a regulatory domain (R), which mediates the regulation of channel activity (Riordan 2005).

Figure 1 - Illustrative scheme of the CFTR protein at the cell membrane, highlighting the five constituting domains, the amino terminus (NH₂), the carboxy terminus (COOH) and the two N-linked oligosaccharides (Glycans). MSD1/2: membrane spanning domains; NBD1/2: nucleotide-binding domains; R: regulatory domain. Adapted from Farinha & Matos 2016.

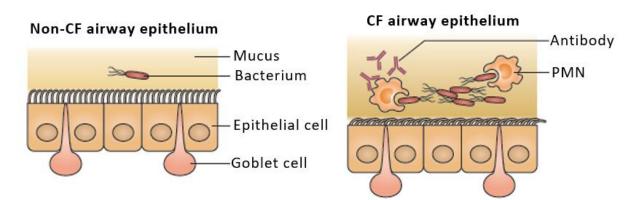

Mutations in the CFTR gene lead to malfunction or loss-of-function of this chloride ion channel, causing cystic fibrosis (McKone *et al.* 2006). The most severe phenotypic manifestations of the absence of functional CFTR channels at the surface of several epithelia occur at the airways, where impaired CFTR function disturbs ionic homeostasis and airway hydration, leading to increased mucus viscosity (O'Sullivan & Freedman 2009; Farinha & Matos 2016). This leads to obstructed mucociliary clearance of inhaled microorganisms and early recruitment of inflammatory defense mediators, ultimately leading to respiratory failure (Gibson *et al.* 2003).

1.1.3. Mutations in the CFTR gene

There are more than 1500 possible mutations in the CFTR gene, the most frequent of which is the deletion of a phenylalanine residue at position 508, identified as F508del (O'Sullivan & Freedman 2009). The F508del mutation is present in at least one allele of 80-90% of patients with CF (Bell *et al.* 2015) and the most common CFTR genotype of CF patients is homozygous F508del/F508del (Farinha & Matos 2016). Individuals that are homozygous for this mutation generally present a more severe clinical phenotype than F508del heterozygotes and individuals with no F508del allele (McKone *et al.* 2006).

Mutations in the CFTR gene can affect the biogenesis, transport, activity and stability at the cell surface of the chloride channel (Riordan 2005; Bell *et al.* 2015), but all CF-causing mutations ultimately lead to hindered cAMP-regulated chloride secretion by epithelial cells. CFTR mutations have been grouped into six classes, according to their functional defect and the effect it has on the biosynthesis, transport or function of the CFTR channel (figure 2). Class I mutations impair protein production, often by nonsense mutations or splicing disruption; class II mutations influence CFTR processing and traffic, causing the misfold of the protein and directing it to degradation (this class includes most of F508del

mutations); class III mutations disrupt channel regulation through impaired gating, by affecting ATP binding or hydrolysis; class IV mutations reduce chloride conductance upon cAMP stimulation, preventing the correct flow of ions through the CFTR channel; class V mutations decrease CFTR protein levels, frequently by affecting splicing and generating a low amount of functional mRNA transcripts; and class VI mutations decrease the stability of the CFTR channel at the cell surface (reviewed in Farinha & Matos 2016).


Figure 2 - Scheme of CFTR mutations grouped in classes I to VI based on the associated functional defect (adapted from Amaral & Farinha 2013). Class I: no protein is produced; class II: misfolded protein is retained at the endoplasmic reticulum and subsequently degraded in the proteasome; class III: disrupted channel regulation, impairing channel opening; class IV: reduced flow of ions through the channel; class V: decreased protein levels; class VI: reduced plasma membrane stability.

1.1.4. Cystic fibrosis lung environment

The airways of patients with CF constitute a warm, humid and nutrient-rich environment for bacterial growth (Oliver *et al.* 2000). However, when transitioning from the environment into the CF airways, bacteria are subjected to nutritional and physicochemical alterations leading to highly stressful conditions (Folkesson *et al.* 2012). Several of the new conditions bacteria become exposed to are the presence of antimicrobial agents, both antibiotics and host immune mediators, oxygen limitation and osmotic stress due to the high viscosity of the mucus produced in the airways (reviewed in Döring *et al.* 2011; Folkesson *et al.* 2012). Other important factors that need to be considered are competition from other resident microorganisms and the continuous changing of the CF airway environment as the infection advances, since the host immune response results in severe inflammation and extensive structural changes to the airways (Regamey *et al.* 2011).

The airways of humans constitute a vastly compartmentalized environment and each compartment has distinct characteristics. In the upper airways, the paranasal sinuses contain thick mucus that can provide a site for bacterial growth, and sinus cavities have less airflow and less exposure

to host immune mediators and to antibiotics than the lower airways (Hansen *et al.* 2008). In the lower part of the respiratory tract, the conductive zone refers to the tracheobronchial region and the respiratory zone includes the bronchioles and the alveoli (reviewed in Folkesson *et al.* 2012). The viscous layer of mucus produced in the bronchi is the major site for bacterial reproduction (figure 3). It has shifting levels of nutrients, oxygen and antibiotics, and is subject to osmotic and oxidative stresses. The presence of bacteria in the respiratory zone is uncommon and usually associated with destruction of the lung (Bjarnsholt *et al.* 2009; Ulrich *et al.* 2010). In individuals with CF, local differences in the inflammatory response among different areas of infection and due to competition between co-colonizing bacterial populations may lead to the development of microhabitats (reviewed in Folkesson *et al.* 2012).

Figure 3 - Differences in mucociliary clearance between a non-CF airway epithelium and a CF airway epithelium. In the airways of individuals without CF, microbial cells that are trapped in the thin mucus layer produced by goblet cells are removed by the cilia of epithelial cells (mucociliary clearance). In the airways of CF patients, the cilia are unable to efficiently clear the viscous mucus layer, leading to colonization by bacteria. Immune responses mediated by antibodies and polymorphonuclear leukocytes (PMNs) lead to damages in lung tissue and impaired lung function. Adapted from Folkesson *et al.* 2012.

The thick mucus combined with the decreased clearance contribute to the formation of mucus plugs that lead to airway obstruction and may form a protected niche for the development of microbes (Boucher 2004). Within these mucus plugs, hypoxic and anoxic regions may form, as a steep oxygen gradient develops (Filkins & O'Toole 2015). Microbes traditionally thought of as aerobes may often be prepared to grow in environments with low oxygen concentrations or even with no oxygen. For example, *P. aeruginosa* is able to grow in anaerobic conditions, by using nitrate and nitrite for respiration (Alvarez-Ortega & Harwood 2007). The role of anaerobic organisms in the development of polymicrobial communities and regarding disease progression is still poorly understood (Klepac-Ceraj *et al.* 2010; Filkins & O'Toole 2015) and requires further study.

In conclusion, multiple niches may be present in CF airways, as this complex environment shows spatial and temporal heterogeneity. Since each niche comprises different selective pressures, infecting bacterial populations are likely to evolve into genetically distinct sublineages, as a consequence of adaptation to the niche they occupy (Marvig *et al.* 2014).

1.1.5. Pathogens and adaptation to the cystic fibrosis airways

The airways of each infected patient have their own individualized polymicrobial community, with complex inter-microbial and host-pathogen interactions that may affect the lung environment, response to treatment and clinical outcome (Filkins & O'Toole 2015). Although multiple bacterial species can coexist in the respiratory tract of CF patients and there is a great inter-individual variation (Klepac-Ceraj *et al.* 2010), there is a usual pattern of pathogen succession characteristic of most infections. In the initial years of patients' lives, the most abundant pathogens are *Haemophilus influenzae* and *Staphylococcus aureus*, followed by *Pseudomonas aeruginosa* and *Burkholderia cepacia* complex (Bcc) bacteria, which are important CF pathogens and can cause rapid decline in lung function (Ratjen & Döring 2003; Filkins & O'Toole 2015). In most patients, the establishment of *P. aeruginosa* infection is associated with a more rapid disease progression, yet there is significant variation in the following rate of pulmonary decline (Klepac-Ceraj *et al.* 2010). In addition to bacterial pathogens, diverse fungi (such as *Candida* spp., *Aspergillus* spp. and *Malassezia* spp.) and some viruses (such as influenza and syncytial virus) have been recognized to co-inhabit the lungs of patients with CF (Etherington *et al.* 2014; Gilligan 2014; Willger *et al.* 2014).

The primary sources of infection are the environment, patient-to-patient transmission and the patient's own microbiota (Filkins & O'Toole 2015). *P. aeruginosa* and members of Bcc are typical soil bacteria and patients with CF usually acquire them from environmental reservoirs (reviewed in Gilligan 2014).

During infection, microorganisms have to adapt to a new environment, facing the host immune system, antibiotics and a variable substrate composition. Throughout this adaptive process, it is frequently noticed that the function of several genes is progressively lost, mainly genes associated with bacterial virulence factors (Rau *et al.* 2010). Microbial communities in the CF lung come across host immune factors, frequent and prolonged antibiotic treatment and a challenging environment that includes the presence of hypoxic and anoxic regions. These characteristics promote the development of chronic communities that could occasionally have decreased microbial diversity, as organisms that become highly adapted to the environment and resilient to treatment are the only ones capable of survival (Filkins & O'Toole 2015). This short-term decreased microbial diversity, which occurs mostly after antibiotic treatment, is generally associated with decreased health (Zhao *et al.* 2012; Daniels *et al.* 2013). Some approaches to promote microbial diversity in the airways of CF patients have been proposed, such as decreasing the use of antibiotics or increasing the use of prebiotics and probiotics (Filkins & O'Toole 2015). It seems clear that the balance between intensive antibiotic treatment, which contributes to the extended life span of CF patients, and minimizing the decrease in microbial diversity needs to be explored.

Patients suffering from CF may be chronically infected for years and this long-term infection is associated with genomic evolution and adaptation of the bacterial population colonizing the lungs of CF patients. Throughout these infections, bacterial pathogens have been frequently reported to become more resistant to antibiotics (Smith *et al.* 2006; Silva *et al.* 2016). Little is known about within-host

evolutionary processes, but a molecular understanding of the strategies developed by bacterial pathogens to adapt inside their hosts should lead to the development of more efficient treatments for these infections.

To fully grasp the mechanisms underlying within-host evolution of pathogens, it is essential to understand the function of infecting microbes in the context of their community and not only as individuals. It is also critical to distinguish between microbes that do not directly contribute to the progression of disease and those that have pathogenic roles with high impact in the clinical outcome (Filkins & O'Toole 2015). Moreover, during the colonization of the airways of CF patients, bacteria can accumulate several mutations that allow them to adapt to the human host (Smith *et al.* 2006; Lieberman *et al.* 2011; Silva *et al.* 2016) and it is crucial to identify which of those mutations occur by chance and which arise as a mechanism of adaptation (Lieberman *et al.* 2014).

In the CF airway, the inflammatory response of the host, the presence of antibiotics, the oxygen limitation and the high osmotic pressure constitute stress sources that select for protective mutations (reviewed in Folkesson *et al.* 2012). The evolution of organisms that colonize changing environments may be directed to the development of specialists in a specific niche or generalists that can subsist in many different environments (Folkesson *et al.* 2012). The CF airway, as a spatially structured and complex environment, is thought to promote diversification and specialization of the microorganisms that colonize the different compartments. The observed phenotypic diversity of *P. aeruginosa* strains supports this hypothesis. Many colony morphology variants, the development of hypermutable strains and resistance to a wide range of antimicrobial agents have been documented (Oliver *et al.* 2000; Mena *et al.* 2008; Hoboth *et al.* 2009).

At the present time, it is possible to conduct a detailed and time-resolved characterization of the evolutionary paths of bacteria infecting CF patients, as regular sampling from sputum normally produced by patients is feasible and genome-sequencing, transcriptomics, metabolomics and metagenomics techniques allow thorough analyses of the clonal isolates sampled (reviewed in Folkesson *et al.* 2012). This has enabled the study of evolutionary traits of bacterial pathogens infecting CF patients by analysis of the genomes of the same strain during long-term infections. Studies of this nature have shown how these pathogens evolve over time and accumulate mutations in specific genes of a single clonal lineage, occasionally leading to diversifying lineages that coexist for many years (Lieberman *et al.* 2014). However, little is known about evolutionary paths concerning different strains of the same species and in what way the mechanisms of adaptation of genotypically distinct isolates can be related (Marvig *et al.* 2014). Efforts have been made to understand how lineages of bacterial pathogens with different genetic backgrounds can end up in a similar pathway leading to typical adaptive phenotypes, while chronically colonizing CF airways.

Genomic and phenotypic evolution strategies of *P. aeruginosa* and Bcc bacteria chronically infecting CF patients will be reviewed in this work, as infections with these pathogens are particularly challenging and have been associated with increased decline in lung function in CF patients.

1.2. Pseudomonas aeruginosa infections in cystic fibrosis

1.2.1. P. aeruginosa overview

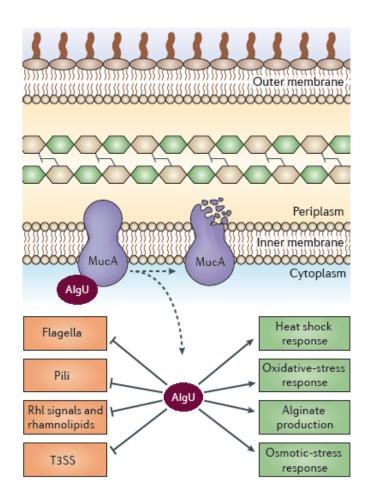
Pseudomonas aeruginosa is a versatile Gram-negative bacterium capable of colonizing many different environments and causing severe infections in human hosts (Mathee *et al.* 2008). It has one of the largest genomes in the bacterial world, with nearly 6000 genes, with more than 500 constituting regulatory genes, suggesting that this microorganism has a great competitive ability to occupy diverse types of niches and adapt to different environmental conditions (Rau *et al.* 2010).

P. aeruginosa genome comprises one circular chromosome and a variable number of plasmids, with sizes ranging from 5.5 to 7 Mbp (Eberl & Tümmler 2004; Klockgether *et al.* 2011). It contains a conserved core component that shows a minor interclonal sequence diversity and a variable part with clone- or strain-specific genomic islands (Klockgether *et al.* 2011). Furthermore, the genome of *P. aeruginosa* includes a large number of virulence genes, such as *lasR* (quorum sensing regulator), *exsA* (type III secretion regulator), *retS* (motility, biofilm and type VI secretion system regulator) and *mexA* (multidrug efflux), which are essential for its capacity to cause infections in plants, animals and humans (Rau *et al.* 2010).

1.2.2. P. aeruginosa in the cystic fibrosis airways

P. aeruginosa is responsible for severe chronic infections in the lungs of CF patients and this is a major cause of morbidity and mortality among these patients (Folkesson *et al.* 2012). Initial colonization by this pathogen is usually caused by environmental strains and in many cases this original colonization progresses into a chronic infection that is virtually impossible to eradicate (Rau *et al.* 2010). It is well known that the genetic and phenotypic traits displayed by isolates from chronically infected CF patients are typically distinct from the characteristics exhibited by the clonal isolates that gave rise to the initial infection years before (Folkesson *et al.* 2012; Markussen *et al.* 2014), pointing towards an evolutionary adaptation of the bacteria that is the basis of the long-term persistence of this pathogen in the airways during chronic infections.

Regardless of the host inflammatory response and antibiotic treatment, infections by *P. aeruginosa* tend to persist in the airways of individuals with CF, becoming chronic and leading to lung decline and in some cases death (Hogardt & Heesemann 2010). Even though the specific ways by which patients acquire this bacterium are not known, studies show that infection by *P. aeruginosa* is present by the age of 20 in 60-70% of CF patients (Folkesson *et al.* 2012). Usually, the initial colonizing strains originate from unidentified environmental reservoirs, but transmission between patients may also occur (Burns *et al.* 2001).


During the period of intermittent colonization prior to the establishment of a chronic infection, which can last for several years, intensive antibiotic therapy can effectively postpone the onset of chronic

infection (Høiby *et al.* 2005). Chronic CF infections are characterized by constant growth of *P. aeruginosa* in airway secretions and are associated with a much higher degree of inflammation than that found in intermittent colonization, leading to increased lung tissue damage and decreased lung function (Folkesson *et al.* 2012). Even though antibiotic treatment seems to be effective in extending the lives of patients with CF, it is essential to identify alternative targets for the development of new therapeutic strategies, as antibiotic resistance and the lack of new drugs are important hurdles linked to this approach. Moreover, it has been reported that the presence of *P. aeruginosa* along with long-term antibiotic treatment decreases taxonomic richness within samples and phylogenetic diversity within each community (Flanagan *et al.* 2007; Klepac-Ceraj *et al.* 2010). This suggests that the decline in diversity caused by antibiotic treatment allows *P. aeruginosa* to become the dominant organism in infected CF patients (Flanagan *et al.* 2007).

1.2.3. Genomic and phenotypic evolution of *P. aeruginosa* isolates in cystic fibrosis

Upon colonization of the airways of CF patients, bacteria undergo changes in gene expression directing them to adaptation to the new environment, which presents several challenging stress sources, such as host immune defenses and antibiotic therapy. These selection conditions are prone to increase the occurrence of mutations (Oliver *et al.* 2000), leading to evolution of the infecting microorganisms to improve adaptive processes.

In P. aeruginosa, several of the changes that occur in the gene expression profile when bacteria face stressful conditions are specific for the particular stress. Nevertheless, there is a common regulator that is associated with the responses to many different antibiotics and to osmotic shock, among others, which is the algU regulator (Jones et al. 2010). The algU regulator is activated under stress conditions due to mutations in the mucA gene and causes downregulation of central metabolism, motility and production of virulence factors, while leading to upregulation of genes involved in membrane permeability and efflux (figure 4; Folkesson et al. 2012). This regulator is also associated with one of the specific traits changing in the bacteria during chronic infection that occurs frequently, which is the mucoid phenotype (Jones et al. 2010; Rau et al. 2010). The mucoid phenotype is caused by an excessive production of alginate, the extracellular polysaccharide commonly produced by P. aeruginosa strains, and it is known that the production of extracellular polysaccharides is part of the general envelope stress response of some bacterial species, forming a glycocalyx that conceals the surface of the bacteria and thus providing protection from environmental stresses (Folkesson et al. 2012). Mutations in regulatory genes are responsible for this conversion to a mucoid phenotype, including mutations in several positions of the mucA gene (Jones et al. 2010). This gene encodes the anti-sigma factor MucA that binds to the sigma factor AlgU and prevents the transcription of the algD operon, which encodes the enzymes involved in alginate synthesis (Rau et al. 2010; Marvig et al. 2014). Therefore, mutations that deactivate the function of the MucA protein trigger the activation of AlgU (figure 4) and lead to alginate overproduction, as they cause an excessive transcription of the algD operon. Overproduction of this exopolysaccharide in the airways of CF patients has been linked to increased tolerance toward the host immune response and also to biofilm development (Rau *et al.* 2010; Folkesson *et al.* 2012).

Figure 4 - Regulation network of MucA–AlgU. The function of the sigma factor AlgU is impeded through binding by the anti-sigma factor MucA. Mutations in *mucA* gene lead to release of AlgU, which activates the transcription of genes involved in alginate production and in the responses to heat shock, oxidative stress and osmotic stress, among others. AlgU also negatively regulates several *P. aeruginosa* virulence factors, such as flagella, pili, Rhl quorum sensing signals, Rhl-controlled rhamnolipids and the type III secretion system (T3SS). Adapted from Folkesson *et al.* 2012.

An approach relying on the genome comparison of two *P. aeruginosa* isolates retrieved from a CF patient over a period of infection of 90 months identified 68 mutational differences between the two subsequent isolates (Smith *et al.* 2006). The mutated genes in the isolate recovered later on in the course of infection were related to virulence, antibiotic resistance and iron acquisition, suggesting that these genes may be important in adaptation to the host environment. Moreover, 91 additional isolates longitudinally collected from 29 CF patients were analysed in the study, by sequencing 24 genes and regulatory regions that were mutated in the first patient and 10 genes and regulatory regions that were candidates for mutation as determined in other studies, for each of the 91 isolates. The most frequently mutated gene in this set of isolates was *mexZ*, which is a negative regulator of the *mexX* and *mexY* genes that encode the components of the MexXY-OprM multidrug-efflux pump. Loss-of-function

mutations in the *mexZ* gene lead to increased expression of *mexX* and *mexY*, which in turn is associated with resistance to antibiotics (Smith *et al.* 2006).

In a more recent work, Marvig and colleagues sequenced the genomes of 474 longitudinally collected isolates of P. aeruginosa from the airways of young individuals with CF, to study within-host evolution of the different strains sampled (Marvig et al. 2014). They identified and compared the genomes of 36 P. aeruginosa lineages to determine their evolutionary history, finding convergent molecular evolution in 52 genes, which were associated with remodeling of regulatory networks, acquisition of antibiotic resistance and loss of virulence factors and motility, thus suggesting an important role of the identified genes in adaptation to the host environment. Moreover, they observed that 25 out of 28 algU mutations were present in isolates that were also mutated in the mucA gene, suggesting that the mucoid phenotype caused by loss-of-function mutation in mucA is eliminated by a subsequent mutation in algU. They hypothesized that this evolutionary path occurs in CF because even though mucoidy could have immediate benefits, it is an energy-consuming process and thus its regulation could be modified by mutation of the algU gene. Another possibility suggested is that the primary selective advantage of mutations in mucA could be the activation of stress response mechanisms, since algU is a positive regulator of the stress response. According to this hypothesis, which has been considered in other works (Rau et al. 2010; Folkesson et al. 2012), mucoidy could be a pleiotropic effect of this mutation that is subsequently eliminated by mutation of algU. These constrains in the order of appearance of mutations constitute an example of historical contingency, as mutations in downstream transcriptional regulators are contingent upon mutations in upstream regulators. The secondary mutations may follow the initial mutation to rebalance the regulatory network towards the wild-type phenotype, or to facilitate the evolutionary adaptation process.

Along with overproduction of alginate, *P. aeruginosa* isolates sampled from chronically infected individuals usually display antibiotic resistance, lack of motility, slow growth and loss of virulence factors and quorum sensing (Oliver *et al.* 2000; Rau *et al.* 2010; Folkesson *et al.* 2012), which has been designated the 'chronic infection phenotype'. This phenotypic profile is reported in isolates sampled from different individuals in distinct clinical settings, suggesting that it is an end-point result of parallel evolution of the bacteria in several different patients colonized by different genotypes of *P. aeruginosa* (Rau *et al.* 2010; Folkesson *et al.* 2012).

Frequent mutations found in *P. aeruginosa* isolates from chronic CF-associated infections occur in genes associated with antibiotic resistance (*gyrA*, *gyrB*, *mexA*, *mexB*, *mexR*, *mexS*, *mexZ*, *nalD*, *nfxB*, *oprD*) and in genes associated with regulation of biofilm formation (*lasR*, a quorum sensing regulator; *morA*, a regulator of flagellar development; *retS*, a sensor that regulates motility and transition between type III and VI secretion systems; *bifA*, *wspA* and *wspE*, involved in modulation of c-di-GMP levels) (Marvig *et al.* 2014). The *lasR* gene encodes a transcriptional regulator of quorum sensing and loss-of-function mutations in this gene are often found (Smith *et al.* 2006). Inactivation of LasR reduces the expression of several virulence genes (Folkesson *et al.* 2012). However, this is more likely associated with an alteration of virulence than with a reduction in virulence (Rau *et al.* 2010).

Furthermore, mutations in global regulatory genes are often found in *P. aeruginosa* isolates from patients with CF. The occurrence of mutations in global regulators, and possibly the sequence by which these mutations appear, may be responsible for determining the evolutionary paths undertaken by the bacteria (Folkesson *et al.* 2012). Some combinations of regulatory mutations might direct evolution towards increased adaptive behavior, still further investigations are required to support and complement this premise.

Regarding resistance to antibiotics, wild-type P. aeruginosa is naturally resistant to numerous antibiotics and it is generally able to develop tolerance to increased levels of antimicrobial compounds (Rau et al. 2010). Before the current antibiotic therapies were introduced, CF patients would succumb to S. aureus infections and it was only after the implementation of adequate antibiotic treatments that P. aeruginosa began to be considered a relevant pathogen in CF infections (Folkesson et al. 2012). Currently, antibiotic treatments are implemented in CF patients as soon as infection with P. aeruginosa has been diagnosed (Klepac-Ceraj et al. 2010) and bacteria are not intrinsically resistant to the compounds used in these treatments (Rau et al. 2010). Thus, persistent colonization and chronic infection are most likely related to a development of resistance to the antibiotics used in the treatment. P. aeruginosa isolates from CF patients are known to present resistance to all clinically relevant classes of antibiotics and, although chromosomally encoded mechanisms of resistance are usually involved, imported genes may also play an important role (Folkesson et al. 2012). As mentioned before, genes associated to antibiotic resistance are some of the most commonly mutated genes during P. aeruginosa adaptation to the CF environment, and continuous treatment with antibiotics plays a major part in shaping the adaptation process by originating antibiotic resistant lineages of P. aeruginosa evolving under this selective pressure (Folkesson et al. 2012).

With the purpose of studying the existence of a direct path towards the 'chronic infection phenotype', characterized by antibiotic resistance, lack of motility, slow growth and loss of virulence factors, Rau and colleagues collected P. aeruginosa isolates from three CF patients in the beginning of their colonization history (Rau et al. 2010). Combining transcriptional profiling with phenotypic characterization, they concluded that for two of the patients there had been genetic alterations that led to different phenotypes throughout the course of colonization. In one of those patients, the developed phenotype was increased antibiotic resistance and this was due to a mutation in the gene that encodes the transcriptional regulator NfxB (nfxB gene), which caused the upregulation of expression of the MexCD-OprJ multidrug efflux pump. Additionally, some isolates of this patient showed reduced expression of virulence factors and all of them were twitching motility deficient, thus it was clear that the mutations responsible for the phenotypic alterations were shifting the bacteria towards the typical 'chronic infection phenotype'. For another patient, the new phenotype acquired during colonization was bacterial mucoidy, which resulted from the upregulation of enzymes responsible for alginate synthesis, due to a mutation in the mucA gene. This mutation had a pleiotropic effect on gene expression and led to the acquisition of several characteristic traits of the 'chronic infection phenotype', such as alginate overproduction and reduced virulence, motility and growth rate.

There seems to be a significantly conserved pattern of evolution underlying this adaptation to the CF airway environment, as several phenotypic traits are recurrently observed and many mutations are consistently found in *P. aeruginosa* lineages evolving independently (Markussen *et al.* 2014). Besides this parallel evolution in different lineages, there is a high level of phenotypic diversity in isolates within each host (Oliver *et al.* 2000; Folkesson *et al.* 2012; Markussen *et al.* 2014). *P. aeruginosa* isolates belonging to the same clonal type often show distinct phenotypic profiles, such as different colony morphology, antibiotic resistance and quorum-sensing regulation, and genome-based studies have indicated that there is genomic diversity among these clonal isolates (Markussen *et al.* 2014). One of the suggested models to elucidate this intra-clonal diversity relies on the structural complexity of the CF airway environment, as it contains multiple compartments that exhibit different conditions (Markussen *et al.* 2014). As a result, population diversity may arise from the evolution of *P. aeruginosa* clones that occupy different niches in the CF airway. Still, other processes could also contribute to this diversity, such as the evolution of variants with high mutation rates and interactions that occur between variant subpopulations (Markussen *et al.* 2014).

Several studies suggest that the need to adapt to a complex and challenging environment would promote the spontaneous emergence of hypermutable bacterial strains (Taddei *et al.* 1997; Oliver *et al.* 2000). According to this premise, *P. aeruginosa* isolates sampled from chronically infected CF patients should have a high frequency of hypermutable strains, as high mutation rates could be beneficial for the appearance and fixation of advantageous mutations for a rapid adaptation to the CF airways environment. In *P. aeruginosa*, hypermutable strains result from mutations in the *mutS* and *mutL* genes, encoding proteins responsible for correcting errors that may occur during DNA replication (Mena *et al.* 2008). As a changing environment, the CF airways may ensure the fixation of the hypermutable genotype, since the selective pressure on bacteria is always present (Oliver *et al.* 2000). This creates a major therapeutic challenge, as the hypermutable strains are resistant to many antibiotics and, moreover, are more likely to become resistant to new antimicrobials.

In a study combining genome sequencing and phenotypic profiling, Markussen and colleagues demonstrated a rapid diversification of an original CF airway infecting *P. aeruginosa* strain from a chronically infected patient into three sublineages, during a 32-year period of infection (Markussen *et al.* 2014). Each of the subpopulations identified had a distinct functional and genomic profile, displaying differences in mucoidy, doubling time, metabolism and gene expression profiles. Additionally, they showed that one of the sublineages resided in the paranasal sinuses and the other two inhabited the lower airways, possibly occupying different niches in the lungs of the patient. This spatial distribution of the three subpopulations could explain the expression of lineage-specific sets of genes, as different selective pressures would be involved. Thus, this work demonstrated that diversity in *P. aeruginosa* populations from a single individual can have long-term stability, as the distinct sublineages coexisted for decades.

Genome analysis of sequentially sampled isolates from CF patients chronically infected with *P. aeruginosa* combined with phenotypic assessments has provided remarkable insights into the adaptive strategies that these pathogens use to evolve in the CF airways. Several genes have been identified

and correlated with pathogenic phenotypes, such as antibiotic resistance, overproduction of alginate and biofilm formation.

1.3. Burkholderia cepacia complex infections in cystic fibrosis

1.3.1. B. cepacia complex overview

The *Burkholderia cepacia* complex (Bcc) constitutes a group of at least 20 closely related Gram--negative bacterial species that emerged in the 1980s as opportunistic human pathogens, particularly in patients suffering from cystic fibrosis (Coenye *et al.* 2001; Depoorter *et al.* 2016). The genome of Bcc strains typically consists of three chromosomes and several strains also contain plasmids (Mahenthiralingam *et al.* 2005), resulting in a variable genome size ranging from 7.5 Mbp to 8.5 Mbp (Vandamme & Dawyndt 2011).

Bcc bacteria have the ability to occupy many ecological niches, such as soil, water and the rhizosphere of plants (Parke & Gurian-Sherman 2001; Mahenthiralingam *et al.* 2005), showing a notable capacity to adapt to hostile environments that is mainly attributed to their metabolic complexity and high genomic plasticity (Lessie *et al.* 1996). Although participating in ecologically beneficial interactions with plants (Parke & Gurian-Sherman 2001), Bcc bacteria can produce a wide range of virulence factors and are able to cause infection in plants and humans (Govan *et al.* 2007).

1.3.2. B. cepacia complex in the cystic fibrosis airways

Bcc bacteria are considered important opportunistic pathogens, capable of causing severe infections in immunocompromised individuals and in patients with CF (Jones *et al.* 2004; Mahenthiralingam *et al.* 2005). Infection with Bcc may cause a rapid and fatal necrotizing pneumonic illness with the occurrence of high temperatures and respiratory failure known as '*cepacia* syndrome', demonstrating an invasive and systemic infection not seen for other CF-associated pathogens (Isles *et al.* 1984). Although strains from every Bcc species are able to cause infection in CF patients, the two most frequently isolated species are *Burkholderia cenocepacia* and *Burkholderia multivorans* (Jones *et al.* 2004; LiPuma 2010). Infections caused by Bcc have been associated with a worse clinical outcome for these individuals than infections caused by *P. aeruginosa* alone, possibly depending on the species and even individual strains within species (Frangolias *et al.* 1999; Aris *et al.* 2001; Chaparro *et al.* 2001).

Infection with Bcc in CF patients is particularly feared due to the intrinsic resistance of these bacteria to many antimicrobial compounds, to the potential for patient-to-patient transmission and to the highly unpredictable clinical outcome (Govan *et al.* 2007). Moreover, during chronic colonization of CF airways, Bcc bacteria are exposed to changing selective pressures, as a consequence of the host immune defenses, antibiotic therapy and oxygen deprivation (Harrison 2007). In response to this

challenging environment, pathogens undergo genetic adaptations that lead to the emergence of phenotypic variants that have the capacity to establish long-term chronic infections in patients with CF.

After the acknowledgement of Bcc bacteria as highly transmissible among CF patients, infection control measures were adopted in several CF clinics, such as cohorting of infected patients and segregation both from each other and from other patients with CF (Mahenthiralingam *et al.* 2005; Zlosnik *et al.* 2015). Although the implementation of strict segregation policies prevents epidemic outbreaks of Bcc in CF clinics, it evidently has devastating consequences for the quality of life of CF patients, in physical, psychological and social ways (LiPuma 2002; Mahenthiralingam *et al.* 2005). Thus, new strategies to attempt the eradication of Bcc bacteria from the airways of CF patients need to be developed and the study of the mechanisms involved in the adaptive evolution of these pathogens to the CF environment is of great importance in this context.

1.3.3. Genomic and phenotypic evolution of *B. cepacia* complex isolates in cystic fibrosis

Infection of the respiratory tract of CF patients with *B. cepacia* complex bacteria can be transient, but for most patients it leads to a chronic infection that subsequently causes the deterioration of lung function (Govan *et al.* 2007; LiPuma 2010). Despite usually involving one single strain, long-term coinfection with different strains or species and the replacement of the strain that initiates the infection with another throughout the infection may also occur in Bcc chronic infections (Harrison 2007). During these long-term chronic infections, the genome and the phenotypic traits of Bcc bacteria evolve in response to the challenging selective pressures present in the CF airways.

One of the most frequently reported phenotypic alterations in Bcc bacteria is the variation in colony mucoidy associated with exopolysaccharide (EPS) production (Zlosnik *et al.* 2008; Silva *et al.* 2011). Cepacian is the most common exopolysaccharide produced by Bcc strains and is considered a virulence factor of these bacteria, as it has been shown to inhibit neutrophil chemotaxis, to neutralize reactive oxygen species *in vitro* (Bylund *et al.* 2006), to affect the phagocytosis of bacteria by human neutrophils and to facilitate persistent bacterial infection in mice (Conway *et al.* 2004). As high-molecular weight polymers, EPS create a hydrated anionic matrix that surrounds the bacterial cell, protecting it from environmental sources of stress (reviewed in Ferreira *et al.* 2011).

In a comprehensive study involving 560 Bcc isolates sampled from 100 chronically infected CF patients, Zlosnik and colleagues demonstrated that strains from all species of the Bcc can express the mucoid phenotype (Zlosnik *et al.* 2008). In this work, they showed that sequential clonal isolates from CF patients experienced mucoid phenotypic conversion mainly from mucoid to non-mucoid (figure 5), with *Burkholderia multivorans* mucoid to non-mucoid transitions occurring in 9 patients and *Burkholderia cenocepacia* mucoid to non-mucoid transitions occurring in 3 patients. Moreover, in a retrospective clinical review of CF patients attending clinics in Vancouver during a 26-year period, Zlosnik and colleagues observed that patients infected with non-mucoid Bcc showed a more dramatic decline in lung

function than those infected with mucoid bacteria, suggesting that the non-mucoid morphotype is associated with increased disease severity and the mucoid morphotype with persistence in the lungs (Zlosnik *et al.* 2011).

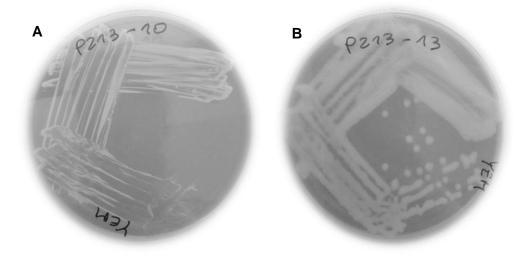


Figure 5 - Burkholderia multivorans mucoid phenotypes on yeast extract mannitol medium (YEM) plates: (A) non-mucoid and (B) mucoid.

The production of extracellular polymers by members of the Bcc has been associated with biofilm formation, which constitute communities within which bacteria adopt a sessile lifestyle, being protected from environmental stresses. It was demonstrated that, although not required for biofilm formation, EPS is involved in the development of thick and mature biofilms *in vitro* by Bcc bacteria (Cunha *et al.* 2004). Furthermore, bacteria within biofilms have been shown to be significantly more resistant to antibiotics (Caraher *et al.* 2006). Thus, by enhancing the ability of bacteria to resist host immune responses and antibiotic exposure in the form of biofilms, the production of EPS could improve the survival of Bcc bacteria in the CF lung environment (Cunha *et al.* 2004).

To gain further insights into the importance of the Bcc mucoid variation in the adaptive process to the CF airways, Silva and colleagues studied two *B. multivorans* clonal isolates sampled from a chronically infected CF patient, where a mucoid to non-mucoid transition had occurred (Silva *et al.* 2011). This approach combined transcriptional profiling and phenotypic characterization to analyse the mucoid and non-mucoid isolates and the results revealed that the non-mucoid isolate had a decreased expression of genes encoding proteins linked to virulence-associated characteristics and metabolism. In addition, the non-mucoid isolate displayed lower motility, no exopolysaccharide production, increased biofilm formation and higher survival in minimal medium. The mucoid variant was shown to be more virulent in the acute infection model *Galleria mellonella*, likely associated with the higher expression of genes related to virulence traits in comparison with the non-mucoid morphotype. The reduced expression of virulence traits in the non-mucoid variant may enhance the ability of bacteria to escape from the host immune system, developing an increased fitness to persist in the CF lung (Silva *et al.* 2011). In a subsequent study, the stability of the same two isolates after exposure to stress conditions

was investigated and the results revealed that mucoid to non-mucoid transitions in Bcc bacteria may occur under stress conditions such as subinhibitory concentrations of antibiotics and oxidative and osmotic stress (Silva *et al.* 2013). The role of EPS production in Bcc virulence is still poorly understood, with some evidences pointing to EPS as a virulence factor and others pointing to a role in persistence in the CF lung (Ferreira *et al.* 2011). Therefore, further efforts need to be put into the study of this phenotypic trait and how it relates to virulence and adaptation of Bcc strains to the CF environment. Besides EPS production, several other phenotypic traits are associated with Bcc persistence and pathogenicity in the CF airways, such as resistance to antibiotics, biofilm formation, and motility (Mahenthiralingam *et al.* 2005).

Another relevant phenotypic characteristic of Bcc is the expression of O-antigen repeats of lipopolysaccharide (LPS), as several isolates recovered from chronically infected CF patients lack the O-antigen (reviewed in Mahenthiralingam *et al.* 2005). LPS is considered a virulence factor produced by Bcc bacteria, as it may inhibit phagocytosis and reduce bacterial elimination (Saldías *et al.* 2009). Nevertheless, the O-antigen can interfere with adhesion to bronchial epithelial cells and stimulate the host immune response, which indicates that its loss could be beneficial to evade the host immune response and also to cells living in the form of biofilms, like in most CF airways (Saldías *et al.* 2009; Silva *et al.* 2016).

In a phenotypic assessment of 11 *B. cenocepacia* sequential clonal isolates sampled from a CF patient chronically infected for 3.5 years, Coutinho and colleagues observed that the phenotypic traits of the isolate believed to have initiated the infection were different from those of the isolates retrieved during the course of infection (Coutinho *et al.* 2011a), which is in agreement with the hypothesis that Bcc bacteria undergo several adaptive changes throughout the colonization of CF lungs. In comparison with the first *B. cenocepacia* isolate, the subsequent isolates showed increased antimicrobial resistance against different classes of antibiotics, decreased swarming motility and increased ability to grow under iron limiting conditions. Moreover, the authors described the reduction of the degree of fatty acid saturation as an adaptive response to growth under severe oxygen-limiting conditions. Complementing this study with a transcriptomic analysis, the genomic expression levels of the first *B. cenocepacia* isolate retrieved from the same CF patient were compared (Mira *et al.* 2011). Approximately 1000 genes were differently expressed by the two clonal isolates, indicating a significant alteration in gene expression. Among the genes that were upregulated in the isolate obtained further on during the course of infection were genes involved in efflux of drugs, iron uptake and assembly of flagella, the latter ones possibly playing a role in adhesion to epithelial cells.

In addition to *B. cenocepacia* and *B. multivorans*, which are the most commonly isolated species from the airways of individuals with CF (LiPuma 2010), studies on *Burkholderia dolosa* have also been conducted. Although rarely retrieved from CF patients, this bacterium has been linked to accelerated decline in lung function and decreased survival (Kalish *et al.* 2006). In a retrospective study of 112 *B. dolosa* isolates recovered from 14 CF patients over a 16-year period, Lieberman and colleagues sequenced the genomes of the isolated opportunistic pathogens and identified 17 genes that acquired mutations in isolates retrieved from several patients, revealing parallel adaptive evolution (Lieberman *et*

al. 2011). The mutated genes were associated with pathogenic phenotypes, such as antibiotic resistance and membrane composition, including LPS biosynthesis. In addition, one of the most mutated genes was a homolog of *fixL*, which is a global regulator involved in biofilm formation, motility and virulence (Schaefers *et al.* 2017), and homologs of two other genes related to this process (*fixJ* and *fnr*) were also mutated. In a more recent study, samples retrieved from five of the same CF patients were examined regarding intraspecies diversity and the authors found extensive intrasample diversity, leading to the hypothesis that mutations rarely become fixed in a population (Lieberman *et al.* 2014). Instead, several different lineages may coexist for many years in the CF airways of one patient, with genes associated with outer membrane composition, antibiotic resistance and iron scavenging shown to be under strong selective pressure (Lieberman *et al.* 2014). Furthermore, a phenotypic assessment of 14 sequential *B. dolosa* isolates retrieved from a chronically infected CF patient over 5.5 years showed that, in comparison with the first isolate, the subsequently retrieved isolates displayed increased resistance to antibiotics and decreased swarming motility (Moreira *et al.* 2014), indicating an adaptive evolution throughout the course of infection.

In a recent work that combined genome sequencing technologies and phenotypic profiling of 22 B. multivorans isolates retrieved from a CF patient during a 20-year infection, several genes and pathways that were likely under strong selection within the host were identified (Silva et al. 2016). The genomes of the 22 isolates were sequenced and mutations that were found to have evolved independently in multiple isolates affected genes encoding regulatory proteins, proteins associated with envelope biogenesis and enzymes involved in lipid and amino acid metabolism. It was observed that multiple lineages coexisted in this patient's airways for years, evolving at different rates in the course of infection. In the lineage that became dominant during the infection, multiple mutations were found in a fixL homolog, which had been previously found in the study of B. dolosa isolates by Lieberman and colleagues (Lieberman et al. 2011) and regulates biofilm formation, motility and virulence (Schaefers et al. 2017). Other genes found to be under strong positive selection were rpfR (encoding a diguanylate cyclase/phosphodiesterase with regulatory functions), plsX (involved in the biosynthesis of phospholipids) and an ompR-like gene (OmpR is an osmolarity response regulator). Moreover, the phenotypic analysis showed increased antibiotic resistance and biofilm formation, and decreased motility and growth rate throughout the evolutionary trajectory of the isolates, shifting the bacteria toward a 'chronic infection phenotype', which was associated with the period of accelerated lung function decline (Silva et al. 2016).

More recently, a study combining whole-genome sequencing and phenotypic assays on 215 *B. cenocepacia* isolates sampled from 16 CF patients over a span of 2 to 20 years of infection was conducted (Lee *et al.* 2017). The tested phenotypes were growth in liquid media, motility, biofilm formation, mucoidy and acute virulence in *Galleria mellonella*, and the results showed extensive phenotypic variation among isolates within patient bacterial series, with progressive changes in several series leading to decreased motility, growth rate and acute virulence, while for biofilm formation there were two patient series progressively increasing this trait and three decreasing it. Alongside the phenotypic assessments, the genomic analysis provided insights into genetic variations that could

underlie phenotypic changes, with the identification of four candidate genes that are associated with motility and biofilm formation (*dnaK*, *papC*, *gcvA* and *qseC*). It was also observed that strains isolated on the same date often belonged to distinct phylogenetic clades, supporting the coexistence of multiple strains in the infection. Moreover, genome reduction was observed in seven patient series, with two *B. cenocepacia* strains having lost chromosome 3 completely. Genome reduction by large deletions of genes encoding nonessential traits had been previously reported in studies on long-term bacterial evolution (Price *et al.* 2013; Rau *et al.* 2012; Silva *et al.* 2016).

Bacteria undergo genetic and phenotypic changes when in need to adapt to new and challenging environments, leading to improved survival ability and fitness. Genomic and phenotypic characterizations of longitudinally collected Bcc isolates from CF patients with long-term chronic infections have greatly contributed to the identification of evolutionary strategies underlying the adaptive processes that take place during bacterial colonization of the CF airways. Among the reported adaptation-related traits of Bcc bacteria in this complex environment are increased antibiotic resistance and biofilm formation and decreased motility and growth rate. This knowledge may point to potential therapeutic targets for the development of improved treatments against Bcc bacteria.

1.4. Objectives

The aim of this work is to analyse the genomic and phenotypic evolution of 37 *B. multivorans* isolates that were sequentially retrieved from two infected CF patients (patients P213 and P426) over 15 to 18 years of chronic infection. The approach comprises the identification of important mutations among the isolates sampled from each patient and the assessment of phenotypes associated with bacterial adaptation to the CF airways, such as EPS production, LPS O-antigen production, resistance to antibiotics, biofilm formation, motility, adhesion to epithelial cells, growth rate and acute virulence in *Galleria mellonella*. Insights into the adaptive strategies that drive within-host bacterial evolution during colonization of the CF airways are expected to lead to improved therapies against infections caused by Bcc bacteria.

2. MATERIALS AND METHODS

2.1. Bacterial strains and growth conditions

Bacterial isolates were sampled from two cystic fibrosis patients (patients P213 and P426) attending a clinic in Vancouver, Canada, and were provided by Prof. David P. Speert from the University of British Columbia. 16 bacterial isolates consist of a single clone of *Burkholderia multivorans* sampled from patient P213 at certain time points in the period between 1996 and 2010 (table 1) and 21 isolates consist of a single clone of *B. multivorans* sampled from patient P426 at certain time points in the period between 1997 and 2014 (table 2). Isolates were grown in lysogeny broth (LB medium) or in extracellular polymeric substance (EPS)-producing salt-mannitol medium (SM medium) at 37°C with agitation at 250 rpm. SM medium is a minimal medium with a high carbon to nitrogen ratio to stimulate the production of EPS: 12.5 g/L Na₂HPO₄, 3 g/L KH₂PO₄, 1 g/L K₂SO₄, 1 g/L NaCl, 0.2 g/L MgSO₄.7H₂O, 0.001 g/L CaCl₂.2H₂O, 0.001 g/L FeSO₄.7H₂O, 1 g/L casaminoacids, 1 g/L yeast extract, 20 g/L D-mannitol.

Isolate	ID	Date of isolation
P213-1	VC7495	13-02-1996
P213-2	VC7704	04-06-1996
P213-3	VC7804	13-08-1996
P213-4	VC8896	06-05-1998
P213-5	VC9452	20-01-1999
P213-6	VC10037	18-01-2000
P213-7	VC10458	07-11-2000
P213-8	VC11002	23-10-2001
P213-9	VC11446	23-07-2002
P213-10	VC12063	26-09-2003
P213-11	VC12556	30-09-2004
P213-12	VC13750	11-04-2007
P213-13	VC13748	11-04-2007
P213-14	VC13833	20-06-2007
P213-15	VC13834	20-06-2007
P213-16	VC15071	11-01-2010

Table 1 - Date of isolation and ID of each B. multivorans isolate recovered from CF patient P213.

Table 2 - Date of isolation and ID of each *B. multivorans* isolate recovered from CF patient P426.

Isolate	ID	Date of isolation
P426-1	VC8086	11-02-1997
P426-2	VC8136	17-03-1997
P426-3	VC8585	20-01-1998
P426-4	VC9177	25-09-1998
P426-5	VC9783	12-08-1999
P426-6	VC10411	12-10-2000
P426-7	VC11369	24-05-2002
P426-8	VC11982	17-07-2003

Isolate	ID	Date of isolation
P426-9	VC12458	22-07-2004
P426-10	VC13030	22-09-2005
P426-11	VC13616	12-01-2007
P426-12	VC13617	12-01-2007
P426-13	VC13777	02-05-2007
P426-14	VC13778	02-05-2007
P426-15	VC14363	06-07-2008
P426-16	VC14863	11-08-2009
P426-17	VC15667	23-06-2011
P426-18	VC15867	17-11-2011
P426-19	VC16979	04-12-2013
P426-20	VC17389	22-09-2014
P426-21	VC17390	22-09-2014

Table 2 - Date of isolation and ID of each B. multivorans isolate recovered from CF patient P426 (cont.).

2.2. Analysis of lipopolysaccharide

Cells from overnight cultures were first suspended in 1x PBS and then suspended in 100 μ L of lysis buffer (2% SDS, 4% β -mercaptoethanol, 0.5M TrisCl pH 6.8), followed by proteinase K digestion for at least 1 hour at 60°C. LPS was purified by adding 150 μ L of a 90% phenol solution and then 10 volumes of ethylic ether. LPS samples were resolved by electrophoresis in 16% polyacrylamide gels with a Tricine-SDS system (Lesse *et al.* 1990), followed by silver staining.

2.3. Exopolysaccharide production

2.3.1. Liquid medium

The amount of exopolysaccharide produced was measured based on the dry weight of the ethanol-precipitated polysaccharide recovered from 50 mL cultures grown in EPS-producing medium (SM medium) for 6 days at 37°C with agitation at 250 rpm (Silva *et al.* 2011). The 50 mL cell suspensions were centrifuged for 15 minutes at 9000 rpm at 20°C and 150 mL of 96% ethanol was added to the supernatant to precipitate the polysaccharide. Results are the means of data from three replicates of three independent experiments with duplicate flasks.

2.3.2. Solid medium

Mucoidy was assessed on yeast extract mannitol medium (YEM) containing 4 g/L mannitol, 0.5 g/L yeast extract and 15 g/L agar (Zlosnik *et al.* 2008). After inoculation, YEM plates were incubated for 48 h at 37°C and mucoidy was then observed by visual inspection.

2.4. Antimicrobial susceptibility

To evaluate the susceptibility of isolates against paper discs containing antibiotics, the agar disc diffusion method (Bauer *et al.* 1966) was used. Müller-Hinton agar (Sigma-Aldrich) plates were

inoculated with 100 μ l of a suspension at an OD₆₄₀ of 0.1 prepared from exponential-phase cells growing on LB medium at 37°C. Paper discs (BD BBL Sensi-Disc) containing piperacillin (100 μ g) plus tazobactam (10 μ g), kanamycin (30 μ g), ciprofloxacin (5 μ g) or aztreonam (30 μ g) were applied onto the surfaces of the inoculated plates. The diameter of the growth inhibition zone was measured after 24 h of incubation at 37°C. Results are the means of data from at least six replicates of three independent experiments, each with three discs per isolate.

2.5. Biofilm formation

Bacteria were grown in LB medium at 37°C to mid-exponential phase and diluted to an OD₆₄₀ of 0.05. 200 μ L samples of the cell suspensions were used to inoculate 96-well polystyrene microtiter plates. Plates were incubated at 37°C statically for 48 h, after which the wells were washed three times with 0.9% (wt/vol) NaCl. The biofilm was stained with 200 μ L of a 1% (wt/vol) crystal violet solution for 20 minutes at room temperature (Ferreira *et al.* 2007), followed by washing three times with 200 μ L of 0.9% NaCl. The dye was then solubilized with 200 μ L of 96% ethanol and the solution's absorbance at 590 nm (A₅₉₀) was measured in a microplate reader (Spectrostar nano, BMG LabTech). Results are the means of data from at least eight replicates of three independent experiments.

2.6. Motility

2.6.1. Swimming motility

The swimming motility was assessed on swimming agar plates: 1% (wt/vol) tryptone, 0.5% (wt/vol) NaCl, 0.3% (wt/vol) noble agar (Difco) (Silva *et al.* 2016). Plates were spot inoculated with a 5 μ l drop of a culture at an OD₆₄₀ of 1.0 and were incubated for 24 h at 37°C. The diameter of the swimming zone was then measured. Results are the means of data from at least ten replicates of three independent experiments.

2.6.2. Swarming motility

The swarming motility was assessed on swarming agar plates: 0.04% (wt/vol) tryptone, 0.01% (wt/vol) yeast extract, 0.0067% (wt/vol) CaCl₂, 0.6% (wt/vol) bacto agar (Difco) (Silva *et al.* 2016). Plates were spot inoculated with a 5 μ l drop of a culture at an OD₆₄₀ of 1.0 and were incubated for 48 h at 37°C. The diameter of the swarming zone was then measured. Results are the means of data from at least ten replicates of three independent experiments.

2.7. Growth rate and doubling time determination

Isolates were grown overnight in LB medium at 37°C. A volume was then centrifuged (2 min, 8 rpm), and the pellet was washed with saline solution (0.9% NaCl) and used to inoculate a flask with 50 mL of liquid synthetic cystic fibrosis medium (SCFM) (Palmer *et al.* 2007), generating an initial optical density at 640 nm (OD₆₄₀) of 0.1. Flasks were incubated at 37°C with agitation at 250 rpm, and growth rates were measured by monitoring the OD₆₄₀ for 24 h. Growth rates were calculated from the exponential phase of growth from two independent experiments.

2.8. Virulence determination in Galleria mellonella

Killing assays were performed as described previously (Seed & Dennis 2008). *Galleria mellonella* larvae were injected with cell suspensions containing a total CFU of approximately 1x10⁶ in 10 mM MgSO₄ with 1.2 mg mL⁻¹ ampicillin, and incubated at 37°C. Survival rates were assessed during the following 3 days post-infection. As a negative control, 10 mM MgSO₄ with 1.2 mg mL⁻¹ ampicillin was used. Triplicates of ten larvae were used in each experiment.

2.9. Adhesion to epithelial cells

The *B. multivorans* isolates under study were analysed for adhesion to the bronchial epithelial cell line CFBE41o[−], derived from a patient homozygous for the cystic fibrosis transmembrane conductance regulator F508del mutation (Goncz *et al.* 1999). Host cell attachment was performed as described before (Ferreira *et al.* 2015). Bacterial strains grown in SM medium for 4 hours were used to infect epithelial cells at a multiplicity of infection (MOI) of 10 (10 bacterial cells to 1 epithelial cell). Bacteria were applied to a 24-well plate previously seeded with CFBE410[−] cells in minimal essential medium supplemented with 10% (vol/vol) FBS and 1% (vol/vol) L-glutamine, and the plates were centrifuged at 700 x g for 5 min. The plates were then incubated for 30 min at 37°C in an atmosphere of 5% CO₂. Afterwards, each well was washed three times with phosphate-buffered saline (PBS) to remove unbound bacteria and cells were lysed with lysis buffer (0.01 M PBS, 10 mM EDTA, 0.25% [vol/vol] Triton X-100; pH 7.4) for 20 min at 4°C. Serial dilutions were plated onto LB agar and adhesion was quantified by determining CFU counts after 48h of incubation at 37°C. Duplicates with each strain were performed per assay and the results presented were obtained from three independent experiments. Results are shown as the percentage of adhesion, which was calculated as the number of CFU recovered divided by the number of CFU applied to the epithelial cells multiplied by 100.

2.10. Detection of single-nucleotide polymorphism (SNP) and indel mutations

Genomic DNA from the *B. multivorans* clinical isolates was extracted and purified using the DNeasy blood and tissue kit (Qiagen). DNA samples were processed according to Illumina's instructions for generating paired-end libraries of the 37 *B. multivorans* isolates, which were sequenced at least to 38-fold coverage using an Illumina MiSeq system at the Instituto Gulbenkian de Ciência (Portugal). The genome of the first bacterial isolate of each patient was also sequenced using a PacBio system at Icahn School of Medicine at Mount Sinai, New York (USA) and polished using the reads generated by the Illumina MiSeq sequencing system, after *de novo* assembly. To obtain these corrected assemblies, the program MeDuSa v1.6 (Bosi *et al.* 2015) was used to align the assemblies to a reference (*Burkholderia multivorans* ATCC 17616) to reorder contigs; all the Illumina reads were trimmed using Trimmomatic (Bolger *et al.* 2014); the trimmed reads were aligned to MeDuSa-assemblies with BWA v0.7.15 (Li & Durbin 2009); the mapped reads were predicted and annotated using Prokka v1.11 (Seemann 2017). This polished assembly resulted in 5 contigs for the genome of the first isolate retrieved from patient P213 and 7 contigs for the genome of the first isolate retrieved from patient P213 and 7 contigs for the subsequent detection of SNP and indel mutations. To identify which

contig corresponded to each *B. multivorans* chromosome, Basic Local Alignment Search Tool (BLAST, Altschul et al. 1990) was used to align each contig to the genome of B. multivorans ATCC 17616. A standard nucleotide BLAST optimized for highly similar sequences (megablast) was used. To detect SNP and indel mutations, raw paired-end reads from the 37 B. multivorans isolates generated with Illumina MiSeq were filtered based on Phred quality scores, followed by trimming off of adapter contamination and ambiguous nucleotides using the fastq-mcf tool (Aronesty 2013). Only reads with Phred scores higher than 30 (99.9% accuracy) were considered for further analysis, while maintaining at least 70% of the initial coverage. The resulting filtered paired-end data sets were aligned against the reference genome sequences of the first B. multivorans isolates of each patient (16 data sets corresponding to the isolates of patient P213 were aligned to the polished genome sequence of the first isolate, P213-1; and 21 data sets corresponding to the isolates of patient P426 were aligned to the polished genome sequence of the first isolate, P426-1) using BWA-MEM (Li 2013) and NovoAlign v.3.02.13 (Novocraft; website last accessed January 2017) to determine a first list of putative mutations. Only SNPs and indels detected in alignments using both BWA-MEM and NovoAlign and occurring in at least three forward and three reverse reads were further analysed. Additionally, a visual inspection of the alignments using Geneious v.6.1.8 (Kearse et al. 2012) allowed the confirmation of each indel mutation and the identification of large deletions that were also included in the final lists of mutations.

2.11. Phylogenetic analyses

The evolutionary history of the *B. multivorans* isolates retrieved from each CF patient under study was inferred by using the Maximum Likelihood method based on the Tamura-Nei model (Tamura & Nei 1993). Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the topology with superior log likelihood value. There was a total of 229 positions in the final dataset for patient P213 and 249 positions for patient P426. Evolutionary analyses were conducted in Molecular Evolutionary Genetics Analysis (MEGA) software v.7.0.26 (Kumar *et al.* 2016).

2.12. Statistical analyses

The statistical significance of differences in the data was determined using the one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test, which were performed using GraphPad Prism software v.7.03. Kaplan-Meier survival curves were also performed with GraphPad Prism software v.7.03. Differences were considered statistically significant for *P*-values lower than 0.05.

3. RESULTS

3.1. Analysis of *B. multivorans* isolates retrieved from CF patient P213

3.1.1. *B. multivorans* isolates from CF patient P213

The 16 bacterial isolates consist of a single clone of *Burkholderia multivorans* sampled from cystic fibrosis patient P213 at certain time points in the period between 1996 and 2010 (figure 6). The first three isolates and isolates 6 and 7 were recovered in different time points of years 1996 and 2000, respectively. Isolate pairs 12/13 and 14/15 were recovered in two different time points of 2007, each pair in one time point.

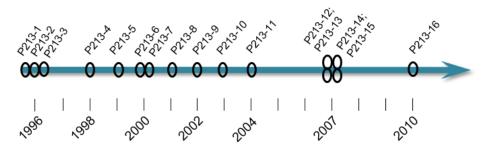


Figure 6 - B. multivorans isolates recovered from CF patient P213.

3.1.2. Analysis of single-nucleotide polymorphism and indel mutations

In order to identify genetic mutations among the clinical isolates, the genomes of the 16 *B. multivorans* isolates were sequenced and analysed. The genome of the first isolate was used as the reference genome for the subsequent steps of this analysis, after sequencing and *de novo* assembly. The assembly of the genome of the first isolate generated 5 contigs with lengths between 813 and 3298492 bp (table 3). To identify which contig corresponded to each *B. multivorans* chromosome, Basic Local Alignment Search Tool (BLAST, Altschul *et al.* 1990) was used to align each contig to the genome of *B. multivorans* ATCC 17616. Contigs 1, 2 and 3 correspond to chromosomes 1, 3 and 2, respectively, and contig 4 also aligned to chromosome 1. Contig 5 did not map onto the reference genome of *B. multivorans* ATCC 17616 and is likely a plasmid.

Single-nucleotide polymorphism (SNP) and indel mutations were identified by aligning sequence reads for each isolate against the genome sequence of the first isolate. Only mutations detected in alignments using two alignment tools and occurring in at least three forward and reverse reads were subsequently analysed. The resulting list of SNPs and indels showed mutations existing among the latter 15 *B. multivorans* isolates when compared to the genome of the first isolate retrieved from the patient. In addition, a visual inspection of the alignments led to the identification of large deletions that were also included in this study. In this analysis, a total of 291 mutations was identified, comprising 240 SNPs, 35 indels and 16 large deletions that were detected among the isolates recovered from patient P213 over 15 years of chronic colonization (supplementary table A1).

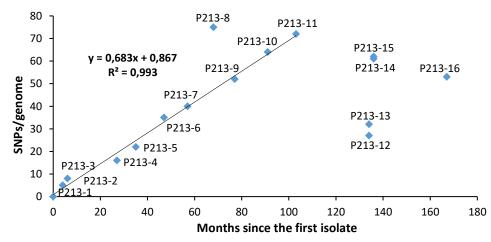
P213-1 contig	P213-1 contig length (bp)	<i>B. multivorans</i> ATCC 17616 chromosome	<i>B. multivorans</i> ATCC 17616 chromosome length (bp)
1	3 298 492	1	3 448 421
2	706 259	3	919 805
3	2 464 683	2	2 473 162
4	813	1	-
5	28 489	-	-

Table 3 - Lengths of the 5 contigs generated from the assembly of the genome of the first *B. multivorans* isolate recovered from patient P213 and lengths of the corresponding chromosomes of *B. multivorans* ATCC 17616.

3.1.2.1. Identification of polymorphic genes

In this analysis, ten genes were found to have two different mutations and two genes had three mutations, all within the coding sequence (table 4). The polymorphic genes with three mutations encode a Fis family transcriptional regulator conserved in the *Burkholderia* genus (gene PROKKA_02577) and a TetR family transcriptional regulator (gene PROKKA_02681). The TetR homolog in *B. vietnamiensis* (*amrR*) has been demonstrated to be involved in aminoglycoside resistance (Jassem *et al.* 2014). Genes *accA* and *accD*, encoding acetyl-coA carboxylase subunits alpha and beta, respectively, were also polymorphic, possibly affecting fatty acid biosynthesis. Moreover, two different mutations were identified in a gene encoding a methyl-accepting chemotaxis protein, which may be involved in motility and biofilm formation. Other polymorphic genes are *murF* and *dacB*, involved in peptidoglycan biosynthesis; gene *nuoF*, involved in oxidative phosphorylation; gene *fhuA*, involved in iron metabolism; and gene PROKKA_03885, which encodes a highly repetitive protein and has two different mutations in all isolates except the first three.

Contig	Position	Mutation	Locus tag	Gene name	Annotation	Homolog in <i>B.</i> <i>multivorans</i> ATCC 17616	Effect of mutation	Type of muta- tion	Isolates with mutation
contig 1	866409	GTC>ATC	PROKKA_00810	murF	UDP-N- acetylmuramoyl-	Bmul_2840	nonsyn	SNP	2
contig 1	866580	CTC>ATC		man	tripeptide-D-alanyl- D- alanine ligase		nonsyn	SNP	8
contig 1	1764172	-12cgacg cgctcga	PROKKA_01653	dacB	D-alanyl-D-alanine carboxypeptidase	Bmul_0679	4 aa deletion	indel	12
contig 1	1764306	+1t	_		DacB precursor	_	frameshift	indel	5
contig 1	2152189	GGC>GCC			NADH-quinone	Deniel 4000	nonsyn	SNP	11
contig 1	2152190	GGC>GGA	PROKKA_02018	nuoF	oxidoreductase subunit F	Bmul_1033	syn	SNP	11
contig 1	2341503	GAT>GAA			acetyl-CoA carboxylase	D 4005	nonsyn	SNP	4-16
contig 1	2341659	GAG>GAA	PROKKA_02189	accA	carboxyltransferase subunit alpha	Bmul_1205	syn	SNP	8
contig 1	2542874	CCG>CCA	PROKKA_02387	-	major facilitator	Dmul 1242	syn	SNP	4-16
contig 1	2543389	TGC>CGC		-	transporter	Bmul_1342	nonsyn	SNP	8
contig 1	2755251	GCT>GCG			Fis family		syn	SNP	14
contig 1	2755284	GCA>GCG	PROKKA_02577	fis	transcriptional	Bmul_1516	syn	SNP	8
contig 1	2755289	CGA>CCA			regulator		nonsyn	SNP	11


Table 4 - Polymorphic genes identified among the 16 B. multivorans isolates recovered from CF patient P213.

Contig	Position	Mutation	Locus tag	Gene name	Annotation	Homolog in <i>B.</i> <i>multivorans</i> ATCC 17616	Effect of mutation	Type of muta- tion	Isolates with mutation
contig 1	2837644	TGA>CGA		<i>c</i> i	TonB-dependent	D 1 4504	nonsyn	SNP	10;15
contig 1	2838056	CGG>CGA	PROKKA_02659	fhuA	siderophore receptor	Bmul_1594	syn	SNP	10;15
contig 1	2878065	GCT>GCA			TetR family		syn	SNP	6;7; 9-11;13-16
contig 1	2878400	-2ac	PROKKA_02681	amrR	transcriptional regulator	Bmul_1617	frameshift	indel	12
contig 1	2878405	+6atttgt					2 aa insertion	indel	12
contig 2	98034	CAT>CGT	PROKKA_03146	-	Sensor histidine	Bmul_5359	nonsyn	SNP	11
contig 2	98413	CTC>TTC			kinase		nonsyn	SNP	8
contig 3	128522	GAC>GAT			Methyl-accepting	David 40.40	syn	SNP	5-7;9-16
contig 3	128525	CAC>CAT	PROKKA_03779	тсрС	chemotaxis protein McpC	Bmul_4946	syn	SNP	4-16
contig 3	246465	GCC>TCC	PROKKA 03885	haa	IgA FC receptor		nonsyn	SNP	4-16
contig 3	246467	CGT>CTT		bag	precursor	-	nonsyn	SNP	4-16
contig 3	2374729	ATT>ATC		0.00D	Acetyl-CoA	Bmul 4610	syn	SNP	4
contig 3	2374762	CGA>CGC	PROKKA_05730	accD	carboxylase subunit beta	Bmul_4619	syn	SNP	5-7;9-16

Table 4 - Polymorphic genes identified among the 16 B. multivorans isolates recovered from CF patient P213 (cont.).

3.1.2.2. Mutation rate determination

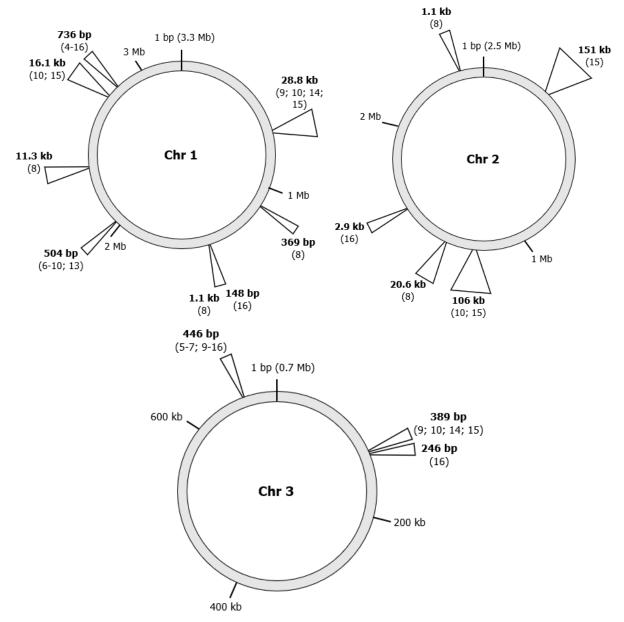

A representation of the SNPs identified per isolate over time since the first isolate was recovered (figure 7) allowed the identification of two distinct patterns. First, isolates 1 to 7 and 9 to 11 seem to acquire mutations at a constant rate of about 8.2 SNPs/year. Second, the set of the latter 5 isolates recovered after 12 and 14 years since the first isolate showed significantly less SNPs than expected if following the linear tendency of the first set of isolates. Isolate 8 showed the highest number of mutations, with 75 SNPs, 16 indels and 7 large deletions, and also did not follow the linear tendency described for the first set of isolates. One important achievement of this analysis was the identification of a 48-bp deletion in the mismatch repair gene *mutL* for isolate 8, which could explain the increased number of SNPs, as mutations in this gene lead to a hypermutator phenotype.

Figure 7 - Number of single-nucleotide polymorphisms (SNPs) distinguishing each *B. multivorans* isolate retrieved from patient P213 from the first isolate over time. A linear fit for isolates 1 to 7 and 9 to 11 is shown.

3.1.2.3. Analysis of large deletions

A visual inspection of genome alignments led to the identification of large deletions with sizes between 0.148 and 151.1 kb (figure 8; table 5). Similar studies with *B. multivorans*, *B. cenocepacia* and *P. aeruginosa* have also reported this loss of large genomic portions in clinical isolates recovered from CF patients (Lee *et al.* 2017; Rau *et al.* 2012; Silva *et al.* 2016).

Figure 8 - Schematic representation of large deletions identified among the 16 *B. multivorans* isolates recovered from CF patient P213, divided by chromosomes 1 (Chr1), 2 (Chr2) and 3 (Chr3). Deletions are represented by triangles; isolates with each deletion and its size are also shown. Chromosome representation is not at scale.

An examination of the genes included in these deletions enabled the identification of several protein functions that might be affected in mutated isolates. In chromosome 1, a 504-bp deletion in a gene encoding the DNA translocase FtsK (PROKKA_01941) is present in isolates 6 to 10 and 13, possibly affecting cell division. Further, a 28.8-kb deletion in isolates 9, 10, 14 and 15 comprises genes

involved in type VI secretion, with possible effects in virulence, and a 16.1-kb deletion in isolates 10 and 15 likely influences iron uptake, as it includes genes involved in siderophore biosynthesis. In chromosome 2, two large deletions include genes encoding important regulators of quorum sensing. Deleted in isolate 15, genes PROKKA_03962 and PROKKA_03963 encode the diguanylate cyclase/phosphodiesterase RpfR, the receptor of the *Burkholderia* diffusible signal factor (BDSF), that regulates biofilm formation, motility and virulence (Deng *et al.* 2012; Ryan *et al.* 2009). Deleted in isolate 8, gene PROKKA_04943 encodes the CepR regulator of the CepRI quorum sensing system, which also regulates biofilm formation, motility and production of extracellular virulence factors (Huber *et al.* 2001; Lewenza *et al.* 1999). Moreover, a 106-kb deletion comprising genes involved in type III secretion is present in isolates 10 and 15, in which type VI secretion genes are also deleted from chromosome 1, likely determining changes in virulence in these isolates.

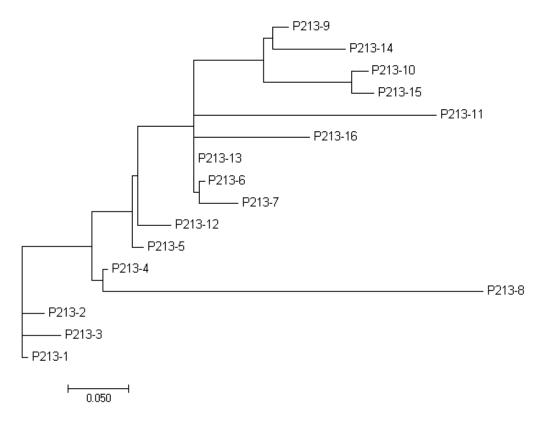
Chromosome	Start position	Deletion size (kb)	Locus tag	Isolates with mutation	Annotation / affected protein functions
Chr 1	763710	28.8	PROKKA_00718 to PROKKA_00742	9; 10; 14; 15	Type VI secretion; chaperone ClpB
Chr 1	1144822	0.369	PROKKA_01072	8	LysR transcriptional regulator
Chr 1	1576769	1.1	PROKKA_01479; PROKKA_01480	8	Hypothetical proteins
Chr 1	1577258	0.148	PROKKA_01479	16	Hypothetical protein
Chr 1	2073572	0.504	PROKKA_01941	6-10; 13	DNA translocase FtsK
Chr 1	2444332	11.3	PROKKA_02289 to PROKKA_02299	8	Hypothetical proteins
Chr 1	2839612	16.1	PROKKA_02660 to PROKKA_02663	10; 15	Siderophore biosynthesis
Chr 1	2934558	0.736	PROKKA_02740	4-16	Cystine-binding periplasmic protein
Chr 2	275479	151.1	PROKKA_03911 to PROKKA_04047	15	Diguanylate cyclase/phosphodiesterase RpfR; chaperone DnaK
Chr 2	1264028	106	PROKKA_04773 to PROKKA_04857	10; 15	Type III secretion; flagellar biosynthesis; galactose metabolism
Chr 2	1447293	20.6	PROKKA_04923 to PROKKA_04945	8	CepR regulatory protein
Chr 2	1643082	2.9	PROKKA_05088	16	Adhesion protein
Chr 2	2418658	1.1	PROKKA_05769; PROKKA_05770	8	Transport proteins
Chr 3	120468	0.389	PROKKA_03164	9; 10; 14; 15	23S rRNA
Chr 3	122606	0.246	PROKKA_03165; PROKKA_03166	16	tRNA-Ala; tRNA-Ile
Chr 3	672318	0.446	PROKKA_03626; PROKKA_03627	5-7; 9-16	Trehalohydrolase; glucanotransferase

Table 5 - Large deletions iden	tified among the 16 B. I	<i>multivorans</i> isolates	recovered from CF patient P213.

3.1.2.4. Mutations distinguishing first and subsequent groups of isolates

Analysing the complete list of mutations (supplementary table A1) and considering that genes with mutations that became fixed over time are the most likely targets of evolution during chronic *B. multivorans* colonization, a collection of 12 SNPs and one large deletion that distinguished the latter 13 isolates from the first 3 isolates was selected for further analysis. Table 6 shows the list of mutations found in isolates 4 to 16 when compared with the genome of the first isolate and absent in isolates 2 and 3. In addition to these mutations, there was one gene that was mutated in all the isolates apart from the first one – gene PROKKA_01466, which encodes a Lacl family transcription regulator. This gene is located upstream several genes encoding an ABC transporter.

Table 6 - List of mutations that fixed in the infecting *B. multivorans* population, distinguishing the first three isolates and the subsequent isolates sampled from CF patient P213. CDS, coding sequence; nonsyn, nonsynonymous; syn, synonymous.


Gene locus	Gene name	Category	Annotation	Mutations found	Effect in protein	Effect of mutation	Homolog in <i>B. multivorans</i> ATCC 17616
PROKKA_01273	pheA	CDS	Chorismate mutase	T>G	L280R	nonsyn	Bmul_2261
PROKKA_01500	hprK	CDS	HPr kinase	G>A	R114C	nonsyn	Bmul_0521
PROKKA_01663	acrB	CDS	Multidrug efflux transporter permease subunit	T>C	V178A	nonsyn	Bmul_0689
PROKKA_02125	folD		Methenyltetrahydrofolate cyclohydrolase	C>T	A210T	nonsyn	Bmul_1130
PROKKA_02127	fixL	CDS	Sensor protein FixL	A>G	S707P	nonsyn	Bmul_1132
PROKKA_02189	accA	CDS	Acetyl-coenzyme A carboxylase carboxyl transferase subunit alpha	T>A	D186E	nonsyn	Bmul_1205
PROKKA_02387	-	CDS	Major Facilitator Superfamily transporter	C>T	P244P	syn	Bmul_1342
PROKKA_02752	-	CDS	LysR family transcriptional regulator	G>A	P157L	nonsyn	Bmul_1695
PROKKA_03101	-	CDS	Endoribonuclease	G>A	A147V	nonsyn	Bmul_5405
PROKKA_03779	тсрС		Methyl-accepting chemotaxis protein	G>A	H311H	syn	Bmul_4946
PROKKA_03885	bag	CDS	IgA FC receptor precursor	C>A	A10S	nonsyn	-
PROKKA_03885	bag	CDS	IgA FC receptor precursor	C>A	R9L	nonsyn	-
PROKKA_02740	fliY	-	Cystine-binding periplasmic protein	736-bp deletion	-	-	Bmul_1679

Notably, most of the mutations that fixed in the population were nonsynonymous, suggesting positive evolutionary selection. Genes such as PROKKA 02387 and PROKKA 01663, encoding a major facilitator superfamily (MFS) transporter and a multidrug efflux transporter permease subunit, respectively, could play a role in antimicrobial resistance. Gene PROKKA 02189 encodes the acetyl-CoA carboxylase subunit alpha, which is involved in fatty acid biosynthesis, suggesting that changes in lipid metabolism may be under selection during adaptation of B. multivorans to the CF airways of this patient. Other mutated genes that might affect metabolism are pheA, encoding the enzyme chorismate mutase that is involved in the synthesis of phenylalanine and tyrosine; gene hprK, encoding a serine/threonine kinase that phosphorylates/dephosphorylates the phosphotransferase system (PTS) protein HPr, regulating the entrance of metabolites into the cell (catabolite repression); gene folD, encoding an enzyme involved in the folate-activated one-carbon pool, a process required for nucleotide biosynthesis and, consequently, DNA and RNA synthesis and DNA repair; and gene PROKKA 02740, encoding a subunit of an ABC transporter involved in the uptake of cystine, the oxidized dimer form of cysteine. Another mutated gene, PROKKA_03101, encodes a protein of the RidA family, which prevents accumulation of reactive intermediates generated by pyridoxal-5'-phosphate--dependent enzymes and thus cellular damage. Some mutations also targeted regulators, namely a LysR family transcriptional regulator (gene PROKKA_02752); a methyl-accepting chemotaxis protein (gene PROKKA 03779) homolog to the P. aeruginosa WspA receptor involved in biofilm formation (Hickman et al. 2005); and gene PROKKA_02127, a fixL homolog, which encodes a sensor histidine kinase of a two-component regulatory system. This fixLJ regulatory system is involved in biofilm formation, motility, virulence and intracellular invasion in B. dolosa (Schaefers et al. 2017).

In summary, the most relevant mutations distinguishing the two groups of sequentially retrieved isolates from patient P213 identified in this analysis occurred in genes that may relate to antibiotic resistance, metabolism of several macromolecules, motility and biofilm formation.

3.1.2.5. Phylogenetic analysis

To determine the evolutionary relationship among the 16 *B. multivorans* isolates, SNPs were used to construct a maximum likelihood phylogenetic tree (figure 9). The root of the tree was placed on the branch of isolate P213-1 and the analysis clusters the first three isolates together and separates them from the latter ones. Isolate 8 seems to be phylogenetically more distant from the other isolates, which is likely explained by its increased number of SNPs due to a deletion in the mismatch repair gene *mutL*. Interestingly, isolates that were collected on the same date do not seem to be closely related, as is the case for isolate pairs P213-12/P213-13 and P213-14/P213-15, showing coexistence of several lineages within the same CF patient.

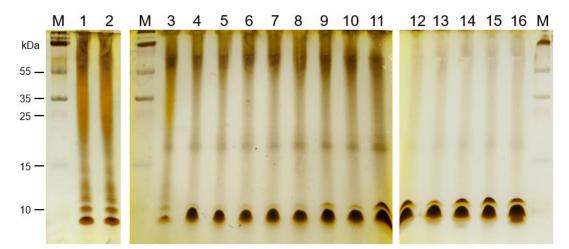


Figure 9 - Phylogenetic tree of the 16 *B. multivorans* isolates recovered from CF patient P213. The evolutionary history was inferred by using the maximum likelihood method based on the Tamura-Nei model (Tamura & Nei 1993). The tree with the highest log likelihood is shown and it is drawn to scale, with branch lengths measured in the number of substitutions per site (229 positions).

3.1.3. Analysis of lipopolysaccharide

LPS plays an important role in virulence for Bcc species, and O-antigen repeats have been shown to interfere with adhesion to abiotic surfaces and bronchial epithelial cells (Saldías *et al.* 2009). Nevertheless, the O-antigen is highly immunogenic, which means that bacteria that lack this portion of the LPS could have an advantage in evading the host immune system. To evaluate the production of the O-antigen repeats of LPS by the 16 *B. multivorans* isolates sampled from CF patient P213, LPS was extracted and purified, and resulting samples were resolved by electrophoresis. Figure 10 shows that the LPS of the first three isolates presented the O-antigen repeats, but the subsequently retrieved isolates lacked the O-antigen portion of LPS.

Examining the list of mutations generated by the comparative genomics analysis, mutations in genes involved in LPS biosynthesis were identified, but the observed phenotypes could not be explained for all the isolates based on this analysis. Nonsynonymous SNPs were found in genes encoding LPS export system protein LptA (in isolates 4 and 8), LPS export system permease LptG (in isolate 7) and LPS core heptosyltransferase (in isolates 10 and 15).

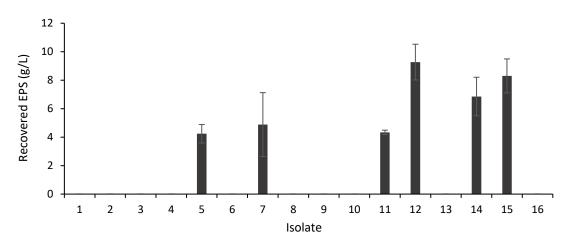


Figure 10 - Changes in the LPS pattern of the 16 *B. multivorans* isolates recovered from patient P213. Isolates 1, 2 and 3 are the only ones that exhibit the O-antigen. Lanes M, protein markers.

3.1.4. Exopolysaccharide production

A transition in mucoidy is commonly observed in *Burkholderia cepacia* complex (Bcc) bacteria during long-term chronic infections in CF patients. To analyse the mucoid phenotype, the amount of exopolysaccharide (EPS) produced by each isolate of *B. multivorans* sampled from CF patient P213 was assessed after 6 days of growth in liquid salt-mannitol (SM) medium. The recovered EPS concentration of the 16 isolates is presented in figure 11.

Isolates 5, 7, 11, 12, 14 and 15 were the only ones able to produce detectable amounts of high molecular weight (HMW) exopolysaccharide. However, isolates 1, 2, 4 and 13 produced minor amounts of a precipitate that resembled the extracellular polymeric substance but consisted of small particles that were difficult to detect and collect. The recovered HMW EPS dry-weight ranged from approximately 4 to 9 g/L.

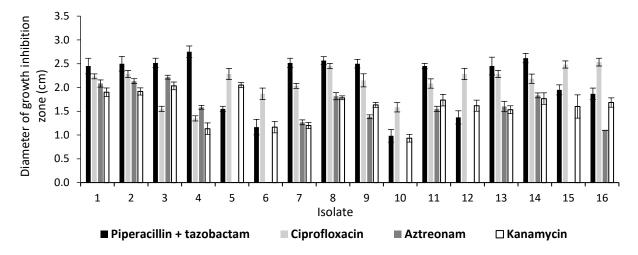
Figure 11 - Exopolysaccharide production of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213, based on the dry weight of ethanol-precipitated EPS after 6 days of growth at 37°C (error bars represent the standard deviations of the mean values for three independent experiments). Only high molecular weight EPS was collected for this analysis.

In addition, the mucoid phenotype was also evaluated in solid medium (YEM, yeast extract mannitol medium), by visual inspection of the inoculated plates after 48 h of growth at 37°C. Isolates were classified as highly mucoid, mucoid and non-mucoid, and the results are presented in table 7. YEM plates of isolates 6, 9 and 10, corresponding to highly mucoid, mucoid and non-mucoid isolates, respectively, are shown in figure 12 (the plates of the remaining isolates are presented in supplementary figure A1). The first seven isolates displayed higher mucoidy than the remaining ones, and isolates 10, 12 and 15 were non-mucoid in YEM plates. The results for the mucoid phenotype analysis in solid and liquid media are not in agreement, which is likely due to the fact that different compositions were used for the solid and liquid media in this experiment.

Table 7 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of incubation at 37°C for the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213. Isolates were classified as highly mucoid (++), mucoid (+) and non-mucoid (-) by visual inspection.

Isolate	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mucoidy	++	++	++	++	++	++	++	+	+	-	+	-	+	+	-	+

Figure 12 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of incubation at 37°C for *B. multivorans* isolates 6 (highly mucoid, ++), 9 (mucoid, +) and 10 (non-mucoid, -) of patient P213.


Although variations in EPS production were evident in the phenotypical assessments, no mutations in genes belonging to the EPS biosynthetic gene cluster (*bce* gene cluster; Moreira *et al.* 2003) were identified in the genome analysis.

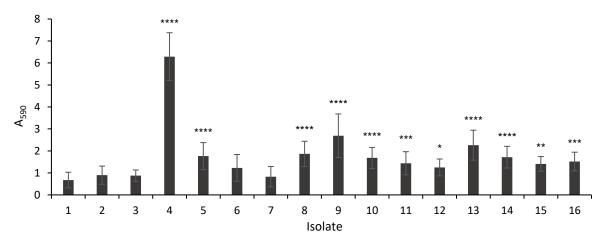
3.1.5. Susceptibility against antimicrobials

Antibiotic resistance is a frequently reported characteristic of Bcc isolates chronically infecting CF patients. Therefore, the susceptibility of each isolate retrieved from patient P213 against the antibiotics piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin was tested. Piperacillin is a β -lactam antibiotic that belongs to the class of penicillin and is widely used in combination with the β -lactamase inhibitor tazobactam, acting by inhibiting bacterial cell wall biosynthesis; ciprofloxacin is a

fluoroquinolone that works by inhibiting DNA replication; aztreonam is a β -lactam that inhibits cell wall biosynthesis; and kanamycin is an aminoglycoside that inhibits protein synthesis.

The agar disc diffusion method (Bauer *et al.* 1966) was used to assess the susceptibility of the isolates against these antimicrobials and the resulting average diameter of the growth inhibition zone is represented in figure 13.

Figure 13 - Susceptibility of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213 to antibiotics (piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin), measured as the diameter of cell growth inhibition, after growth for 24h at 37°C (error bars represent the standard deviations of the mean values for three independent experiments).


Results show that the first three *B. multivorans* isolates were more susceptible to aztreonam and kanamycin, while the subsequently sampled isolates were more resistant to these two antibiotics. Statistical significance of differences between the first isolate and the subsequent ones was determined for these two antimicrobials using ANOVA followed by Dunnett's multiple comparisons test. For susceptibility to aztreonam, differences were extremely significant for all isolates (*P*-value < 0.0001; supplementary figure A2). For kanamycin, while most isolates presented significant differences in susceptibility to this antimicrobial (*P*-value < 0.01, at least), isolates 5, 8, 11 and 14 showed no statistically significant alterations (supplementary figure A3). Concerning susceptibility to piperacillin/tazobactam and ciprofloxacin, there seems to be two distinct populations, one that remains susceptible and one that becomes more resistant to these antimicrobials during the course of infection. Moreover, isolates 5, 6, 10, 12 and 15 were completely resistant to aztreonam and were simultaneously more resistant to piperacillin/tazobactam than the first three isolates.

In search of mutations that could underlie the observed increase in resistance to antibiotics, two SNPs were found in genes encoding a MFS transporter and a multidrug efflux transporter permease subunit (genes PROKKA_02387 and PROKKA_01663, respectively) in the latter 13 isolates retrieved from this CF patient.

3.1.6. Biofilm formation

During chronic CF infections, Bcc isolates have been reported to undergo alterations regarding biofilm formation. Biofilms consist in communities within which bacteria present a sessile lifestyle, being protected from environmental stresses. To evaluate the biofilm formation of the *B. multivorans* isolates retrieved from CF patient P213, the absorbance at 590 nm (A₅₉₀) of cell suspensions grown in microtiter plates for 48h was measured after adequate staining (results in figure 14).

Results show that the first three isolates produced less biofilm than the subsequent isolates, except for isolates 6 and 7, for which differences in this trait were found statistically non-significant (differences were considered significant for *P*-values < 0.05). Interestingly, isolate 4 produced a much higher amount of biofilm than all the other isolates.

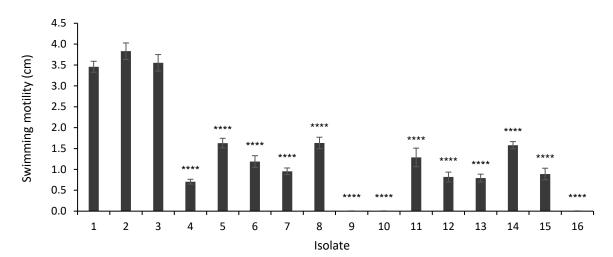
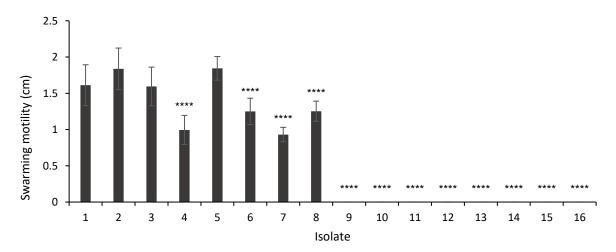


Figure 14 - Biofilm formation of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213, after growth in polystyrene microplates for 48h at 37°C. Error bars represent the standard deviations of the mean values for at least three experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: *, *P*-value < 0.05; **, *P*-value < 0.01; ****, *P*-value < 0.001; ****, *P*-value < 0.001 by ANOVA followed by Dunnett's multiple comparisons test).

Possible mutations underlying differences in biofilm formation are SNPs in a *fixL* homolog and in a gene encoding a methyl-accepting chemotaxis protein, which were identified in the latter 13 isolates of this patient. In *B. dolosa, fixL* encodes a sensor histidine kinase of a two-component regulatory system (FixLJ) that regulates biofilm formation, motility and virulence (Schaefers *et al.* 2017). Chemotaxis proteins sense and respond to environmental stimuli and may also be involved in motility and biofilm formation.

3.1.7. Swimming and swarming motility


The following phenotypic trait associated with long-term CF chronic infections studied in this work was motility. It has been demonstrated that longitudinally retrieved Bcc isolates chronically infecting the airways of a CF patient experience a decrease in motility during the course of infection. To assess the swimming motility of the 16 *B. multivorans* isolates sampled from patient P213, swimming agar plates were incubated for 24 h and the diameter of the swimming zone was measured. Results are

shown in figure 15. The first three isolates clearly display increased swimming motility in comparison with the subsequently recovered isolates. Moreover, isolates 9, 10 and 16 showed no swimming motility.

Figure 15 - Swimming motility of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213, after growth in swimming agar plates for 24 h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: ****, *P*-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).

To evaluate the swarming motility of the 16 *B. multivorans* isolates from patient P213, swarming agar plates were incubated for 48 h and the diameter of the motility zone was measured. Results are shown in figure 16. The latter 13 isolates show decreased swarming motility in comparison with the first three (except for isolate 5, that showed no statistically significant changes), with isolates 9 to 16 displaying no motility in swarming agar plates.

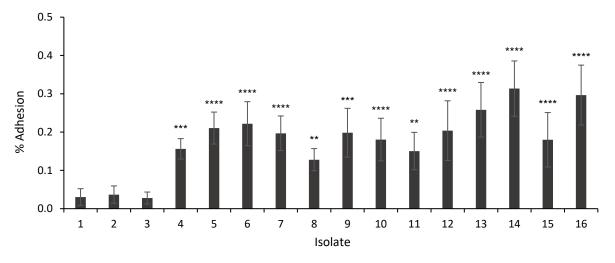
Figure 16 - Swarming motility of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213, after growth in swarming agar plates for 48 h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: ****, *P*-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).

Some mutations involved in motility were identified among the 16 *B. multivorans* isolates, namely in genes encoding flagellar proteins (FliL in isolate 10, FlgE in isolate 11 and FlgI in isolate 16). Nonetheless, the observed differences in motility between the two sets of isolates might be a result of mutations in the homolog of the regulatory gene *fixL* or in the gene encoding a chemotaxis protein, both associated with regulation of motility.

3.1.8. Growth rate and doubling time determination

To evaluate differences in growth among the isolates retrieved from patient P213, growth rates were measured by monitoring the OD_{640} of cultures grown in synthetic cystic fibrosis medium (SCFM) (Palmer *et al.* 2007). Table 8 presents the doubling times calculated for each isolate and the corresponding growth curves are shown in supplementary figure A4. Results show that the first seven isolates, except for isolate 4, show shorter doubling times when compared with the latter ones.

Table 8 - Doubling times (in hours) calculated for the 16 *B. multivorans* isolates sampled from CF patient P213, based on growth rates measured from cultures grown in synthetic cystic fibrosis medium (SCFM). Results are the means of data from two independent experiments.


Isolate	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Doubling time (h)	1.6	1.6	1.6	2.9	1.6	1.6	1.6	1.7	2.8	3.0	2.0	2.0	2.0	1.8	2.0	2.7

In the comparative genomics analysis, two mutations that could be involved in amino acid biosynthesis were identified in the latter 13 isolates of this patient, possibly influencing bacterial growth. These mutations are a 736-bp deletion in a gene encoding a cystine-binding periplasmic protein and a nonsynonymous SNP in a chorismate mutase. Moreover, nonsynonymous SNPs in genes encoding ribosomal proteins were found, with possible implications in protein synthesis and, consequently, cell growth. Isolates 9, 10, 14 and 15 have a SNP in a gene encoding the 50S ribosomal protein L25 and isolate 16 has a SNP in a gene that encodes the 50S ribosomal protein L4. However, not all observed growth rates can be explained by these mutations.

3.1.9. Adhesion to epithelial cells

Adhesion of the *B. multivorans* isolates recovered from CF patient P213 to the bronchial epithelial cell line CFBE41o⁻, derived from a patient homozygous for the CFTR F508del mutation, was assessed. Alterations in this phenotypic trait have been associated with adaptation to the airways of CF patients (Silva *et al.* 2016). Epithelial cells were infected at a multiplicity of infection (MOI) of 10 (10 bacterial cells to 1 epithelial cell) and results are shown in figure 17, as percentage of adhesion.

Results show that the first three isolates retrieved from patient P213 exhibit decreased adhesion to bronchial epithelial cells in comparison to the latter isolates. This may be due to the presence of LPS O-antigen in these isolates, as O-antigen has been reported to inhibit adhesion to epithelial cells in *B. cenocepacia* (Saldías *et al.* 2009). A 2.9-kb deletion was identified in a gene encoding an adhesin (PROKKA_05088) in isolate 16, but ability to adhere to epithelial cells seems to not have been affected.

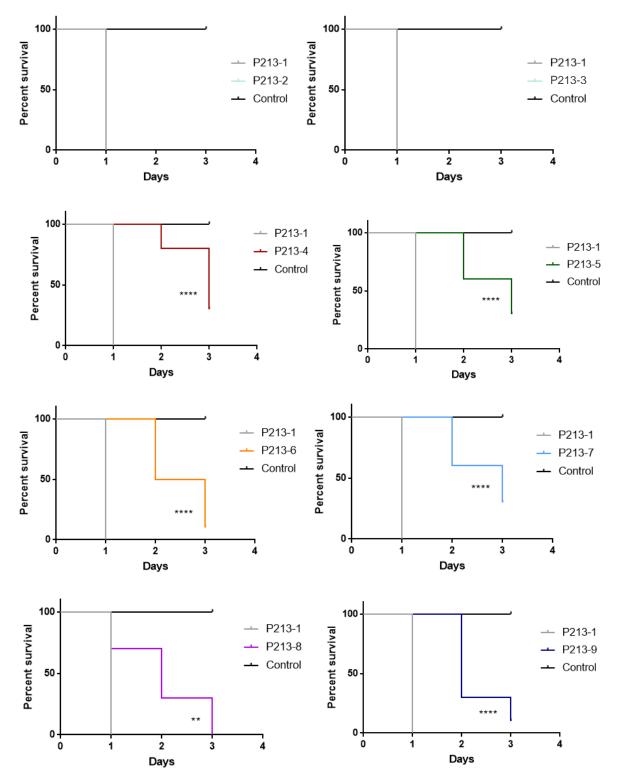


Figure 17 - Adhesion of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213 to the bronchial epithelial cell line CFBE41o⁻. Results are shown as the percentage of adhesion, which was calculated as the number of CFU recovered divided by the number of CFU applied to the epithelial cells multiplied by 100. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: **, *P*-value < 0.01; ****, *P*-value < 0.001; ****, *P*-value < 0.001 by ANOVA followed by Dunnett's multiple comparisons test).

3.1.10. Virulence in Galleria mellonella

Galleria mellonella was used as an infection model to study virulence of the *B. multivorans* isolates under study. This insect was chosen as an infection model for having an innate immune system with a high degree of structural and functional homology to the innate immune systems of mammals (Seed & Dennis 2008). Ten larvae were injected per isolate in each experiment and survival was followed for three days post-infection (results in figure 18). A clear difference in terms of virulence is observed when comparing the first three isolates with the latter ones, except for isolate 13, as these four *B. multivorans* strains cause 0% survival only 24 hours post-infection.

As *fixL* regulates virulence in *B. dolosa*, the mutation in its homolog that is present in the latter 13 isolates of patient P213 might underlie the decreased virulence of those isolates (except for isolate 13). Nevertheless, this change in acute virulence could be associated with the presence of LPS O-antigen in the first three isolates, as O-antigen has been shown to inhibit phagocytosis by macrophages, thus reducing bacterial elimination, in *B. cenocepacia* (Saldías *et al.* 2009). Furthermore, large deletions found in some isolates include genes involved in type III and type VI secretion, likely influencing virulence ability. A 28.8-kb deletion in isolates 9, 10, 14 and 15 (in chromosome 1) comprises genes involved in type VI secretion and isolates 10 and 15 also present a 106-kb deletion (in chromosome 2) including genes involved in type III secretion. While virulence of isolate 9 generates a Kaplan-Meier survival curve similar to other moderately virulent isolates, acute virulence in *G. mellonella* is notably attenuated for isolates 10, 14 and 15. This attenuated virulence is also observed for isolate 12, but no mutations that could be responsible for this phenotype were identified.

Figure 18 - Survival of *Galleria mellonella* larvae inoculated with *B. multivorans* isolates retrieved from CF patient P213. Triplicate groups of 10 larvae were inoculated with each isolate and survival was followed for three days post-infection. Larvae were injected with approximately 1x10⁶ bacterial cells. The control experiment without bacteria is also represented. Statistical significance of differences between the Kaplan-Meier curve of the first isolate and the subsequent ones was determined: **, *P*-value < 0.01; ***, *P*-value < 0.001; ****, *P*-value < 0.0001.

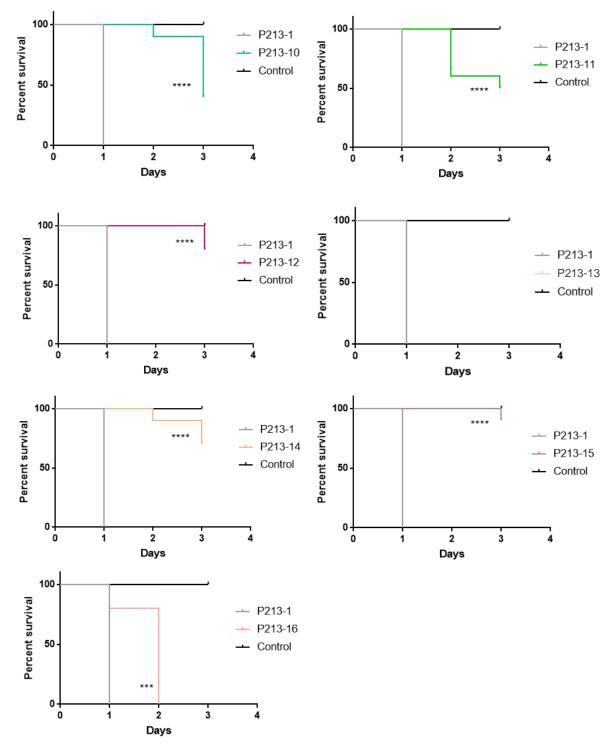


Figure 18 - Survival of *Galleria mellonella* larvae inoculated with *B. multivorans* isolates retrieved from CF patient P213 (cont.).

3.2. Analysis of *B. multivorans* isolates retrieved from CF patient P426

3.2.1. B. multivorans isolates from CF patient P426

The 21 bacterial isolates consist of a single clone of *Burkholderia multivorans* sampled from cystic fibrosis patient P426 at certain time points in the period between 1997 and 2014 (figure 19). Isolate pairs 1/2, 3/4 and 17/18 were recovered in different time points of years 1997, 1998 and 2011, respectively. Isolate pairs 11/12, 13/14 and 20/21 were each recovered in a single time point.

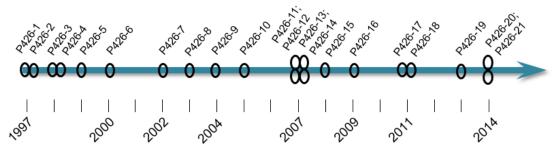


Figure 19 - B. multivorans isolates recovered from CF patient P426.

3.2.2. Analysis of single-nucleotide polymorphism and indel mutations

To detect genetic mutations that could originate phenotypic variation, the genomes of the 21 *B. multivorans* isolates sampled from patient P426 were sequenced and analysed. The genome of the first isolate was used as the reference genome for the identification of mutations, after sequencing and *de novo* assembly. The assembly of the genome of the first isolate yielded 7 contigs with lengths between 7045 and 3430912 bp (table 9). To identify which contig corresponded to each *B. multivorans* chromosome, Basic Local Alignment Search Tool (BLAST, Altschul *et al.* 1990) was used to align each contig to the genome of *B. multivorans* ATCC 17616. Contigs 1, 2 and 3 correspond to chromosomes 3, 2 and 1, respectively. Contigs 4 to 7 did not map onto the reference genome of *B. multivorans* ATCC 17616 and are likely plasmids. Given that contigs 4, 5 and 7 were simultaneously absent from five isolates, it is expected that these contigs comprise one plasmid that was lost in those isolates and that contig 6 corresponds to another plasmid that was maintained in all isolates.

P426-1 contig	P426-1 contig length (bp)	<i>B. multivorans</i> ATCC 17616 chromosome	<i>B. multivorans</i> ATCC 17616 chromosome length (bp)
1	1 204 139	3	919 805
2	2 425 401	2	2 473 162
3	3 430 912	1	3 448 421
4	7 288	-	-
5	7 840	-	-
6	33 556	-	-
7	7 045	-	-

Table 9 - Lengths of the 7 contigs generated from the assembly of the genome of the first *B. multivorans* isolate recovered from patient P426 and lengths of the corresponding chromosomes of *B. multivorans* ATCC 17616.

SNP and indel mutations were detected by aligning sequence reads for each isolate against the genome sequence of the first isolate. Only mutations identified in alignments using two alignment tools and occurring in at least three forward and reverse reads were subsequently analysed. The final list of SNPs and indels comprised mutations existing among the latter 20 *B. multivorans* isolates when compared to the genome of the first isolate. In addition, large deletions were identified by a visual inspection of the alignments and were also included in this analysis. A total of 337 mutations was identified, comprising 275 SNPs, 40 indels and 22 large deletions that were detected among the isolates recovered from patient P426 over 18 years of chronic colonization (supplementary table A2).

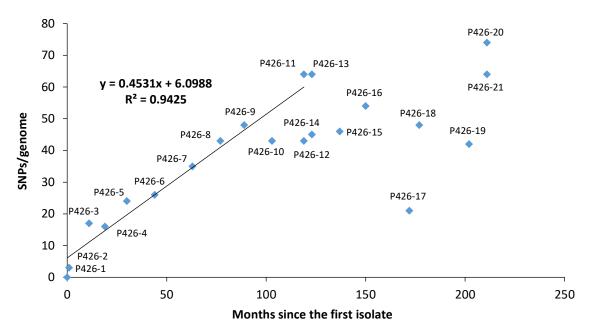
3.2.2.1. Identification of polymorphic genes

Polymorphic genes were investigated, with 24 genes presenting two different mutations and 5 genes presenting three mutations, all within the coding sequence (table 10). The polymorphic genes with three mutations encode a transport system permease protein (gene PROKKA_02456), an electron-transferring-flavoprotein dehydrogenase (PROKKA_04099), a hypothetical protein (PROKKA_01578), a LPS-assembly protein precursor (PROKKA_05461) and a lipid A deacylase precursor (PROKKA_05547). Interestingly, three genes related to LPS were polymorphic (PROKKA_05461, PROKKA_05547 and PROKKA_05090). One gene with two nonsynonymous mutations that seems relevant is a *fixL* homolog, which encodes a sensor histidine kinase of a two-component regulatory system that is involved in biofilm formation, motility, virulence and intracellular invasion in *B. dolosa* (Schaefers *et al.* 2017). A mutation in this gene was also found in 13 isolates of CF patient P213. Further, two distinct nonsynonymous mutations were found in gene PROKKA_05863, encoding a Fis family transcriptional regulator that was also identified as a polymorphic gene with three different mutations in the isolates of P213.

		ginorphic gei			B. mainvolune				120.
Contig	Position	Mutation	Locus tag	Gene name	Annotation	Homolog in <i>B.</i> <i>multivorans</i> ATCC 17616	Effect of mutation	Type of muta- tion	Isolates with mutation
contig 1	163483	CAG>CCG	PROKKA 00155	-	Hypothetical	Rout 5602	nonsyn	SNP	7
contig 1	163487	ACG>CCG	PROKKA_00155	-	protein	Bmul_5602	nonsyn	SNP	7
contig 1	502063	GGT>AGT	PROKKA_00467	ytnP	Putative quorum-	_	nonsyn	SNP	13
contig 1	502108	AGC>CGC		yun	quenching lactonase	_	nonsyn	SNP	2-21
contig 2	24055	CCG>CCT			Type VI	David 0000	syn	SNP	17
contig 2	24056	AGC>CGC	PROKKA_01149	-	secretion protein	Bmul_3902	nonsyn	SNP	17
contig 2	144318	ACG>ACC	PROKKA_01249	-	LuxR family transcriptional	Bmul_3738	syn	SNP	9-12; 14- 16; 19; 21
contig 2	144529	CTG>CGG	_		regulator	_	nonsyn	SNP	13
contig 2	495662	GAA>GAC					nonsyn	SNP	20
contig 2	495668	GAC>GAG	PROKKA_01578	-	Hypothetical protein	-	nonsyn	SNP	20
contig 2	495701	TTT>TTG			F. 50011		nonsyn	SNP	20
contig 2	692133	AAC>GAC			Outer	Denul 0040	nonsyn	SNP	13
contig 2	692531	TAC>TAG	PROKKA_01734	-	membrane porin	Bmul_3342	nonsyn	SNP	13

Table 10 - Polymorphic genes identified among the 21 B. multivorans isolates recovered from CF patient P426.

Contig	Position	Mutation	Locus tag	Gene name	Annotation	Homolog in <i>B.</i> <i>multivorans</i> ATCC 17616	Effect of mutation	Type of muta- tion	Isolates with mutation
contig 2	810557	CTC>ATC			Phospho-2- dehydro-3-		nonsyn	SNP	20
contig 2	811057	GTC>GCC	PROKKA_01840	aroG	deoxyhepto- nate aldolase	Bmul_3232	nonsyn	SNP	11; 21
contig 2	1203055	-9ggtg cccga	PROKKA_02187	bag	IgA FC receptor	_	3 aa deletion	indel	5
contig 2	1203065	GAG>GAA		bug	precursor		syn	SNP	5
contig 2	1503211	CTC>CGC			Putrescine transport		nonsyn	SNP	3-7; 9-16; 18-21
contig 2	1503212	CTC>CTA	PROKKA_02456	potH	system permease	Bmul_5430	syn	SNP	3-7; 9-16; 18-21
contig 2	1503720	CTC>TTC			protein PotH		nonsyn	SNP	10
contig 3	271374	GGG>GGC	PROKKA_03495	_	Hypothetical	_	syn	SNP	8-12; 14- 16; 19; 21
contig 3	271595	-1c			protein	_	frameshift	indel	7; 18
contig 3	274762	TCG>TTG	PROKKA_03497	pimB	GDP-manno- se-dependent alpha-(1-6)- phosphatidyli	_	nonsyn	SNP	18
contig 3	275439	AGC>AGT		pini	nositol mono- mannoside mannosyl- transferase		syn	SNP	8
contig 3	420538	CTG>TTG			Putative glutamine	Dravil 0074	syn	SNP	11
contig 3	420883	-1a	PROKKA_03649	-	amidotrans- ferase	Bmul_2371	frameshift	indel	20
contig 3	810899	GGC>AGC			Acylaldehyde oxidase and xanthine de-	David 4004	nonsyn	SNP	8; 17
contig 3	812372	TTC>CTC	PROKKA_04003	-	hydrogenase molybdopterin binding protein	Bmul_1961	nonsyn	SNP	11; 16; 21
contig 3	925543	GCG>GCC			Electron transfer		syn	SNP	14
contig 3	925885	GCG>GCC	PROKKA_04099	-	flavoprotein- ubiquinone	Bmul_1788	syn	SNP	14
contig 3	925915	AAG>AAA			oxidoreduc- tase		syn	SNP	14
contig 3	1113816	CAG>CGG	PROKKA_04305	-	Hypothetical	Bmul_1658	nonsyn	SNP	13
contig 3	1114149	ACC>AGC		_	protein	Dinui_1000	nonsyn	SNP	4
contig 3	1155926	+3gag	PROKKA_04345	-	TetR family transcriptional	Bmul_1617	1 aa deletion	indel	8; 17
contig 3	1155929	+4gatc			regulator		frameshift	indel	13
contig 3	1322758	-2gc	PROKKA_04491	-	Hypothetical	Bmul_1477	frameshift	indel	20
contig 3	1322782	CAG>CCG			protein		nonsyn	SNP	11; 16; 21
contig 3	1611930	CCG>CAG	PROKKA_04760	mepH	Murein DD- endopepti-	Bmul_1218	nonsyn	SNP	3
contig 3	1612228	GGC>TGC	1 INONINA_04700	терп	dase MepH precursor	DITIUI_1210	nonsyn	SNP	6; 13
contig 3	1745194	GGC>TGC	PROKKA_04896	fixL	Sensor	Bmul_1132	nonsyn	SNP	8-12; 14- 16; 19; 21
contig 3	1746932	ATG>ACG			protein FixL	_	nonsyn	SNP	8; 17

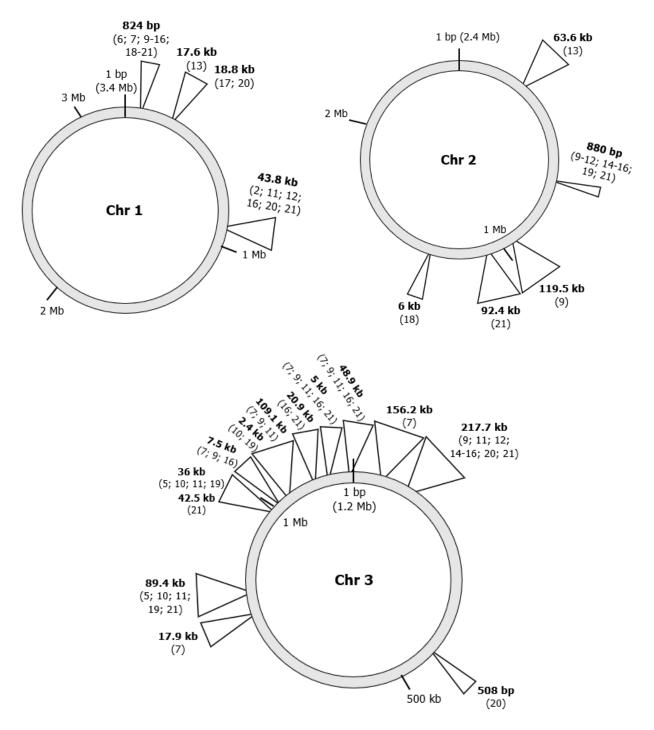

Table 10 - Polymorphic genes identified among the 21 B. multivorans isolates recovered from CF patient P426 (cont.).

Contig	Position	Mutation	Locus tag	Gene name	Annotation	Homolog in <i>B.</i> <i>multivorans</i> ATCC 17616	Effect of mutation	Type of muta- tion	Isolates with mutation
contig 3	1950433	TGA>CGA			LPS core		nonsyn	SNP	18
contig 3	1951341	GCC>GTC	PROKKA_05090	rfaQ	heptosyltrans- ferase RfaQ	-	nonsyn	SNP	6; 13
contig 3	2128370	CAG>CGG			Amino acid		nonsyn	SNP	13
contig 3	2128371	CAG>AAG	PROKKA_05256	livH	transport system permease	Bmul_0798	nonsyn	SNP	13
contig 3	2206844	GAC>GTC	PROKKA_05327	cmaA	Cyclopropane -fatty-acyl-	Bmul_0727	nonsyn	SNP	13
contig 3	2207131	TAC>CAC			phospholipid synthase		nonsyn	SNP	19
contig 3	2229130	CGC>GGC	PROKKA_05345	-	Beta-	Bmul_0708	nonsyn	SNP	20
contig 3	2229131	CCG>CCC	PROKKA_05345	-	lactamase	Billui_0708	syn	SNP	20
contig 3	2356074	GTC>GAC			LPS assembly	_	nonsyn	SNP	8-12; 14- 16; 19; 21
contig 3	2356176	GGC>GCC	PROKKA_05461	lptD	protein LptD	Bmul_0588	nonsyn	SNP	7
contig 3	2356177	GGC>AGC			precursor		nonsyn	SNP	7
contig 3	2429786	CGC>CTC	PROKKA_05526	hprK	HPr kinase/phos-	Bmul_0521	nonsyn	SNP	8; 17
contig 3	2430037	GCC>ACC		πριτ	phorylase	Billu_0521	nonsyn	SNP	13
contig 3	2448847	TAT>CAT			Lipid A		nonsyn	SNP	13
contig 3	2448851	+1t	PROKKA_05547	pagL	deacylase PagL	Bmul_0487	frameshift	indel	20
contig 3	2449067	-2ca			precursor		frameshift	indel	15
contig 3	2536493	-27tcacg cgcatcgcg tcgagctcct cgg	PROKKA_05629	mlaE	Putative phospholipid ABC transporter	Bmul_0403	9 aa deletion	indel	8
contig 3	2537284	CGC>CGT			permease protein MlaE		syn	SNP	13
contig 3	2789456	GAA>GAC	PROKKA_05863	fis	Fis family transcriptional	Bmul_3117	nonsyn	SNP	9-12; 14- 16; 19; 21
contig 3	2789704	GAG>CAG			regulator		nonsyn	SNP	20
contig 3	3196331	+6tcggcc	PROKKA_06251	pilQ	Type IV pilus	Bmul 0294	2 aa deletion	indel	9
contig 3	3197434	CTG>CTT		pilo	secretin PilQ	5mu_02 <i>3</i> 4	syn	SNP	3-16; 18- 21

Table 10 - Polymorphic genes identified among the 21 B. multivorans isolates recovered from CF patient P426 (cont.).

3.2.2.2. Mutation rate determination

Figure 20 shows a representation of the SNPs identified per isolate over time since the first isolate was recovered, leading to the identification of different patterns. Initially, isolates 1 to 11 seem to gain mutations at a constant rate of about 5.4 SNPs/year. The remaining isolates presented less SNPs than expected if following the linear tendency of the first set of isolates. Isolate 17 showed a significantly low number of mutations, with a total of 25 mutations comprising 21 SNPs, 3 indels and 1 large deletion. On the other hand, isolate 20 presented the highest number of mutations, with a total of 87 mutations, including 74 SNPs, 8 indels and 5 large deletions.


Figure 20 - Number of single-nucleotide polymorphisms (SNPs) distinguishing each *B. multivorans* isolate retrieved from patient P426 from the first isolate over time. A linear fit for isolates 1 to 11 is shown.

3.2.2.3. Analysis of large deletions

Several large deletions were identified among the isolates recovered from patient P426, with sizes between 0.508 and 217.7 kb (figure 21; table 11). It is important to note that 7 large deletions that were identified among the *B. multivorans* isolates were present in at least 5 isolates, the largest one including 209 genes (218-kb deletion present in 8 isolates). Further, isolates 5, 10, 11, 19 and 21 lacked contigs 4, 5 and 7 completely, likely corresponding to one of two plasmids that were identified for the isolates of P426. This loss of genomic portions shows a genome reduction that has been observed in similar studies with *B. multivorans*, *B. cenocepacia* and *P. aeruginosa* (Lee *et al.* 2017; Rau *et al.* 2012; Silva *et al.* 2016). Moreover, a large deletion of about 49 kb was found at the end of contig 1 (corresponding to chromosome 3) in isolates 7, 9, 11, 16 and 21, and in isolate 7 there was also a large deletion of about 156 kb at the start of this contig.

Main protein functions affected by each large deletion were analysed. In chromosome 2, isolate 21 has a 92.4-kb deletion that includes a gene encoding the diguanylate cyclase/phosphodiesterase RpfR (PROKKA_02109). RpfR is a cis-2-dodecenoic acid (BDSF) receptor that regulates quorum sensing, playing a role in regulation of biofilm formation, motility and virulence (Deng *et al.* 2012; Ryan *et al.* 2009). This gene was also deleted in isolate 15 of patient P213. In chromosome 3, large deletions comprised several genes involved in type IV secretion and pilus biosynthesis, associated with bacterial conjugation. Deletions including genes involved in type IV secretion are present in isolate 7 (156.2-kb and 109.1-kb deletions in chromosome 3), isolates 9 and 11 (109.1-kb and 217.7-kb deletions in chromosome 3), isolates 12, 14 to 16, 20 and 21 (217.7-kb deletion in chromosome 3) and isolate 13 (63.6-kb deletion in chromosome 2). Deletions including genes involved in pilus biosynthesis are present

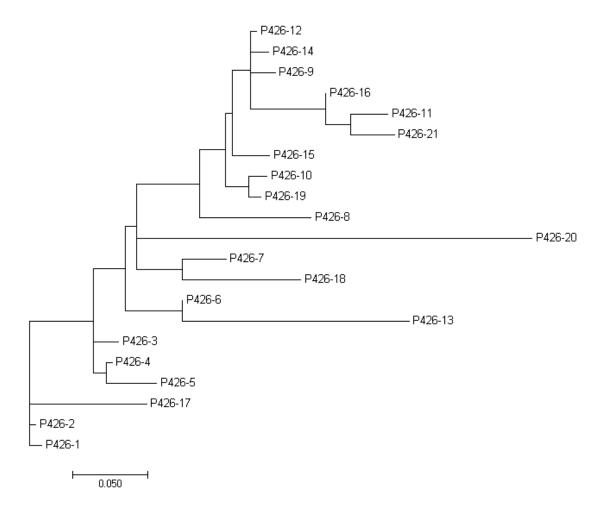
in isolate 11 (89.4-kb and 109.1-kb deletions in chromosome 3), isolates 7 and 9 (109.1-kb deletion in chromosome 3) and isolates 5, 10, 19 and 21 (89.4-kb deletion in chromosome 3).

Figure 21 - Schematic representation of large deletions identified among the 21 *B. multivorans* isolates recovered from CF patient P426, divided by chromosomes 1 (Chr1), 2 (Chr2) and 3 (Chr3). Deletions are represented by triangles; isolates with each deletion and its size are also shown. Chromosome representation is not at scale.

Chromosome	Start position	Deletion size (kb)	Locus tag	Isolates with mutation	Annotation / affected protein functions		
Chr 1	68863	0.824	PROKKA_03313; PROKKA_03314	6; 7; 9-16; 18-21	Glutamine transport protein		
Chr 1	269236	17.6	PROKKA_03494 to PROKKA_03505	13	Fructose and mannose metabolism		
Chr 1	269236	18.8	PROKKA_03494 to PROKKA_03506	17; 20	Fructose and mannose metabolism		
Chr 1	945339	43.8	PROKKA_04119 to 2; 11; 12; 16; PROKKA_04187 20; 21		Hypothetical proteins		
Chr 2	262950	63.6	PROKKA_01353 to PROKKA_01422	13	Transport proteins; type IV secretion		
Chr 2	691600	0.880	PROKKA_01734	9-12; 14-16; 19; 21	Outer membrane porin		
Chr 2	979219	119.5	PROKKA_01981 to PROKKA_02095	9	Transcriptional regulators; sensor histidine kinases		
Chr 2	1100890	92.4	PROKKA_02097 to PROKKA_02178	21	Diguanylate cyclase/phosphodiesterase RpfR; chaperone DnaK		
Chr 2	1355298	6.1	PROKKA_02325 to PROKKA_02331	18	Transcriptional regulator		
Chr 3	7203	156.2	PROKKA_00008 to PROKKA_00155	7	Type IV secretion; DNA replication		
Chr 3	16531	217.7	PROKKA_00017 to PROKKA_00225	9; 11; 12; 14- 16; 20; 21	Type IV secretion; DNA replication; LPS biosynthesis		
Chr 3	450595	0.508	PROKKA_00422; PROKKA_00423	20	tRNA		
Chr 3	855545	17.9	PROKKA_00785 to PROKKA_00800	7	Outer membrane porins		
Chr 3	887178	89.4	PROKKA_00810 to PROKKA_00904	5; 10; 11; 19; 21	Pilus biosynthesis		
Chr 3	995236	36.1	PROKKA_00918 to PROKKA_00953	5; 10; 11; 19	Hypothetical proteins		
Chr 3	995236	42.5	PROKKA_00918 to PROKKA_00958	21	Hypothetical proteins		
Chr 3	1030237	7.5	PROKKA_00954 to PROKKA_00958	7; 9; 16	Hypothetical proteins		
Chr 3	1038909	2.4	PROKKA_00960; PROKKA_00961	10, 19	Hypothetical proteins		
Chr 3	1038936	109.1	PROKKA_00960 to PROKKA_01069	7; 9; 11	Pilus biosynthesis; type IV secretion		
Chr 3	1127241	20.9	PROKKA_01048 to PROKKA_01069	16; 21	Hypothetical proteins		
Chr 3	1148967	5	PROKKA_01069 to PROKKA_01078				
Chr 3	1155187	48.9	PROKKA_01080 to PROKKA_01126	7; 9; 11; 16; 21	Hypothetical proteins		

Table 11 - Large deletions identified	I among the 21 B	. multivorans isolates recovered from	CF patient P426.

3.2.2.4. Mutations distinguishing first and subsequent groups of isolates


As genes with mutations that became fixed over time are likely targets of evolution during chronic *B. multivorans* infection, a group of mutations that distinguished the latter isolates from the earlier isolates was selected. Table 12 shows a list of mutations that were found in at least 17 of the 21 isolates recovered from the patient. Genes coding for transporters possibly involved in resistance to antibiotics were found in the majority of the isolates (PROKKA_00501, PROKKA_04445 and PROKKA_02456). Two nonsynonymous mutations were found in genes associated with fatty acid biosynthesis, one in the acetyl-CoA carboxylase biotin subunit (PROKKA_05665) and the other in the enzyme 3-ketoacyl-ACP reductase (PROKKA_01182), indicating that alterations in lipid metabolism may be involved in adaptation of *B. multivorans* to the CF airways. A mutation in the gene encoding the acetyl-CoA carboxylase subunit alpha was found for patient P213, supporting this hypothesis. Gene PROKKA_01972, encoding a cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase had a nonsynonymous mutation in 18 isolates. This signaling molecule has been associated with regulation of biofilm formation, motility, virulence and adhesion (Boyd & O'Toole 2012; Hengge 2009; Traverse *et al.* 2013).

Gene locus	Gene name	Category	Annotation	Mutations found	Effect in protein	Effect of mutation	Homolog in <i>B. multivorans</i> ATCC 17616	Isolates with mutation	Number of isolates with mutation
PROKKA_00467	ytnP	CDS	Putative quorum- quenching lactonase YtnP	T>G	S84R	nonsyn	-	2 - 21	20
PROKKA_00501	pbuE	CDS	Major facilitator transporter	G>T	L176M	nonsyn	Bmul_6097	2 - 21	20
PROKKA_01972	-	CDS	Cyclic-di-GMP phosphodiesterase	C>T	R145H	nonsyn	Bmul_5257	3 - 16; 18 - 21	18
PROKKA_02243	gcvA	CDS	LysR family transcriptional regulator	G>C	P114A	nonsyn	Bmul_4992	3 - 16; 18 - 21	18
PROKKA_04445	-	CDS	Acriflavin resistance protein	G>C	G452A	nonsyn	Bmul_1519	3 - 16; 18 - 21	18
PROKKA_04548	hom	CDS	Homoserine dehydrogenase	C>A	A121S	nonsyn	Bmul_1419	3 - 16; 18 - 21	18
PROKKA_05665	accC	CDS	Acetyl-CoA carboxylase biotin carboxylase subunit	G>A	D444N	nonsyn	Bmul_0367	3 - 16; 18 - 21	18
PROKKA_06251	pilQ	CDS	Type IV pilus secretin PilQ	G>T	L387L	syn	Bmul_0294	3 - 16; 18 - 21	18
PROKKA_01182	-	CDS	3-ketoacyl-ACP reductase	G>T	D219E	nonsyn	Bmul_3804	3 - 16; 18 - 21	18
PROKKA_02456	potH	CDS	Transport system permease protein	T>G	L225R	nonsyn	Bmul_5430	3 - 7; 9 - 16; 18 - 21	17
PROKKA_02456	potH	CDS	Transport system permease protein	C>A	L225L	syn	Bmul_5430	3 - 7; 9 - 16; 18 - 21	17

 Table 12 - List of SNPs that exist in the majority of the isolates belonging to the infecting *B. multivorans* population sampled from CF patient P426. CDS, coding sequence; nonsyn, nonsynonymous; syn, synonymous.

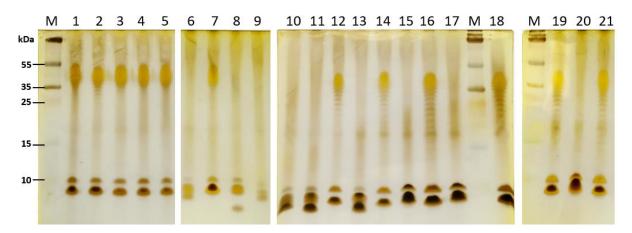
3.2.2.5. Phylogenetic analysis

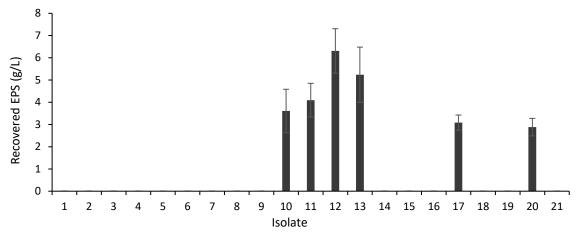
To determine the evolutionary relationship among the 21 *B. multivorans* isolates, SNPs were used to construct a maximum likelihood phylogenetic tree (figure 22). The root of the tree was placed on the branch of isolate P426-1. The analysis groups the first two isolates together and shows that the first 5 isolates and isolate 17 are closely related. Isolate 17 is likely placed in this cluster due to its unexpected reduced number of SNPs. Isolate 20 seems to have a distant phylogenetic relation with the other isolates, which is likely a result of its increased number of SNPs, as this was the isolate with the highest number of mutations. It is important to note that isolates that were sampled from the patient on the same date do not seem to be closely related, as is observed for isolate pairs P426-11/P426-12, P426-13/P426-14 and P426-20/P426-21, indicating the coexistence of different lineages within this CF patient.

Figure 22 - Phylogenetic tree of the 21 *B. multivorans* isolates recovered from CF patient P426. The evolutionary history was inferred by using the maximum likelihood method based on the Tamura-Nei model (Tamura & Nei 1993). The tree with the highest log likelihood is shown and it is drawn to scale, with branch lengths measured in the number of substitutions per site (249 positions).

3.2.3. Analysis of lipopolysaccharide

To assess the production of the O-antigen portion of LPS by the 21 *B. multivorans* isolates recovered from patient P426, LPS was extracted and purified, and the resulting samples were resolved by electrophoresis. Results are presented in figure 23 and show that isolates 1 to 5, 7, 12, 14, 16, 18, 19 and 21 display the O-antigen repeats of LPS, while the remaining isolates lack this phenotypic trait.




Figure 23 - Changes in the LPS pattern of the 21 *B. multivorans* isolates recovered from patient P426. Isolates 1 to 5, 7, 12, 14, 16, 18, 19 and 21 exhibit the O-antigen. Lanes M, protein markers.

Mutations in genes involved in LPS biosynthesis were identified in the comparative genomics analysis, but the absence of O-antigen could not be explained for all the isolates that lack this trait. Isolates 6 and 13 have a nonsynonymous SNP in the LPS core heptosyltransferase RfaQ; isolates 13, 17 and 20 have large deletions that include genes involved in the synthesis of GDP-D-rhamnose, the precursor of D-rhamnose, which is an O-antigen subunit commonly found in Bcc bacteria; and isolates 8 to 11 and 15 have a nonsynonymous SNP in a LPS assembly protein LptD precursor, but this mutation is also present in isolates that display the O-antigen.

3.2.4. Exopolysaccharide production

To evaluate the mucoid phenotype, the amount of exopolysaccharide produced by each isolate of *B. multivorans* sampled from CF patient P426 was assessed after 6 days of growth at 37°C. The recovered EPS concentration of the 21 isolates is presented in figure 24.

Isolates 10, 11, 12, 13 and 20 were the only ones able to produce detectable amounts of high molecular weight (HMW) EPS, with the recovered HMW EPS dry-weight ranging from approximately 3 to 6 g/L. Nevertheless, isolates 1, 2, 3, 4, 6, 9, 18 and 21 produced a precipitate that resembled the extracellular polymeric substance but consisted of small particles that were difficult to collect, which has already been described in the results for patient P213.

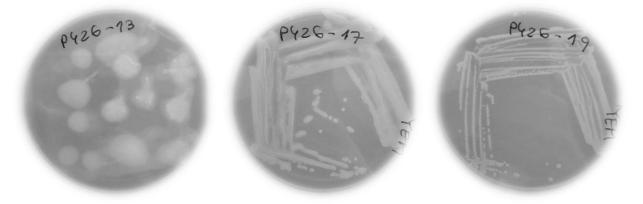
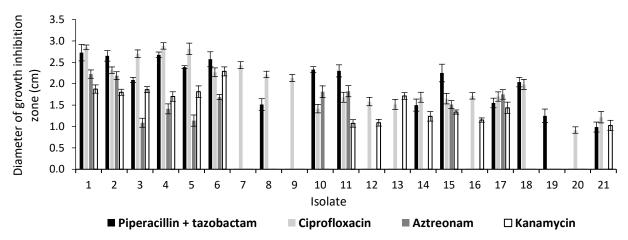


Figure 24 - Exopolysaccharide production of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426, based on the dry weight of ethanol-precipitated EPS after 6 days of growth at 37°C (error bars represent the standard deviations of the mean values for three independent experiments). Only high molecular weight EPS was collected for this analysis.

The mucoid phenotype was also studied in solid medium (YEM, yeast extract medium), by visual inspection of the inoculated plates after 48 h of growth at 37°C. Isolates were classified as highly mucoid, mucoid and non-mucoid, and the results are presented in table 13. Figure 25 shows YEM plates of isolates 13, 17 and 19, corresponding to highly mucoid, mucoid and non-mucoid isolates, respectively (the plates of the remaining isolates are shown in supplementary figure A5).

Table 13 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of incubation at 37°C for the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426. Isolates were classified as highly mucoid (++), mucoid (+) and non-mucoid (-) by visual inspection.

Isolate	1	2	3	4	5	6	7	8	9	10	11
Mucoidy	++	++	++	++	++	++	++	++	-	++	++
Isolate	12	13	14	15	16	17	18	19	20	21	
Mucoidy	++	++	++	++	++	+	+	-	+	+	


Figure 25 - Mucoid phenotype assessment in yeast extract mannitol medium (YEM) after 48 h of incubation at 37°C for *B. multivorans* isolates 13 (highly mucoid, ++), 17 (mucoid, +) and 19 (non-mucoid, -) of patient P426.

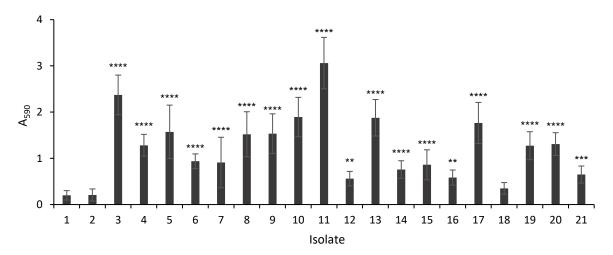
The first 16 isolates, apart from 9, displayed a higher mucoidy than the final 5 isolates. Isolate 9, along with isolate 19, was non-mucoid in YEM plates. Just as for patient P213, the results for the mucoid phenotype analysis in solid and liquid media are not in agreement, likely because different compositions were used for the solid and liquid media in this experiment.

Examining the list of mutations existing among the *B. multivorans* isolates, no mutations in genes belonging to the EPS biosynthetic gene cluster (*bce* gene cluster; Moreira *et al.* 2003) were identified.

3.2.5. Susceptibility against antimicrobials

The susceptibility of each *B. multivorans* isolate retrieved from patient P426 against antibiotics was tested, using piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin to assess this phenotypic trait. The results regarding the susceptibility of the bacterial isolates to the antimicrobials are shown as the average measure of the diameter of the growth inhibition zone, represented in figure 26.

Figure 26 - Susceptibility of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426 to antibiotics (piperacillin/tazobactam, ciprofloxacin, aztreonam and kanamycin), measured as the diameter of cell growth inhibition, after growth for 24h at 37°C (error bars represent the standard deviations of the mean values for three independent experiments).


Results show that the first two isolates are more susceptible to aztreonam than the subsequently retrieved isolates and that the first six isolates are generally more susceptible to the four antimicrobials used in this analysis than the latter isolates. Furthermore, isolates 7, 9, 19 and 20 are completely resistant to three of the four antibiotics and isolates 8, 12, 13, 16 and 18 showed complete resistance to two of the four tested antimicrobials. Statistical significance of differences between the first isolate and the subsequent ones was determined for susceptibility to aztreonam using ANOVA followed by Dunnett's multiple comparisons test, with extremely significant differences for all isolates (*P*-value < 0.0001; supplementary figure A6).

Mutations in genes encoding transport proteins that could be involved in resistance to antimicrobial compounds were identified in the genome analysis, such as genes encoding a major facilitator transporter (in isolates 2 to 21), an acriflavin resistance protein (in isolates 3 to 16 and 18 to

21), a transport system permease (in isolates 3 to 7, 9 to 16 and 18 to 21), a multidrug resistance protein (in isolates 8 to 12, 14 to 16, 19 and 21) and an efflux system outer membrane lipoprotein (in isolate 17).

3.2.6. Biofilm formation

Biofilm formation of the *B. multivorans* isolates sampled from CF patient P426 was assessed by measuring the absorbance at 590 nm (A₅₉₀) of cell suspensions grown in microtiter plates for 48h. Results are presented in figure 27 and show that the first two isolates produce a decreased amount of biofilm in comparison with the subsequent bacterial isolates, with the exception of isolate 18, for which no statistically significant differences in biofilm formation were found.

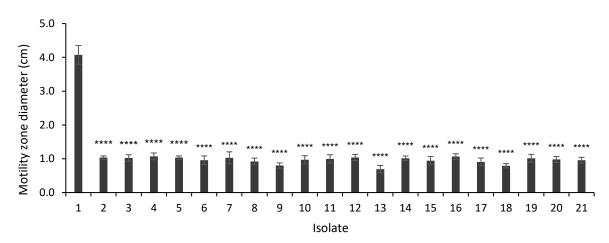


Figure 27 - Biofilm formation of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426, after growth in polystyrene microplates for 48h at 37°C. Error bars represent the standard deviations of the mean values for at least three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: **, *P*-value < 0.01; ****, *P*-value < 0.001; ****, *P*-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).

Alterations in biofilm formation among the isolates could be due to the presence of a nonsynonymous mutation in a gene encoding a c-di-GMP phosphodiesterase in isolates 3 to 16 and 18 to 21. This signaling molecule is involved in regulation of biofilm formation, motility, virulence and adhesion (Boyd & O'Toole 2012; Hengge 2009; Traverse *et al.* 2013). Further, a SNP located 78 bp upstream the coding region of a fimbrial protein precursor was also present in isolates 3 to 16 and 18 to 21, possibly affecting biofilm formation ability. Given that these mutations were absent in isolate 17 and the biofilm formation displayed by this isolate was significantly higher than the one observed for the first two isolates, one mutation that could explain this phenotype is a nonsynonymous SNP in a *fixL* homolog that is also associated with regulation of biofilm formation, motility and virulence.

3.2.7. Swimming and swarming motility

To study the motility of the 21 *B. multivorans* isolates longitudinally sampled from patient P426, swimming and swarming agar plates were incubated for 24 h and 48 h, respectively, and the diameter of the motility zone was measured. Results are shown in figure 28 for swimming motility and no data are shown for swarming motility, since only isolate 1 was able to move in this medium (motility zone diameter = 1.64 cm; standard deviation = 0.33 cm; three independent experiments were performed). The first isolate clearly shows increased motility when compared with the remaining isolates, which display a much lower swimming motility and no swarming motility.

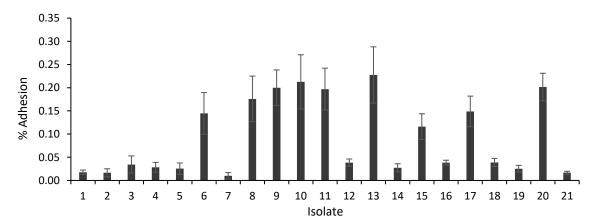
Figure 28 - Swimming motility of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426, after growth in swimming agar plates for 24 h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: ****, *P*-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).

Mutations involved in motility were identified in the comparative genomics analysis, namely in genes encoding flagellar proteins (FliJ in isolate 15 and Flil in isolate 17), the flagellar transcriptional regulator FlhC (isolate 6) and chemotaxis proteins (CheB in isolate 5 and CheA in isolate 20). Only two mutations were identified distinguishing the first isolate and the subsequent ones, in genes encoding a putative quorum-quenching lactonase and a MFS transporter. Lactonases degrade AHL molecules, thus inhibiting quorum sensing, which might influence bacterial motility. Additionally, the decrease in motility among the isolates could be explained by a mutation in a gene encoding a c-di-GMP phosphodiesterase in isolates 3 to 16 and 18 to 21, as c-di-GMP is involved in regulation of motility. Also, a mutation that could explain the observed motility of isolates 8 and 17 is a nonsynonymous SNP in a *fixL* homolog that could also regulate this phenotype.

3.2.8. Growth rate determination

Growth rates of the 21 isolates retrieved from patient P426 were measured by monitoring the OD₆₄₀ of cultures grown in synthetic cystic fibrosis medium (SCFM) (Palmer *et al.* 2007). The doubling times calculated for each isolate are shown in table 14 and the corresponding graphs are in

supplementary figure A7. Results show that the first four isolates present lower doubling times than the remaining ones.

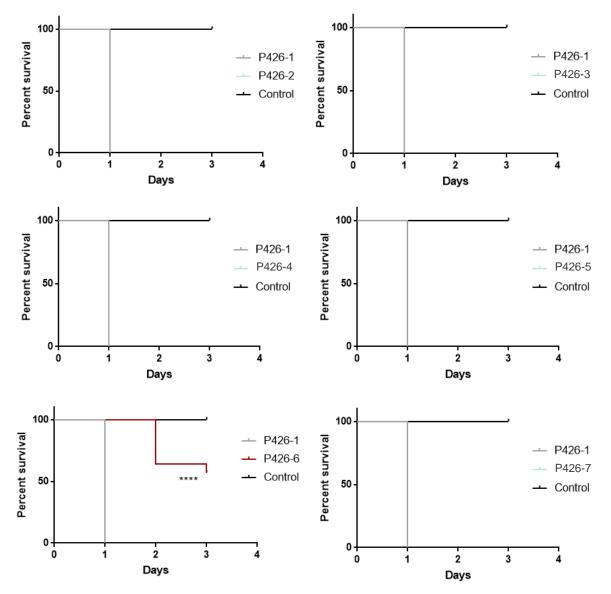

Table 14 - Doubling times (in hours) calculated for the 21 *B. multivorans* isolates sampled from CF patient P426, based on growth rates measured from cultures grown in synthetic cystic fibrosis medium (SCFM). Results are the means of data from two independent experiments.

Isolate	1	2	3	4	5	6	7	8	9	10	11
Doubling time (h)	1.3	1.4	1.4	1.4	1.8	1.9	1.9	1.5	1.7	1.9	2.1
Isolate	12	13	14	15	16	17	18	19	20	21	
Doubling time (h)	2.1	1.9	2.0	2.1	2.1	2.1	2.1	2.0	2.1	2.2	

The genome analysis identified a mutation in a gene encoding a homoserine dehydrogenase, which could be involved in amino acid biosynthesis, in isolates 3 to 16 and 18 to 21 of this patient, possibly influencing bacterial growth. However, growth rates of isolates 3, 4 and 17 are not explained by this hypothesis. Two additional mutations with possible implications in growth were found in isolates 6 to 16 and 18 to 21 – a mutation in a gene encoding the cytochrome o ubiquinol oxidase subunit, involved in oxidative phosphorylation, and a mutation in a gene encoding the enzyme cobalt-precorrin--6A synthase, involved in cobalamin (vitamin B12) biosynthesis.

3.2.9. Adhesion to epithelial cells

To analyse adhesion of the *B. multivorans* isolates sampled from patient P426 to the bronchial epithelial cell line CFBE41o⁻, epithelial cells were infected at a multiplicity of infection (MOI) of 10 (10 bacterial cells to 1 epithelial cell) and results are shown in figure 29, as percentage of adhesion.


Figura 29 - Adhesion of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426 to the bronchial epithelial cell line CFBE41o⁻. Results are shown as the percentage of adhesion, which was calculated as the number of CFU recovered divided by the number of CFU applied to the epithelial cells multiplied by 100. Results are the mean values from two replicates from three independent experiments.

Results show a clear difference between isolates with O-antigen and isolates without this portion of the LPS. Isolates that display this phenotypic trait (1 to 5, 7, 12, 14, 16, 18, 19 and 21) show remarkably low values of adhesion to epithelial cells, whereas isolates that don't produce the LPS

O-antigen (6, 8 to 11, 13, 15, 17 and 20) present increased percent adhesion to the CFBE41o⁻ cell line. This distinction was also observed for CF patient P213 and O-antigen has been reported to inhibit adhesion to epithelial cells in *B. cenocepacia* (Saldías *et al.* 2009).

3.2.10. Virulence in Galleria mellonella

To assess virulence of the *B. multivorans* isolates recovered from CF patient P426, *Galleria mellonella* was used as an infection model. Triplicates of ten larvae were injected per isolate and survival was followed for three days post-infection. Results are shown in figure 30.

Figure 30 - Survival of *Galleria mellonella* larvae inoculated with *B. multivorans* isolates retrieved from CF patient P426. Triplicate groups of 10 larvae were inoculated with each isolate and survival was followed for three days post-infection. Larvae were injected with approximately 1×10^6 bacterial cells. The control experiment without bacteria is also represented. Statistical significance of differences between the Kaplan-Meier curve of the first isolate and the subsequent ones was determined: ***, *P*-value < 0.001; ****, *P*-value < 0.0001.

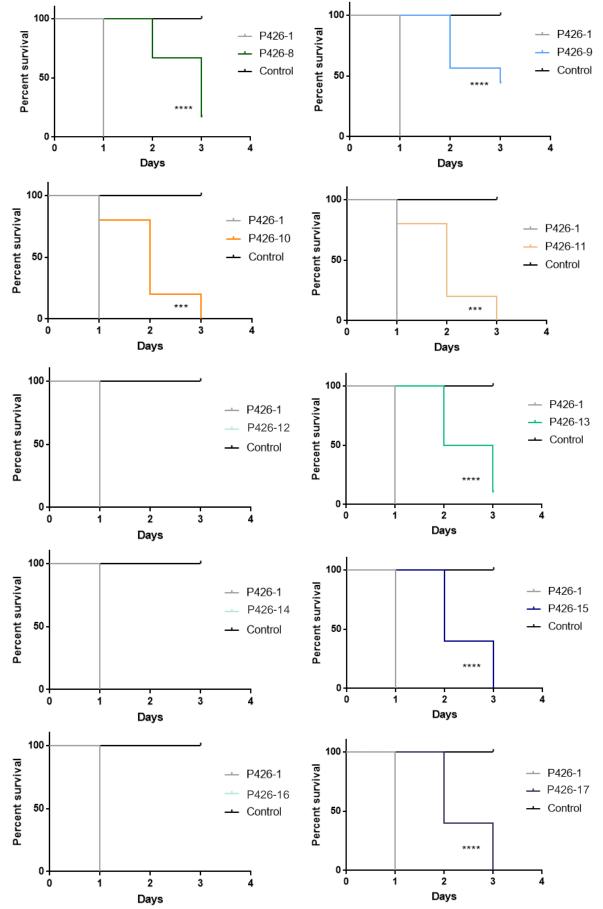


Figure 30 - Survival of G. mellonella larvae inoculated with B. multivorans isolates from CF patient P426 (cont.).

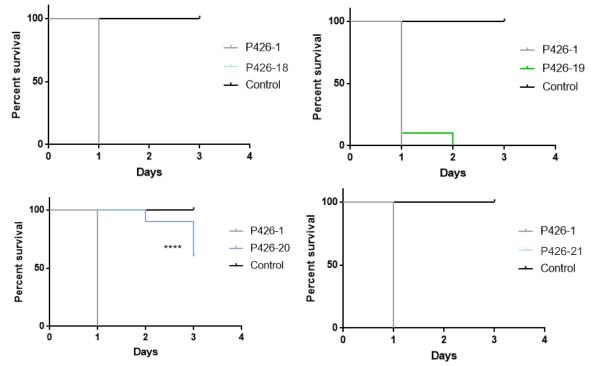


Figure 30 - Survival of G. mellonella larvae inoculated with B. multivorans isolates from CF patient P426 (cont.).

Results show that all the isolates that display the LPS O-antigen were more virulent than the ones without this portion of the LPS, being responsible for a 0% survival only 24 hours post-infection. This drastic decline in survival of larvae injected with bacteria that present the O-antigen was also observed in the experiments with isolates retrieved from CF patient P213. Although genes encoding regulators associated with virulence were found in isolates of patient P426 (*fixL* homolog and gene encoding c-di-GMP phosphodiesterase), acute virulence in *G. mellonella* seems to be determined by the presence of LPS O-antigen. Accordingly, this phenotypic trait has been shown to inhibit phagocytosis by macrophages, reducing bacterial elimination in *B. cenocepacia* (Saldías *et al.* 2009).

4. DISCUSSION

The aim of this work was to assess the genomic and phenotypic evolution of 37 *Burkholderia multivorans* isolates longitudinally sampled from two CF patients (P213 and P426) over 15 to 18 years of chronic infection. The strategy included a comparative genomics analysis, for the identification of important adaptive mutations among the isolates, and the analysis of phenotypes associated with adaptation of *B. cepacia* complex (Bcc) bacteria to the CF airways.

Detection of mutations that could influence adaptation of *B. multivorans* isolates to the CF airways was performed by comparing the genomes of the isolates with the first isolate for each patient, after sequencing and *de novo* assembly of the first isolates. To identify which contig generated by the assembly process corresponded to each *B. multivorans* chromosome, Basic Local Alignment Search Tool (BLAST, Altschul *et al.* 1990) was used to align each contig to the genome of *B. multivorans* ATCC 17616. This analysis also allowed the identification of one plasmid for the first isolate of patient P213 and two plasmids for the first isolate of patient P426.

Comparing the genomes of the 16 B. multivorans isolates recovered from patient P213 led to the identification of a total of 291 mutations, comprising 240 SNPs, 35 indels and 16 large deletions. Twelve polymorphic genes were found, all with mutations within the coding sequence. Two genes for which three different mutations were identified encode a TetR family transcriptional regulator and a Fis family transcriptional regulator conserved in the Burkholderia genus. The gene encoding a Fis family transcriptional regulator has unknown regulatory targets and it was recently found to have six mutations in B. multivorans isolates recovered from another chronically infected CF patient over 20 years (Silva et al. 2016). When evaluating the rate of accumulated SNPs per year, two distinct patterns were observed. While isolates 1 to 7 and 9 to 11 seem to have acquired mutations at a constant rate of about 8.2 SNPs per year, the set of the latter 5 isolates showed significantly less SNPs than expected if the linear tendency of the first set of isolates were followed. Assuming that bacterial isolates may have been collected from different regions of the airways of the CF patient, this difference in mutation acquisition could be due to the distinct selective pressures microorganisms encounter in those regions. The mutation rate of 8.2 SNPs per year for the first set of isolates is higher than the rate of about 2 SNPs per year observed for other long-term infections with B. dolosa and B. multivorans in CF patients (Lieberman et al. 2011; Silva et al. 2016). Isolate 8 was excluded from the mutation rate assessment due to the presence of a 48-bp deletion in the mismatch repair gene *mutL*, which could explain the increased number of mutations identified for this isolate (total of 98 mutations). Mutations in the mutL gene lead to a hypermutator phenotype, characterized by an increased mutation rate. Hypermutator phenotypes have been frequently reported for P. aeruginosa isolates retrieved from CF patients (Oliver et al. 2000; Smith et al. 2006; Hoboth et al. 2009) and also for Bcc isolates sampled from CF patients (Martina et al. 2014; Silva et al. 2016). Examining the genes comprised in the large deletions identified among the clinical isolates led to the identification of two important regulators of quorum sensing. Genes encoding the diguanylate cyclase/phosphodiesterase RpfR were deleted in isolate 15. This protein is the cis-2-dodecenoic acid (BDSF) receptor, being involved in c-di-GMP metabolism mainly as a c-di-GMP phosphodiesterase, and thus regulating biofilm formation, motility and virulence (Deng et al.

2012; Ryan et al. 2009). In a similar study of B. multivorans isolates chronically infecting a CF patient, a mutation in the gene encoding the RpfR protein fixed in the infecting population and was described as a strong candidate for governing global regulatory changes involved in adaptation to the CF host (Silva et al. 2016). The other quorum sensing system identified in this analysis was the CepRI system, as a gene encoding the CepR protein was deleted in isolate 8. CepR and CepI are the transcriptional regulator and the N-acyl-homoserine lactone (AHL) synthase, respectively, of the CepRI quorum sensing system, which regulates biofilm formation, motility and production of extracellular virulence factors (Huber et al. 2001; Lewenza et al. 1999). In P. aeruginosa clinical isolates sampled from CF patients, mutations in the lasR gene are often found (Marvig et al. 2014; Smith et al. 2006). LasR is a transcriptional regulator of quorum sensing and its inactivation reduces the expression of several virulence genes (Folkesson et al. 2012). Further, a selection of mutations that distinguished the latter 13 isolates of patient P213 from the first three was analysed and most of those mutations that became fixed in the population were nonsynonymous, indicating positive evolutionary selection. Relevant mutated genes may be involved in antibiotic resistance (genes encoding a MFS transporter and a multidrug efflux transporter), lipid metabolism (accA gene, encoding the acetyl-CoA carboxylase subunit alpha) and regulation of transcription targeting biofilm formation, motility and virulence (gene encoding a fixL homolog). In a similar study of B. multivorans isolates recovered from a chronically infected CF patient over 20 years, Silva and colleagues found four mutations in the gene encoding the acetyl-CoA carboxylase subunit alpha (Silva et al. 2016). A reduction of the degree of saturation of fatty acids produced by B. cenocepacia isolates infecting a CF patient had previously been associated with lung function deterioration (Coutinho et al. 2011). Furthermore, a homolog of fixL was found to be the most mutated gene in a study including 112 B. dolosa clinical isolates recovered from CF patients (Lieberman et al. 2011) and Silva and colleagues also found three mutations in the B. multivorans fixL homolog, which suggests that this gene could be an important global regulator in the adaptation of Bcc isolates to the CF environment.

The comparative genomics analysis of the 21 *B. multivorans* isolates recovered from patient P426 identified a total of 337 mutations, including 275 SNPs, 40 indels and 22 large deletions. Several polymorphic genes were found, with 24 genes presenting two different mutations and 5 genes presenting three mutations, all within the coding sequence. Among the polymorphic genes with three mutations were genes encoding a transport system permease protein, a LPS-assembly protein precursor and a lipid A deacylase precursor. Interestingly, two nonsynonymous mutations were present in a *fixL* homolog, which was identified as an important regulatory gene in the analysis of patient P213 and in similar studies (Lieberman *et al.* 2011; Silva *et al.* 2016). Moreover, two different nonsynonymous mutations were found in a gene encoding a Fis family transcriptional regulator that was also identified as a polymorphic gene with three mutations in the isolates of P213, suggesting a possible role for this regulator in the adaptation of *B. multivorans* isolates to the airways of CF patients. The mutation rate was assessed and isolates 1 to 11 seemed to gain mutations at a constant rate of about 5.4 SNPs per year, a value that is higher than the rate observed for other long-term infections with *B. dolosa* and *B. multivorans* in CF patients (Lieberman *et al.* 2011; Silva *et al.* 2016), as previously mentioned, but lower than the rate observed for the first set of isolates of patient P213. The remaining isolates presented less

SNPs than expected if following the linear tendency of the first group of isolates and this difference could be caused by the existence of distinct selective pressures in different areas of the airways. Isolate 17 showed a remarkably low number of mutations, with a total of 25 mutations. Further, it is important to note that several large deletions were found in *B. multivorans* isolates retrieved from this patient and seven of those were found in at least five isolates, the largest one including 209 genes (218-kb deletion in 8 isolates), showing a genome reduction that has been reported in other long-term bacterial evolution analyses with B. multivorans, B. cenocepacia, B. pseudomallei and P. aeruginosa (Lee et al. 2017; Price et al. 2013; Rau et al. 2012; Silva et al. 2016). Most of these large deletions were identified in contig 1, corresponding to chromosome 3 of B. multivorans ATCC 17616. Also, isolates 5, 10, 11, 19 and 21 completely lacked contigs 4, 5 and 7, likely corresponding to a plasmid that was lost over time in those isolates. Aiming to study the dynamics of genetic content alterations during host adaptation of P. aeruginosa to the lungs of CF patients, Rau and colleagues sequenced and analysed the genomes of 45 isolates sampled from 16 patients over 35 years, observing considerable genome reduction through deletions of large genomic regions (Rau et al. 2012). Genome reduction as an evolutionary strategy involves extensive gene loss affecting non-essential functions and has been related to adaptation towards permanent association with a host (Shigenobu et al. 2000). Interestingly, a gene encoding the diguanylate cyclase/phosphodiesterase RpfR, a regulator of biofilm formation, motility and virulence (Deng et al. 2012; Ryan et al. 2009), was deleted in isolate 21 and this gene was also deleted in isolate 15 of patient P213. Further analysis of the complete list of mutations reveals that several mutations were found in most of the isolates recovered from the patient, namely in genes coding for transporters possibly involved in resistance to antibiotics, in a gene encoding a c-di-GMP phosphodiesterase and in genes associated with fatty acid biosynthesis. One mutation was found in the acetyl-CoA carboxylase biotin subunit and the other in the enzyme 3-ketoacyl-ACP reductase, supporting the previously stated hypothesis that lipid metabolism may be involved in adaptation of *B. multivorans* to the airways of CF patients.

To determine the evolutionary relationship among the *B. multivorans* isolates of each patient, SNPs were used to construct maximum likelihood phylogenetic trees. For both patients, the analyses group the first two to five isolates together, separating them from the latter ones. Also, isolates that were collected on the same date fall into distinct areas of the trees, showing coexistence of different lineages within the same CF patient. Coexistence of distinct lineages in the same infection has also been observed in other long-term evolution studies with Bcc isolates from CF patients (Lee *et al.* 2017; Silva *et al.* 2016).

Regarding the phenotypical analyses performed in this work, one of the assessed phenotypes was the production of the LPS O-antigen, with the first three isolates sampled from CF patient P213 producing the O-antigen and the subsequently retrieved isolates lacking the ability to produce this portion of the LPS. LPS is considered a virulence factor produced by Bcc bacteria, as it seems to inhibit phagocytosis by macrophages and thus reduce bacterial elimination (Saldías *et al.* 2009). Nevertheless, the O-antigen can interfere with adhesion to abiotic surfaces and bronchial epithelial cells, and also stimulate the host immune response (Saldías *et al.* 2009), indicating that cells living in the form of

biofilms, like in most CF airways, could benefit from its loss. For the *B. multivorans* isolates retrieved from patient P426, there seem to be two different populations regarding this phenotypic trait, as isolates 1 to 5, 7, 12, 14, 16, 18, 19 and 21 display the O-antigen portion of LPS and the remaining isolates lack this trait. A few mutations in genes relating to LPS production were identified, namely in genes encoding LPS heptosyltransferases, LPS transport periplasmic protein LptA and LPS export system permease protein LptG. However, no mutations that could explain the absence of the LPS O-antigen in every isolate without this trait were found.

The mucoid phenotype of each *B. multivorans* isolate was analysed by the quantification of the dry weight ethanol-precipitated EPS in liquid medium and by visual inspection of mucoidy in solid medium. For patient P213, isolates 5, 7, 11, 12, 14 and 15 were the only ones able to produce detectable amounts of high molecular weight EPS in liquid medium. However, some of the isolates produced reduced amounts of a precipitate that consisted of small particles, which was not acknowledged as the typical EPS. One possible hypothesis is that the small particles could be repeating units that failed to be polymerized. Further analysis would need to be conducted in order to identify this precipitate. Regarding mucoidy in solid medium for this CF patient, the first seven isolates displayed a higher mucoidy than the remaining ones, and isolates 10, 12 and 15 were non-mucoid. For patient P426, isolates 10, 11, 12, 13 and 20 produced detectable amounts of high molecular weight EPS in liquid medium and isolates 1, 2, 3, 4, 6, 9, 18 and 21 produced the small particle precipitate that was described for patient P213. Mucoidy inspection in solid medium showed that the first 16 isolates of this patient, except for 9, displayed a higher mucoidy than the final 5 isolates. Isolates 9 and 19 were non-mucoid. For both patients, the results for the mucoid phenotype analysis in the two media are not in agreement, as different compositions were used for the solid and liquid media in this experiment. EPS is considered a virulence factor of Bcc bacteria, as it has been demonstrated to inhibit neutrophil chemotaxis, to neutralize reactive oxygen species in vitro (Bylund et al. 2006), to affect the phagocytosis of bacteria by human neutrophils and to facilitate persistent bacterial infection in mice (Conway et al. 2004). In P. aeruginosa, it is well established that longitudinally retrieved isolates from CF patients undergo a non-mucoid to mucoid conversion, which generally occurs due to mutations in the *mucA* gene that ultimately lead to an excessive production of alginate (Jones et al. 2010; Rau et al. 2010; Marvig et al. 2014). Contrarily, Bcc isolates sequentially sampled from CF patients have been shown to undergo a transition from a mucoid phenotype to a non-mucoid one (Zlosnik et al. 2008; Silva et al. 2011). The results for mucoidy analysis in solid medium for the two patients studied in this work are in agreement with a decrease in mucoidy over time. Nevertheless, it isn't clear whether EPS production associates with increased virulence or persistence in the lungs, as studies have suggested that the non-mucoid morphotype is associated with increased disease severity for patients and the mucoid morphotype with persistence in the lungs (Zlosnik et al. 2011), and others demonstrated that mucoid variants are more virulent in the acute infection model Galleria mellonella and non-mucoid variants are related to persistence in the CF airways (Silva et al. 2011). To study the virulence of the B. multivorans isolates under study in this work, virulence assays using the infection model G. mellonella were performed and will be discussed further on.

Concerning susceptibility to antibiotics, the first three isolates of patient P213 were highly susceptible to aztreonam and kanamycin, with the subsequent isolates retrieved from the patient displaying increased resistance to these antimicrobials. Regarding susceptibility to piperacillin/tazobactam and to ciprofloxacin, two populations seem to have evolved differently, with some isolates remaining susceptible and others gaining resistance. During long-term chronic CF infections, bacteria commonly become more resistant to antibiotics (Coutinho et al. 2011; Lieberman et al. 2011; Silva et al. 2016), as frequent and prolonged exposure to antimicrobials promotes the emergence of strains with improved ability to survive in the challenging CF environment. For the B. multivorans isolates recovered from patient P426, the first two isolates were more susceptible to aztreonam than the subsequently retrieved isolates and the first six isolates were generally more susceptible to the four antimicrobials used in this analysis than the latter isolates. Moreover, four isolates were completely resistant to three of the four antibiotics and five isolates showed complete resistance to two of the four tested antimicrobials. To draw further conclusions about antibiotic resistance, information regarding the administration of antibiotics to the patients under study should be acquired, such as the time points at which antimicrobials were administrated and which antimicrobials were included in the treatment. The comparative genomics analysis led to the identification of mutations distinguishing the earlier isolates of each patient from the latter ones in genes encoding major facilitator superfamily (MFS) and multidrug efflux transporters, which could underlie the increase in resistance to antibiotics observed for the two CF patients.

The production of biofilms was also assessed in this work, as alterations in this phenotypic trait are frequently reported for Bcc isolates chronically infecting CF patients. For patient P213, the first three isolates showed a lower biofilm formation than the subsequently retrieved isolates (except for isolates 6 and 7, for which no statistically significant differences in biofilm production were found). Living within biofilms, bacteria are protected from environmental stresses, such as the host immune response and the presence of antibiotics, which are common stress sources in the CF airways. It was demonstrated that bacteria within biofilms are more resistant to antibiotics (Caraher et al. 2006) and the observations that P213 isolates 4 to 16 produced more biofilm and showed increased resistance to two of the tested antibiotics is in agreement with these findings. A nonsynonymous SNP in a fixL homolog was identified in the latter 13 isolates of this patient. In B. dolosa, fixL encodes a sensor histidine kinase of a two-component regulatory system (fixLJ) that is activated by low oxygen levels and regulates biofilm formation, motility, virulence and intracellular invasion (Schaefers et al. 2017). Concerning biofilm formation of the isolates recovered from patient P426, the first two isolates produced a decreased amount of biofilm in comparison with the subsequent bacterial isolates (except for isolate 18, for which no statistically significant differences in biofilm production were found). This observation also agrees with bacteria living in biofilms showing increased resistance to antimicrobials. A nonsynonymous mutation in a gene encoding a c-di-GMP phosphodiesterase was found in 18 isolates of this patient (isolates 3 to 16 and 18 to 21). This signaling molecule is related to regulation of biofilm formation, motility, virulence and adhesion (Boyd & O'Toole 2012; Hengge 2009; Traverse et al. 2013). While this mutation was absent in isolate 17, biofilm formation displayed by this isolate was significantly higher

than the one observed for the first two isolates, which may be explained by the presence of a nonsynonymous SNP in a *fixL* homolog that was mentioned above for patient P213.

Differences in motility were evaluated in swimming and swarming agar plates. Regarding motility of the B. multivorans isolates sampled from patient P213, the first three isolates showed substantially increased swimming and swarming motility in comparison with the subsequently retrieved isolates. This decrease in motility may be a method of bacteria to adapt to the respiratory tract environment of patients with CF and has been frequently reported in members of the Bcc (Coutinho et al. 2011; Silva et al. 2016). These results also confirm the inverse correlation between biofilm formation and motility that is commonly observed. For patient P426, the first isolate displays increased motility when compared with the remaining isolates, which show a much lower swimming motility and no swarming motility. Relevant mutations possibly underlying this phenotypic transition were previously referred for biofilm formation, as sensor histidine kinase fixL and c-di-GMP phosphodiesterase have been associated with regulation of motility as well as biofilm production (Boyd & O'Toole 2012; Schaefers et al. 2017). Also, one mutation in a putative quorum-quenching lactonase, present in all isolates of patient P426 except the first one, could influence this phenotypic trait by affecting quorum sensing. Moreover, several mutations in genes associated with motility were identified in isolates of both patients, such as genes encoding flagellar proteins (flil, fliJ, fliL, flgE, flgI), a flagellar transcriptional activator (flhC) and proteins related to chemotaxis (cheA, cheB), supporting the hypothesis that alterations in this phenotypic trait are involved in adaptation of Bcc bacteria to the airways of CF patients.

Growth rate of each bacterial strain was measured in synthetic cystic fibrosis medium (SCFM; Palmer *et al.* 2007). For patient P213, results show that the first seven isolates, except for isolate 4, show decreased doubling times when compared with the latter ones. Regarding patient P426, the first four isolates presented lower doubling times than the remaining ones. These findings suggest a possible role for decreasing growth rate in adaptation of *B. multivorans* isolates to the airways of CF patients during infection. This tendency to reduce growth rates over time during long-term chronic infections in CF patients has been reported both for *P. aeruginosa* and Bcc bacteria (Lee *et al.* 2017; Rau *et al.* 2010; Silva *et al.* 2016), and it might occur in response to the different nutrient composition of CF airways or as a consequence of a greater commitment to biofilm production. Mutations in genes involved in amino acid biosynthesis were identified in isolates of both patients, but no mutations that could explain variations in all the isolates were found.

Another phenotypic trait analysed in this work was adhesion of *B. multivorans* isolates to the bronchial epithelial cell line CFBE41o⁻, derived from a CF patient homozygous for the CFTR F508del mutation. For both patients, results showed a clear difference between isolates with O-antigen and isolates without this portion of the LPS. Isolates that display this trait showed reduced values of adhesion to epithelial cells, while isolates that don't produce the LPS O-antigen presented increased percent adhesion to the CFBE410⁻ cell line. In *B. cenocepacia*, the O-antigen inhibits adhesion to epithelial cells (Saldías *et al.* 2009), possibly by concealing surface molecules that influence the adhesion process. Despite mutations possibly affecting c-di-GMP signaling, associated with regulation of adhesion, the presence of LPS O-antigen seems to be the cause of the observed changes in this phenotype.

To study virulence of the B. multivorans isolates, Galleria mellonella was used as an infection model, as it presents an innate immune system with a high degree of structural and functional homology to the innate immune systems of mammals (Seed & Dennis 2008). For both patients, the isolates that display the LPS O-antigen were more virulent than the ones without this portion of the LPS, being responsible for a 0% survival only 24 hours post-infection. Nonetheless, this drastic decline in survival of larvae was also observed for isolate 13 from patient P213, which lacks the LPS O-antigen. LPS has been shown to inhibit phagocytosis by macrophages, reducing bacterial elimination in *B. cenocepacia* (Saldías et al. 2009). Regardless of mutations in a gene encoding a c-di-GMP phosphodiesterase, which is associated with regulation of virulence (Boyd & O'Toole 2012), virulence among the isolates of P426 seems to be determined by the presence of the O-antigen. For patient P213, a mutation in fixL distinguishes the first three isolates from the latter ones, and this global regulator is also associated with virulence in Bcc (Schaefers et al. 2017). However, given that the first three isolates display the LPS O-antigen and the latter ones lack this trait, it isn't clear if the decreased virulence of these isolates is due to the fixL mutation or the absence of O-antigen. No mutation that could explain the increased virulence of isolate 13 from patient P213 was identified. In a similar analysis, increased virulence of B. multivorans isolates also correlated with the presence of LPS O-antigen (Ramires 2017). Further, similar studies have reported decreases in acute virulence during long-term CF infections with Bcc bacteria (Lee et al. 2017), possibly linked to the development of a persistent infection.

In conclusion, the latter sets of isolates longitudinally collected from the CF patients displayed increased resistance to antibiotics, increased biofilm formation, decreased motility and decreased growth rates, shifting the bacteria toward a 'chronic infection phenotype' that is well established for P. aeruginosa infections and seems to apply to infections caused by Bcc bacteria as well. Unlike P. aeruginosa isolates, which undergo a non-mucoid to mucoid transition, Bcc isolates often convert from a mucoid morphotype into a non-mucoid one, with results of mucoidy in solid medium reported here supporting a decrease in mucoidy over time. Virulence in G. mellonella and adhesion to epithelial cells were apparently determined by the presence of the LPS O-antigen, with isolates that display this trait showing increased virulence and decreased adhesion ability. Mutations in genes related to resistance to antimicrobials, lipid metabolism and regulation of transcription likely drive the transition to the 'chronic infection phenotype', and regulatory genes might play important roles in adaptation of Bcc bacteria to the CF environment. For *P. aeruginosa*, genes *mucA* and *lasR* have been identified as important global regulators, with mucA showing particularly extensive pleiotropic effects on gene expression and leading to changes in central metabolism, motility, production of virulence factors and membrane permeability (Rau et al. 2010; Smith et al. 2006). In the present work, the fixL gene seems to be a possible candidate for regulating traits that impact Bcc bacteria adaptation to the host. This gene has been identified as an important regulator in similar studies with B. multivorans and B. dolosa (Lieberman et al. 2011; Silva et al. 2016), supporting this hypothesis. Furthermore, a gene encoding a Fis family transcriptional regulator conserved in the Burkholderia genus was found to be polymorphic in isolates from both patients. This gene has unknown regulatory targets and it was found to have six mutations in B. multivorans isolates recovered from another chronically infected CF patient over 20 years (Silva et al. 2016), suggesting a possible role for this regulator in adaptation of *B. multivorans* to the CF airways. Additionally, deletions

including genes encoding quorum sensing proteins RpfR and CepR were identified in this analysis. The quorum sensing regulators RpfR and LasR have been suggested as good candidates for global regulators of adaptation to the CF host in studies with *B. multivorans* and *P. aeruginosa*, respectively.

The study of evolutionary paths of bacteria in specific environments is being increasingly used as an investigative strategy, as this type of experiments offers knowledge about adaptive changes that take place during evolution and allows the comparison of different evolutionary trajectories. It is expected that the combination of phenotypic assessments with information provided by comparative genomics analysis of Bcc isolates sampled from CF patients will help elucidate which mutations may underlie adaptation to the CF airways. The identification of adaptive strategies during bacterial colonization of the airways of individuals with CF may point to potential therapeutic targets for the development of improved treatments against Bcc bacteria.

5. REFERENCES

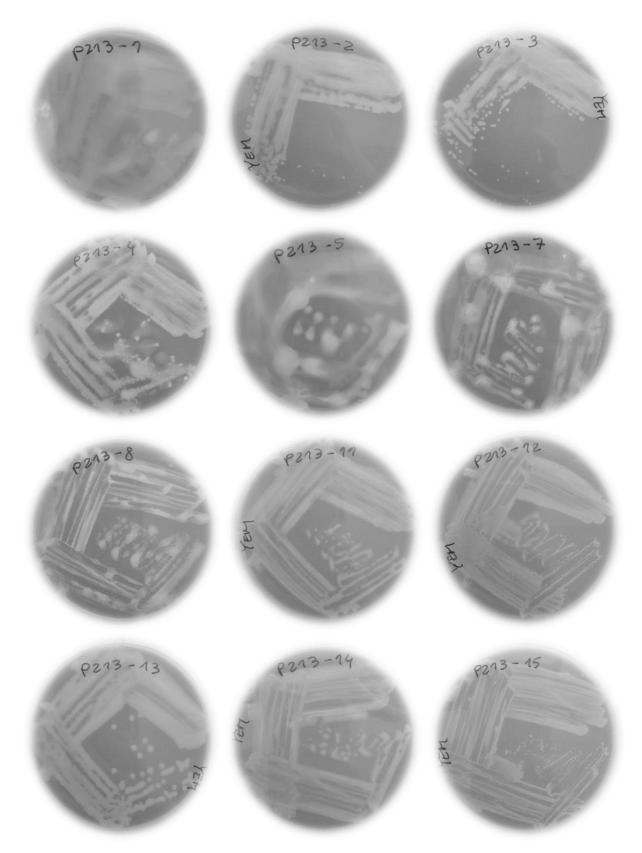
- Altschul, S.F. *et al.*, 1990. Basic Local Alignment Search Tool. *Journal of Molecular Biology*, 215, pp.403–410.
- Alvarez-Ortega, C. & Harwood, C.S., 2007. Responses of *Pseudomonas aeruginosa* to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. *Molecular Microbiology*, 65, pp.153–165.
- Amaral, M.D. & Farinha, C.M., 2013. Rescuing mutant CFTR : A multi-task approach to a better outcome in treating cystic fibrosis. *Current Pharmaceutical Design*, 19(19), pp.3497–3508.
- Aris, R.M. *et al.*, 2001. Lung transplantation for cystic fibrosis patients with *Burkholderia cepacia* complex. *American Journal of Respiratory and Critical Care Medicine*, 164(11), pp.2102–2106.
- Aronesty, E., 2013. Comparison of Sequencing Utility Programs. *The Open Bioinformatics Journal*, 7, pp.1–8.
- Bauer, A.W. *et al.*, 1966. Antibiotic susceptibility testing by a standardized single disk method. *American Journal of Clinical Pathology*, 45(4), pp.493–496.
- Bell, S.C., De Boeck, K. & Amaral, M.D., 2015. New pharmacological approaches for cystic fibrosis: Promises, progress, pitfalls. *Pharmacology and Therapeutics*, 145, pp.19–34.
- Bjarnsholt, T. *et al.*, 2009. *Pseudomonas aeruginosa* biofilms in the respiratory tract of cystic fibrosis patients. *Pediatric Pulmonology*, 44(6), pp.547–558.
- Bolger, A.M., Lohse, M. & Usadel, B., 2014. Genome analysis Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics*, 30(15), pp.2114–2120.
- Bosi, E. *et al.*, 2015. Genome analysis MeDuSa: a multi-draft based scaffolder. *Bioinformatics*, 31(September 2017), pp.2443–2451.
- Boucher, R.C., 2004. New concepts of the pathogenesis of cystic fibrosis lung disease. *European Respiratory Journal*, 23, pp.146–158.
- Boyd, C.D. & O'Toole, G.A., 2012. Second Messenger Regulation of Biofilm Formation: Breakthroughs in Understanding c-di-GMP Effector Systems. *Annual Review of Cell and Developmental Biology*, 28(1), pp.439–462.
- Burns, J.L. *et al.*, 2001. Longitudinal assessment of *Pseudomonas aeruginosa* in young children with cystic fibrosis. *Journal of Infectious Diseases*, 183(3), pp.444–452.
- Bylund, J. *et al.*, 2006. Exopolysaccharides from *Burkholderia cenocepacia* inhibit neutrophil chemotaxis and scavenge reactive oxygen species. *Journal of Biological Chemistry*, 281(5), pp.2526–2532.
- Caraher, E. *et al.*, 2006. Comparison of antibiotic susceptibility of *Burkholderia cepacia* complex organisms when grown planktonically or as biofilm in vitro. *European Journal of Clinical Microbiology and Infectious Diseases*, 26(3), pp.213–216.
- Chaparro, C. *et al.*, 2001. Infection with *Burkholderia cepacia* in cystic fibrosis outcome following lung transplantation. *American Journal of Respiratory and Critical Care Medicine*, 163, pp.43–48.
- Chmiel, J.F. & Davis, P.B., 2003. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? *Respiratory Research*, 4(1), p.8.
- Coenye, T. *et al.*, 2001. Taxonomy and identification of the *Burkholderia cepacia* complex. *Journal of Clinical Microbiology*, 39(10), pp.3427–3436.

- Conway, B.D. *et al.*, 2004. Production of exopolysaccharide by *Burkholderia cenocepacia* results in altered cell-surface interactions and altered bacterial clearance in mice. *Journal of Infectious Diseases*, 190(5), pp.957–966.
- Coutinho, C.P. *et al.*, 2011. *Burkholderia cenocepacia* phenotypic clonal variation during a 3.5-year colonization in the lungs of a cystic fibrosis patient. *Infection and Immunity*, 79(7), pp.2950–2960.
- Cunha, M. V. *et al.*, 2004. Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the *Burkholderia cepacia* complex in biofilm formation and in persistence of respiratory infections. *Journal of Clinical Microbiology*, 42(7), pp.3052–3058.
- Cystic Fibrosis Foundation US, 2016. *Cystic Fibrosis Foundation Patient Registry 2015 Annual Data Report. Bethesda, Maryland*,
- Daniels, T.W. V *et al.*, 2013. Impact of antibiotic treatment for pulmonary exacerbations on bacterial diversity in cystic fibrosis. *Journal of Cystic Fibrosis*, 12(1), pp.22–28.
- Deng, Y. *et al.*, 2012. Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. *Proceedings of the National Academy of Sciences*, 109, pp.15479–15484.
- Depoorter, E. *et al.*, 2016. *Burkholderia*: an update on taxonomy and biotechnological potential as antibiotic producers. *Applied Microbiology and Biotechnology*, 100(12), pp.5215–5229.
- Döring, G., Parameswaran, I.G. & Murphy, T.F., 2011. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. *FEMS Microbiology Reviews*, 35(1), pp.124–146.
- Eberl, L. & Tümmler, B., 2004. *Pseudomonas aeruginosa* and *Burkholderia cepacia* in cystic fibrosis: Genome evolution, interactions and adaptation. *International Journal of Medical Microbiology*, 294(2–3), pp.123–131.
- Etherington, C. *et al.*, 2014. The role of respiratory viruses in adult patients with cystic fibrosis receiving intravenous antibiotics for a pulmonary exacerbation. *Journal of Cystic Fibrosis*, 13(1), pp.49–55.
- Farinha, C.M. & Matos, P., 2016. Repairing the basic defect in cystic fibrosis One approach is not enough. *FEBS Journal*, 283(2), pp.246–264.
- Ferreira, A.S. *et al.*, 2011. Insights into the role of extracellular polysaccharides in *Burkholderia* adaptation to different environments. *Frontiers in Cellular and Infection Microbiology*, 1, pp.1–16.
- Ferreira, A.S. *et al.*, 2015. The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of *Burkholderia contaminans* are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line. *Infection and Immunity*, 83(2), pp.812–821.
- Filkins, L.M. & O'Toole, G.A., 2015. Cystic fibrosis lung infections: Polymicrobial, complex, and hard to treat. *PLoS Pathogens*, 11(12), pp.1–8.
- Flanagan, J.L. *et al.*, 2007. Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with *Pseudomonas aeruginosa*. *Journal of Clinical Microbiology*, 45(6), pp.1954–1962.
- Folkesson, A. *et al.*, 2012. Adaptation of *Pseudomonas aeruginosa* to the cystic fibrosis airway: an evolutionary perspective. *Nature Reviews Microbiology*, 10(12), pp.841–51.
- Frangolias, D.D. *et al.*, 1999. *Burkholderia cepacia* in cystic fibrosis: Variable disease course. *American Journal of Respiratory and Critical Care Medecine*, 160(11), pp.1572–1577.
- Gibson, R.L., Burns, J.L. & Ramsey, B.W., 2003. Pathophysiology and management of pulmonary

infections in cystic fibrosis. *American Journal of Respiratory and Critical Care Medicine*, 168(8), pp.918–951.

- Gilligan, P.H., 2014. Infections in patients with cystic fibrosis diagnostic microbiology update. *Clinics in Laboratory Medicine*, pp.1–21.
- Goncz, K.K., Feeney, L. & Gruenert, D.C., 1999. Differential sensitivity of normal and cystic fibrosis airway epithelial cells to epinephrine. *British Journal of Pharmacology*, 128, pp.227–233.
- Govan, J.R., Brown, A.R. & Jones, A.M., 2007. Evolving epidemiology of *Pseudomonas aeruginosa* and the *Burkholderia cepacia* complex in cystic fibrosis lung infection. *Future Microbiology*, 2(2), pp.153–164.
- Hansen, C.R., Pressler, T. & Høiby, N., 2008. Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. Journal of Cystic Fibrosis, 7(6), pp.523–530.
- Harrison, F., 2007. Microbial ecology of the cystic fibrosis lung. *Microbiology*, 153(4), pp.917–923.
- Hengge, R., 2009. Principles of c-di-GMP signalling in bacteria. *Nature Reviews Microbiology*, 7, pp.263–273.
- Hickman, J.W., Tifrea, D.F. & Harwood, C.S., 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. *Proceedings of the National Academy of Sciences*, 102(40), pp.14422–14427.
- Hoboth, C. *et al.*, 2009. Dynamics of adaptive microevolution of hypermutable *Pseudomonas aeruginosa* during chronic pulmonary infection in patients with cystic fibrosis. *Journal of Infectious Diseases*, 200, pp.118–130.
- Hogardt, M. & Heesemann, J., 2010. Adaptation of *Pseudomonas aeruginosa* during persistence in the cystic fibrosis lung. *International Journal of Medical Microbiology*, 300(8), pp.557–562.
- Høiby, N., Frederiksen, B. & Pressler, T., 2005. Eradication of early *Pseudomonas aeruginosa* infection. *Journal of Cystic Fibrosis*, 4, pp.49–54.
- Huber, B. *et al.*, 2001. The *cep* quorum-sensing system of *Burkholderia cepacia* H111 controls biofilm formation and swarming motility. *Microbiology*, (147), pp.2517–2528.
- Isles, A. *et al.*, 1984. *Pseudomonas cepacia* infection in cystic fibrosis: an emerging problem. *Journal of Pediatrics*, 104(2), pp.206–210.
- Jassem, A.N., Forbes, C.M. & Speert, D.P., 2014. Investigation of aminoglycoside resistance inducing conditions and a putative AmrAB-OprM efflux system in *Burkholderia vietnamiensis*. *Annals of Clinical Microbiology and Antimicrobials*, 13(2), pp.1–5.
- Jones, A.K. *et al.*, 2010. Activation of the *Pseudomonas aeruginosa* AlgU regulon through *mucA* mutation inhibits cyclic AMP / Vfr Signaling. *Journal of Bacteriology*, 192(21), pp.5709–5717.
- Jones, a M. *et al.*, 2004. *Burkholderia cenocepacia* and *Burkholderia multivorans*: influence on survival in cystic fibrosis. *Thorax*, 59, pp.948–951.
- Kalish, L.A. *et al.*, 2006. Impact of *Burkholderia dolosa* on lung function and survival in cystic fibrosis. *American Journal of Respiratory and Critical Care Medicine*, 173(4), pp.421–425.
- Kearse, M. *et al.*, 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics*, 28(12), pp.1647–1649.
- Klepac-Ceraj, V. et al., 2010. Relationship between cystic fibrosis respiratory tract bacterial communities

and age, genotype, antibiotics and *Pseudomonas aeruginosa*. *Environmental Microbiology*, 12(5), pp.1293–1303.


- Klockgether, J. *et al.*, 2011. *Pseudomonas aeruginosa* genomic structure and diversity. *Frontiers in Microbiology*, 2, pp.1–18.
- Kumar, S., Stecher, G. & Tamura, K., 2016. MEGA7 : Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular Biology and Evolution*, 33(7), pp.1870–1874.
- Lee, A.H. *et al.*, 2017. Phenotypic diversity and genotypic flexibility of *Burkholderia cenocepacia* during long-term chronic infection of cystic fibrosis lungs. *Genome Research*, pp.1–13.
- Lesse, A.J. *et al.*, 1990. Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. *Journal of Immunological Methods*, 126(1), pp.109–117.
- Lessie, T.G. *et al.*, 1996. Genomic complexity and plasticity of *Burkholderia cepacia*. *FEMS Microbiology Letters*, 144(2–3), pp.117–128.
- Lewenza, S., Conway, B. & Greenberg, E.P., 1999. Quorum Sensing in *Burkholderia cepacia*: Identification of the LuxRI Homologs CepRI. *Journal of Bacteriology*, 181(3), pp.748–756.
- Li, H., 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv:1303.3997v2*.
- Li, H. & Durbin, R., 2009. Fast and accurate short read alignment with Burrows Wheeler transform. *Bioinformatics*, 25(14), pp.1754–1760.
- Lieberman, T.D. *et al.*, 2014. Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of selective pressures. *Nature Genetics*, 46(1), pp.82–87.
- Lieberman, T.D. *et al.*, 2011. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. *Nature Genetics*, 43(12), pp.1275–1280.
- LiPuma, J.J., 2002. Preventing *Burkholderia cepacia* complex infection in cystic fibrosis: Is there a middle ground? *Journal of Pediatrics*, 141(4), pp.467–469.
- LiPuma, J.J., 2010. The changing microbial epidemiology in cystic fibrosis. *Clinical Microbiology Reviews*, 23(2), pp.299–323.
- Mahenthiralingam, E., Urban, T.A. & Goldberg, J.B., 2005. The multifarious, multireplicon *Burkholderia cepacia* complex. *Nature Reviews. Microbiology*, 3(2), pp.144–156.
- Markussen, T. *et al.*, 2014. Environmental heterogeneity drives within-host diversification and evolution of *Pseudomonas aeruginosa*. *mBio*, 5(5), pp.1–10.
- Martina, P. *et al.*, 2014. Hypermutation in *Burkholderia cepacia* complex is mediated by DNA mismatch repair inactivation and is highly prevalent in cystic fibrosis chronic respiratory infection. *International Journal of Medical Microbiology*, 304(8), pp.1182–1191.
- Marvig, R.L. *et al.*, 2014. Convergent evolution and adaptation of *Pseudomonas aeruginosa* within patients with cystic fibrosis. *Nature Genetics*, 47, pp.57–64.
- Mathee, K. et al., 2008. Dynamics of *Pseudomonas aeruginosa* genome evolution. *Proceedings of the National Academy of Sciences of the United States of America*, 105(8), pp.3100–3105.
- McKone, E.F., Goss, C.H. & Aitken, M.L., 2006. CFTR genotype as a predictor of prognosis in cystic fibrosis. *Chest*, 130(5), pp.1441–1447.
- Mena, A. et al., 2008. Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis

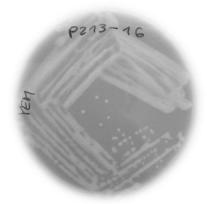
patients is catalyzed by hypermutation. Journal of Bacteriology, 190(24), pp.7910–7917.

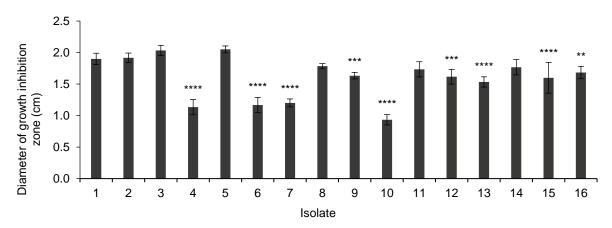
- Mira, N.P. *et al.*, 2011. Genomic expression analysis reveals strategies of *Burkholderia cenocepacia* to adapt to cystic fibrosis patients' airways and antimicrobial therapy. *PLoS ONE*, 6(12).
- Moreira, A.S. *et al.*, 2014. *Burkholderia dolosa* phenotypic variation during the decline in lung function of a cystic fibrosis patient during 5.5 years of chronic colonization. *Journal of Medical Microbiology*, 63, pp.594–601.
- Moreira, L.M. *et al.*, 2003. Identification and physical organization of the gene cluster involved in the biosynthesis of *Burkholderia cepacia* complex exopolysaccharide. *Biochemical and Biophysical Research Communications*, 312, pp.323–333.
- O'Sullivan, B.P. & Freedman, S.D., 2009. Cystic fibrosis. The Lancet, 373(9678), pp.1891–1904.
- Oliver, A. *et al.*, 2000. High frequency of hypermutable *Pseudomonas aeruginosa* in cystic fibrosis lung infection. *Science*, 288(May), pp.1251–1254.
- Palmer, K.L., Aye, L.M. & Whiteley, M., 2007. Nutritional cues control *Pseudomonas aeruginosa* multicellular behavior in cystic fibrosis sputum. *Journal of Bacteriology*, 189(22), pp.8079–8087.
- Parke, J.L. & Gurian-Sherman, D., 2001. Diversity of the *Burkholderia cepacia* complex and implications for risk assessment of biological control strains. *Annual Reviews of Phytopathology*, 39(1), pp.225–258.
- Price, E.P. *et al.*, 2013. Within-host evolution of *Burkholderia pseudomallei* over a twelve-year chronic carriage infection. *mBio*, 4, pp.e00388–13.
- Ramires, M., 2017. Within-host evolution of *Burkholderia multivorans* during chronic infection of three cystic fibrosis patients (Master's thesis). Instituto Superior Técnico, Universidade de Lisboa.
- Ratjen, F. & Döring, G., 2003. Cystic fibrosis. The Lancet, 361(9358), pp.681-689.
- Rau, M.H. et al., 2012. Deletion and acquisition of genomic content during early stage adaptation of Pseudomonas aeruginosa to a human host environment. Environmental Microbiology, 14, pp.2200–2211.
- Rau, M.H. et al., 2010. Early adaptive developments of *Pseudomonas aeruginosa* after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. *Environmental Microbiology*, 12(6), pp.1643–1658.
- Regamey, N. *et al.*, 2011. Airway remodelling and its relationship to inflammation in cystic fibrosis. *Thorax*, 66(7), pp.624–629.
- Riordan, J.R., 2005. Assembly of functional CFTR chloride channels. *Annual Review of Physiology*, 67(1), pp.701–718.
- Ryan, R.P. *et al.*, 2009. Intraspecies signaling involving the diffusible signal factor BDSF (cis-2-dodecenoic acid) influences virulence in *Burkholderia cenocepacia*. *Journal of Bacteriology*, 191(15), pp.5013–5019.
- Saldías, M.S., Ortega, X. & Valvano, M.A., 2009. Burkholderia cenocepacia O-antigen lipopolysaccharide prevents phagocytosis by macrophages and adhesion to epithelial cells. *Journal of Medical Microbiology*, 58(12), pp.1542–1548.
- Schaefers, M.M. *et al.*, 2017. An oxygen-sensing two-component system in the *Burkholderia cepacia* complex regulates biofilm, intracellular invasion, and pathogenicity. *PLOS Pathogens*, 13(1), p.e1006116.

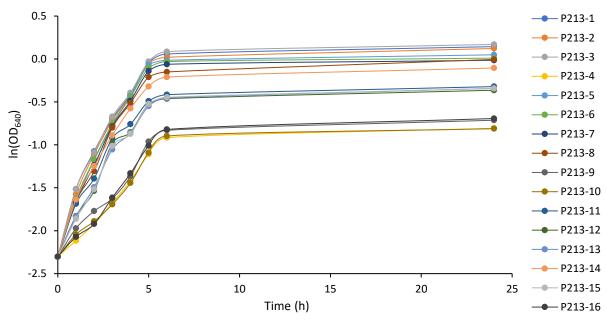
- Seed, K.D. & Dennis, J.J., 2008. Development of *Galleria mellonella* as an alternative infection model for the *Burkholderia cepacia* complex. *Infection and Immunity*, 76(3), pp.1267–1275.
- Seemann, T., 2017. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*, 30(14), pp.2068–2069.
- Shigenobu, S., Watanabe, H. & Hattori, M., 2000. Genome sequence of the endocellular bacterial symbiont of aphids *Buchnera* sp. APS. *Nature*, 407(6800), pp.81–86.
- Silva, I.N. *et al.*, 2016. Long-term evolution of *Burkholderia multivorans* during a chronic cystic fibrosis infection reveals shifting forces of selection. *mSystems*, 1(3), pp.e00029-16.
- Silva, I.N. *et al.*, 2011. Mucoid morphotype variation of *Burkholderia multivorans* during chronic cystic fibrosis lung infection is correlated with changes in metabolism, motility, biofilm formation and virulence. *Microbiology*, 157(11), pp.3124–3137.
- Silva, I.N. *et al.*, 2013. Stress conditions triggering mucoid morphotype variation in *Burkholderia* species and effect on virulence in *Galleria mellonella* and biofilm formation in vitro. *PLoS ONE*, 8(12).
- Smith, E.E. et al., 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proceedings of the National Academy of Sciences of the United States of America, 103(22), pp.8487–92.
- Taddei, F. et al., 1997. Role of mutator alleles in adaptive evolution. Nature, 387(6634), pp.700–702.
- Tamura, K. & Nei, M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular Biology and Evolution*, 10, pp.512– 526.
- Traverse, C.C. *et al.*, 2013. Tangled bank of experimentally evolved *Burkholderia* biofilms reflects selection during chronic infections. *Proceedings of the National Academy of Sciences of the United States of America*, 110(3), pp.E250-9.
- Ulrich, M. *et al.*, 2010. Alveolar inflammation in cystic fibrosis. *Journal of Cystic Fibrosis*, 9(3), pp.217–227.
- Vandamme, P. & Dawyndt, P., 2011. Classification and identification of the *Burkholderia cepacia* complex: Past, present and future. *Systematic and Applied Microbiology*, 34(2), pp.87–95.
- Walker, B.J. *et al.*, 2014. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS ONE*, 9(11), p.e112963.
- Willger, S.D. *et al.*, 2014. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. *Microbiome*, 2(1), pp.40–55.
- Zhao, J. et al., 2012. Decade-long bacterial community dynamics in cystic fibrosis airways. Proceedings of the National Academy of Sciences of the United States of America, 109(15), pp.5809–14.
- Zlosnik, J.E.A. *et al.*, 2015. *Burkholderia* species infections in patients with cystic fibrosis in British Columbia, Canada: 30 years' experience. *Annals of the American Thoracic Society*, 12(1), pp.70– 78.
- Zlosnik, J.E.A. *et al.*, 2008. Differential mucoid exopolysaccharide production by members of the *Burkholderia cepacia* complex. *Journal of Clinical Microbiology*, 46(4), pp.1470–1473.
- Zlosnik, J.E.A. *et al.*, 2011. Mucoid and nonmucoid *Burkholderia cepacia* complex bacteria in cystic fibrosis infections. *American Journal of Respiratory and Critical Care Medicine*, 183(1), pp.67–72.

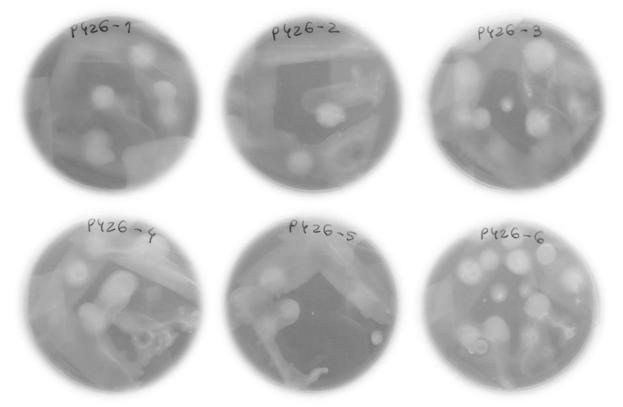
6. APPENDIX

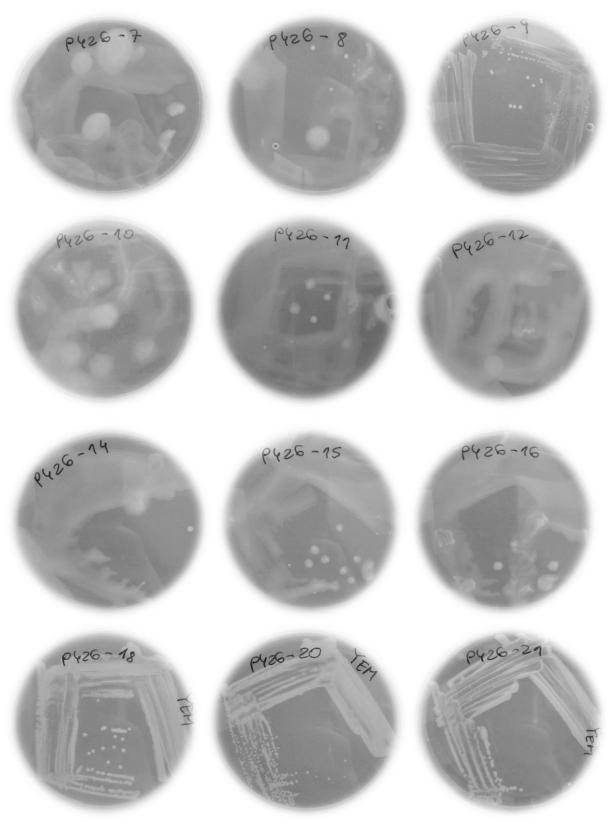
Figure A1 - Mucoid phenotype assessment in yeast extract medium (YEM) after 48 h of incubation at 37°C for *B. multivorans* isolates 1 to 5, 7, 8 and 11 to 16 of CF patient P213. Isolates were classified as highly mucoid (++), mucoid (+) and non-mucoid (-) based on visual inspection of the YEM plates.

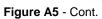


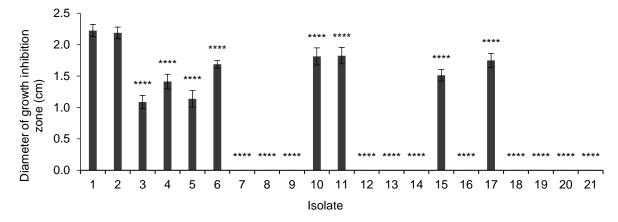



Figure A1 - Cont.


Figure A2 - Susceptibility of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213 to antibiotic aztreonam, measured as the diameter of cell growth inhibition, after growth for 24h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: ****, P-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).


Figure A3 - Susceptibility of the 16 *B. multivorans* isolates sequentially retrieved from CF patient P213 to antibiotic kanamycin, measured as the diameter of cell growth inhibition, after growth for 24h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: **, P-value < 0.01; ***, P-value < 0.001; ****, P-value < 0.001; ****




Figure A4 - Growth curves in synthetic cystic fibrosis medium (SCFM) measured for the 16 *B. multivorans* isolates sampled from CF patient P213. Results are the means of data from two independent experiments.

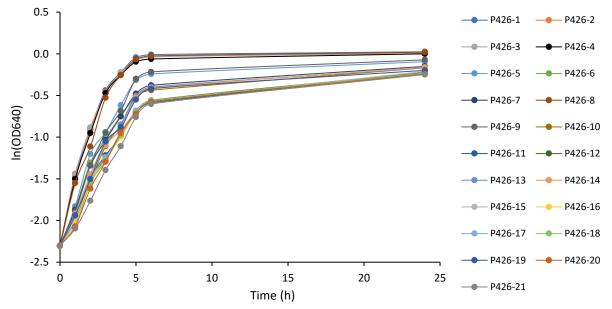

Figure A5 - Mucoid phenotype assessment in yeast extract medium (YEM) after 48 h of incubation at 37°C for *B. multivorans* isolates 1 to 12, 14 to 16, 18, 20 and 21 of CF patient P426. Isolates were classified as highly mucoid (++), mucoid (+) and non-mucoid (-) based on visual inspection of the YEM plates.

Figure A6 - Susceptibility of the 21 *B. multivorans* isolates sequentially retrieved from CF patient P426 to antibiotic aztreonam, measured as the diameter of cell growth inhibition, after growth for 24h at 37°C. Error bars represent the standard deviations of the mean values for three independent experiments (statistical significance of differences between the first isolate and the subsequent ones was determined: ****, P-value < 0.0001 by ANOVA followed by Dunnett's multiple comparisons test).

Figure A7 - Growth curves in synthetic cystic fibrosis medium (SCFM) measured for the 21 *B. multivorans* isolates sampled from CF patient P426. Results are the means of data from two independent experiments.

Contig	Position	Cate gory	bp upstr eam or down strea m CDS (if IG)	Mut atio n	Locus tag (bp upstrea m or downstr eam if IG)	Gene name	Annotation	Homo log in <i>B.</i> <i>multiv</i> orans ATCC 17616	Mutati ons found (if CDS)	Type of mutatio n	Type of muta tion	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Nr of isolat es with mutati on
contig1	1562874	CDS		C>A	PROKKA _01466	ссрА _1	Lacl family transcription regulator	Bmul_ 2073	S41I	nonsyn	SNP	С	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	15
contig1	1355287	CDS		T>G	PROKKA _01273	pheA	chorismate mutase	Bmul_ 2261	L281R	nonsyn	SNP	Т	т	т	G	G	G	G	G	G	G	G	G	G	G	G	G	13
contig1	1596603	CDS		G>A	PROKKA _01500	hprK	HPr kinase/phosphorylase	Bmul_ 0521	R114C	nonsyn	SNP	G	G	G	А	А	А	А	А	А	А	А	А	А	А	А	А	13
contig1	1774113	CDS		T>C	PROKKA _01663	acrB_ 1	Multidrug efflux pump subunit	Bmul_ 0689	V179A	nonsyn	SNP	Т	Т	т	С	С	С	С	С	С	С	С	С	С	С	С	С	13
contig1	2271249	CDS		C>T	PROKKA _02125	folD	Bifunctional protein FoID protein	Bmul_ 1130	A210T	nonsyn	SNP	С	С	С	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	13
contig1	2273148	CDS		A>G	PROKKA _02127	fixL_1	Sensor protein FixL	Bmul_ 1132	S707P	nonsyn	SNP	А	А	А	G	G	G	G	G	G	G	G	G	G	G	G	G	13
contig1	2341503	CDS		T>A	PROKKA _02189	accA	acetyl-CoA carboxylase carboxyltransferase subunit alpha	Bmul_ 1205	D186E	nonsyn	SNP	т	т	т	A	A	A	A	A	A	A	A	A	A	A	A	A	13
contig1	2542874	CDS		C>T	PROKKA _02387	-	Major Facilitator Superfamily transporter	Bmul_ 1342	P245P	syn	SNP	с	с	с	т	Т	т	т	Т	Т	Т	Т	т	Т	Т	Т	т	13
contig1	2947352	CDS		G>A	PROKKA _02752	cysL_ 4	LysR family transcriptional regulator	Bmul_ 1695	P158L	nonsyn	SNP	G	G	G	A	A	A	A	A	A	A	A	A	A	A	A	А	13
contig2	50394	CDS		G>A	PROKKA _03101	yabJ_ 2	endoribonuclease	Bmul_ 5405	A148V	nonsyn	SNP	G	G	G	А	А	А	А	А	А	А	А	А	А	А	А	А	13
contig3	128525	CDS		G>A	PROKKA 03779	тсрС	Methyl-accepting chemotaxis protein	Bmul_ 4946	H312H	syn	SNP	G	G	G	А	А	А	А	А	А	А	А	А	А	А	А	А	13
contig3	246465	CDS		C>A	PROKKA _03885	bag	IgA FC receptor precursor	-	A10S	nonsyn	SNP	С	С	С	А	А	А	А	А	А	А	А	А	А	А	А	А	13
contig3	246467	CDS		C>A	PROKKA _03885	bag	IgA FC receptor precursor	-	R9L	nonsyn	SNP	С	С	С	А	А	А	А	А	А	А	А	А	А	А	А	А	13
contig1	2934558				= PROKKA _02740	fliY_2	extracellular solute- binding protein	Bmul_ 1679		246 aa del	indel	G	G	G	73 6- bp del	13												
contig1	1428203	INT	31 bp up	G>A	PROKKA _01351	plsX	putative glycerol-3- phosphate acyltransferase PIsX	Bmul_ 2184	-	-	SNP	G	G	G	G	A	A	А	G	A	A	A	A	A	A	A	А	11
contig1	3156946	CDS		G>A	PROKKA _02933	-	hypothetical protein	Bmul_ 1941	C220C	syn	SNP	G	G	G	G	А	А	А	G	А	А	А	А	А	А	А	А	11

contig2	124782	INT	285 bp up	C>T	PROKKA _03168	-	hypothetical protein	Bmul_ 5341	-	-	SNP	С	с	с	с	Т	т	т	С	т	т	т	т	т	т	т	т	11
contig2	124788	INT	279 bp up	G>A	PROKKA _03168	-	hypothetical protein	Bmul_ 5341	-	-	SNP	G	G	G	G	А	А	А	G	А	А	А	А	А	А	А	А	11
contig3	43002	CDS		A>G	PROKKA _03700	bphA	Biphenyl dioxygenase subunit alpha	Bmul_ 4823	T105A	nonsyn	SNP	А	А	А	А	G	G	G	А	G	G	G	G	G	G	G	G	11
contig3	128522	CDS		G>A	PROKKA _03779	тсрС	Methyl-accepting chemotaxis protein McpC	Bmul_ 4946	D313D	syn	SNP	G	G	G	G	А	А	A	G	A	A	А	A	A	A	А	А	11
contig3	2374762	CDS		T>G	PROKKA _05730	accD	acetyl-CoA carboxylase subunit beta	Bmul_ 4619	R242R	syn	SNP	т	т	т	т	G	G	G	Т	G	G	G	G	G	G	G	G	11
contig2	672318				PROKKA _03626; PROKKA _03627					149 aa del	indel	С	с	с	с	44 6- bp del	44 6- bp del	44 6- bp del	С	44 6- bp del	11							
contig1	607806	INT	104 bp down	C>G	PROKKA _00561	yofA_ 2	LysR family transcriptional regulator	Bmul_ 0213	-	-	SNP	С	с	с	с	с	G	G	С	G	G	G	G	G	G	G	G	10
contig1	1825232	CDS		T>G	PROKKA 01707	amiC 2	N-acetylmuramoyl-L- alanine amidase	Bmul_ 0733	D505A	nonsyn	SNP	Т	Т	т	Т	т	G	G	Т	G	G	G	т	G	G	G	G	9
contig1	2878065	CDS		T>A	PROKKA _02681	ttgR_ 3	TetR family transcriptional regulator	Bmul_ 1617	A87A	syn	SNP	т	т	т	т	т	А	A	Т	A	A	А	т	A	A	А	А	9
contig1	3024324	CDS		G>A	PROKKA _02813	patA	aspartate aminotransferase	Bmul_ 1760	A146V	nonsyn	SNP	G	G	G	G	G	А	А	G	А	А	А	G	А	А	А	А	9
contig2	509855	CDS		G>C	PROKKA _03499	-	Alpha/beta hydrolase family protein	-	R168G	nonsyn	SNP	G	G	G	G	G	С	С	G	С	С	С	G	С	С	С	С	9
contig1	45182	CDS		C>T	PROKKA _00044	ptsl_ 2	Phosphoenolpyruvate -protein phosphotransferase	Bmul_ 0443	V235M	nonsyn	SNP	С	с	с	с	с	т	Т	С	т	т	т	С	т	т	т	т	8
contig1	1433121	CDS		A>G	PROKKA _01356	fabF_ 1	3-oxoacyl-(acyl carrier protein) synthase II	Bmul_ 2179	1149V	nonsyn	SNP	A	A	A	A	A	G	G	A	G	G	G	A	G	G	G	G	8
contig1	2571203	CDS		G>A	PROKKA _02407	purL	Phosphoribosylformyl glycinamidine synthase	Bmul_ 1360	V1065 M	nonsyn	SNP	G	G	G	G	G	А	A	G	A	A	А	G	A	A	А	А	8
contig1	3044623	CDS		G>A	PROKKA _02834	relA	GTP pyrophosphokinase	Bmul_ 1780	R108C	nonsyn	SNP	G	G	G	G	G	А	А	G	А	А	А	G	А	А	А	А	8
contig2	102091	CDS		A>G	PROKKA _03149	ykuV	cytochrome c biogenesis protein transmembrane region	Bmul_ 5356	D492G	nonsyn	SNP	A	A	A	A	A	G	G	A	G	G	G	A	G	G	G	G	8
contig2	519694	CDS		G>A	PROKKA _03509	bbsF _3	Succinyl-CoA (R)- benzylsuccinate CoA- transferase subunit BbsF	-	G231S	nonsyn	SNP	G	G	G	G	G	А	A	G	A	A	А	G	A	A	А	A	8
contig3	368540	CDS		C>T	PROKKA _03992	mlr_2	4-methylamino butanoate oxidase (formaldehyde- forming)	Bmul_ 5151	R125Q	nonsyn	SNP	с	с	с	с	с	т	т	С	т	т	т	с	т	т	del	т	7

contig1	2073572				PROKKA _01941	ftsK_ 2	DNA translocase FtsK			168 aa del	indel	С	с	С	с	с	50 4- bp del	50 4- bp del	50 4- bp del	50 4- bp del	50 4- bp del	С	С	50 4- bp del	С	С	с	6
contig1	320176	INT	155 bp up	C>T	PROKKA _00298	gatC	Glutamyl-tRNA(Gln) amidotransferase subunit C	Bmul_ 3106	-	-	SNP	С	С	С	С	С	С	С	С	Т	Т	С	С	С	Т	Т	С	4
contig1	349906	INT	206 bp up	G>A	PROKKA _00326	-	ADP-heptose:LPS heptosyltransferase II	-	-	-	SNP	G	G	G	G	G	G	G	G	А	А	G	G	G	А	А	G	4
contig1	673279	CDS		G>C	PROKKA _00631	rpoA	DNA-directed RNA polymerase subunit alpha	Bmul_ 0275	D256H	nonsyn	SNP	G	G	G	G	G	G	G	G	с	С	G	G	G	С	С	G	4
contig1	1587107	CDS		C>T	PROKKA _01490	rplY	50S ribosomal protein L25	Bmul_ 0512	A164T	nonsyn	SNP	С	С	С	С	С	С	С	С	Т	т	С	С	С	Т	Т	С	4
contig1	1833568	CDS		T>A	PROKKA _01715	-	putative nucleotide- binding protein	Bmul_ 0741	R82S	nonsyn	SNP	Т	Т	Т	т	Т	т	Т	Т	А	А	Т	т	Т	А	А	т	4
contig1	2375814	CDS		G>A	PROKKA _02226	-	Uracil DNA glycosylase superfamily protein	Bmul_ 1234	R221R	syn	SNP	G	G	G	G	G	G	G	G	A	A	G	G	G	A	A	G	4
contig1	2460009	CDS		T>G	PROKKA _02306	-	hypothetical protein	-	V65V	syn	SNP	Т	т	Т	т	т	т	т	т	G	G	Т	т	Т	G	G	т	4
contig1	2981579	CDS		A>T	PROKKA _02781	hfq_2	RNA chaperone Hfq	Bmul_ 1722	K12N	nonsyn	SNP	А	А	А	А	А	А	А	А	Т	т	А	А	А	Т	Т	А	4
contig2	119366	INT	rRNA	G>A	PROKKA _03163	-	5S ribosomal RNA	-	-	-	SNP	G	G	G	G	G	G	G	G	А	А	G	G	G	А	А	G	4
contig2	122253	INT	rRNA	C>A	PROKKA _03164	I	23S ribosomal RNA	-	-	-	SNP	С	С	С	С	С	С	С	С	А	А	С	С	С	А	А	С	4
contig2	574129	INT	36 bp down	G>A	PROKKA _03552	yjjL_1	L-galactonate transporter	-	-	-	SNP	G	G	G	G	G	G	G	G	А	А	G	G	G	А	А	G	4
contig3	1228299	CDS		A>G	PROKKA _04746	algE7	Poly(beta-D- mannuronate) C5 epimerase 7	Bmul_ 3709	P239P	syn	SNP	A	A	A	A	A	A	A	A	G	G	A	A	A	G	G	A	4
contig1	763710				PROKKA _00718 to PROKKA _00742					9625 aa del	indel	С	С	С	с	с	С	С	С	28 87 3- bp del	28 87 3- bp del	С	С	С	28 87 3- bp del	28 87 3- bp del	с	4
contig2	120468				PROKKA _03164	rRNA				130 aa del	indel	A	A	A	A	A	A	A	A	38 9- bp del	38 9- bp del	A	A	A	38 9- bp del	38 9- bp del	A	4
contig1	1429157	CDS		G>C	PROKKA _01351	plsX	putative glycerol-3- phosphate acyltransferase PIsX	Bmul_ 2184	E308D	nonsyn	SNP	G	G	G	G	G	G	G	С	G	G	С	G	G	С	G	G	3
contig1	56082	CDS		A>G	PROKKA _00055	dctD_ 1	Fis family transcriptional regulator	Bmul_ 0432	V309A	nonsyn	SNP	A	А	A	A	A	A	A	A	A	G	A	A	A	A	G	А	2
contig1	840628	CDS		T>A	PROKKA _00789	paaK _1	phenylacetate-CoA ligase	Bmul_ 2855	E417D	nonsyn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	А	Т	Т	Т	Т	А	Т	2
contig1	871150	CDS		C>T	PROKKA _00813	ftsW	cell division protein FtsW	Bmul_ 2837	L240F	nonsyn	SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	Т	С	2

contig1	920893	INT	19 bp up	G>T	PROKKA _00861	mpl	UDP-N-acetyl muramate:L-alanyl- gamma-D-glutamyl- meso-diamino pimelate ligase	Bmul_ 2775	-	-	SNP	G	G	G	G	G	G	G	G	G	т	G	G	G	G	т	G	2
contig1	1025044	CDS		G>A	PROKKA _00958	rlmL	Ribosomal RNA large subunit methyltransferase L	Bmul_ 2677	R140R	syn	SNP	G	G	G	G	G	G	G	G	G	A	G	G	G	G	А	G	2
contig1	1045300	INT	1 bp up	C>T	PROKKA _00975	-	hypothetical protein	-	-	-	SNP	С	С	С	С	С	Т	Т	С	С	С	С	С	С	С	С	С	2
contig1	1169460	INT	19 bp up	A>C	PROKKA _01091	groS3	co-chaperonin GroES	Bmul_ 2529	-	-	SNP	А	А	А	А	А	А	А	А	А	С	А	А	А	А	С	А	2
contig1	1259446	CDS		C>G	PROKKA _01177	aspC	Aspartate aminotransferase	Bmul_ 2443	A225A	syn	SNP	С	С	С	С	С	С	С	С	С	G	С	С	С	С	G	С	2
contig1	1601125	CDS		C>T	PROKKA _01505	lptA	lipopolysaccharide transport periplasmic protein LptA	Bmul_ 0526	A90T	nonsyn	SNP	С	С	с	Т	С	С	С	Т	С	С	С	С	С	С	с	с	2
contig1	2086264	CDS		G>A	PROKKA _01950	rfaQ_ 1	LPS core heptosyl transferase RfaQ	-	G355R	nonsyn	SNP	G	G	G	G	G	G	G	G	G	А	G	G	G	G	А	G	2
contig1	2492395	INT	31 bp up	A>C	PROKKA _02339	-	NUDIX hydrolase	Bmul_ 1291	-	-	SNP	А	А	А	А	А	А	А	А	А	С	А	А	А	А	С	А	2
contig1	2807720	INT	220 bp up	C>T	PROKKA _02631	cobL	Precorrin-6Y C(5,15)- methyltransferase [decarboxylating]	Bmul_ 1567	-	-	SNP	С	С	с	С	С	С	С	С	Т	С	С	С	С	Т	с	с	2
contig1	2837644	CDS		A>G	PROKKA _02659	fhuA	Ferrichrome-iron receptor precursor	Bmul_ 1594	*570R	nonsyn	SNP	А	А	А	А	А	А	А	А	А	G	А	А	А	А	G	А	2
contig1	2838056	CDS		C>T	PROKKA _02659	fhuA	Ferrichrome-iron receptor precursor	Bmul_ 1594	R433R	syn	SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	т	С	2
contig2	356827	CDS		T>C	PROKKA _03372	-	Lactonase, 7-bladed beta-propeller	Bmul_ 6011	L149P	nonsyn	SNP	Т	Т	т	Т	Т	т	Т	т	Т	С	Т	Т	Т	Т	С	Т	2
contig3	30510	CDS		C>T	PROKKA _03690	rpoD _2	RNA polymerase sigma factor RpoD	Bmul_ 4813	A666A	syn	SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	Т	С	2
contig3	796326	INT	2 bp up	C>T	PROKKA _04374	-	putative hemoglobin and hemoglobin- haptoglobin-binding protein 2 precursor	Bmul_ 3338	-	-	SNP	с	С	с	С	С	С	с	С	С	т	С	С	С	С	т	с	2
contig3	1192013	CDS		C>T	PROKKA _04715	rstB_ 2	Sensor protein RstB	Bmul_ 3678	R220C	nonsyn	SNP	С	С	С	Т	С	С	С	т	С	С	С	С	С	С	С	С	2
contig3	1199449	CDS		C>G	PROKKA _04721	rssA_ 4	NTE family protein RssA	-	V498V	syn	SNP	С	С	С	С	С	С	С	С	G	С	С	С	С	G	С	С	2
contig3	1280318	CDS		C>A	PROKKA _04786	-	LigA protein	Bmul_ 3742	P68T	nonsyn	SNP	С	С	С	С	С	С	С	С	А	del	С	С	С	А	del	С	2
contig3	1290377	CDS		C>T	PROKKA _04796	-	peptidoglycan-binding LysM	Bmul_ 3752	E4220 K	nonsyn	SNP	С	С	С	С	С	Т	С	С	С	del	С	С	С	С	del	Т	2
contig3	1517663	INT	41 bp down	C>G	PROKKA _04994	-	MerR family transcriptional regulator	Bmul_ 4022	-	-	SNP	с	С	с	С	С	С	С	С	С	G	С	С	С	С	G	С	2
contig1	1041735	CDS		т	PROKKA _00973	recG	ATP-dependent DNA helicase RecG	Bmul_ 2662	-	11 aa del	indel	cg cc gc cg	 	cg cc gc cg	cg cc gc cg	cg cc gc cg	cg cc gc cg	 	cg cc gc cg	2								

												gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac cg ac gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gg cg cg cg cg cg cg cg c	gc gc gc gg cc gg cc gat cg cg ac gct gct	 -	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg cc gat cg cg ac gct gct	gc gc gc gg gc gg cg cg cg cg cg cg cg c	gc gc gc gc gc gc gc cg cg cg cg cg cg c	 -	gc gc gc gg cc gg cc gat cg cg ac gct gct	
contig1	2839612				PROKKA _02660 to PROKKA _02663					5396 aa del	indel	С	С	С	С	С	С	С	С	С	16 18 7- bp del	С	С	С	С	16 18 7- bp del	с	2
contig3	1264028				PROKKA _04773 to PROKKA _04857					35323 aa del	indel	т	т	т	т	т	т	Т	Т	т	10 59 68 - bp del	т	т	Т	Т	10 59 68 - bp del	т	2
contig1	91926	CDS		C>T	PROKKA _00087	birA_ 1	Bifunctional ligase/repressor BirA	-	11141	syn	SNP	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	1
contig1	148070	CDS		T>C	PROKKA _00132	sbp_ 1	sulfate ABC transporter periplasmic sulfate- binding protein	Bmul_ 2940	D157G	nonsyn	SNP	т	т	т	т	т	т	т	С	т	т	т	т	т	т	т	т	1
contig1	184360	CDS		T>C	PROKKA _00166	-	hypothetical protein	Bmul_ 2972	T76A	nonsyn	SNP	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	Т	Т	1
contig1	184660	CDS		A>G	PROKKA _00167	-	short chain dehydrogenase	Bmul_ 2973	D20G	nonsyn	SNP	А	А	G	А	А	А	А	А	А	А	А	А	А	А	А	А	1
contig1	225690	CDS		G>A	PROKKA _00206	flgl	Flagellar P-ring protein precursor	Bmul_ 3013	Q374*	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	1
contig1	230206	CDS		C>G	PROKKA _00210	flgE	Flagellar hook protein FlgE	Bmul_ 3017	G56A	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	G	С	С	С	С	С	1
contig1	257407	CDS		C>T	PROKKA _00236	proP_ 1	Proline/betaine transporter	Bmul_ 3041	V341M	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	1
contig1	297295	CDS		T>C	PROKKA _00276	rlml	Ribosomal RNA large subunit methyltransferase I	Bmul_ 3083	Y213H	nonsyn	SNP	т	т	т	т	т	Т	Т	С	т	т	т	т	Т	Т	т	т	1
contig1	319451	CDS		C>T	PROKKA _00297	gatA_ 1	Glutamyl-tRNA(GIn) amidotransferase subunit A	Bmul_ 3105	L67L	syn	SNP	с	с	с	с	с	с	С	С	С	С	с	с	С	С	т	с	1
contig1	349983	INT	160 bp up	C>G	PROKKA _00327	-	O-Antigen ligase	-	-	-	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	1
contig1	353749	CDS		C>T	PROKKA _00330	gapN _ ¹	NADP-dependent glyceraldehyde-3- phosphate dehydrogenase	Bmul_ 3133	R447Q	nonsyn	SNP	с	с	с	с	с	с	С	т	с	с	с	с	С	С	с	с	1

contig1	356481	INT	80 bp up	G>T	PROKKA _00332	pgtC	Phosphoglycerate transport regulatory protein PgtC precursor	Bmul_ 3135	-	-	SNP	G	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	1
contig1	390082	CDS		G>A	PROKKA _00362	srpA	Catalase-related peroxidase precursor	Bmul_ 0006	P14P	syn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig1	414961	CDS		T>G	PROKKA _00388	fliL	Flagellar FliL protein	Bmul_ 0044	D95A	nonsyn	SNP	Т	Т	т	Т	Т	Т	Т	Т	Т	G	Т	т	Т	Т	Т	т	1
contig1	660737	CDS		G>C	PROKKA _00606	rpID	50S ribosomal protein L4	Bmul_ 0250	G70R	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	1
contig1	661934	CDS		G>A	PROKKA _00608	rplB	50S ribosomal protein L2	Bmul_ 0252	S157S	syn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig1	668615	CDS		T>C	PROKKA _00624	rplO	50S ribosomal protein L15	Bmul_ 0268	A10A	syn	SNP	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	С	т	т	Т	Т	т	1
contig1	846473	CDS		G>A	PROKKA _00794	echA 8_1	enoyl-CoA hydratase	Bmul_ 2850	D46N	nonsyn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	1
contig1	866409	CDS		G>A	PROKKA _00810	murF	UDP-N- acetylmuramoyl- tripeptideD-alanyl- D- alanine ligase	Bmul_ 2840	V36I	nonsyn	SNP	G	A	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig1	866580	CDS		C>A	PROKKA _00810	murF	UDP-N- acetylmuramoyl- tripeptideD-alanyl- D- alanine ligase	Bmul_ 2840	L93I	nonsyn	SNP	с	с	С	С	С	С	С	A	с	С	с	с	с	с	с	с	1
contig1	872893	CDS		T>G	PROKKA _00815	murC	UDP-N- acetylmuramate-L- alanine ligase	Bmul_ 2835	N27K	nonsyn	SNP	т	т	Т	т	т	т	т	т	т	т	т	т	т	т	т	G	1
contig1	962108	CDS		C>T	PROKKA _00901	bamE	Outer membrane protein assembly factor BamE precursor	Bmul_ 2736	L120L	syn	SNP	с	с	С	С	С	С	С	С	с	С	т	с	с	с	с	с	1
contig1	1061087	CDS		C>T	PROKKA _00992	aroG _1	Phospho-2-dehydro- 3-deoxyheptonate aldolase, Phe- sensitive	Bmul_ 2646	D146N	nonsyn	SNP	с	с	т	С	С	С	С	С	с	С	с	с	с	с	с	с	1
contig1	1112550	CDS		C>T	PROKKA _01040	nrdR	Transcriptional repressor NrdR	Bmul_ 2580	T11M	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	1
contig1	1136596	CDS		A>G	PROKKA _01065	araC _1	AraC family transcriptional regulator	Bmul_ 2555	W139R	nonsyn	SNP	A	A	A	A	A	A	A	G	A	A	A	A	A	A	A	A	1
contig1	1161443	CDS		C>T	PROKKA _01084	-	hypothetical protein	-	G639G	syn	SNP	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	1
contig1	1198643	CDS		C>G	PROKKA _01119	tagO _2	glycosyl transferase family protein	Bmul_ 2502	A296P	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	1
contig1	1261838	CDS		C>G	PROKKA _01180	ribBA _1	Riboflavin biosynthesis protein RibBA	Bmul_ 2440	A173A	syn	SNP	с	с	С	С	С	С	С	с	с	с	с	G	с	с	с	с	1
contig1	1265296	CDS		T>C	PROKKA _01184	hemL	Glutamate-1- semialdehyde 2,1- aminomutase	Bmul_ 2436	H362R	nonsyn	SNP	т	т	Т	Т	Т	Т	т	с	т	Т	т	т	т	т	т	т	1
contig1	1413257	CDS		A>T	PROKKA _01336	-	RmuC family protein	Bmul_ 2199	Q116L	nonsyn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	Т	1

contig1	1484160	CDS		G>A	PROKKA _01407	-	hypothetical protein	Bmul_ 2131	R98R	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	1
contig1	1492366	INT	131 bp up	A>G	PROKKA _01415	astC	Succinylornithine transaminase	Bmul_ 2124	-	-	SNP	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	1
contig1	1524070	CDS		A>G	PROKKA _01437	-	phosphatase-like protein	Bmul_ 2102	L357P	nonsyn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	G	А	1
contig1	1528294	CDS		G>T	PROKKA _01441	ywnA	BadM/Rrf2 family transcriptional regulator	Bmul_ 2098	G148C	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	G	1
contig1	1564272	INT	469 bp down	C>A	PROKKA _01467	-	hypothetical protein	-	-	-	SNP	с	с	С	С	С	С	A	С	С	С	с	С	С	с	с	С	1
contig1	1580768	CDS		C>T	PROKKA _01482	trpD2	glycosyl transferase family protein	Bmul_ 0490	P64P	syn	SNP	С	С	С	С	С	С	С	т	С	С	С	С	С	С	С	С	1
contig1	1592143	CDS		C>G	PROKKA _01495	-	tetratricopeptide repeat protein	Bmul_ 0516	G33R	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	G	С	С	С	С	С	1
contig1	1619024	CDS		C>T	PROKKA _01521	-	Phasin protein	Bmul_ 0542	S187S	syn	SNP	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	1
contig1	1674265	CDS		G>A	PROKKA _01569	eamA _2	putative amino-acid metabolite efflux pump	Bmul_ 0592	P111L	nonsyn	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig1	1713494	CDS		G>C	PROKKA _01607	rhIE_ 1	DEAD/DEAH box helicase	Bmul_ 0627	S246C	nonsyn	SNP	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	G	1
contig1	1714335	INT	28 bp down	C>T	PROKKA _01608	adhB _1	gluconate 2- dehydrogenase	Bmul_ 0628	-	-	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	1
contig1	1719881	INT	22 bp down	G>A	PROKKA _01612	lldR_ 2	GntR family transcriptional regulator	Bmul_ 0632	-	-	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	1
contig1	1722689	CDS		C>T	PROKKA _01616	-	glycosyl transferase family protein	Bmul_ 0636	A955A	syn	SNP	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	1
contig1	1729086	CDS		A>G	PROKKA _01620	dmlR _8	LysR family transcriptional regulator	Bmul_ 0641	Q262R	nonsyn	SNP	А	А	G	A	A	A	A	A	A	A	A	А	A	A	А	А	1
contig1	1824059	CDS		C>T	PROKKA _01705	yhhW _2	Quercetin 2,3- dioxygenase	Bmul_ 0731	C24Y	nonsyn	SNP	С	т	С	С	С	С	С	С	С	С	С	С	С	С	С	С	1
contig1	1914967	CDS		G>A	PROKKA _01792	cbl_1	transcriptional regulator CysB-like protein	Bmul_ 0818	S138F	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	1
contig1	1922382	CDS		G>C	PROKKA _01800	lptG	LPS export system permease protein LptG	Bmul_ 0826	P358A	nonsyn	SNP	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	G	1
contig1	1956542	CDS		G>T	PROKKA _01831	metG	Methionine-tRNA ligase	Bmul_ 0857	G370G	syn	SNP	G	G	G	G	G	G	G	т	G	G	G	G	G	G	G	G	1
contig1	1995949	CDS		C>T	PROKKA _01864	envZ _1	Osmolarity sensor protein EnvZ	Bmul_ 0890	Q412*	nonsyn	SNP	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	С	1
contig1	1999848	CDS		C>A	PROKKA _01867	cmpD _1	Bicarbonate transport ATP-binding protein CmpD	Bmul_ 0893	R422R	syn	SNP	с	с	С	С	С	С	С	С	С	с	с	с	С	с	с	A	1
contig1	2058424	CDS		G>C	PROKKA _01930	-	ATPase family associated with various cellular activities	Bmul_ 0945	S233W	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	с	1

contig1	2067154	CDS		A>G	PROKKA _01939	-	Trehalase	Bmul_ 0954	R290R	syn	SNP	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	1
contig1	2152189	CDS		G>C	PROKKA _02018	nuoF	NADH-quinone oxidoreductase subunit F	Bmul_ 1033	G149A	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	1
contig1	2152190	CDS		C>A	PROKKA _02018	nuoF	NADH-quinone oxidoreductase subunit F	Bmul_ 1033	G149G	syn	SNP	с	с	с	С	с	С	С	С	с	С	A	С	с	С	с	С	1
contig1	2177740	CDS		C>G	PROKKA _02044	-	hypothetical protein	Bmul_ 1059	Q280H	nonsyn	SNP	С	С	С	С	G	С	С	С	С	С	С	С	С	С	С	С	1
contig1	2261768	CDS		C>T	PROKKA _02118	glnG	nitrogen metabolism transcriptional regulator NtrC	Bmul_ 1124	R10*	nonsyn	SNP	с	с	С	С	С	С	С	т	С	С	С	С	С	С	С	С	1
contig1	2282907	INT	145 bp up	C>G	PROKKA _02131	-	Phasin protein	Bmul_ 1136	-	-	SNP	С	С	С	С	С	С	С	G	С	С	С	С	С	С	С	С	1
contig1	2316891	CDS		T>A	PROKKA _02165	-	hypothetical protein	Bmul_ 1172	H188Q	nonsyn	SNP	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	А	Т	Т	Т	Т	т	1
contig1	2341659	CDS		G>A	PROKKA _02189	accA	acetyl-CoA carboxylase carboxyltransferase subunit alpha	Bmul_ 1205	E238E	syn	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig1	2368518	CDS		C>A	PROKKA _02219	dmlR _13	LysR family transcriptional regulator	Bmul_ 1227	P94T	nonsyn	SNP	С	с	С	С	С	С	С	С	С	С	С	С	С	A	С	С	1
contig1	2405787	INT	179 bp up	G>A	PROKKA _02248	тар_ 2	Methionine aminopeptidase	Bmul_ 1256	-	-	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig1	2447646	CDS		C>G	PROKKA _02291	-	hypothetical protein	-	*80S	nonsyn	SNP	С	С	С	С	С	С	С	del	С	G	С	С	С	С	С	С	1
contig1	2457416	INT	5 bp down	C>G	PROKKA _02301	-	hypothetical protein	-	-	-	SNP	С	С	С	С	С	С	С	С	С	С	С	G	С	С	С	С	1
contig1	2543389	CDS		A>G	PROKKA _02387	-	Major Facilitator Superfamily transporter	Bmul_ 1342	C73R	nonsyn	SNP	А	A	А	A	A	A	А	G	A	A	A	A	A	A	A	A	1
contig1	2551944	CDS		A>G	PROKKA _02395	clpX	ATP-dependent Clp protease ATP-binding subunit ClpX	Bmul_ 1350	S79S	syn	SNP	А	А	А	A	А	A	A	G	А	А	А	A	А	A	А	A	1
contig1	2666055	CDS		G>C	PROKKA _02498	surE_ 1	stationary phase survival protein SurE	Bmul_ 1450	M246I	nonsyn	SNP	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	G	1
contig1	2710070	CDS		T>C	PROKKA _02538	metC _1	Cystathionine beta- lyase MetC	Bmul_ 1491	C179R	nonsyn	SNP	Т	Т	т	Т	Т	т	Т	Т	Т	Т	С	Т	Т	Т	Т	т	1
contig1	2755251	CDS		T>G	PROKKA _02577	fis	Fis family transcriptional regulator	Bmul_ 1516	A103A	syn	SNP	т	т	т	т	т	т	т	т	т	т	т	т	т	G	т	т	1
contig1	2755284	CDS		A>G	PROKKA _02577	fis	Fis family transcriptional regulator	Bmul_ 1516	A114A	syn	SNP	A	A	А	A	A	A	A	G	A	A	A	A	A	A	A	A	1
contig1	2755289	CDS		G>C	PROKKA _02577	fis	Fis family transcriptional regulator	Bmul_ 1516	R116P	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	1
contig1	2771183	CDS		G>C	PROKKA _02589	ghrB_ 2	Glyoxylate/hydroxypy ruvate reductase B	Bmul_ 1528	G180R	nonsyn	SNP	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	1

contig1	2803044	CDS		C>T	PROKKA _02627	yghU	Disulfide-bond oxidoreductase YghU	Bmul_ 1563	P104L	nonsyn	SNP	с	с	с	с	С	с	С	С	С	т	С	С	с	С	с	с	1
contig1	2857712	CDS		G>C	PROKKA _02664	yojl	ABC transporter ATP- binding protein Yojl	Bmul_ 1599	G327A	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig1	2871189	INT	98 bp up	T>C	PROKKA _02677	fimA_ 3	Type-1 fimbrial protein, A chain precursor	Bmul_ 1612	-	-	SNP	Т	т	т	т	Т	т	Т	С	Т	Т	Т	Т	т	Т	т	т	1
contig1	2881282	CDS		C>G	PROKKA _02684	gInM _2	putative glutamine ABC transporter permease protein GInM	Bmul_ 1620	G69R	nonsyn	SNP	С	с	с	с	С	с	С	G	С	С	С	С	с	С	с	с	1
contig1	2884313	CDS		C>T	PROKKA _02687	-	SpoVR family protein	Bmul_ 1623	R550H	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	1
contig1	2910949	CDS		C>A	PROKKA _02710	gltC_ 4	LysR family transcriptional regulator	Bmul_ 1646	C172F	nonsyn	SNP	С	с	С	С	С	с	С	С	С	С	A	С	С	С	с	с	1
contig1	2917249	CDS		G>A	PROKKA _02716	pld_1	Phospholipase D precursor	Bmul_ 1653	R61H	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig1	2970954	CDS		T>C	PROKKA _02771	rbsC_ 3	Ribose transport system permease protein RbsC	Bmul_ 1712	V272A	nonsyn	SNP	т	т	т	т	т	т	т	С	Т	т	т	т	т	т	т	т	1
contig1	2998460	CDS		T>C	PROKKA _02795	-	hypothetical protein	Bmul_ 1742	L120P	nonsyn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	Т	Т	С	1
contig1	3025430	CDS		G>C	PROKKA _02814	gltC_ 5	LysR family transcriptional regulator	Bmul_ 1761	R99G	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	1
contig1	3095500	CDS		G>A	PROKKA _02882	mglA	Galactose/methyl galactoside import ATP-binding protein MgIA	Bmul_ 1890	P334S	nonsyn	SNP	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	G	1
contig1	3179448	CDS		C>T	PROKKA _02945	fabL	Enoyl-[acyl-carrier- protein] reductase [NADPH] FabL	Bmul_ 1953	A146A	syn	SNP	С	с	с	с	С	С	С	С	С	С	С	т	с	С	С	с	1
contig1	3213080	CDS		T>A	PROKKA _02977	shlB_ 2	Hemolysin transporter protein ShIB precursor	Bmul_ 2070	*514C	nonsyn	SNP	т	т	т	т	т	т	Т	Т	Т	т	A	т	т	т	т	т	1
contig1	3215368	CDS		T>C	PROKKA _02979	-	hypothetical protein	Bmul_ 1985	Y245C	nonsyn	SNP	Т	т	т	т	т	т	Т	С	Т	Т	Т	т	т	Т	т	т	1
contig1	3256603	CDS		C>T	PROKKA _03013	pstS	Phosphate-binding protein PstS precursor	Bmul_ 2020	A60A	syn	SNP	С	с	с	с	С	С	С	Т	С	С	С	С	с	С	с	с	1
contig1	3277742	CDS		C>T	PROKKA _03031	proP_ 8	Proline/betaine transporter	Bmul_ 2038	Q403*	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	1
contig2	79974	INT	567 bp down	G>A	PROKKA _03128	-	Sodium Bile acid symporter family protein	Bmul_ 5378	-	-	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig2	89242	CDS		T>C	PROKKA _03140	bktB	Beta-ketothiolase BktB	Bmul_ 5365	Y69C	nonsyn	SNP	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	т	Т	1
contig2	95301	CDS		A>G	PROKKA _03144	fadD_ 3	Long-chain-fatty-acid- CoA ligase	Bmul_ 5361	V271A	nonsyn	SNP	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	1

contig2	98034	CDS		T>C	PROKKA _03146	phoR _2	Alkaline phosphatase synthesis sensor protein PhoR	Bmul_ 5359	H369R	nonsyn	SNP	т	т	т	т	т	т	т	т	т	т	С	т	т	т	т	т	1
contig2	98413	CDS		G>A	PROKKA _03146	phoR _2	Alkaline phosphatase synthesis sensor protein PhoR	Bmul_ 5359	L242F	nonsyn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	1
contig2	105414	CDS		T>A	PROKKA _03152	dht	D- hydantoinase/dihydro pyrimidinase	Bmul_ 5353	Q233L	nonsyn	SNP	Т	Т	Т	т	Т	Т	т	т	Т	Т	А	Т	Т	т	т	т	1
contig2	133339	CDS		G>A	PROKKA _03174	ggt_2	Gamma- glutamyltranspeptidas e precursor	Bmul_ 5335	A524V	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig2	215194	CDS		G>C	PROKKA _03250	pbuE _2	Purine efflux pump PbuE	Bmul_ 6097	P319R	nonsyn	SNP	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	1
contig2	226932	CDS		A>G	PROKKA _03259	ydcR _3	putative HTH-type transcriptional regulator YdcR	-	V254A	nonsyn	SNP	A	А	A	А	A	A	А	G	A	A	А	А	A	A	А	А	1
contig2	233899	CDS		G>A	PROKKA _03265	eamA _4	putative amino-acid metabolite efflux pump	-	V254I	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	1
contig2	238814	CDS		C>T	PROKKA _03270	-	FAD linked oxidase domain-containing protein	Bmul_ 6081	F256F	syn	SNP	С	С	С	с	С	С	С	т	С	С	С	С	С	с	с	С	1
contig2	272103	INT	9 bp up	C>T	PROKKA _03298	ynfM _3	Inner membrane transport protein YnfM	-	-	-	SNP	С	С	С	С	С	С	С	С	С	С	т	С	С	с	С	С	1
contig2	276039	CDS		G>C	PROKKA _03301	nicA_ 1	Nicotinate dehydrogenase subunit A	-	P118R	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	с	G	G	1
contig2	302358	CDS		T>C	PROKKA _03326	pnpB _2	p-benzoquinone reductase	Bmul_ 6057	T94A	nonsyn	SNP	т	Т	Т	т	т	т	Т	т	Т	т	Т	Т	т	С	т	т	1
contig2	374350	CDS		G>C	PROKKA _03390	gltC_ 8	LysR family transcriptional regulator	Bmul_ 5993	G284R	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	с	G	G	1
contig2	379227	INT	22 bp down	C>T	PROKKA _03395	dapA _3	4-hydroxy- tetrahydrodipicolinate synthase	Bmul_ 5988	-	-	SNP	С	С	С	с	С	С	С	т	С	С	С	С	С	с	с	С	1
contig2	397662	CDS		G>A	PROKKA _03410	-	cytochrome c class I	Bmul_ 5973	C87C	syn	SNP	G	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	1
contig2	447808	CDS		G>A	PROKKA _03448	ddpC _1	putative D,D- dipeptide transport system permease protein DdpC	-	M228I	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig2	460944	CDS		A>T	PROKKA _03457	-	hypothetical protein	Bmul_ 6087	P59P	syn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	т	1
contig2	473417	CDS		G>A	PROKKA _03469	fadK	Short-chain-fatty- acidCoA ligase	-	T526I	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig2	539497	CDS		G>A	PROKKA _03526	-	MmgE/PrpD family protein	-	G467D	nonsyn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	1
contig2	546030	CDS		T>C	PROKKA _03532	-	Tropinesterase	-	W4R	nonsyn	SNP	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	Т	Т	1

contig2	554282	INT	209 bp down	G>A	PROKKA _03538	mmg C_6	Acyl-CoA dehydrogenase	-	-	-	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig2	567288	CDS		A>G	PROKKA _03548	betB_ 4	NAD/NADP- dependent betaine aldehyde dehydrogenase	-	Q83R	nonsyn	SNP	A	А	А	A	A	A	A	G	A	A	A	A	A	A	A	А	1
contig2	574133	INT	40 bp down	C>A	PROKKA _03552	yjjL_1	L-galactonate transporter	-	-	-	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	А	С	С	1
contig2	581195	CDS		T>C	PROKKA _03557	-	Phage-related baseplate assembly protein	-	D450G	nonsyn	SNP	т	т	т	т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	т	т	1
contig2	586241	CDS		T>C	PROKKA _03561	rcsC_ 1	Sensor histidine kinase RcsC	-	1987V	nonsyn	SNP	т	т	т	т	Т	Т	Т	т	Т	Т	Т	т	Т	Т	Т	С	1
contig2	594801	CDS		C>G	PROKKA _03567	-	hypothetical protein	-	R133S	nonsyn	SNP	С	С	С	С	С	С	С	G	С	С	С	С	С	С	С	С	1
contig2	688973	CDS		A>T	PROKKA _03642	rpoN _2	RNA polymerase sigma-54 factor	Bmul_ 5472	V363E	nonsyn	SNP	А	А	А	А	А	А	А	т	А	А	А	А	А	А	А	А	1
contig3	20627	CDS		T>C	PROKKA _03681	-	H-NS histone family protein	-	T15A	nonsyn	SNP	Т	т	Т	т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	Т	т	1
contig3	34055	CDS		C>T	PROKKA _03691	dnaG	DNA primase	Bmul_ 4814	A259A	syn	SNP	С	С	С	С	С	С	С	т	С	С	С	С	С	С	С	С	1
contig3	118722	CDS		G>A	PROKKA _03772	-	Putative multidrug export ATP- binding/permease protein	Bmul_ 4939	G143E	nonsyn	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	186903	CDS		C>A	PROKKA _03833	-	Cyclic nucleotide- binding domain protein	Bmul_ 5000	G228C	nonsyn	SNP	с	A	с	с	С	С	С	С	С	С	С	С	С	С	с	С	1
contig3	308608	CDS		C>T	PROKKA _03942	cynR _8	LysR family transcriptional regulator	Bmul_ 5103	N92N	syn	SNP	с	с	с	с	С	С	С	С	С	т	С	С	С	С	del	с	1
contig3	310473	CDS		G>A	PROKKA _03943	-	putative glutamate synthase subunit beta	Bmul_ 5104	A367T	nonsyn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	del	G	1
contig3	351175	CDS		G>A	PROKKA _03977	dmlR _33	LysR family transcriptional regulator	Bmul_ 5136	P249S	nonsyn	SNP	G	G	G	G	G	G	G	G	A	G	G	G	G	G	del	G	1
contig3	359042	CDS		G>A	PROKKA _03985	fac- dex	Fluoroacetate dehalogenase	Bmul_ 5144	Q313*	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	del	G	1
contig3	433969	CDS		G>A	PROKKA _04055	aldA_ 2	Lactaldehyde dehydrogenase	-	A382T	nonsyn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	1
contig3	510482	CDS		T>G	PROKKA _04129	ydbD _2	putative manganese catalase	Bmul_ 5251	S3A	nonsyn	SNP	Т	Т	Т	Т	G	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	1
contig3	521988	CDS		T>C	PROKKA _04138	nodD 2_6	LysR family transcriptional regulator	Bmul_ 5270	Q203R	nonsyn	SNP	т	т	т	т	т	т	С	т	т	Т	т	т	т	т	т	т	1
contig3	594714	CDS		A>G	PROKKA _04212	-	hypothetical protein	Bmul_ 3176	H3R	nonsyn	SNP	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	1
contig3	597578	CDS		C>A	PROKKA _04213	-	type VI secretion protein	Bmul_ 3177	A606D	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	А	С	С	С	С	С	1
contig3	790722	CDS		G>A	PROKKA _04370	hmuV	Hemin import ATP- binding protein HmuV	Bmul_ 3334	R57W	nonsyn	SNP	G	G	А	G	G	G	G	G	G	G	G	G	G	G	G	G	1

contig3	799034	CDS		C>G	PROKKA _04378	-	Outer membrane porin protein precursor	Bmul_ 3342	G11A	nonsyn	SNP	С	с	С	С	с	с	С	С	С	С	G	С	С	с	С	С	1
contig3	838308	CDS		A>G	PROKKA _04413	mdtE _2	Multidrug resistance protein MdtE precursor	Bmul_ 3373	S119G	nonsyn	SNP	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	G	1
contig3	866764	INT	9 bp up	T>G	PROKKA _04436	gudP _4	d-galactonate transporter	Bmul_ 3398	-	-	SNP	Т	Т	G	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	1
contig3	875608	INT	42 bp up	C>T	PROKKA _04445	garD	D-galactarate dehydratase	Bmul_ 3409	-	-	SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	1
contig3	968898	CDS		T>C	PROKKA _04518	-	hypothetical protein	-	S563P	nonsyn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	1
contig3	988084	CDS		C>T	PROKKA _04535	-	hypothetical protein	Bmul_ 3494	1551	syn	SNP	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	1
contig3	994398	CDS		C>A	PROKKA _04541	Hgd_ 4	2- (hydroxymethyl)glutar ate dehydrogenase	Bmul_ 3500	D11Y	nonsyn	SNP	С	с	С	С	С	с	С	A	С	С	С	С	С	с	С	С	1
contig3	1024236	CDS		G>C	PROKKA _04563	yadA _2	Adhesin YadA precursor	Bmul_ 3524	R1154 R	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	1
contig3	1032266	CDS		C>T	PROKKA _04572	naiP_ 6	Putative niacin/nicotinamide transporter NaiP	Bmul_ 3533	D232N	nonsyn	SNP	С	С	С	С	С	т	С	С	С	С	С	С	С	с	С	С	1
contig3	1033674	CDS		G>C	PROKKA _04573	yadH _3	Inner membrane transport permease YadH	Bmul_ 3534	A68G	nonsyn	SNP	G	G	С	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	1055812	CDS		C>T	PROKKA _04590	etfA_ 3	Electron transfer flavoprotein subunit alpha	Bmul_ 3551	A183V	nonsyn	SNP	С	С	С	С	С	с	С	Т	С	С	С	С	С	с	С	С	1
contig3	1118940	CDS		A>G	PROKKA _04648	ampR _1	LysR family transcriptional regulator	Bmul_ 3613	D40D	syn	SNP	A	A	G	A	A	A	A	A	A	A	A	А	A	A	A	A	1
contig3	1166703	CDS		C>T	PROKKA _04693	-	hypothetical protein	Bmul_ 3654	D87N	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	т	1
contig3	1182518	CDS		C>T	PROKKA _04706	rna	Ribonuclease I precursor	Bmul_ 3667	T142I	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	1
contig3	1205969	CDS		A>G	PROKKA _04725	ampR _2	LysR family transcriptional regulator	Bmul_ 3688	A126A	syn	SNP	A	A	A	A	A	A	A	G	A	A	A	А	A	A	А	A	1
contig3	1240716	CDS		G>A	PROKKA _04750	-	hypothetical protein	Bmul_ 3713	D85D	syn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	1
contig3	1250719	CDS		A>G	PROKKA _04758	puuA _3	Gamma- glutamylputrescine synthetase PuuA	Bmul_ 3721	S433G	nonsyn	SNP	A	A	A	A	A	A	A	G	A	A	A	A	A	A	A	A	1
contig3	1274224	CDS		C>T	PROKKA _04782	ssaV	type III secretion FHIPEP protein	Bmul_ 3739	P23S	nonsyn	SNP	С	С	С	С	С	С	С	С	Т	del	С	С	С	С	del	С	1
contig3	1338410	CDS		G>A	PROKKA _04827	nboR	Nicotine blue oxidoreductase	Bmul_ 3790	Y36Y	syn	SNP	G	G	G	G	G	G	G	А	G	del	G	G	G	G	del	G	1
contig3	1341901	CDS		G>T	PROKKA _04831	-	PKHD-type hydroxylase	Bmul_ 3793	S207S	syn	SNP	G	G	G	G	G	G	G	G	G	del	G	G	G	Т	del	G	1
contig3	1419415	CDS		A>G	PROKKA _04897	rutR_ 2	TetR family transcriptional regulator	Bmul_ 3926	L5L	syn	SNP	A	А	A	А	A	А	A	G	А	A	А	А	A	А	А	A	1

contig3	1437618	CDS		T>C	PROKKA _04912	-	Integrase core domain protein	Bmul_ 3939, Bmul_ 0288, Bmul_ 1339	S136S	syn	SNP	т	т	т	т	т	т	т	С	т	т	т	т	т	т	т	т	1
contig3	1651094	INT	159 bp down	G>T	PROKKA _05088	-	Extracellular serine protease precursor	Bmul_ 4115	-	-	SNP	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	G	1
contig3	1657941	CDS		C>T	PROKKA _05093	gudP _6	putative glucarate transporter	Bmul_ 4121	A92A	syn	SNP	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	1
contig3	1680682	CDS		G>A	PROKKA _05113	gabR _6	HTH-type transcript- tional regulatory protein GabR	Bmul_ 4136	A38T	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	1
contig3	1723461	CDS		C>T	PROKKA _05142	-	FkbM family methyltransferase	Bmul_ 4165	T234M	nonsyn	SNP	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	1
contig3	1829583	CDS		G>A	PROKKA _05235	mrcA _4	peptidoglycan glycosyltransferase	Bmul_ 4259	F317F	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	G	1
contig3	1851820	CDS		C>T	PROKKA _05255	atoE	Short-chain fatty acids transporter	Bmul_ 4279	тзт	syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	1
contig3	1921752	CDS		C>G	PROKKA _05316	ssuA _5	Putative aliphatic sulfonates-binding protein precursor	Bmul_ 4340	C241W	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	G	С	С	С	с	С	1
contig3	1934530	CDS		T>C	PROKKA _05329	-	Helix-turn-helix domain protein	Bmul_ 4367	S80S	syn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	т	1
contig3	2026007	CDS		C>G	PROKKA _05409	acg	Putative NAD(P)H nitroreductase acg	-	P34R	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	G	С	С	С	С	С	1
contig3	2045464	CDS		C>G	PROKKA _05424	dppA _3	D-aminopeptidase	Bmul_ 4422	R171P	nonsyn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	1
contig3	2093195	CDS		G>C	PROKKA _05468	-	membrane protein	Bmul_ 4469	R22P	nonsyn	SNP	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	1
contig3	2132886	INT	119 bp up	G>T	PROKKA _05500	glnQ_ 5	Glutamine transport ATP-binding protein GlnQ	Bmul_ 4502	-	-	SNP	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	G	1
contig3	2215477	CDS		C>T	PROKKA _05573	xanP	Xanthine permease XanP	Bmul_ 4581	S272L	nonsyn	SNP	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	1
contig3	2287386	CDS		A>G	PROKKA _05630	-	hypothetical protein	-	W46R	nonsyn	SNP	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	1
contig3	2304195	CDS		G>A	PROKKA _05648	-	putative bacteriophage protein	Bmul_ 1803	H300H	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	1
contig3	2322063	CDS		G>A	PROKKA _05671	-	hypothetical protein	Bmul_ 1828	L139L	syn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	1
contig3	2374729	CDS		A>G	PROKKA _05730	accD	acetyl-CoA carboxylase subunit beta	Bmul_ 4619	12531	syn	SNP	A	A	A	G	A	A	A	А	A	A	A	A	A	A	А	А	1
contig3	2392109	CDS		G>A	PROKKA _05744	-	hypothetical protein	Bmul_ 4634	R34R	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	G	1
contig3	2398341	CDS		G>A	PROKKA _05750	-	Glyoxalase-like domain protein	Bmul_ 4641	R23R	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	G	1
contig3	2457867	CDS		G>T	PROKKA _05806	-	Amidohydrolase	Bmul_ 4701	T241N	nonsyn	SNP	G	Т	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1

contig3	2462576	CDS	A>G	PROKKA _05810	serA	D-3- phosphoglycerate dehydrogenase	Bmul_ 4705	V195A	nonsyn	SNP	A	A	A	А	А	A	A	G	A	A	A	А	A	А	A	A	1
contig1	63816	CDS	Т	PROKKA 00060	frc_1	Formyl-coenzyme A transferase	Bmul_ 0427	-	2 aa del	indel	tcc gtc	tcc gtc	tcc gtc		tcc gtc	tcc gtc	tcc gtc	tcc gtc	tcc gtc	tcc gtc	tcc gtc	tcc gtc	tcc atc		tcc gtc	tcc atc	1
contig1	268629	CDS	G	PROKKA _00247	pucA	putative xanthine dehydrogenase subunit A	Bmul_ 3054	-	framesh ift	indel	с	c	С	с	с	С	с	с	с	с	с	с	с	с	с	-	1
contig1	388634	CDS	G	PROKKA _00361		cytochrome B561	Bmul_ 0005	-	17 aa del	indel	aa gta c g g at g g c c g a g g g g g g g g g g g c c c g g at c g c c c g a g g g g g g g g g g g g g	a ct a c g t g c c g a g c c g g g g g a c c g a c c g a c c c c	aa cgt ca cc gg att cg cc cg cg ca cg cg cg cg cg cg cg cg cg cg cg cg cg	ca gg att cg cc gc ac gc atc gc gg gc aa	aa cgt ca cc gg att cg cc cg cg ca cg cg cg cg cg cg cg cg cg cg cg cg cg	ca cc gg att cg cc gc aa cg atc gc gg gc aa	a cta c gat g c c g a g c c g g c c c g c c c c c c	aa cgt cc ggat gg cc ga a gg gg a gg a ca c gg a c gg c c c gg t c c g c c g c c g c c c g c c c g c c c g c	a cta c gg t g c c g a g c c g g a c c c g c c c c c	a cta c gat g c c g a g c c g g g g g a c c a c g c c c c	aa cgt ca cg gg att cg cc gg ac gg gc aa cg gg gc aa cg ca cc gg att cc c gg att cc c c c c c c c c c c c c c c c c	aa cgt ca cg gg att cg cc gg att cg gc aa cg gc aa cg gc aa cg gc aa cg gc aa cc c c c	aa cgt ca cg gg att cg cc gg att cg cc gg att cg cc aa cg gc ac gg gc aa cg cc cc cc cc cc cc cc cc cc cc cc cc	aa cgt ca cg gg att cg cc c gg at cg cg cc c a cg gg ca cg cc c a cg ca cg ca cc c c c	aa cgt ca cc gg at cg cc cg aa cg		1
contig1	1002688	CDS	С	PROKKA _00936	dtd	D-tyrosyl-tRNA(Tyr) deacylase	Bmul_ 2699	-	framesh ift	indel	cg	cg	cg	cg	cg	cg	cg		cg	cg	cg	cg	cg	cg	cg	cg	1
contig1	1092287	CDS	A	PROKKA _01017	mutL	DNA mismatch repair protein MutL	Bmul_ 2621	-	16 aa del	indel	gc a cg cg cg gt c cg a gt cg cg cg cg t c a g	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	gc ac gg cg gg cg gg cg gc gc gc gc gc gc gc gc gc gc gc g	cg agt gc ctg ca	gc a cg cg cg cg cg cg cg cg cg cg cg cg cg c	gc ctg ca	<pre>c c c c c c c c c c c c c c c c c c c</pre>		<pre>c c c c c c c c c c c c c c c c c c c</pre>	0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	gc acg cg cg cg cg cg cg cg cg cg cg cg cg c	gc cg cg cg cg cg gc ctg gc ctg gc ctg gc ctg gc ctg gc ctg gc ctg gc cg gc gc gc gc gc gc gc gc gc gc gc	gc cg cg cg cg cg cg cg cg cg cg cg cg c	gc cg cg cg cg cg cg cg cg cg cg cg cg c	gc a cg cg cg gt c ga st cg cg cg t c a g	c c c c c c c c c c c c c c c c c c c	1

												ag cg ca g		ag cg ca g	ag cg ca g	ag cg ca g	ag cg ca g	ag cg ca g	ag cg ca g	ag cg ca g	ag cg ca g							
contig1	1140837	CDS		G	PROKKA _01068	kdhB	6-hydroxy- pseudooxynicotine dehydrogenase complex subunit beta	Bmul_ 2552	-	framesh ift	indel	gc		gc	gc	gc	gc	gc	gc	gc	gc	1						
contig1	1733619	CDS		т	PROKKA _01624	tctD_ 3	Transcriptional regulatory protein tctD	Bmul_ 0649	-	framesh ift	indel	gc		gc	gc	gc	gc	gc	gc	gc	gc	1						
contig1	1764172	CDS		С	PROKKA _01653	<i>dacB</i>	D-alanyl-D-alanine carboxypeptidase DacB precursor	Bmul_ 0679	-	4 aa del	indel	cg ac gc gct cg a		cg ac gc gct cg a	cg ac gc cg cg a	cg ac gc cg cg a	cg ac gc gct cg a	1										
contig1	1764306	CDS		G	PROKKA _01653	dacB	D-alanyl-D-alanine carboxypeptidase DacB precursor	Bmul_ 0679	I	framesh ift	indel	-	-	-	-	t	-	-	-	-	-	-	-	-	-	-	-	1
contig1	1771192	INT	67 bp down	G	PROKKA _01661	ttgR_ 1	TetR family transcriptional regulator	Bmul_ 0687	-	-	indel											ac cg aa ac cg aa						1
contig1	1903681	CDS		т	PROKKA _01778	ascD	CDP-6-deoxy-L- threo-D-glycero-4- hexulose-3- dehydrase reductase	Bmul_ 0805	-	2 aa del	indel	cgt cg g		cgt cg g	cgt cg g	cgt cg g	cgt cg g	cgt cg g	cgt cg g	cgt cg g	cgt cg g	1						
contig1	1945245	INT	159 bp up	А	PROKKA _01823	mhqP	Putative oxidoreductase MhqP	Bmul_ 0849	-	-	indel																ctc ac gg	1
contig1	1982365	CDS		G	PROKKA _01851	-	hypothetical protein	Bmul_ 0877	-	framesh ift	indel	-	-	-	-	-	-	-	с	-	-	-	-	-	-	-	-	1
contig1	2602189	INT	29 bp down	С	PROKKA _02438	-	hypothetical protein	Bmul_ 1390	-	-	indel	-	-	-	-	-	-	-	g	-	-	-	-	-	-	-	-	1
contig1	2868787	CDS		т	PROKKA _02676	papC	fimbrial biogenesis outer membrane usher protein	Bmul_ 1611	-	framesh ift	indel	с	с	с	с	с	с	с	с	с	с	-	с	с	с	с	с	1
contig1	2878400	CDS		G	PROKKA _02681	ttgR_ 3	TetR family transcriptional regulator	Bmul_ 1617	-	framesh ift	indel	ac		ac	ac	ac	ac	1										
contig1	2878405	CDS		А	PROKKA _02681	ttgR_ 3	TetR family transcriptional regulator	Bmul_ 1617	-	2 aa insertio n	indel												attt gt					1
contig1	2892952	CDS		G	PROKKA _02692	rbsR	Lacl family transcriptional regulator	Bmul_ 1628	-	framesh ift	indel	cg cc gc cg ac	cg cc gc cg ac	cg cc gc cg ac	cg cc gc cg ac	cg cc gc cg ac	 	1										

												ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac	ga ac		
contig1	3097524	INT	27 bp up	С	PROKKA _02883	mglB	D-galactose-binding periplasmic protein precursor	Bmul_ 1891	-	-	indel	-	-	-	-	-	-	-	g	-	-	-	-	-	-	-	-	1
contig2	638096	CDS		С	PROKKA _03603		hypothetical protein	Bmul_ 5510	-	4 aa del	indel	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg	gc cg cg ca gg cg		1
contig3	269092	INT	23 bp down	С	PROKKA _03905	proP_ 20	Proline/betaine transporter	Bmul_ 5065	-	-	indel				 		 -	 -		-			 			 -	gc cg cg ggt	1
contig3	286833	CDS		т	PROKKA _03922	fixL_2	Sensor protein FixL	Bmul_ 5082	-	5 aa del	indel	c c c c c c c c c c c c c c c c c c c	cc gc gct tcc gc gc gc gc	cc gc gct tcc gc gc gc gc	c c c c c c c c c c c c c c c c c c c	c c c c c c c c c c c c c c c c c c c	cc gc gct tcc gc gc gc gc	cc gc gct tcc gc gc gc gc	c c c c c c c c c c c c c c c c c c c	cc gct gc	cc gc gct tcc gc gc gc	cc gct gct gc gc gc gc gc		c c c c c c c c c c c c c c c c c c c	cc gc gct tcc gc gc gc gc	cc gc gct tcc gc gc gc gc	cc gc gct tcc gc gc gc gc	1
contig3	295434	INT	163 bp up	A	PROKKA _03931	-	Acetyltransferase (GNAT) family protein	Bmul_ 5091	-	-	indel																ctt gc ctg	1
contig3	582738	CDS		С	PROKKA _04201	-	hypothetical protein	-	-	framesh ift	indel	gct cg qt	gct cg at	gct cg qt	gct cg qt	gct cg qt	gct cg at	gct cg qt	gct cg qt	gct cg qt	gct cg at	gct cg qt	gct cg qt	gct cg qt	gct cg qt	gct cg qt		1
contig3	654495	CDS		С	PROKKA 04249	fadD_ 4	Long-chain-fatty-acid- CoA ligase	Bmul_ 3212	-	framesh ift	indel	a	a	a	a	a	a	a	-	a	a	a	a	a	a	a	а	1
contig3	856118	INT	39 bp up	т	PROKKA _04427	dctB_ 2	C4-dicarboxylate transport sensor protein DctB	Bmul_ 3389	-	-	indel	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c	cg gc cgt cc aa c		cg gc cgt cc aa c	1
contig3	1098459	CDS		т	PROKKA _04630	-	2-keto-3-deoxy-L- fuconate dehydrogenase	Bmul_ 3595	-	framesh ift	indel	cg	cg	cg	cg	cg	cg	cg		cg	cg	cg	cg	cg	cg	cg	cg	1
contig3	1340843	INT	38 bp down	С	PROKKA _04829	-	hypothetical protein	-	-	-	indel	-	-	-	-	-	-	-	g	-	-	-	-	-	-	-	-	1
contig3	1512900	CDS		т	PROKKA _04989	-	metal-dependent hydrolase	Bmul_ 4017	-	framesh ift	indel	cg	cg	cg	cg	cg	cg	cg		cg	cg	cg	cg	cg	cg	cg	cg	1
contig3	1653113	CDS		А	PROKKA _05089	clcA_ 3	chloride channel core	Bmul_ 4117	-	framesh ift	indel	gc	gc	gc	gc	gc	gc	gc		gc	gc	gc	gc	gc	gc	gc	gc	1
contig3	1886952	INT	35 bp up	G	PROKKA _05286	-	Long-chain-fatty-acid- CoA ligase	Bmul_ 4310	-	-	indel	-	-	-	-	-	-	-	с	-	-	-	-	-	-	-	-	1
contig3	2117637	CDS		т	PROKKA _05485	glmS _4	Glutamine-fructose-6- phosphate aminotransferase [isomerizing]	Bmul_ 4486	-	framesh ift	indel	gc	gc	gc	gc	gc	gc	gc		gc	gc	gc	gc	gc	gc	gc	gc	1

contig3	2324562	CDS		G	PROKKA _05674		hypothetical protein	Bmul_ 1831	-	framesh ift	indel	-	-	-	-	-	-	-	с	-	-	-	-	-	-	-	-	1
contig3	2353647	INT	47 bp down	С	PROKKA _05713	-	3- demethylubiquinone- 9 3-methyltransferase	Bmul_ 4601	-	-	indel	gc gg ct	gc gg ct	gc gg ct	gc gg ct	gc gg ct	gc gg ct	gc gg ct	gc gg ct		1							
contig1	1144822				PROKKA _01072	syrM 1_1	HTH-type transcriptional regulator SyrM 1			123 aa del	indel	G	G	G	G	G	G	G	36 9- bp del	G	G	G	G	G	G	G	G	1
contig1	2444332				PROKKA _02289 to PROKKA _02299					3787 aa del	indel	С	С	С	С	С	с	С	11 36 0- bp del	С	С	С	С	С	С	С	С	1
contig1	1576769				PROKKA _01479; PROKKA _01480					385 aa del	indel	Т	Т	т	Т	Т	Т	Т	11 55 - bp del	Т	Т	Т	Т	F	Т	Т	Т	1
contig1	1577258				PROKKA _01479	pagL	Lipid A deacylase PagL precursor			49 aa del	indel	G	G	G	G	G	G	G	G	IJ	IJ	G	G	G	G	IJ	14 8- bp del	1
contig2	122606				PROKKA _03165; PROKKA _03166	tRNA				82 aa del	indel	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	24 6- bp del	1
contig3	275479				PROKKA _03911 to PROKKA _04047					50383 aa del	indel	с	с	с	с	с	с	С	с	С	С	С	С	C	С	15 11 47 - bp del	с	1
contig3	1447293				PROKKA _04923 to PROKKA _04945					6874 aa del	indel	G	G	G	G	G	G	G	20 62 2- bp del	G	G	G	G	G	G	G	G	1
contig3	1643082				PROKKA _05088	-	Extracellular serine protease precursor			980 aa del	indel	С	С	С	С	С	с	С	с	С	С	С	С	С	С	С	29 38 - bp del	1
contig3	2418658				PROKKA _05769; PROKKA _05770					391 aa del	indel	G	G	G	G	G	G	G	11 72 - bp del	G	G	G	G	G	G	G	G	1

Contig	Position	Cat ego ry	bp upstr eam or down strea m CDS (if IG)	Mut atio n	Locus tag (bp upstrea m if IG)	Gene name	Annotation	Homo logue in <i>B.</i> <i>multiv</i> orans ATCC 17616	Mutati ons found (if CDS)	Typ e of mut atio n	Typ e of mut atio n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Nr of isol ates with mut atio n
contig1	502108	CDS		T>G	PROKKA _00467	ytnP	putative quorum- quenching lactonase YtnP	-	S84R	non syn	SNP	Т	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	20
contig1	536415	CDS		G>T	PROKKA _00501	pbuE _1	major facilitator transporter	Bmul_ 6097	L176M	non syn	SNP	G	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	20
contig2	970630	CDS		C>T	PROKKA _01972	adrB	cyclic-di- GMP phosphodies terase	Bmul_ 5257	R145H	non syn	SNP	С	с	т	т	т	т	т	т	т	т	т	т	т	т	т	т	С	т	т	т	т	18
contig2	1264721	CDS		G>C	PROKKA _02243	gcvA _11	LysR family transcription al regulator	Bmul_ 4992	P114A	non syn	SNP	G	G	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	С	С	С	С	18
contig3	1274062	CDS		G>C	PROKKA _04445	czcA _2	acriflavin resistance protein	Bmul_ 1519	G452A	non syn	SNP	G	G	С	С	С	С	с	С	С	с	С	с	С	С	С	С	G	с	с	С	с	18
contig3	1386691	CDS		C>A	PROKKA _04548	hom	Homoserine dehydrogena se	Bmul_ 1419	A121S	non syn	SNP	С	с	A	A	A	A	А	A	A	A	A	A	A	A	A	A	С	A	A	А	A	18
contig3	2578308	CDS		G>A	PROKKA _05665	accC _1	acetyl-CoA carboxylase biotin carboxylase subunit	Bmul_ 0367	D444N	non syn	SNP	G	G	A	A	A	A	A	A	A	A	A	A	A	A	A	A	G	A	A	A	A	18
contig3	2756613	INT	78 up	A>C	PROKKA _05835	sfaG	S-fimbrial protein subunit SfaG precursor	-			SNP	A	А	с	С	С	С	с	С	с	с	С	с	С	с	С	с	A	с	с	с	с	18
contig3	3197434	CDS		G>T	PROKKA _06251	pilQ	type IV pilus secretin PilQ	Bmul_ 0294	L387L	syn	SNP	G	G	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	Т	Т	Т	Т	18
contig2	61308	CDS		G>T	_ PROKKA _01182	budC _2	3-ketoacyl- ACP reductase	Bmul_ 3804	D219E	non syn	SNP	G	G	т	Т	т	т	т	т	т	т	т	т	Т	т	т	т	G	т	т	т	т	18
contig2	1503211	CDS		T>G	PROKKA _02456	potH _2	transport system permease protein	Bmul_ 5430	L225R	non syn	SNP	т	т	G	G	G	G	G	т	G	G	G	G	G	G	G	G	т	G	G	G	G	17

Table A2 - Mutations found among the 21 *B. multivorans* isolates of CF patient P426 (CDS = coding sequence, INT = intergenic, del = large deletion).

				1	1	1		1	r	1	1	1	-						1	1	-				1	1	1						
contig2	1503212	CDS		C>A	PROKKA _02456	potH _2	transport system permease protein	Bmul_ 5430	L225L	syn	SNP	с	с	A	A	A	A	A	С	A	A	A	A	A	A	A	A	С	A	A	A	А	17
contig3	1228781	CDS		G>C	PROKKA _04396	-	cobalt- precorrin-6A synthase	Bmul_ 1566	V311L	non syn	SNP	G	G	G	G	G	С	С	С	с	с	С	С	С	С	с	С	G	С	С	с	с	15
contig3	1620376	CDS		G>C	PROKKA _04768	cyaA	Ubiquinol oxidase subunit 1	Bmul_ 1210	A566G	non syn	SNP	G	G	G	G	G	С	С	с	с	с	С	С	С	с	с	с	G	С	С	с	с	15
contig3	1654573	CDS		G>A	PROKKA _04803	-	Phage late control gene D protein (GPD)	-	G183G	syn	SNP	G	G	G	G	G	A	А	А	А	А	A	А	A	А	А	А	G	А	A	А	А	15
contig1	645393	CDS		C>A	PROKKA _00596	hcnA _1	Hydrogen cyanide synthase subunit HcnA	Bmul_ 6004	G76C	non syn	SNP	С	С	С	С	С	A	A	С	A	A	A	A	A	A	A	A	С	A	A	A	А	14
contig3	1369080	CDS		C>A	PROKKA _04532	acoB	Acetoin 2,6- dichlorophen olindophenol oxidoreducta se subunit beta	Bmul_ 1435	A233S	non syn	SNP	с	с	С	с	С	A	A	С	A	A	A	A	A	A	A	A	С	A	A	A	А	14
contig3	68863				PROKKA _03313; PROKKA _03314	glnQ _4; flu	Glutamine transport ATP-binding protein GlnQ; Antigen 43 precursor			275 aa dele tion	indel	А	A	A	A	A	82 4- bp del eti on	82 4- bp del eti on	A	82 4- bp del eti on	A	82 4- bp del eti on	82 4- bp del eti on	82 4- bp del eti on	82 4- bp del eti on	14							
contig2	218150	CDS		G>A	PROKKA _01308	rstB_ 1	Sensor protein RstB	Bmul_ 3678	R119C	non syn	SNP	G	G	G	G	G	G	А	А	А	А	А	А	G	А	А	А	G	А	А	А	А	13
contig1	570779	INT	73 down	A>C	PROKKA _00530	-	Putative multidrug export ATP- binding/perm ease protein	Bmul_ 6066			SNP	A	А	A	A	A	A	С	A	с	с	С	с	A	с	с	с	A	с	С	с	с	12
contig3	1300130	CDS		G>A	PROKKA _04469	-	putative assembly protein	Bmul_ 1499	S254L	non syn	SNP	G	G	G	G	G	G	G	A	А	A	A	А	G	A	A	A	G	G	A	G	А	10
contig3	205812	CDS		G>A	PROKKA _03438	mmg C_3	Acyl-CoA dehydrogena se	Bmul_ 2570	G130G	syn	SNP	G	G	G	G	G	G	G	G	А	А	A	А	G	А	А	А	G	G	A	А	А	10
contig3	271374	CDS		C>G	PROKKA _03495	-	hypothetical protein	-	G471G	syn	SNP	С	С	С	С	С	С	С	G	G	G	G	G	del	G	G	G	del	С	G	del	G	10
contig3	278036	CDS		A>C	PROKKA _03500	gmd_ 2	GDP- mannose 4,6- dehydratase	-	L210R	non syn	SNP	А	А	A	A	A	A	A	с	с	с	с	с	del	с	с	с	del	A	С	del	с	10

	1			1	r				r	r			-															-				
contig3	281676	CDS	G>T	PROKKA _03501	mfps A	Mannosylfru ctose- phosphate synthase	-	P251P	syn	SNP	G	G	G	G	G	G	G	т	т	т	т	т	del	т	т	т	del	G	т	del	т	10
contig2	278535	CDS	A>G	PROKKA _01370	-	hypothetical protein	-	K29R	non syn	SNP	А	А	А	А	А	А	А	G	G	G	G	G	del	G	G	G	А	А	G	А	G	10
contig2	1550406	CDS	C>A	PROKKA _02498	-	cell division protein DedD	Bmul_ 4617	P174Q	non syn	SNP	С	с	С	С	С	С	С	A	A	A	А	A	С	A	A	A	С	С	A	С	A	10
contig2	1699017	CDS	A>G	PROKKA _02625	pgaC	Poly-beta- 1,6-N-acetyl- D- glucosamine synthase	Bmul_ 4484	L24P	non syn	SNP	A	A	A	A	A	A	A	G	G	G	G	G	A	G	G	G	A	A	G	A	G	10
contig3	63037	CDS	G>C	PROKKA _03307	purB	Adenylosucc inate lyase	Bmul_ 2717	A56G	non syn	SNP	G	G	G	G	G	G	G	С	С	С	С	С	G	С	С	С	G	G	С	G	С	10
contig3	923396	CDS	G>C	PROKKA _04097	lpIT_ 1	phospholipid /glycerol acyltransfera se	Bmul_ 1790	W590C	non syn	SNP	G	G	G	G	G	G	G	с	С	с	с	с	G	С	С	С	G	G	С	G	с	10
contig3	1070008	CDS	C>G	PROKKA _04259	-	putative assembly protein	Bmul_ 1703	G197G	syn	SNP	с	с	с	С	С	С	С	G	G	G	G	G	С	G	G	G	С	с	G	с	G	10
contig3	1745194	CDS	G>T	PROKKA _04896	fixL_ 2	Sensor protein FixL	Bmul_ 1132	G231C	non syn	SNP	G	G	G	G	G	G	G	Т	Т	Т	Т	Т	G	Т	Т	Т	G	G	Т	G	т	10
contig3	2356074	CDS	A>T	PROKKA _05461	lptD	LPS- assembly protein LptD precursor / organic solvent tolerance protein	Bmul_ 0588	V754D	non syn	SNP	А	A	А	A	A	А	A	т	Т	т	т	Т	A	н	Т	Т	A	А	т	А	т	10
contig3	2396050	CDS	G>A	PROKKA _05494	bmr3 _2	major facilitator transporter	Bmul_ 0554	A239V	non syn	SNP	G	G	G	G	G	G	G	А	А	A	A	A	G	A	A	A	G	G	A	G	А	10
contig2	144318	CDS	C>G	PROKKA _01249	-	LuxR family transcription al regulator	Bmul_ 3738	T173T	syn	SNP	с	с	С	С	С	С	С	С	G	G	G	G	С	G	G	G	С	с	G	с	G	9
contig2	1429902	CDS	A>G	PROKKA _02397	-	hypothetical protein	Bmul_ 4347	T11A	non syn	SNP	А	А	А	А	А	А	А	А	G	G	G	G	А	G	G	G	А	А	G	А	G	9
contig3	2789456	CDS	T>G	PROKKA _05863	zraR _8	Fis family transcription al regulator	Bmul_ 3117	E184D	non syn	SNP	т	т	Т	Т	Т	Т	Т	Т	G	G	G	G	Т	G	G	G	Т	Т	G	т	G	9
contig2	1172281	CDS	G>C	PROKKA _02160	pobB _2	Phenoxyben zoate dioxygenase subunit beta	Bmul_ 5072	P256R	non syn	SNP	G	G	G	G	G	G	G	с	С	с	С	с	G	с	с	с	G	G	с	G	del	9
contig2	691600			PROKKA _01734	-	Outer membrane porin protein precursor			294 aa dele tion	indel	т	т	т	т	т	т	т	т	88 0- bp del	88 0- bp del	88 0- bp del	88 0- bp del	т	88 0- bp del	88 0- bp del	88 0- bp del	т	т	88 0- bp del	т	88 0- bp del	9

																			eti on	eti on	eti on	eti on		eti on	eti on	eti on			eti on		eti on	
contig3	23514	CDS	C>T	PROKKA _03270	pncC	Nicotinamide -nucleotide amidohydrol ase PncC	Bmul_ 2757	A27T	non syn	SNP	с	с	с	с	с	с	С	т	т	с	т	т	с	т	т	т	С	с	с	с	т	8
contig1	16531			PROKKA _00017 to PROKKA _00225					725 92 aa dele tion	indel	т	т	т	Т	т	Т	Т	т	21 77 74 - bp del eti on	т	21 77 74 - bp del eti on	21 77 - bp del eti on	т	21 77 74 - bp del eti on	21 77 74 - bp del eti on	21 77 74 - bp del eti on	т	т	т	21 77 74 - bp del eti on	21 77 74 - bp del eti on	8
contig3	127180	CDS	G>A	PROKKA _03364	-	hypothetical protein	-	M1I	non syn	SNP	G	G	G	G	G	G	G	G	А	G	А	А	G	А	А	А	G	G	G	G	А	7
contig3	419434	CDS	C>T	PROKKA _03648	ydfH_ 3	GntR family transcription al regulator	Bmul_ 2372	A60T	non syn	SNP	С	с	С	С	С	С	С	С	т	С	т	т	С	Т	с	т	С	С	С	с	Т	6
contig3	1001405	CDS	C>T	PROKKA _04202	-	transcription elongation factor NusA	Bmul_ 1756	11171	syn	SNP	с	с	С	С	С	С	С	С	т	с	т	т	С	т	с	т	С	с	С	с	т	6
contig3	1307725	CDS	T>C	PROKKA _04477	metC	Cystathionin e beta-lyase MetC	Bmul_ 1491	Q207R	non syn	SNP	т	т	т	Т	т	Т	Т	т	С	т	С	С	Т	С	т	с	т	т	т	т	С	6
contig3	945339			PROKKA _04119 to PROKKA _04187					146 33 aa dele tion	indel	A	43 89 8- bp del eti on	A	A	A	Α	A	А	A	A	43 89 8- del eti on	43 89 8- bp del eti on	A	A	А	43 89 8- bp del eti on	A	А	A	43 89 8- bp del eti on	43 89 8- bp del eti on	6
contig1	887178			PROKKA _00810 to PROKKA _00904					298 20 aa dele tion	indel	A	A	A	A	89 45 8- bp del eti on	A	A	A	A	89 45 8- bp del eti on	89 45 8- bp del eti on	A	A	A	А	A	A	A	89 45 8- bp del eti on	A	89 45 8- bp del eti on	5
contig1	1148967			PROKKA _01069 to PROKKA _01078					166 8 aa dele tion	indel	с	с	С	С	С	С	50 02 - bp del eti on	С	50 02 - bp del eti on	с	50 02 - bp del eti on	с	С	с	с	50 02 - bp del eti on	С	с	С	с	50 02 - bp del eti on	5
contig1	1155187			PROKKA _01080 to PROKKA _01126					163 18 aa dele tion	indel	G	G	G	G	G	G	48 95 2- bp del	G	48 95 2- bp del	G	48 95 2- bp del	G	G	G	G	48 95 2- bp del	G	G	G	G	48 95 2- bp del	5

																		eti on		eti on		eti on					eti on					eti on	
contig1	995236				PROKKA _00918 to PROKKA _00953					120 31 aa dele tion	indel	с	с	с	с	36 09 3- bp del eti on	с	с	с	С	36 09 3- bp del eti on	36 09 3- bp del eti on	с	с	с	с	с	с	с	36 09 3- bp del eti on	с	del	4
contig1	475138	INT	147 up	C>A	PROKKA _00443	-	Initiator Replication protein	Bmul_ 6162			SNP	С	с	С	С	С	С	с	С	С	С	A	С	С	С	С	A	С	С	С	С	А	3
contig1	806595	CDS		G>A	PROKKA _00740	-	Universal stress protein	Bmul_ 5859	11411	syn	SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	A	G	G	G	G	A	3
contig2	43593	CDS		G>A	PROKKA _01167	tpa_3	Taurine- pyruvate aminotransfe rase	Bmul_ 3821	R367C	non syn	SNP	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	A	G	G	G	G	A	3
contig2	1462431	INT	63 down	C>T	PROKKA _02418	luxQ_ 4	Autoinducer 2 sensor kinase/phos phatase LuxQ	Bmul_ 4695			SNP	С	с	С	с	с	С	с	с	С	с	т	С	С	С	с	Т	С	С	с	С	т	3
contig3	812372	CDS		T>C	PROKKA _04003	-	Membrane- bound aldehyde dehydrogena se [pyrroloquino line-quinone] precursor	Bmul_ 1961	F545L	non syn	SNP	т	т	т	Т	Т	т	т	т	т	т	с	т	Т	т	Т	С	т	Т	т	т	С	3
contig3	1003769	CDS		A>G	PROKKA _04203	infB	Translation initiation factor IF-2	Bmul_ 1755	E383G	non syn	SNP	A	А	А	А	A	A	А	A	A	A	G	А	A	А	А	G	A	А	А	А	G	3
contig3	1099889	INT	113 up	C>T	PROKKA _04286	pyrD	Dihydroorota te dehydrogena se (quinone)	Bmul_ 1678			SNP	с	с	с	С	С	С	с	с	с	с	т	с	С	с	С	т	с	с	с	с	т	3
contig3	1193266	CDS		T>G	PROKKA _04365	iucB_ 1	N(6)- hydroxylysin e O- acetyltransfe rase	Bmul_ 1596	V338G	non syn	SNP	Т	т	т	Т	Т	т	т	т	Т	Т	G	т	Т	Т	Т	G	т	Т	Т	Т	G	3
contig3	1322782	CDS		T>G	PROKKA _04491	-	hypothetical protein	Bmul_ 1477	Q218P	non syn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	Т	Т	Т	Т	G	Т	Т	Т	Т	G	3
contig3	1888759	INT	96 down	G>A	PROKKA _05029	secG	Protein- export	Bmul_ 1027			SNP	G	G	G	G	G	G	G	G	G	G	А	G	G	G	G	А	G	G	G	G	А	3

							membrane protein SecG																										
contig3	2043737	CDS		G>C	PROKKA _05175	nadE _2	Glutamine- dependent NAD(+) synthetase	Bmul_ 0878	P49A	non syn	SNP	G	G	G	G	G	G	G	G	G	G	с	G	G	G	G	с	G	G	G	G	с	3
contig3	2711433	INT	17 down	T>G	PROKKA _05789	fpr	Ferredoxin- NADP reductase	Bmul_ 3050			SNP	Т	Т	Т	Т	Т	Т	т	Т	т	Т	G	т	Т	Т	Т	G	Т	Т	Т	Т	G	3
contig1	1030237				PROKKA _00954 to PROKKA _00958					250 5 aa dele tion	indel	F	F	т	Т	del	Т	75 13 - bp del eti on	Т	75 13 - bp del eti on	del	del	т	Т	т	F	75 13 - bp del eti on	Т	Т	del	т	del	3
contig1	1038936				PROKKA _00960 to PROKKA _01069					363 93 aa dele tion	indel	A	A	A	A	A	A	10 91 - bp del eti on	A	10 91 77 - bp del eti on	del	10 91 77 - bp del eti on	A	A	A	A	A	A	A	del	A	A	3
contig3	824543	CDS		C>A	PROKKA _04013	fecl_ 1	putative RNA polymerase sigma factor Fecl	Bmul_ 1935	R10R	syn	SNP	С	С	с	С	С	С	С	С	С	с	A	с	С	С	С	С	С	С	с	С	A	2
contig1	34573	CDS		A>T	PROKKA _00036	ydaP _2	Putative thiamine pyrophospha te-containing protein YdaP	Bmul_ 5505	K179M	non syn	SNP	A	A	A	A	A	A	del	т	del	A	del	del	A	del	del	del	Т	A	A	del	del	2
contig1	216460	CDS		C>T	PROKKA _00213	uvrA_ 1	UvrABC system protein A	Bmul_ 5541	A1807 A	syn	SNP	С	С	С	Т	Т	С	с	С	del	С	del	del	С	del	del	del	С	С	С	del	del	2
contig1	370924	CDS		T>A	PROKKA _00349	-	oxidoreducta se alpha (molybdopter in) subunit	Bmul_ 5410	1657N	non syn	SNP	т	т	т	т	т	A	т	т	т	т	т	т	A	т	т	т	т	т	т	т	т	2
contig2	811057	CDS		A>G	PROKKA _01840	aroG _1	Phospho-2- dehydro-3- deoxyhepton ate aldolase, Phe- sensitive	Bmul_ 3232	V28A	non syn	SNP	A	A	A	A	A	A	A	A	A	A	G	A	A	A	A	A	A	A	A	A	G	2
contig2	1401215	CDS		C>A	PROKKA _02371	ispA	polyprenyl synthetase	Bmul_ 4821	L139I	non syn	SNP	С	С	С	С	С	С	С	С	С	С	Α	С	С	С	С	С	С	С	С	С	А	2
contig2	1418698	CDS		C>A	PROKKA _02386	-	Outer membrane	Bmul_ 4702	V310V	syn	SNP	С	С	С	С	С	С	А	С	С	С	С	С	С	С	С	С	С	А	С	С	С	2

							porin protein precursor																										
contig2	1487897	CDS		C>T	PROKKA _02442	-	Methyltransf erase domain protein	Bmul_ 4677	D69D	syn	SNP	с	с	С	с	С	С	С	с	С	т	с	с	С	с	С	с	С	с	т	с	с	2
contig2	1493930	INT	44 up	G>C	PROKKA _02450	hem R_2	Hemin receptor precursor	Bmul_ 4669			SNP	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	G	G	с	G	G	G	2
contig2	1665876	INT	65 up	C>T	PROKKA _02592	xsc	Sulfoacetald ehyde acetyltransfe rase	Bmul_ 4516			SNP	с	с	С	С	С	т	С	с	С	С	с	С	Т	С	С	С	С	С	С	С	С	2
contig2	1714157	CDS		C>T	PROKKA _02635	pphA _2	Phosphonop yruvate hydrolase	Bmul_ 4471	R103H	non syn	SNP	с	С	С	С	С	т	С	с	С	С	с	с	Т	С	С	С	С	с	С	С	С	2
contig2	1737706	CDS		G>T	PROKKA _02656	hcnC _3	Hydrogen cyanide synthase subunit HcnC precursor	Bmul_ 4446	A371S	non syn	SNP	G	G	G	G	G	т	G	G	G	G	G	G	Т	G	G	G	G	G	G	G	G	2
contig2	1909827	CDS		C>T	PROKKA _02798	-	chaperone protein HchA	Bmul_ 4323	A29V	non syn	SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	Т	С	С	2
contig2	2035288	CDS		G>A	PROKKA _02911	araE	Alpha- ketoglutaric semialdehyd e dehydrogena se	Bmul_ 4215	R358Q	non syn	SNP	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	G	G	A	G	G	G	2
contig3	127177	INT	61 up	C>T	PROKKA _03364	-	hypothetical protein	-			SNP	С	С	С	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	Т	С	С	2
contig3	353940	CDS		C>G	PROKKA _03572	glk	Glucokinase	Bmul_ 2433	G26A	non syn	SNP	С	С	С	G	G	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	2
contig3	390997	CDS		T>C	PROKKA _03618	spoT	Bifunctional (p)ppGpp synthase/hy drolase SpoT	Bmul_ 2399	S33P	non syn	SNP	т	т	т	т	т	Т	С	т	Т	т	т	Т	Т	т	т	т	Т	с	Т	Т	Т	2
contig3	452134	CDS		C>G	PROKKA _03676	rfaE	D-beta-D- heptose 7- phosphate kinase	Bmul_ 2252	G145G	syn	SNP	с	с	С	С	С	С	G	с	С	С	с	С	С	С	С	С	С	G	С	С	С	2
contig3	1145720	CDS		C>T	PROKKA _04337	-	putative serine protein kinase PrkA	Bmul_ 1625	R308C	non syn	SNP	с	с	С	С	С	С	т	С	С	С	С	С	С	С	С	С	С	т	С	С	С	2
contig3	1612228	CDS		C>A	PROKKA _04760	mep H_2	Murein DD- endopeptida se MepH precursor	Bmul_ 1218	G70C	non syn	SNP	с	с	С	С	С	A	С	с	с	С	с	с	A	с	С	С	с	с	С	с	с	2

							BadM/Rrf2						1					1													,		,ı
contig3	1731036	INT	38 up	A>T	PROKKA _04885	iscR	family transcription al regulator	Bmul_ 1143			SNP	А	А	А	т	Т	A	А	А	A	A	A	A	A	A	A	A	А	A	A	A	A	2
contig3	1756102	CDS		A>G	PROKKA _04904	f1pep 1	Prolyl endopeptida se precursor	Bmul_ 1125	V146A	non syn	SNP	А	А	A	А	А	G	А	А	A	A	А	A	G	A	A	A	А	A	А	А	A	2
contig3	1823404	CDS		A>C	PROKKA _04961	-	hypothetical protein	-	K601T	non syn	SNP	А	А	А	А	А	А	С	А	А	А	А	А	А	А	А	А	А	С	А	А	А	2
contig3	1951341	CDS		G>A	PROKKA _05090	rfaQ_ 3	Lipopolysacc haride core heptosyltran sferase RfaQ	-	A90V	non syn	SNP	G	G	G	G	G	A	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	2
contig3	2211372	CDS		A>G	PROKKA _05331	-	hypothetical protein	Bmul_ 0723	M32V	non syn	SNP	А	А	А	А	А	А	А	А	А	А	G	А	А	А	А	А	А	А	А	А	G	2
contig3	3373463	CDS		C>G	PROKKA 06417	outO 2	prepilin peptidase	Bmul_ 2820	W244C	non syn	SNP	С	С	С	С	С	G	С	С	С	С	С	С	G	С	С	С	С	С	С	С	С	2
contig1	299121	CDS		G>A	PROKKA 00277	-	hypothetical protein	Bmul_ 5479	H89Y	non syn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	А	G	G	G	G	2
contig1	446262	CDS		G>A	PROKKA 00418	-	hypothetical protein	Bmul_ 5343	G16R	non syn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	А	G	G	G	G	2
contig1	558634	INT	100 up	G>A	PROKKA _00518	braC _1	Leucine-, isoleucine-, valine-, threonine-, and alanine- binding protein precursor	Bmul_ 6079			SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	A	G	G	G	G	2
contig2	1581994	INT	tRNA	C>G	PROKKA _02523	-	tRNA-Sec				SNP	С	С	С	С	С	С	С	G	С	С	С	С	С	С	С	С	G	С	С	С	С	2
contig2	2293878	CDS		G>A	PROKKA _03128	-	Outer membrane porin protein precursor	Bmul_ 4039	N38N	syn	SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	А	G	G	G	G	2
contig3	635870	INT	74 up	T>C	PROKKA _03856	proY	Proline- specific permease ProY	Bmul_ 2091			SNP	т	т	т	т	т	т	т	с	т	т	т	т	т	т	т	т	с	т	т	т	т	2
contig3	810899	CDS		G>A	PROKKA _04003	-	Membrane- bound aldehyde dehydrogena se [pyrroloquino line-quinone] precursor	Bmul_ 1961	G54S	non syn	SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	A	G	G	G	G	2
contig3	1204221	INT	3 up	G>A	PROKKA _04374	cobO	Cob(I)yrinic acid a,c- diamide	Bmul_ 1587			SNP	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	А	G	G	G	G	2

							adenosyltran sferase																										
contig3	1746932	CDS		T>C	PROKKA _04896	fixL_ 2	Sensor protein FixL	Bmul_ 1132	M810T	non syn	SNP	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	2
contig3	2429786	CDS		G>T	PROKKA _05526	hprK	HPr kinase/phos phorylase	Bmul_ 0521	R200L	non syn	SNP	G	G	G	G	G	G	G	т	G	G	G	G	G	G	G	G	т	G	G	G	G	2
contig3	2496032	CDS		A>G	PROKKA _05592	ptsH	Phosphocarr ier protein HPr	Bmul_ 0442	L77P	non syn	SNP	А	А	А	A	А	А	А	G	А	A	A	A	А	A	А	А	G	A	A	A	A	2
contig3	3332455	INT	304 down	G>A	PROKKA _06381	echA 8_4	enoyl-CoA hydratase	Bmul_ 2850			SNP	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	А	G	G	G	G	2
contig2	1204840	INT	119 down	G	PROKKA _02188	-	Carboxymuc onolactone decarboxyla se family protein	Bmul_ 5046			indel	 	 	 					 		gc cg ac gc aa	 	 	gc cg ac gc aa						 	 	 	2
contig2	1906501	CDS		с	PROKKA _02794	-	Outer membrane porin protein precursor	Bmul_ 4327			indel	aa	aa	aa	aa	aa	aa		aa	aa	aa	aa	aa	aa	aa	aa	aa	aa		aa	aa	aa	2
contig3	271595	CDS		А	PROKKA 03495	-	hypothetical protein	-			indel	с	с	с	С	с	с	-	с	с	с	с	С	с	С	с	с	с	-	с	с	с	2
contig3	372634	CDS		G	_ PROKKA _03589	-	putative acetyltransfe rase	Bmul_ 2417			indel	-	-	-	-	-	с	-	-	-	-	-	-	с	-	-	-	-	-	-	-	-	2
contig3	1155926	CDS		А	PROKKA _04345	ttgR_ 1	TetR family transcription al regulator	Bmul_ 1617			indel								ga g									ga g					2
contig3	1281297	CDS		G	PROKKA _04451	vnfA	Nitrogen fixation protein VnfA	Bmul_ 1516			indel	tc	tc	tc	tc	tc	tc	tc		tc	tc	tc	tc	tc	tc	tc	tc		tc	tc	tc	tc	2
contig1	1038909				PROKKA _00960; PROKKA _00961	cbdA _1; naiP_ 2	2- halobenzoat e 1,2- dioxygenase large subunit; Putative niacin/nicotin amide transporter NaiP			826 aa dele tion	indel	G	G	G	G	G	G	G	G	G	24 76 - del eti on	G	G	G	G	G	G	G	G	24 76 - bp del eti on	G	G	2
contig1	1127241				PROKKA _01048 to PROKKA _01069					699 3 aa dele tion	indel	т	т	т	т	т	т	del	т	del	т	del	т	т	т	т	20 97 9- del eti on	т	т	т	т	20 97 9- bp del eti on	2

contig3	269236				PROKKA _03494 to PROKKA _03506					628 2 aa dele tion	indel	А	А	А	А	А	A	А	А	А	А	A	A	del	A	A	A	18 84 4- bp del eti on	А	A	18 84 4- bp del eti on	А	2
contig1	12406	INT	84 down	G>A	PROKKA _00012	-	hypothetical protein	-			SNP	G	G	G	G	G	G	del	G	G	G	G	G	G	G	G	G	G	G	G	А	G	1
contig1	33042	CDS		G>A	PROKKA _00035	ydaP _1	Putative thiamine pyrophospha te-containing protein YdaP	Bmul_ 5505	G36S	non syn	SNP	G	G	G	G	G	G	del	G	del	G	del	del	A	del	del	del	G	G	G	del	del	1
contig1	43628	INT	325 down	C>T	PROKKA _00041	adhB _1	Alcohol dehydrogena se cytochrome c subunit precursor	-			SNP	с	С	С	С	С	с	del	С	del	С	del	del	т	del	del	del	С	с	С	del	del	1
contig1	99281	CDS		C>G	PROKKA _00098	-	hypothetical protein	-	R65R	syn	SNP	С	С	С	С	С	С	del	С	del	С	del	del	G	del	del	del	С	С	С	del	del	1
contig1	163483	CDS		T>G	PROKKA _00155	-	hypothetical protein	Bmul_ 5602	Q74P	non syn	SNP	Т	Т	Т	Т	Т	Т	G	Т	del	Т	del	del	Т	del	del	del	Т	Т	Т	del	del	1
contig1	163487	CDS		T>G	PROKKA _00155	-	hypothetical protein	Bmul_ 5602	T72P	non syn	SNP	т	Т	Т	Т	Т	Т	G	Т	del	Т	del	del	Т	del	del	del	Т	Т	Т	del	del	1
contig1	242962	CDS		C>G	PROKKA _00231	ttgC_ 1	putative efflux pump outer membrane protein TtgC	Bmul_ 5523	A73P	non syn	SNP	с	С	С	С	С	С	С	С	С	С	С	С	с	С	С	С	G	С	С	С	с	1
contig1	316788	CDS		T>C	PROKKA _00300	ydaD _1	General stress protein 39	Bmul_ 5457	Q273R	non syn	SNP	т	т	т	Т	т	т	С	т	Т	Т	т	т	т	т	т	т	т	т	Т	т	Т	1
contig1	461839	CDS		G>T	PROKKA _00431	ggt_1	Gamma- glutamyltran speptidase precursor	Bmul_ 5335	S431R	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	G	G	1
contig1	465804	CDS		G>T	PROKKA _00435	-	metal dependent phosphohydr olase	Bmul_ 5331	L190L	syn	SNP	G	G	G	G	G	G	G	G	Т	G	G	G	G	G	G	G	G	G	G	G	G	1
contig1	483288	INT	140 up	C>T	PROKKA _00450	proQ	ProQ activator of osmoprotect ant transporter ProP	Bmul_ 6155			SNP	с	с	С	с	С	С	с	с	с	с	с	с	с	С	с	с	с	с	С	т	с	1
contig1	502063	CDS		C>T	PROKKA _00467	ytnP	putative quorum- quenching	-	G99S	non syn	SNP	с	с	С	С	С	С	с	С	С	С	С	с	т	С	с	с	с	с	С	С	С	1

							lactonase YtnP																										
contig1	621285	CDS		A>C	PROKKA _00575	stp_1	Multidrug resistance protein stp	-	Q292P	non syn	SNP	А	с	А	A	A	A	A	A	A	А	А	A	A	А	A	А	A	А	А	А	A	1
contig1	721096	CDS		C>A	PROKKA _00656	dxs_ 1	1-deoxy-D- xylulose-5- phosphate synthase	Bmul_ 5943	L251	non syn	SNP	с	с	С	С	с	С	с	С	С	с	С	С	с	с	с	с	с	с	с	A	с	1
contig1	771498	CDS		G>A	PROKKA _00708	-	Ribonucleas e	Bmul_ 5891	H289H	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	1
contig1	792418	CDS		C>T	PROKKA _00726	-	hypothetical protein	Bmul_ 5873	A129V	non syn	SNP	С	С	С	С	С	С	Т	С	С	С	С	С	С	С	С	С	С	С	С	С	С	1
contig1	931715	CDS		C>A	_ PROKKA _00852	-	AAA-like domain protein	-	T964K	non syn	SNP	с	с	С	С	del	С	С	С	A	del	del	С	С	с	с	с	С	с	del	С	del	1
contig1	933666	CDS		T>A	PROKKA _00856	-	hypothetical protein	-	T85T	syn	SNP	Т	Т	Т	Т	del	Т	Т	Т	Т	del	del	Т	А	Т	Т	Т	Т	Т	del	Т	del	1
contig1	941673	CDS		C>T	PROKKA _00859	-	hypothetical protein	-	P1456 S	non syn	SNP	С	С	С	С	del	С	С	С	Т	del	del	С	С	С	С	С	С	С	del	С	del	1
contig1	1058786	INT	125 up	A>T	PROKKA _00978	-	hypothetical protein	-			SNP	А	А	А	А	А	А	del	А	del	А	А	А	А	А	А	А	А	Т	А	А	А	1
contig1	1082099	CDS	•	C>G	PROKKA 01008	-	hypothetical protein	-	T121S	non syn	SNP	С	С	С	С	G	С	del	С	del	С	С	С	С	С	С	С	С	С	С	С	С	1
contig1	1170556	CDS		G>C	PROKKA 01098	-	hypothetical protein	-	P111P	syn	SNP	G	G	G	G	G	G	del	G	del	G	del	G	G	G	G	del	G	С	G	G	del	1
contig2	13420	CDS		C>T	PROKKA _01140	-	type VI secretion protein	Bmul_ 3913	Q25Q	syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	Т	с	с	с	С	с	с	с	с	1
contig2	17994	CDS		C>G	PROKKA _01143	clpB1	type VI secretion ATPase	Bmul_ 3906	G289R	non syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	С	с	с	с	С	с	С	G	с	1
contig2	24055	CDS		G>T	PROKKA _01149	-	type VI secretion protein	Bmul_ 3902	P65P	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	1
contig2	24056	CDS		A>C	PROKKA _01149	-	type VI secretion protein	Bmul_ 3902	S66R	non syn	SNP	А	A	A	А	А	А	А	A	A	A	A	А	A	A	А	А	С	А	А	А	А	1
contig2	33596	CDS		G>A	PROKKA _01157	ynfM _1	major facilitator transporter	Bmul_ 3894	V164I	non syn	SNP	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	G	G	1
contig2	136719	CDS		T>C	PROKKA _01241	nolT	YscJ/HrcJ family type III secretion apparatus lipoprotein	Bmul_ 3744	S57G	non syn	SNP	т	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	т	т	Т	т	Т	с	Т	1
contig2	144529	CDS		A>C	PROKKA _01249	-	LuxR family transcription al regulator	Bmul_ 3738	L103R	non syn	SNP	А	А	A	A	А	A	А	А	A	A	А	А	С	А	А	А	A	А	А	А	А	1

				1	1	r		r		r	r	1	1																				
contig2	172331	CDS		G>C	PROKKA _01273	-	parallel beta- helix repeat- containing protein	Bmul_ 3715	G147G	syn	SNP	G	G	G	G	С	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig2	184934	CDS		C>A	PROKKA _01281	-	hypothetical protein	Bmul_ 3707	P37Q	non syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	А	С	С	С	С	С	С	С	С	1
contig2	199879	CDS		A>T	PROKKA _01295	basR	Transcription al regulatory protein BasR	Bmul_ 3691	E17V	non syn	SNP	A	A	A	A	A	A	А	A	А	A	A	A	A	A	А	A	A	т	A	A	A	1
contig2	244659	CDS		C>G	PROKKA _01333	virS_ 3	AraC family transcription al regulator	Bmul_ 3655	P47R	non syn	SNP	с	с	С	С	С	С	С	С	с	С	С	с	С	С	С	С	С	С	С	G	С	1
contig2	285020	CDS		G>C	PROKKA _01376	-	Integrase core domain protein	-	C113S	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	del	G	G	G	G	С	G	G	G	1
contig2	336988	CDS		G>A	PROKKA _01434	lptB_ 1	Lipopolysacc haride export system ATP- binding protein LptB	Bmul_ 3626	S223L	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	1
contig2	429927	CDS		C>T	PROKKA _01517	fdhA_ 3	Glutathione- independent formaldehyd e dehydrogena se	Bmul_ 3539	P293P	syn	SNP	с	с	с	С	С	с	с	С	с	С	с	с	т	с	с	С	С	с	с	с	с	1
contig2	444339	CDS		G>A	PROKKA _01530	cmpR _3	LysR family transcription al regulator	Bmul_ 3526	D197N	non syn	SNP	G	G	G	G	А	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig2	468353	CDS		A>G	PROKKA _01552	-	Hrp- dependent type III effector protein	Bmul_ 3499	E244G	non syn	SNP	A	A	A	A	A	A	A	А	A	A	G	A	A	A	A	A	A	A	A	A	A	1
contig2	495662	CDS		T>G	PROKKA _01578	-	hypothetical protein	-	E216D	non syn	SNP	Т	Т	Т	Т	Т	Т	Т	т	Т	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	Т	1
contig2	495668	CDS		G>C	PROKKA _01578	-	hypothetical protein	-	D214E	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig2	495701	CDS		A>C	PROKKA _01578	-	hypothetical protein	-	F203L	non syn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	С	А	1
contig2	504117	INT	85 up	C>T	PROKKA _01585	yjcC_ 1	diguanylate phosphodies terase	Bmul_ 3471			SNP	с	с	С	С	С	С	Т	С	с	с	С	с	С	С	С	С	С	С	С	С	С	1
contig2	510715	CDS		G>A	PROKKA _01590	mmg C_2	Acyl-CoA dehydrogena se	Bmul_ 3466	S377S	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	1
contig2	555119	INT	303 up	T>C	PROKKA _01619	nadE _1	NH(3)- dependent NAD(+) synthetase	Bmul_ 3443			SNP	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	С	1
contig2	555131	INT	291 up	T>G	PROKKA _01619	nadE _1	NH(3)- dependent	Bmul_ 3443			SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	1

							NAD(+)																										
contig2	691485	INT	9 up	G>A	PROKKA _01734	-	synthetase Outer membrane porin protein precursor	Bmul_ 3342			SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	1
contig2	692133	CDS		A>G	PROKKA _01734	-	Outer membrane porin protein precursor	Bmul_ 3342	N214D	non syn	SNP	А	А	А	A	А	А	А	A	del	del	del	del	G	del	del	del	A	A	del	A	del	1
contig2	692531	CDS		C>G	PROKKA _01734	-	Outer membrane porin protein precursor	Bmul_ 3342	Y346*	non syn	SNP	с	с	с	С	С	с	с	С	с	С	С	с	G	с	с	с	С	с	с	с	с	1
contig2	707733	INT	56 up	G>A	PROKKA _01750	nylB	6- aminohexan oate-dimer hydrolase	Bmul_ 3326			SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	1
contig2	774027	CDS		G>T	PROKKA _01804	-	hypothetical protein	Bmul_ 3270	*90L	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	1
contig2	810557	CDS		G>T	PROKKA _01840	aroG _1	Phospho-2- dehydro-3- deoxyhepton ate aldolase, Phe- sensitive	Bmul_ 3232	L194I	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	1
contig2	843174	CDS		G>C	PROKKA _01867	araA	L-arabinose 1- dehydrogena se	Bmul_ 3205	R149G	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	с	G	G	G	1
contig2	848053	CDS		C>G	PROKKA _01871	gbpR _3	LysR family transcription al regulator	Bmul_ 3201	R32R	syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	С	1
contig2	849735	CDS		C>T	PROKKA _01872	fhuA_ 1	Ferrichrome- iron receptor precursor	Bmul_ 3200	T119I	non syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	с	С	т	С	1
contig2	866790	CDS		G>T	PROKKA _01882	-	hypothetical protein	Bmul_ 3190	тзт	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	Т	G	G	G	G	G	G	G	G	1
contig2	890004	CDS		G>A	PROKKA _01895	rhsB	putative deoxyribonu clease RhsB	Bmul_ 3178	Q829*	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig2	914780	CDS		C>T	PROKKA _01913	smc_ 1	Chromosom e partition protein Smc	Bmul_ 3159	R195C	non syn	SNP	с	с	С	С	С	С	С	С	т	С	С	С	С	С	С	С	С	С	С	С	С	1
contig2	928096	CDS		C>T	PROKKA _01926	bdhA _1	D-beta- hydroxybutyr ate dehydrogena se	Bmul_ 5312	R190H	non syn	SNP	с	с	С	с	С	с	с	С	С	С	С	С	С	с	С	С	С	с	с	т	С	1
contig2	937804	CDS		A>G	PROKKA _01937	nphR _2	AraC family transcription al regulator	Bmul_ 5301	R176R	syn	SNP	А	А	А	А	А	А	А	A	А	A	A	А	A	А	А	А	А	A	А	G	А	1

						3-oxoacyl-																										
contig2	945601	CDS	A>C	PROKKA _01946	fabG _3	[acyl-carrier- protein] reductase FabG	Bmul_ 5292	L126R	non syn	SNP	А	А	A	A	A	A	A	A	A	A	A	A	A	А	A	A	A	A	A	С	A	1
contig2	952691	CDS	C>T	PROKKA _01953	catD_ 1	3-oxoadipate enol- lactonase 2	Bmul_ 5285	P230L	non syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	1
contig2	974235	CDS	C>T	PROKKA _01976	groL_ 1	molecular chaperone GroEL	Bmul_ 5253	12921	syn	SNP	с	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	1
contig2	982700	CDS	C>T	PROKKA _01984	btr_1	AraC family transcription al regulator	Bmul_ 5245	P133S	non syn	SNP	с	с	С	С	С	С	С	С	del	С	с	с	Т	с	С	С	С	С	С	С	С	1
contig2	1114946	CDS	T>A	PROKKA _02107	naiP_ 4	major facilitator transporter	Bmul_ 5124	L419Q	non syn	SNP	т	т	A	Т	Т	Т	Т	Т	Т	Т	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	del	1
contig2	1203065	CDS	G>A	PROKKA _02187	bag	IgA FC receptor precursor	-	E51E	syn	SNP	G	G	G	G	A	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig2	1224230	CDS	G>C	PROKKA _02206	qseF	Transcription al regulatory protein QseF	-	D378H	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig2	1319913	CDS	C>T	PROKKA _02295	cheB _1	Chemotaxis response regulator protein- glutamate methylestera se	Bmul_ 4941	S88L	non syn	SNP	с	с	с	с	т	С	С	с	С	с	с	с	С	С	С	С	С	с	с	с	с	1
contig2	1381942	CDS	C>A	PROKKA _02351	modA	Molybdate- binding periplasmic protein precursor	Bmul_ 4885	A48A	syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	A	С	С	С	С	С	С	1
contig2	1503720	CDS	C>T	PROKKA _02456	potH _2	transport system permease protein	Bmul_ 5430	L395F	non syn	SNP	с	с	с	с	с	с	с	с	с	т	с	с	с	с	с	с	С	с	с	с	с	1
contig2	1576568	CDS	C>A	PROKKA _02518	fdoH	Formate dehydrogena se-O iron- sulfur subunit	Bmul_ 4596	12461	syn	SNP	С	с	с	С	С	С	С	с	С	с	С	с	С	с	С	С	С	с	С	A	С	1
contig2	1579862	CDS	T>A	PROKKA _02521	selA	L-seryl- tRNA(Sec) selenium transferase	Bmul_ 4593	L436*	non syn	SNP	т	т	Т	т	т	т	т	т	т	т	т	т	Т	т	т	т	т	А	т	Т	т	1
contig2	1603020	CDS	C>G	PROKKA _02540	dppA _1	Periplasmic dipeptide transport	Bmul_ 4568	H372D	non syn	SNP	с	с	С	С	С	С	С	С	С	С	с	с	С	с	С	С	С	С	С	G	с	1

						protein precursor																										
contig2	1692876	CDS	 A>G	PROKKA _02620	-	Cytochrome c	Bmul_ 4489	L40P	non syn	SNP	A	A	A	A	A	A	A	A	A	A	A	A	G	A	A	A	A	A	A	A	A	1
contig2	1707649	CDS	C>G	PROKKA _02632	recD 2	ATP- dependent RecD-like DNA helicase	-	A174A	syn	SNP	с	с	С	с	С	С	с	с	С	с	с	С	С	С	с	С	С	С	С	G	с	1
contig2	1813969	CDS	G>C	PROKKA _02719	mshA _4	D-inositol 3- phosphate glycosyltrans ferase	Bmul_ 4402	R346G	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	1
contig2	1908658	CDS	C>A	PROKKA _02797	gabR _6	HTH-type transcription al regulatory protein GabR	Bmul_ 4324	G161V	non syn	SNP	С	С	С	с	С	С	С	С	С	с	С	С	С	С	С	С	С	С	С	A	С	1
contig2	1943657	CDS	C>A	PROKKA _02827	-	Omega- amino acid- pyruvate aminotransfe rase	Bmul_ 4294	P363T	non syn	SNP	с	с	С	с	с	С	с	с	с	с	с	С	С	С	A	С	С	С	С	С	с	1
contig2	2107835	CDS	G>A	PROKKA _02991	otsA_ 1	Alpha,alpha- trehalose- phosphate synthase [UDP- forming]	Bmul_ 4183	R349Q	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	1
contig2	2121924	CDS	G>C	PROKKA 03002	-	hypothetical protein	-	I254M	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	1
contig2	2185194	CDS	T>C	PROKKA _03052	chaA	Sodium/prot on antiporter ChaA	Bmul_ 4124	V173A	non syn	SNP	т	т	Т	Т	Т	т	т	т	Т	Т	С	Т	т	Т	т	Т	т	т	Т	т	т	1
contig2	2191033	CDS	G>C	PROKKA _03057	opuC A	Carnitine transport ATP-binding protein OpuCA	Bmul_ 4119	A115P	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	1
contig2	2209935	CDS	G>A	PROKKA _03062	iorB_ 4	Isoquinoline 1- oxidoreducta se subunit beta	Bmul_ 4113	G177S	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig2	2220511	CDS	C>T	PROKKA _03066	-	Transglutami nase-like superfamily protein	Bmul_ 4109	G30R	non syn	SNP	с	с	С	с	С	С	с	С	С	С	С	С	С	С	с	С	С	С	С	т	с	1
contig2	2349776	CDS	C>G	PROKKA _03178	gbsA _3	Betaine aldehyde	Bmul_ 3992	A171A	syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	С	1

				1		dehydrogena		1	1	r –	1	1																				
						se																										
contig2	2381824	CDS	C>A	PROKKA _03210	-	putative ATP- dependent helicase Lhr	-	T153T	syn	SNP	с	с	С	С	С	с	С	С	с	с	с	с	A	С	С	С	С	С	С	с	С	1
contig2	2399978	CDS	G>T	PROKKA _03226	bepE _2	Efflux pump membrane transporter BepE	Bmul_ 3931	R770S	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	1
contig3	28033	CDS	G>A	PROKKA _03274	rnaS A	Guanyl- specific ribonuclease Sa	Bmul_ 2753	R7H	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	1
contig3	229867	CDS	A>G	PROKKA _03457	xdhA _2	Xanthine de- hydrogenase molybdenum -binding subunit	Bmul_ 2551	Q666R	non syn	SNP	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	G	A	1
contig3	274762	CDS	G>A	PROKKA _03497	pimB	GDP- mannose- dependent alpha-(1-6)- phosphatidyli nositol mono mannoside mannosyltra nsferase	-	S267L	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	del	G	G	G	del	A	G	del	G	1
contig3	275439	CDS	G>A	PROKKA _03497	pimB	GDP- mannose- dependent alpha-(1-6)- phosphatidyli nositol mono mannoside mannosyltra nsferase	-	S41S	syn	SNP	G	G	G	G	G	G	G	A	G	G	G	G	del	G	G	G	del	G	G	del	G	1
contig3	308463	CDS	C>G	PROKKA _03524	waaA	3-deoxy-D- manno- octulosonic acid transferase	Bmul_ 2494	A172G	non syn	SNP	с	с	G	с	с	с	с	С	с	С	с	С	с	с	с	С	С	с	С	с	с	1
contig3	420538	CDS	C>T	PROKKA _03649	-	Putative glutamine amidotransfe rase	Bmul_ 2371	L192L	syn	SNP	с	с	С	С	С	с	С	С	С	с	т	С	с	С	С	С	С	С	С	с	С	1
contig3	426450	CDS	T>C	PROKKA _03652	рсрВ	monooxygen ase FAD- binding	Bmul_ 2368	S527P	non syn	SNP	т	т	Т	т	С	т	т	т	т	т	т	т	т	т	т	т	т	т	Т	т	Т	1
contig3	442326	CDS	A>C	PROKKA _03667	pheA	chorismate mutase	Bmul_ 2261	S85R	non syn	SNP	А	А	А	А	А	А	А	А	С	А	А	А	А	А	А	А	А	А	А	А	А	1

		-			1				1	-	1	1		- I																	<u> </u>		
contig3	448164	CDS		C>A	PROKKA _03672	ihfB	Integration host factor subunit beta	Bmul_ 2256	T2N	non syn	SNP	с	С	A	С	С	С	С	с	С	С	С	с	С	С	С	С	С	С	С	С	С	1
contig3	479095	CDS		T>G	PROKKA _03706	dfrA	Dihydrofolat e reductase	Bmul_ 2221	198L	non syn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	G	1
contig3	504128	CDS		C>A	PROKKA _03733	moeA _2	Molybdopteri n molybdenum transferase	Bmul_ 2196	A51S	non syn	SNP	с	С	с	с	С	С	с	с	с	с	с	с	с	С	С	с	С	А	С	с	с	1
contig3	549968	INT	73 up	G>T	PROKKA _03783	-	hypothetical protein	-			SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Т	G	G	G	G	1
contig3	580803	INT	92 up	C>T	PROKKA _03811	limB_ 3	Limonene 1,2- monooxygen ase	Bmul_ 2136			SNP	с	С	с	С	с	С	с	с	с	с	С	с	С	С	С	С	С	С	С	т	с	1
contig3	581529	CDS		A>G	PROKKA _03812	-	Glycosyl transferase family 2	Bmul_ 2134	N63D	non syn	SNP	A	A	А	A	A	A	А	А	A	А	A	А	A	A	A	A	A	A	A	G	A	1
contig3	604243	CDS		C>T	PROKKA _03831	cph2 _5	PAS/PAC sensor(s)- containing diguanylate cyclase/phos phodiesteras e	Bmul_ 2116	T199T	syn	SNP	с	С	с	с	С	С	с	С	с	с	с	с	с	с	с	с	С	с	с	с	т	1
contig3	619128	CDS		G>A	PROKKA _03842	mdtB	acriflavin resistance protein	Bmul_ 2105	Q565*	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	758407	CDS		C>G	PROKKA _03963	nlpD_ 3	Murein hydrolase activator NlpD precursor	Bmul_ 1990	G217R	non syn	SNP	с	С	с	С	С	С	G	С	С	С	С	С	С	С	С	С	С	С	С	с	С	1
contig3	794664	CDS		G>C	PROKKA _03986	-	NAD- dependent epimerase/d ehydratase	Bmul_ 1981	A295G	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	1
contig3	882169	CDS		C>T	PROKKA _04060	rbsC _6	Ribose transport system permease protein RbsC	Bmul_ 1889	A94V	non syn	SNP	с	С	с	С	С	С	С	С	С	с	С	с	С	С	С	С	С	С	С	т	с	1
contig3	901264	INT	234 up	T>C	PROKKA _04077	uvrD _2	DNA helicase II	Bmul_ 1873			SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	1
contig3	925543	CDS		C>G	PROKKA _04099	-	Electron transfer flavoprotein- ubiquinone oxidoreducta se	Bmul_ 1788	A359A	syn	SNP	с	С	с	С	С	С	С	С	С	С	С	с	С	U	С	С	С	С	С	с	С	1

contig3	925885	CDS		C>G	PROKKA _04099	-	Electron transfer flavoprotein- ubiquinone oxidoreducta se	Bmul_ 1788	A245A	syn	SNP	с	с	С	С	С	С	с	с	С	с	с	с	С	G	С	С	с	с	С	с	с	1
contig3	925915	CDS		C>T	PROKKA _04099	-	Electron transfer flavoprotein- ubiquinone oxidoreducta se	Bmul_ 1788	K235K	syn	SNP	с	С	С	С	С	С	С	С	С	С	С	С	С	т	С	С	С	С	С	с	с	1
contig3	989003	INT	421 up	C>T	PROKKA 04188	-	lipoprotein	Bmul_ 1770			SNP	С	del	С	С	С	С	С	С	С	С	del	del	С	С	Т	del	С	С	С	del	del	1
contig3	1087274	CDS	- 1	G>C	PROKKA _04275	panE _4	2- dehydropant oate 2- reductase	Bmul_ 1688	V71V	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	1
contig3	1096783	CDS		C>T	PROKKA _04283	afr	1,5-anhydro- D-fructose reductase	Bmul_ 1681	R263R	syn	SNP	с	с	С	С	С	С	с	С	С	С	С	С	С	С	С	С	С	С	С	т	С	1
contig3	1097086	CDS		C>A	PROKKA _04284	yecS _2	Inner membrane amino-acid ABC transporter permease protein	Bmul_ 1680	C210F	non syn	SNP	С	С	С	С	A	С	С	С	С	С	С	С	С	С	С	С	С	С	С	с	С	1
contig3	1104485	CDS		G>A	PROKKA _04293	echA 8_3	putative enoyl-CoA hydratase	Bmul_ 1672	A360T	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	G	G	1
contig3	1113816	CDS		T>C	PROKKA 04305	-	hypothetical protein	Bmul_ 1658	Q118R	non syn	SNP	т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	т	Т	Т	т	Т	Т	т	Т	1
contig3	1114149	CDS		G>C	PROKKA 04305	-	hypothetical protein	Bmul_ 1658	T7S	non syn	SNP	G	G	G	С	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	1187838	CDS		A>G	PROKKA 04364	grsB	Gramicidin S synthase 2	Bmul_ 1597	H184R	non syn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А	G	А	1
contig3	1212137	CDS		A>G	 PROKKA 04379	cobN	Aerobic cobaltochela tase subunit CobN	Bmul_ 1582	H1222 R	non syn	SNP	A	А	A	A	A	A	А	A	A	A	A	A	A	A	A	A	А	A	A	G	А	1
contig3	1250451	CDS		G>T	PROKKA _04421	ramA	(R)- stereoselecti ve amidase	-	M186I	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	1
contig3	1266312	CDS		C>G	PROKKA _04439	-	Xylose isomerase- like TIM barrel	Bmul_ 1525	A138A	syn	SNP	с	с	С	С	С	С	с	С	С	С	С	С	С	с	С	С	с	G	С	с	С	1
contig3	1402723	CDS		G>T	PROKKA _04562	-	ISXO2-like transposase domain protein	-	S41R	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	т	G	G	G	1

						30S						1					1															
contig3	1406972	CDS	G>A	PROKKA _04567	rpsR	ribosomal protein S18	Bmul_ 1402	L18F	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	1439231	CDS	G>C	PROKKA _04601	-	nicotinamida se/pyrazina midase	Bmul_ 1369	H55D	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig3	1523859	CDS	C>G	PROKKA _04673	sdhA _3	Succinate dehydrogena se flavoprotein subunit	Bmul_ 1298	A218A	syn	SNP	С	с	С	с	С	С	с	С	G	с	С	С	С	С	С	С	С	с	С	с	с	1
contig3	1584517	CDS	C>A	PROKKA _04728	clsA	Major cardiolipin synthase ClsA	Bmul_ 1243	L166I	non syn	SNP	с	с	С	С	С	С	с	С	С	с	с	с	с	с	с	С	С	A	с	с	с	1
contig3	1611930	CDS	G>T	PROKKA _04760	тер Н_2	Murein DD- endopeptida se MepH precursor	Bmul_ 1218	P170Q	non syn	SNP	G	G	т	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	1638814	CDS	T>C	PROKKA _04784	-	hypothetical protein	-	167V	non syn	SNP	т	т	Т	т	Т	т	т	т	т	Т	т	Т	т	т	Т	Т	Т	т	т	С	т	1
contig3	1664485	CDS	G>C	PROKKA _04816	-	Phage- related baseplate assembly protein	-	P221R	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	с	G	1
contig3	1725353	CDS	T>C	PROKKA 04879	fdx_1	2Fe-2S ferredoxin	Bmul_ 1149	H108R	non syn	SNP	т	т	Т	Т	Т	Т	т	т	т	Т	Т	Т	т	т	Т	Т	Т	т	Т	С	т	1
contig3	1729484	CDS	T>A	PROKKA 04884	iscS_ 2	Cysteine desulfurase	Bmul_ 1144	N305I	non syn	SNP	Т	т	Т	Т	Т	Т	т	Т	Т	Т	Т	Т	А	Т	Т	Т	Т	Т	Т	т	т	1
contig3	1731488	CDS	G>T	_ PROKKA _04886	yfkJ	protein tyrosine phosphatase	Bmul_ 1142	1141	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	Т	G	G	G	1
contig3	1747755	CDS	T>C	PROKKA _04897	tmoT	two component LuxR family transcription al regulator	Bmul_ 1131	*213R	non syn	SNP	т	т	т	Т	Т	т	т	т	т	т	Т	т	т	т	т	Т	т	т	Т	с	Т	1
contig3	1859312	CDS	G>A	PROKKA 04996	-	hypothetical protein	Bmul_ 1059	V358I	non syn	SNP	G	G	А	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	1950433	CDS	A>G	 PROKKA _05090	rfaQ_ 3	Lipopolysacc haride core heptosyltran sferase RfaQ	-	*392R	non syn	SNP	A	A	A	A	A	A	А	A	A	A	A	A	A	A	A	A	A	G	A	A	A	1
contig3	2010489	CDS	G>C	PROKKA _05139	-	Rubredoxin	Bmul_ 0916	W17S	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	1
contig3	2037980	CDS	T>G	PROKKA _05170	hisP_ 3	Histidine transport ATP-binding protein HisP	Bmul_ 0883	L155R	non syn	SNP	т	т	т	т	т	т	т	т	т	т	Т	т	т	т	т	т	т	т	т	G	т	1

contig3	2128370	CDS		T>C	PROKKA _05256	livH_ 5	High-affinity branched- chain amino acid transport system permease	Bmul_ 0798	Q347R	non syn	SNP	т	т	т	т	т	т	т	т	т	т	т	т	С	т	Т	т	т	т	т	т	т	1
contig3	2128371	CDS		G>T	PROKKA _05256	livH_ 5	High-affinity branched- chain amino acid transport system permease	Bmul_ 0798	Q346K	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	т	G	G	G	G	G	G	G	G	1
contig3	2149307	CDS		C>A	PROKKA _05275	dut	Deoxyuridine 5'- triphosphate nucleotidohy drolase	Bmul_ 0780	R23S	non syn	SNP	с	с	с	С	С	С	С	С	С	с	С	С	С	С	С	С	С	с	С	с	A	1
contig3	2161705	CDS		G>C	PROKKA _05284	icd_1	Isocitrate dehydrogena se [NADP]	Bmul_ 0771	A389G	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	с	G	1
contig3	2171106	CDS		G>A	PROKKA _05291	yegW _1	GntR family transcription al regulator	Bmul_ 0763	A67T	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	A	1
contig3	2206844	CDS		A>T	PROKKA _05327	cmaA 1	Cyclopropan e mycolic acid synthase 1	Bmul_ 0727	D159V	non syn	SNP	A	A	А	A	A	A	A	A	A	A	A	А	т	A	A	A	A	A	A	А	A	1
contig3	2207131	CDS		T>C	PROKKA _05327	cmaA 1	Cyclopropan e mycolic acid synthase 1	Bmul_ 0727	Y255H	non syn	SNP	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	т	с	т	т	1
contig3	2229130	CDS		G>C	PROKKA _05345	estB_ 2	Esterase EstB	Bmul_ 0708	R249G	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig3	2229131	CDS		C>G	PROKKA _05345	estB_ 2	Esterase EstB	Bmul_ 0708	P249P	syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	G	С	1
contig3	2235706	CDS		T>A	PROKKA _05351	-	putative ABC transporter- binding protein precursor	Bmul_ 0702	187F	non syn	SNP	т	т	т	т	т	т	A	т	Т	т	т	т	т	т	т	т	т	т	т	т	т	1
contig3	2278315	CDS		A>T	PROKKA _05388	rfaF_ 2	ADP- heptose-LPS heptosyltran sferase 2	Bmul_ 0665	H272L	non syn	SNP	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	т	A	A	A	A	1
contig3	2286655	CDS		G>C	PROKKA _05397	fimA_ 3	Fimbrial protein precursor	Bmul_ 0656	G92G	syn	SNP	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	G	G	G	1
contig3	2287870	INT	23 down	C>T	PROKKA _05399	sucD	Succinyl- CoA ligase [ADP-	Bmul_ 0654			SNP	с	с	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	с	т	1

							forming] subunit alpha																										
contig3	2297765	CDS		T>C	PROKKA _05408	dmlR _37	LysR family transcription al regulator	Bmul_ 0641	N260D	non syn	SNP	т	т	т	т	т	т	т	т	т	т	с	т	т	т	т	т	т	т	т	т	т	1
contig3	2311096	CDS		G>A	PROKKA _05419	cc4_ 2	Cytochrome c4 precursor	Bmul_ 0629	A223T	non syn	SNP	G	G	G	G	G	G	G	G	G	А	G	G	G	G	G	G	G	G	G	G	G	1
contig3	2356176	CDS		C>G	PROKKA _05461	lptD	LPS- assembly protein LptD precursor	Bmul_ 0588	G720A	non syn	SNP	с	с	С	с	с	с	G	с	с	с	с	с	с	С	С	с	с	с	с	С	с	1
contig3	2356177	CDS		C>T	PROKKA _05461	lptD	LPS- assembly protein LptD precursor	Bmul_ 0588	G719S	non syn	SNP	с	с	С	с	С	С	т	С	с	с	с	с	С	С	С	С	с	С	с	С	С	1
contig3	2424376	CDS		T>C	PROKKA _05520	-	Lipopolysacc haride- assembly, LptC-related	Bmul_ 0527	F92L	non syn	SNP	т	т	т	т	т	т	т	т	т	т	т	т	С	т	т	т	т	т	т	т	т	1
contig3	2427933	INT	60 up	G>A	PROKKA _05524	hpf	Ribosome hibernation promoting factor	Bmul_ 0523			SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	2428767	CDS		G>C	PROKKA _05525	ptsN	Nitrogen regulatory protein PtsN	Bmul_ 0522	G55A	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig3	2430037	CDS		G>A	PROKKA _05526	hprK	HPr kinase/phos phorylase	Bmul_ 0521	A284T	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	2448847	CDS		A>G	PROKKA _05547	pagL	Lipid A deacylase PagL precursor	Bmul_ 0487	Y156H	non syn	SNP	A	A	A	А	A	A	A	A	A	A	A	A	G	A	A	A	A	A	А	А	А	1
contig3	2465205	CDS		C>G	PROKKA _05559	-	impB/mucB/ samB family protein	Bmul_ 0476	P483P	syn	SNP	с	с	С	с	С	С	С	С	С	С	с	с	С	С	С	С	С	С	с	G	с	1
contig3	2537284	CDS		G>A	PROKKA _05629	mlaE _1	putative phospholipid ABC transporter permease protein MlaE	Bmul_ 0403	R55R	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	2558710	CDS		C>A	PROKKA _05648	-	cell division protein FtsN	Bmul_ 0384	A2E	non syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	А	С	С	С	С	С	С	С	С	1
contig3	2579639	CDS		G>C	PROKKA _05667	kipA_ 1	urea amidolyase- like protein	Bmul_ 0365	A103A	syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	С	G	G	G	G	G	G	G	G	1
contig3	2602857	INT	10 up	C>A	PROKKA _05682	gcvA _18	LysR family transcription al regulator	Bmul_ 2946			SNP	с	с	С	с	С	С	С	С	с	С	с	с	A	С	С	С	с	С	С	с	С	1

		r				r	• •		1	1	r		1				1	1													<u> </u>		
contig3	2620498	CDS		G>C	PROKKA _05699	-	Outer membrane porin protein 32 precursor	Bmul_ 2963	H128D	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig3	2627381	CDS		G>A	PROKKA _05706	yihS	N- acylglucosa mine 2- epimerase	Bmul_ 2968	C9Y	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	1
contig3	2724952	CDS		C>A	PROKKA _05803	flil	flagellar protein export ATPase Flil	Bmul_ 3064	T350K	non syn	SNP	с	с	С	с	С	с	с	с	С	с	с	с	С	С	с	с	A	С	С	с	с	1
contig3	2725926	CDS		A>T	PROKKA _05804	fliJ	Flagellar FliJ protein	Bmul_ 3065	E130V	non syn	SNP	А	А	А	А	А	А	А	А	А	А	А	А	А	А	Т	А	А	А	А	А	А	1
contig3	2778397	INT	28 up	G>T	PROKKA _05851	gatC	Glutamyl- tRNA(GIn) amidotransfe rase subunit C	Bmul_ 3106			SNP	G	G	G	G	Т	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	2789704	CDS		C>G	PROKKA _05863	zraR _8	Fis family transcription al regulator	Bmul_ 3117	E101Q	non syn	SNP	С	с	С	С	С	с	с	С	С	С	С	С	С	С	С	С	С	С	С	G	С	1
contig3	2932992	CDS		G>A	PROKKA _06008	gspD	Putative type II secretion system protein D	Bmul_ 0063	A181V	non syn	SNP	G	G	G	G	G	G	G	G	G	G	A	G	G	G	G	G	G	G	G	G	G	1
contig3	3011968	CDS		G>A	PROKKA _06073	stp_9	Multidrug resistance protein stp	Bmul_ 0130	G306D	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	А	G	1
contig3	3028855	CDS		C>T	PROKKA _06087	-	hypothetical protein	Bmul_ 0144	A37T	non syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	С	1
contig3	3031354	CDS		C>T	PROKKA _06089	rep	ATP- dependent DNA helicase Rep	Bmul_ 0146	G260G	syn	SNP	С	с	С	с	т	С	с	с	С	С	С	с	С	С	С	С	С	С	С	с	С	1
contig3	3060211	INT	16 down	G>A	PROKKA _06111	flhC	Flagellar transcription al regulator FlhC	Bmul_ 0161			SNP	G	G	G	G	G	А	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	1
contig3	3064330	CDS		G>C	PROKKA _06115	cheA	Chemotaxis protein CheA	Bmul_ 0165	G513R	non syn	SNP	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	С	G	1
contig3	3104312	CDS		T>A	PROKKA _06154	macB _2	Macrolide export ATP- binding/perm ease protein MacB	Bmul_ 0204	Q199L	non syn	SNP	Т	т	Т	Т	Т	Т	т	т	Т	Т	Т	т	Т	Т	A	Т	т	Т	Т	Т	Т	1
contig3	3105522	CDS		A>C	PROKKA _06155	-	FtsX-like permease family protein	Bmul_ 0205	F184C	non syn	SNP	A	А	A	A	А	А	А	А	A	A	A	A	A	A	А	A	A	A	A	с	A	1

contig3	3187132	CDS		C>A	PROKKA _06241	ccsB	Cytochrome c biogenesis protein CcsB	Bmul_ 0282	L646I	non syn	SNP	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	А	С	1
contig3	3253851	CDS		T>C	PROKKA _06310	-	hypothetical protein	Bmul_ 2934	E63G	non syn	SNP	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	Т	Т	Т	Т	т	т	1
contig3	3343234	CDS		T>C	PROKKA _06390	fadD _4	Long-chain- fatty-acid- CoA ligase	Bmul_ 2848	*558Q	non syn	SNP	т	т	т	т	т	т	т	т	Т	т	т	т	С	т	т	т	Т	т	т	т	т	1
contig3	3348779	CDS		T>C	PROKKA _06396	penA _3	peptidoglyca n glycosyltrans ferase	Bmul_ 2842	V354A	non syn	SNP	т	т	т	т	т	т	т	т	т	т	т	с	т	т	т	т	т	т	т	т	т	1
contig3	3365910	INT	82 up	C>G	PROKKA _06411	-	preprotein translocase subunit SecA	Bmul_ 2827			SNP	с	с	с	с	с	С	с	с	С	с	с	с	G	С	с	С	С	С	с	с	с	1
contig3	3411751	CDS		C>G	PROKKA _06453	nrdB	Ribonucleosi de- diphosphate reductase subunit beta	Bmul_ 2788	P37R	non syn	SNP	с	С	с	с	С	С	с	с	С	с	С	С	G	с	С	С	С	С	С	с	с	1
contig1	342152	INT	214 up	G	PROKKA _00322	-	hypothetical protein	Bmul_ 5435			indel	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c	cg ca ag c		1
contig1	899298	CDS		G	PROKKA _00823	parM	Plasmid segregation protein ParM	-			indel	-	-	-	-	-	-	-	-	с	-	-	-	-	-	-	-	-	-	-	-	-	1
contig1	1096803	CDS		с	PROKKA _01020	oatA_ 1	O- acetyltransfe rase OatA	-			indel	-	-	-	-	-	-	-	-	-	-	-	-	g	-	-	-	-	-	-	-	-	1
contig1	1119377	CDS		С	PROKKA _01043	-	hypothetical protein	-			indel	ga	ga	ga	ga	ga	ga	ga		ga	ga	ga	ga	ga	ga	ga	ga	ga	ga	ga	ga	ga	1
contig2	712936	INT	67 up	G	PROKKA _01754	ttr	Acetyltransfe rase	Bmul_ 3322			indel	 		 	 		 	 		 	 	tcg gc gtt cg gc gt	 	 	 		 	 			 	 	1
contig2	712936	INT	67 up	G	PROKKA _01754	ttr	Acetyltransfe rase	Bmul_ 3322			indel	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt		tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	tcg gc gt	1
contig2	803135	CDS		С	PROKKA _01832	lvr_2	Levodione reductase	Bmul_ 3241			indel	cg cg gc gc gc ag cg cg ac gc	cg cg gc gc gc gc cg cg cg cg cg cg cg c	cg gc gc gc ag cg cg cg ac gc	cg gc gc gc gc ag cg cg ac gc	cg cg gc gc gc gc cg cg cg cg cg cg cg c	cg cg cc gc gc gc gc gc cg cg cg cg cg cg cg c	cg cg gc gc gc ag cg cg ac gc	cg cg cc gc gc gc gc cg cg cg cg cg cg cg cg c	cg cg gc gc gc ag cg cg ac gc	 	cg cg gc gc gc ag cg cg cg ac gc	cg cg gc gc ag cg cg ac gc	Cg Cg Gc Gc Cg Cg Cg Cg Cg Cg Cg Cg Cg Cg Cg Cg Cg	cg cg gc gc gc ag cg cg ac gc	cg cg gc gc gc gc gc cg cg cg cg cg cg cg cg c	cg gc gc ag cg cg cg ac gc	cg cg gc gc gc gc cg cg cg cg cg cg cg c	cg cg gc gc gc ag cg cg ac gc	cg cg gc gc gc ag cg cg ac gc	cg cg gc gc gc ag cg cg ac gc	cg cg gc gc gc ag cg cg ac gc	1

										cg cg cg atc cg cc ctg	cg cg cg atc cg cc ctg	cg cg cg atc cc ctg	cg cg cg atc cc ctg	cg cg cg atc cc ctg	gc cg atc cc	cg gc cg atc cc	cg gc g cg g atc a cc g	cg gc cg atc cc cc ctg		cg c gc g cg c atc a cc c	ing of generation of generatio	cg cg cg tc tc cc	сс	сс	cg cg cg atc cc ctg	cg cg cg atc cg cc ctg	cg cg cg atc cg cc ctg	cg cg cg atc cc ctg	cg cg gc cg atc cc ctg	cg cg cg atc cc ctg	
contig2	956880	CDS		т	PROKKA _01959	czcD _1	Cadmium, cobalt and zinc/H(+)- K(+) antiporter	Bmul_ 5279	indel	ca cg ag	ca cg ag	ca cg ag	ca cg ag	ca cg ag		cg	cg	cg (cg (cg c	g d	cg	ca cg ag	ca cg ag	ca cg ag		ca cg ag	ca cg ag	ca cg ag	ca cg ag	1
contig2	1087172	CDS		G	PROKKA _02084	gcvA _10	LysR family transcription al regulator	Bmul_ 5146	indel	с	с	с	с	с	с	с	c	del	с	-	с	с	с	с	с	с	с	с	с	с	1
contig2	1203055	CDS		С	PROKKA _02187	bag	IgA FC receptor precursor	-	indel	gg tgc cc ga	gg tgc cc ga	gg tgc cc ga	gg tgc cc ga	 -	gg tgc cc ga	tgc cc	tgc t	tgc t cc (igc t cc (gc tự cc c	gc te	gc 1 cc	tgc cc	gg tgc cc ga	gg tgc cc ga	gg tgc cc ga	gg tgc cc ga	99 tgc cc ga	gg tgc cc ga	gg tgc cc ga	1
contig2	1593682	CDS		G	PROKKA _02532	-	Fumarylacet oacetate (FAA) hydrolase family protein	Bmul_ 4583	indel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	а	1
contig2	1767378	INT	89 down	т	PROKKA _02683	gbpR _7	LysR family transcription al regulator	Bmul_ 4418	indel	ac ga gc c	ac ga gc c	ac ga gc c	ac ga gc c	ac ga gc c	ac ga gc c	ga	ga gc	ga (gc (ga (gc (ga g gc g	ja g jc g	ga	ga	ac ga gc c	ac ga gc c	ac ga gc c	ac ga gc c		ac ga gc c	ac ga gc c	1
contig2	2033547	CDS		G	PROKKA _02910	-	Gluconate 2- dehydrogena se cytochrome c subunit precursor	Bmul_ 4216	indel	-	-	-	-	-	-	-	с	-	-	-	-	-	-	-		-	-	-	-	-	1
contig3	133669	INT	140 up	т	PROKKA _03371	-	alanine racemase domain- containing protein	Bmul_ 2655	indel	99 cg cg gc gc gc gg cg cg cg cg cg cg cg	gg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg cg c	gg cg cg gc ca gc gg cg cg cg cg cg cg ca gc ca cg	gg cg cg gc ca gc gg cg cg cg cg cg cg cg cg ca gc	99 cg cg gc ca gc gg cg cg gc ca gc	99 cg cg gc ca gc ca gg cg cg gc ca gc	cg cg gc gc gc gg cg cg cg gc	cg g cg g gc g gc g gc g gc g gg g gg g cg g	cg 0 ccg 0 gc 0 cg 0 cg 0 cg 0 cg 0 cg 0 cg 0 ccg 0 cca 0	cg cg cg cg gc gc gc gc gg gc gg gc gg gc gg gc gg gc gg gc cg cg ccg cg ccg gc gc gc gc gc	cg c cg c gc g gc g gc g gc g gc g gg g gg g gg g gg g gg g cg c cg c gc g cg c gc g cca c	xg xg	x y y y y y y y y y y y y y y y y y y y	cg cg gc ca gc gc gg	gg cg cg gc ca gc gg cg cg cg cg cg cg cg cg cg cg cg	99 cg cg cg cg cg cg cg cg cg cg cg cg cg	gg cg cg gc cg gc cg cg cg cg cg cg cg c	99 cg cg gc gc gc gg cg cg cg cg cg cg cg	99 cg cg c	 	99 cg cg gc ca gc gg cg cg gc ca gc	1
contig3	420883	CDS		С	PROKKA _03649	-	Putative glutamine	Bmul_ 2371	indel	а	а	а	а	а	а	а	а	а	а	a a	а	а	а	а	а	а	а	а	-	а	1

							amidotransfe																1								
							rase																								
contig3	515849	INT	34 up	G	PROKKA _03745	plsX	putative glycerol-3- phosphate acyltransfera se PlsX	Bmul_ 2184	indel	с	с	С	с	с	С	с	с	С	С	с	с	-	с	с	С	С	С	с	с	с	1
contig3	519948	CDS		С	PROKKA _03749	acpP _2	Acyl carrier protein	Bmul_ 2180	indel	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	-	а	а	а	1
contig3	544783	CDS		Т	PROKKA _03776	-	hypothetical protein	-	indel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	а	1
contig3	1091841	CDS		Т	PROKKA _04278	rnr	Ribonucleas e R	Bmul_ 1686	indel								-	-		gc					-	-	-	1			1
contig3	1092429	CDS		С	PROKKA _04279	rlmB	RNA methyltransf erase	Bmul_ 1685	indel	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa 99 ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	tg aa gg ttct tta cg gtt	 	tg aa gg ttct tta cg gtt	1									
contig3	1155929	CDS		G	PROKKA _04345	ttgR_ 1	TetR family transcription al regulator	Bmul_ 1617	indel													ga tc									1
contig3	1322758	CDS		Т	PROKKA _04491	-	hypothetical protein	Bmul_ 1477	indel	gc	gc	gc	gc	gc	gc	gc	gc	gc	gc		gc	1									
contig3	1402890	INT	45 up	С	PROKKA _04562	-	ISXO2-like transposase domain protein	-	indel	-	-	-	а	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
contig3	1618995	INT	137 up	G	PROKKA _04765	-	hypothetical protein	Bmul_ 1213	indel	с	с	с	с	с	с	с	с	с	с	с	С	с	с	с	с	с	с	С	-	с	1
contig3	1724563	CDS		G	PROKKA _04877	-	17 kDa surface antigen	Bmul_ 1151	indel	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	 -	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	cg cc gc ag c	1									
contig3	1948468	CDS		G	PROKKA _05088	-	Glycosyl transferase family 2	-	indel	cgt	cgt	cgt	cgt	cgt	cgt	cgt	cgt	cgt		cgt	cgt	1									
contig3	2448851	CDS		С	PROKKA _05547	pagL	Lipid A deacylase PagL precursor	Bmul_ 0487	indel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	t	-	1
contig3	2449067	CDS		с	PROKKA _05547	pagL	Lipid A deacylase PagL precursor	Bmul_ 0487	indel	са	са	са	са	са		са	са	са	са	са	са	1									
contig3	2472098	INT	80 down	G	PROKKA _05566	tar_8	Methyl- accepting chemotaxis protein II	Bmul_ 0469	indel																				gc cgt gtc		1

contig3	2536493	CDS		A	PROKKA _05629	mlaE _1	putative phospholipid ABC transporter permease protein MlaE	Bmul_ 0403		i	indel	tca cg cat cg cgt cg cg cg cg cg ctc ctc gg	tca cg cgt cg cgt cg cg cg cg cg ctc cg gg	tca cg cg cgt cgt cg ag ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc cg ctc gg	tca cg cat cg cgt cgt cg cgt cg ctc ctc gg	tca cg cat cg cgt cgt cg cgt ctc ctc gg	 	tca cg cat cg cgt cgt cg ag ctc ctc gg	tca cg cg cgt cgt cg ag ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc cg ctc gg	tca cg cgt cgt cgt cg cgt cg ctc gg	tca cg cat cg cgt cg cgt cg ctc ctc gg	tca cg cat cg cgt cgt cg cgt cg ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc gg	tca cg cat cg cgt cg cgt cg ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc ctc gg	tca cg cgt cgt cgt cg cgt cg ctc cg ctc gg	tca cg cg cgt cgt cg ag ctc ctc gg	tca cg cg cat cg cgt cg ag ctc ctc gg	1
contig3	2625971	CDS		G	PROKKA _05704	-	hypothetical protein	-		i	indel	ac cc gct cg ac cc gct ca	ac gct cg ac cc gct ca	ac cc gct cg ac cc gct ca	ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc gct ca	cg ac cc	ac cc gct cg ac cc gct cc	ac cc gct cg ac cc gct cc	ac cc gct cg ac cc gct ca		ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc ca	ac cc gct cg ac cc gct ca	ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc ca	ac cc cg ac cc gct cc gct ca	ac cc cg ac cc gct cc ca	ac cc gct cg ac cc gct ca	ac cc gct cg ac cc gct ca	1
contig3	2884572	CDS		G	PROKKA _05960	-	Reverse transcriptase (RNA- dependent DNA polymerase)	-		i	indel	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	а	-	1
contig3	3188635	INT	27 down	А	PROKKA _06242	ccsA _1	Cytochrome c biogenesis protein CcsA	Bmul_ 0283		i	indel	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g	cc g		cc g	1
contig3	3196331	CDS		G	PROKKA _06251	pilQ	type IV pilus secretin PilQ	Bmul_ 0294		i	indel									tcg gc c													1
contig1	7203				PROKKA _00008 to PROKKA _00155				d	520 91 aa lele ion	indel	A	A	A	A	A	A	15 62 71 bp del eti on	A	A	A	A	A	A	A	A	A	A	A	A	A	A	1
contig1	450595				PROKKA _00422; PROKKA _00423	-	tRNA-Ala; tRNA-Ile		i d	170 aa lele tion	indel	С	С	с	С	с	С	с	С	с	с	С	С	С	С	с	С	С	с	с	50 8- bp del eti on	С	1
contig1	855545				PROKKA _00785 to PROKKA _00800				9 d	599) aa Jele tion	indel	G	G	G	G	G	G	17 99 7- bp del eti on	G	G	G	G	G	IJ	G	G	G	G	G	G	G	G	1

contig1	995236		PROKKA _00918 to PROKKA _00958		141 69 aa dele tion	indel	с	с	с	С	del	С	С	С	С	del	del	С	С	с	С	с	С	с	del	с	42 50 5- bp del eti on	1
contig2	262950		PROKKA _01353 to PROKKA _01422		212 16 aa dele tion	indel	т	т	т	т	т	т	т	т	Т	т	т	т	63 64 6- bp del eti on	т	т	т	т	т	т	т	т	1
contig2	979219		PROKKA _01981 to PROKKA _02095		398 47 aa dele tion	indel	G	G	G	G	G	G	G	G	11 95 41 bp del eti on	G	G	G	G	G	G	G	G	G	G	G	G	1
contig2	1100890		PROKKA _02097 to PROKKA _02178		308 32 aa dele tion	indel	с	с	С	с	с	с	с	С	С	с	с	С	с	с	с	С	С	с	с	с	92 49 5- bp del eti on	1
contig2	1355298		PROKKA _02325 to PROKKA _02331		203 1 aa dele tion	indel	С	с	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	60 93 bp del eti on	С	с	с	1
contig3	269236		PROKKA _03494 to PROKKA _03505		588 4 aa dele tion	indel	А	A	A	А	А	A	А	A	A	А	A	A	17 65 2- bp del eti on	A	А	А	del	A	A	del	A	1