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Abstract - In the last decades the practice of geotechnical engineering has evolved in a way that it is now 

possible to model and analyze complex structures as well as soil / structure interaction problems through 

numerical modeling (for instance: using the finite element method or finite differences). 

Numerical methods are a tool with great potential, but the validity of the results obtained by their application 

depends on the constitutive models adopted to describe the behavior of the geomaterials. 

This dissertation summarizes the various elements necessary for the formulation of constitutive models used 

to reproduce soil behavior, and implements constitutive equations in an incremental format for two non-linear 

elastic models: K-G model and Jardine model (also known as small strain stiffness model), in the commercial 

software, PLAXIS. The validation of these models is done through the simulation of laboratory tests. In 

addition, two algorithms for stress integration – Euler and Modified Euler, with and without substepping - 

were implemented and compared. 
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1. Introduction 

The number of users that use software based on the finite element method has increased dramatically in the 

last 15 years, especially among young professionals. This is mainly due to the large-scale commercialization of 

specialized software coupled with the rapid technological evolution and the need to build, for example, in 

urban areas where the analysis of the interaction between the structure to be dimensioned and the adjacent 

ones is more relevant. This dissertation aims to analyze the potentialities and limitations of some constitutive 

models used to reproduce soil behavior, as well as to present in a generalized way the various elements 

necessary for the formulation of different types of constitutive models (linear and nonlinear elastic, elastic 

perfectly plastic and elastoplastic). 

2. Newton-Raphson Method 

There are several strategies for dealing with nonlinear elastic and / or elastoplastic problems. All involve 

writing Equation (1) in global incremental form: 

[  ] {   }  {   }  
(1) 
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Where [  ]  is the incremental global stiffness matrix, {   }  is the vector of incremental nodal 

displacements, {   }  is the vector of incremental nodal forces and finally,   is the increment number. Thus for 

each increment, equation (2) must be solved, and the final solution of {   } is obtained by summing the 

results {   }  for all increments. However, due to the nonlinear constitutive behavior, [  ]  depends on the 

current stress and / or strain, not being constant, that is, it varies over an increment. 

The Newton-Raphson method evaluates the behavior of the soil within or very close to a possible stress space. 

Thus, recalling equation (2) applied to this problem: 

[  ] { 𝜐}  { 𝑒𝑥}
 − {  𝑛}

 −1 (2) 

Where [  ]  is the global tangent stiffness matrix of increment i, { 𝜐}  is the vector of incremental 

displacements associated with increment i, { 𝑒𝑥}
 is the applied external load vector, {  𝑛} −1  is the internal 

force vector of the previous increment and i refers to the increment number. It is then possible to divide an 

increment into several iterations: 

[  ]𝑗{𝛿𝜐}𝑗  { 𝑒𝑥}
 − {  𝑛}

𝑗−1 (3) 

Where,   refers to the number of the iteration, 𝛿𝜐 is a vector containing iterated displacements, which 

contribute to the increments of displacements of the increment  : 

{ 𝜐}  ∑{𝛿𝜐}𝑗

𝑛

𝑗=1

 (4) 

In addition, {  𝑛}  is calculated using the following formula, where, {  
 −1}  refers to the vector of constitutive 

stresses and [ ] is the strain interpolation matrix. The integration of tensions will be addressed in the next 

section. 

{  𝑛}  ∫[ ]𝑇{  
 −1}𝑑𝑉 (5) 

2.1. Stress point algorithms 
 Euler Method with substepping (ME) 

It is the most basic first-order explicit method (Atkinson, 1989), which means that the local error (that is, the 

error per step) is proportional to the square of the step size, and the overall error is proportional to the size of 

the step. Adapting this method to the present theme: 

{ } +1  { } + [𝐷] × ({𝜀} +1 − {𝜀} ) (6) 

Where [𝐷] is the tangent stiffness matrix of the material for state i and {𝜀}  is the vector of strain increments 

in the same substep. In this method a very small value of {𝜀} +1 − {𝜀}   is required to obtain approximate 

values, however this implies increasing the number of substeps performed, also increasing the calculation 

time.  

For the substepping, this integration algorithm considers a counter (n) that determines the number of 

subdivisions in which the deformation increment is to be divided. 
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 Modified Euler Method with substepping (MME) 

One of the causes for increasing errors in the Euler method is that [𝐷], at the initial point (𝜀    ), is applied to 

the total interval. In order to reduce the error arising from this cause, there are modifications that can be 

performed, such as the modified Euler method, also known as the midpoint method. Briefly, this method 

calculates the function [𝐷] at the midpoint (𝜀 +1     +1  ) of the interval (𝜀    ) and then obtains { } +1 in a 

similar way to Euler Method (6). The substepping is also implemented in a similar manner to Euler’s algorithm. 

3. K-G Model 

This nonlinear elastic model proposed by Naylor et al. (1981) considers that the bulk modulus K and shear 

modulus G are tangent and explicitly defined in terms of stress invariants, mean effective stress,    and 

deviatoric stress,   , or alternatively as a function of the quantities    𝑒 𝑛 and   𝑒 . When the Mohr-Coulomb 

failure criterion is to be incorporated, it is convenient to express the modules K and G in function of these 

invariants defined by the following equations: 

  𝑒 𝑛  
 1 +  3

2
      ;         𝑒   1 −  3 (7) (8) 

     +      𝑒 𝑛 (9) 

     +        𝑛 +      𝑒  (10) 

In this way,   and   grow with increasing   𝑒 𝑛  and   decreases with   𝑒 , tending to zero at failure, and 

therefore at failure the Poisson ratio tends to 0.5. It is recommended to set a maximum value for the Poisson 

ratio of 0.495. It was verified that in numerical analyzes with values of Poisson ratio close to 0,49999, it is not 

possible to invert the stiffness matrix due to numerical instability (for example, the pivot matrix element is 

negative during the inversion process), (Potts & Zdravkovic, 1999). 

The parameters   ,    and    must be chosen or calculated in such a way that the failure criterion is satisfied, 

that is, when the acting stresses obey the failure criterion and   is zero: 

  +      é +      𝑒  0 (11) 

From the above equation it is possible to obtain the following relations: 

  

−  

 2 sin𝜑′      ;         
  

−  

 2 𝑐  𝑐𝑜𝑠 𝜑′ (12) (13) 

Thus, instead of manually determining 5 input parameters (some of which appear to have no immediate 

physical significance), it is possible for known values of the angle of shearing resistance, 𝜑′, and soil cohesion, 

𝑐 , to obtain the values of    and    with (12) and  (13), where    is a value fixed by the user. Therefore, it is 

not necessary to obtain some of the parameters through triaxial tests (  ,   ,   ,    e   ), however the model 

still requires 5 input parameters. 
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4. Jardine Model (Small Strain Stiffness Model) 

The non-linear behavior in the range of small strains is not very often taken into account. Analyses that do not 

consider this behavior often end up overestimating the strains in the points of the domain subject to small 

perturbations (small increments of stress) and underestimating maximum strains of structures. 

Thus, Jardine model, also known as Small Strain Stiffness Model, was chosen out of the several models present 

in the literature. This model defines soil stiffness for small strains in the range  0− −  0−3 (Jardine et al. 

1986), through two logarithmic periodic functions expressing the nonlinear relationship between tangent 

normalized distortion modulus and shear / distortion strain, and the nonlinear relationship between 

normalized tangent bulk modulus and volumetric deformation. Thus the equations of the trigonometric curves 

are as follows: 

   

 ′
   +    s(   ) −

     −1

2  0 
sin(   ) 

(14) 

  

 ′
   +    s(   ) −

     −1

2  0 
sin(   ) 

With: 

(15) 
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(16) 

      1 (
    

 
)      1 (

𝜀1 + 𝜀 + 𝜀3

 
)  

(17) 

Where    is the bulk stiffness modulus,    is the shear modulus,    'is the mean effective stress, 𝜀  are the 

principal strains, and  ,  ,  ,  ,  ,  ,   ,  ,   and   are empirical constants. There are also the limits 

𝜀     𝑥  𝜀    𝜀     𝑛  and 𝜀   𝑥  𝜀 𝑒  𝜀   𝑛. This model was copled with a plastic model with a Mohr-

Coulomb criterion that has three input parameters (shear resistance angle, 𝜑′, dilation angle,  , and soil 

cohesion, 𝑐 ). 

5. Model Validation with Conventional Triaxial Tests  
5.1. K-G Model 

Consolidated drained triaxial tests (CD) with different confining pressures of 100 kPa, 200 kPa and 300 kPa 

were modelled in PLAXIS using the Euler Method and the Modified Euler Method for different values of n (1, 5, 

10 and 20). In addition, consolidated undrained triaxial tests (CU) were simulated with the same confining 

pressures with the two integration methods for n equal to 1 and 10. Table 1 presents the input parameters 

used in PLAXIS. 

Table 1: K-G Model parameters 

Parameters Name Units Value 

1    kPa 10000 

2    kPa 100 
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 Consolidated drained triaxial tests (CD)  

In Figure 2 it is possible to observe the modeling results for the two algorithms discussed above using the same 

number of cycles. In general, it is verified that the MME algorithm obtains adequate results using a smaller 

number of n than the algorithm ME in the same conditions. 

For the shear phase it is necessary to consider how both algorithms behave for abrupt variations in the soil 

stiffness matrix during the simulation. For example, when considering a unit number of n for the Euler 

Method, although there is subincrementation and an expedient method, the results are not satisfactory. Thus, 

the results of these simulations, which correspond to ME: n = 1, are not satisfactory since the obtained curves 

have difficulty in adjusting to that of the approximate solution (from shear strains higher than 1,7% - Fig: 2 b)).  

 

Fig. 1: Drained triaxial tests with confining stress 100 kPa for different algorithms with equal n 

3    - 100 

4 𝜑′ degree 30 

5 cohesion kPa 1 
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In addition, it is possible to affirm that MME algorithm allows closer results to the solution for a smaller value 

of n, however from a certain number of n, it is not possible to refine the results (n = 5). This is not true for ME 

where it is possible to improve the response up to n = 10. 

 Consolidated undrained triaxial tests (CU) 

 The consolidation phase of these tests is similar to the drained triaxial tests so it will not be addressed.The 

Modified Euler Method algorithm with n = 1 presents satisfactory results when compared with Euler Method’s 

algorithm for the same number of cycles and the solution. In fact, the points corresponding to the Euler 

Method algorithm for the same number of cycles (n = 1), deviate from the other results, exceeding 10 kPa of 

the mean value of the curves (Fig: 3 a)), being unreasonable. 

  

  

Fig.  2 Undrained triaxial tests with confining stress 100 kPa for different algorithms with equal n 

For n = 10, both algorithms present satisfactory results, with well delimited curves with enough points in areas 

of abrupt tangent variation. Note also that for an intermediate value of n, not shown here, the MME algorithm 

converges very quickly to a solution than the ME algorithm. 

5.2. Jardine Model 

Drained triaxial tests were performed with Jardine model with failure criterion for different confining stresses 

(100, 200 and 300 kPa). The dilation angle ( ) was defined at 0 °, 15 ° and 30 °, and the value of the shearing 

resistance angle (φ) was set at 30 °. The Euler Modified Method algorithm was used with n = 10. Additionally, it 

was possible to measure an approximate solution of the Jardine model using the equations (14) and (15) as a 

function of the normalized shear and volumetric moduli and respective strains. Similarly, undrained triaxial 

tests for different confining stresses (100, 200 and 300 kPa) were performed in the PLAXIS. The parameters 

used are listed in Table 2. 
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Table 2: Jardine model input parameters 

Props 1 2 3 4 5 6 7 8 9 10 
Parameter A B C R S T α γ δ η 

Units - - % - - - - - - - 
           

Props 11 12 13 14 15 16 17 18 19 20 
Parameter Evmax Evmin Edmax Edmin Gnorm Knorm ncyle φ ψ cohesion 

Units % % % % kPa kPa - ( ) ( ) kPa 
 

The points obtained through numerical modeling coincide with those of the approximate solution in general. 

The sharp degradation of the stiffness (normalized by the effective mean stress, p ') with the occurrence of 

strains is clearly observed. 

  

Fig.  3 Comparison of the variation of the volumetric and normalized shear moduli between numerical modeling and 
approximate solution of the Jardine model 

 Consolidated drained triaxial tests (CD) 

In Fig. 5 a) the trajectories of the total and effective stresses are presented for confining stresses of 100, 200 

and 300 kPa as well as the envelope of allowable stresses for the Mohr-Coulomb failure criterion. The stresses 

trajectories slightly exceed the Mohr-Coulomb permissible stresses envelope. For example, the theoretical 

failure stress at a confining stress of 100 kPa is 303.46 kPa and the failure stress obtained through the 

modeling was 304.61 kPa, which means there is an error of 0.37%. In Fig. 5 b), the behavior of this model in 

relation to the variation of the angle of dilation (0 °, 15 ° and 30°), where   𝜑′ results in non-associated 

conditions (i.e., non-associated flow rate law). 

  

a) b) 
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Fig.  4 a) Stress trajectories for confining stresses of 100, 200 and 300 kPa (Jardine Model with Mohr-Coulomb Failure 
Criterion b) Relation between volumetric strains and deviatorical strains in the shear phase for p0 = 100 kPa (CD) 

It was found that regardless of the value adopted for the dilatation after failure, stresses in the soil element 

remain constant. In terms of strain, for angles of dilation greater than 0 °, it is verified that after reaching the 

failure the volumetric strain begins to decrease (ie, the soil dilates). If an angle of dilation of 0 ° is allowed, 

there is no plastic dilatation and no plastic volumetric strain occurs (Fig: 6). 

  

 

Fig.  5 Results of the triaxial tests drained for p0 = 100, 200 and 300 kPa of the Jardine Model with Mohr-Coulomb Failure 

Criterion (CD) 

 Consolidated undrained triaxial tests (CU) 

The trajectories of the effective and total stress at a confining stress of 100 kPa with 0 ° and 15 ° dilation angles 

are shown in Fig. 7 (a) and (b). The trajectory where an angle of dilation of 30 ° is defined is not shown since it 

is similar to that of 15 °. 
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Fig.  6 a) Stress trajectories for confining stresses of 100, 200 and 300 kPa with ψ=0º and b) ψ=15º  

It is known that soil tends to dilate during the drained shearing phase and also exhibits a tendency to decrease 

the pore pressure during the undrained shearing phase, which results in an increase in the effective stresses. 

Similarly, a soil that tends to compress during shearing under drained conditions exhibits an increase in excess 

pore pressures during shearing under undrained conditions, resulting in a decrease in effective stress. This 

constitutive model is able to model this behavior when failure is reached, where the input parameter, ψ, 

governs the dilation of the soil model (Fig. 8 a) and b)).  

  

 

Fig.  7 a) Relation between deviatoric strain and stress b) Relation between pore pressure and vertical strain (UD) 

The Jardine model fails to model real soil behavior in that it usually dilates initially near failure but for large 

strains reaches a constant volume condition. 
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6. Conclusions  

It is possible to affirm that the numerical modeling and validation of the constitutive models of the soil as well 

as the coupling with a criterion of rupture was performed with satisfactory results for PLAXIS v8.2. 

For the K-G model, it was not possible to truly couple a plastic model (Mohr-Coulomb Model), due to its 

formulation incorporating a Mohr-Coulomb failure criterion when G is equal to or close to zero. This 

constitutive model presents as a limitation the fact that it cannot incorporate negative / positive dilation of the 

soil, since it is an elastic model. In this way, there is only variation of 𝜀    if there is mean stress variation, 

underestimating the volumetric compressive strain. In order to validate the model, the triaxial tests were 

drained and non-drained for different confining stresses with satisfactory results. 

The Jardine model presents a highly nonlinear elastic behavior in the spectrum of small strains (1%) as 

expected. From this value, constant values are assumed for the relations 
3  

  
 e 

  

  
  and the stiffness only 

changes with mean stress. For the various tests carried out with different confining stresses, it was found that 

the stiffness parameters depend on the applied confining stresses (as in a real soil test). Obtaining the input 

parameters is expedient, despite the amount required, however, highly specialized laboratory equipment with 

limited availability is required.It was also possible to successfully couple a plastic model with Mohr-Coulomb 

failure criterion. Contrary to what happened for the K-G model, it was possible to vary the angle of dilation (0 

°, 15 ° and 30 °), setting the angle of shearing resistance to 30 °. Thus it was possible to simulate situations with 

associated and non-associated flow rule in drained and undrained conditions, with results identical to those 

expected theoretically. A limitation of the Mohr-Coulomb plastic model is that even with non-associated 

conditions, where it is possible to define the ratio between volumetric and shear strains, for a non-zero 

dilation angle, the model predicts an increase in volumetric strains after failure through shearing. One way to 

circumvent this problem would be to vary the magnitude of the angle of dilation, ψ, according to the plastic 

shear strain,𝜀 
 

, as suggested by Potts (2001). 
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